
Using the Celtix management

Table of Contents

Overview..2

Default instrumentation in Celtix..2

Celtix Instrumentation Configuration...6

Accessing Celtix MBeans from management consoles ...7

Instrumentation Celtix Service...8

Using the JMX APIs...8

Using the Celtix Instrumentation Interface..10

Using the Celtix management

Overview
Celtix provides management facilities which bases on Java Management Extensions (JMX) to instrument its
core runtime. Several key runtime components are exposed as JMX Managed Beans (MBeans). This lets
an Celtix runtime be monitored and managed either in process or remotely with the help of JMXRemote API.

A support for registering custom MBeans is avalable in Celtix 1.0. Java developers can create their own
Mbeans statically or dynamically and register them either with their MBeanServer of choice or with a default
MBeanServer created by Celtix.

What is special about Celtix 1.0 though is that some of its key runtime components can now be exposed as
JMX MBeans dynamcially .

Default instrumentation in Celtix
As noted above, the Celtix servers can have their runtime components exposed as JMX
MBeans. At the moment, the following components can be managed :

● CeltixBus
● WorkQueue
● WSDLManager
● Endpoint
● HTTPServerTransport
● JMXServerTransport

All runtime components are registered with an MBeanServer as Model Dynamic MBeans. This ensures that
they can be viewed by third-party management consoles without any additional client-side support libraries.

These components follow an advice from a JMX Best Practices document on how to
name MBeans. All Celtix runtime MBeans use "org.objetweb.celtix.instrumentation"
as their domain name when creating ObjectName.

Component
Instance

name
Object Name Value

CeltixBus Bus name
org.objectweb.celtix.instrumentation:type=Bus,name=celt
ix

WorkQueue
Bus name
and string
constant

org.objectweb.celtix.instrumentation:type=Bus.WorkQueue
,Bus=celtix,name=WorkQueue

WSDLManager Bus name
org.objectweb.celtix.instrumentation:type=Bus.WSDLManag
er,Bus=celtix,name=WSDLManager

Endpoint

Bus name,
QName of
service,
name of
port, and
Endpoint

org.objectweb.celtix.instrumentation:type=Bus.Endpoint,
Bus=celtix,Bus.Service={http://objectweb.org/hello_worl
d}SOAPService",Bus.Port=SoapPort,name=Endpoint

HTTP Server Bus name, org.objectweb.celtix.instrumentation:type=Bus.Service.P

2

http://java.sun.com/products/JavaManagement/best-practices.html

Default instrumentation in Celtix

Component
Instance

name
Object Name Value

Transport

QName of
service,
name of
port, and
HTTPServe
rTransport

ort.HTTPServerTransport,Bus=celtix,Bus.Service={http://
objectweb.org/hello_world}SOAPService",Bus.Port=SoapPor
t,name=HTTPServerTransport"

JMS Server
Transport

Bus name,
QName of
service,
name of
port, and
JMSServer
Transport

 org.objectweb.celtix.instrumentation:type=Bus.Service.P
ort.JMSServerTransport,Bus=celtix,Bus.Service={http://o
bjectweb.org/hello_world}SOAPService",Bus.Port=SoapPort
,name=JMSServerTransport"

CeltixBus

The following attributes are currently supported :

Name Description Type Read/Write

TransportFactories Bus Transport Factories name String[] R

BindingFactories Bus Binding Factories name String[] R

ServiceMonitoring
Used to enable/disable transport performance
counters monitoring

Boolean RW

WorkQueue

The following attributes are currently supported :

Name Description Type Read/Write

ThreadingModel
Threading Model can be SINGLE_THREADED or
MULTI_THREADED

String R

WorkQueueSize The thread pool size Integer R

Empty The flag that indicate the WorkQueue is empty Boolean R

HighWaterMark
A number marking the highest busy level of
WorkQueue reached.

Integer RW

LowWaterMark A number marking the lowest busy level of Integer RW

3

Using the Celtix management

WorkQueue reached.

Full The flag that indicate the WorkQueue is full Boolean R

WSDLManager

The following attributes are currently supported :

Name Description Type Read/Write

Services
A list of Services QNames that the celtix wsdl
manager provides

String[] R

Ports
A list of ports name that the celtix wsdl manager
provide

String[] R

Bindings
A list of bindings name that the celtix wsdl manager
provide

String[] R

the following operation is currently supported :

Name Description Parameters Return Type

GetOperation
Get the specified Service and Port's operation
name

ServiceName,
PortTypeName

String[]

Endpoint

The following attributes are currently supported :

Name Description Type ReadWrite

ServiceName Service QName in expanded form String R

PortName The port name which registered with the Endpoint String R

HandlerChains
A list of classes name that Endpoint's ServiceBinding
customed

String[] R

State Endpoint Service state String R

4

Default instrumentation in Celtix

The following operations are currently supported :

Name Description Parameters Return Type

start Start (activate) a service None Void

stop Stop (deactivate) a service None Void

HTTPServerTransport

The following attributes are currently supported :

Name Description Type ReadWrite

ServiceName Service QName in expanded form String R

PortName The PortName of the HttpServerTransport String R

Url The url which HTTPServerTransport listens to String R

TotalError Total number of request-processing errors Integer R

RequestTotal
Total number of requests (including oneway) to this
service

Integer R

RequestOneWay Total number of requests only oneway to this service Integer R

JMSServerTransport

The following attributes are currently supported :

Name Description Type ReadWrite

ServiceName Service QName in expanded form String R

PortName The PortName of the HttpServerTransport String R

Url The url which HTTPServerTransport listens to String R

TotalError Total number of request-processing errors Integer R

RequestTotal Total number of requests (including oneway) to this Integer R

5

Using the Celtix management

service

RequestOneWay Total number of requests only oneway to this service Integer R

Celtix Instrumentation Configuration
To have the Celtix runtime exposed as JMX MBeans one needs to enable instrumentation and JMX facilities
to work. The other needs to know how to establish a connector to the JMX MBServer. These information
can be provided in Celtix Configuration:

Celtix management configuration is specified using the
org.objectweb.celtix.bus.instrumentation.instrumentation_config.spring.InstrumentationCon

figBean class for the configuration bean. Using this configuration bean, you specify the Celtix
instrumentation event listener behaviors by using the instrumentationControl property. It has two values
, one is InstrumentationEnabled ,the other is JMXEnabled .

InstrumentationEnable Used to enable/disable Celtix runtime component's created and removed
related event handling

JMXEnable Used to enable/disable Celtix JMX related MBean register and unregister event
handling

Using the management configuration bean, you also specify the MBeanServer behaviors using the
MBServer property. It has one value which is JMXConnector

JMXConnector Specifies how to setup the JMXConnectorServer which provider the remote
connection to JMXServer. This value contains three subvalues.

Threaded ,if it is setted to be true means that JMXConnectorServer run in a
new created thread .

Daemon,if it is setted to be true and the Threaded set to be true means that
the JMXConnectorServer thread which run the MBeanServer will be set to
Daemon mode.

JMXSerivceURL, means the Remote access is done through JMX Remote,
using the JMXServiceURL. See javax.management.remote.rmi package
details for more details on JMXServiceURLs.

6

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

Celtix Instrumentation Configuration

 <bean id="celtix.Instrumentation"
 class="org.objectweb.celtix.bus.instrumentation.instrumentation_config.spring.Inst
rumentationConfigBean">

 <property name="instrumentationControl">
 <value>
 <im:instrumentation>
 <im:InstrumentationEnabled>true</im:InstrumentationEnabled>
 <im:JMXEnabled>true</im:JMXEnabled>
 </im:instrumentation>
 </value>
 </property>
 <property name="MBServer">
 <value>
 <im:MBServer>
 <im:JMXConnector>
 <im:Threaded>true</im:Threaded>
 <im:Daemon>false</im:Daemon>
 <im:JMXServiceURL>service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/serve
r</im:JMXServiceURL>

 </im:JMXConnector>
 </im:MBServer>
 </value>
 </property>
 </bean>

Text 1: management setup Information in Celtix Configuration

More information
For more information on using Celtix configuration see the Celtix Configuration Guide.

Accessing Celtix MBeans from management consoles
Celtix runtime MBeans can be accessed remotely using JMX Remote. As such, any third party consoles
supporting JMXRemote can be used to monitor and manage celtix servers.

We can recommend a jconsole tool shipped with JDK 1.5. Just launch a <JDK_HOME>/bin/jconsole, select
'Advanced' tab and enter or paste a JMXServiceURL (default one or the one copied from instrumentation
configuration JMXServiceURL), and that's it.

Instrumentation Celtix Service
As the abover overview has mentioned, the Celtix application developers can create their own MBean and
registed to the Celtix MBeanServer. Celtix allows the registration of additional MBeans with the Celtix
MBean server. This makes it possible for you to add custom instrumentation to your service
implementations and mange it through the same management console as the other Celtix components.

7

http://celtix.objectweb.org/docs/user_guides/configuration/configuration.html

Using the Celtix management

There are two methods of instrumenting your service implementations:

 implement one of the JMX MBean interfaces and register it with Celtix’s MBean server.

 implement an Celtix instrumentation interface.

Functionally there is no different between the two approaches. The decision on which to use depends on
ease of development, maintainability, and portability.

Using the JMX APIs
The Celtix MBean server can be accessed through the Celtix bus and allows for the registration of user
developed MBeans. This allows you to instrument your service implementation by developing a custom
MBean using one of the JMX MBean interfaces and registering it with the Celtix MBean server. Your custom
instrumentation will then be accessible through the same JMX connection as the Celtix internal components
used by your service.

In order to access Celtix runtime MBeans, one needs to get a handle to the MBeanServer first.

The following code snippet shows how to access it locally :

 Bus bus = Bus.getCurrent();
 MBeanServer mbeanServer = bus.getInstrumentationManager().getMBeanServer();

And here is how to access it remotely :

 // The address of the connector server

 String url = "service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/server";

 JMXServiceURL address = new JMXServiceURL(url);

 // Create the JMXConnectorServer

 JMXConnector cntor = JMXConnectorFactory.connect(address, null);

 // Obtain a "stub" for the remote MBeanServer

 MBeanServerConnection mbsc = cntor.getMBeanServerConnection();

When you use the JMX APIs to instrument your service implementation, you follow the design methodology
laid out by the JMX specification. This involves the following steps:

1. Decide what type of MBean you wish to use.

• standard MBeans expose a management interface that is defined at development time.

• dynamic MBeans expose their management interface at run time.

2. Create the MBean interface to expose the properties and operations used to manage your service
implementation.

8

Using the JMX APIs

• standard MBeans use the MBean interface.

• dynamic MBeans use the DynamicMBean interface.

3. Implement the MBean class.

4. Register MBean class to Celtix MBeanServer

 Example: defined a MBean Interface

public interface ServerMBean {

 String getServiceName();
 String getAddress();
}

Example: Create MBean implementation and register it to Celtix MBeanServer

import javax.management.MBeanServer;
import javax.management.ObjectName;
import javax.xml.ws.Endpoint;
import org.objectweb.celtix.Bus;

public class Server implements ServerMBean {

 private static GreeterImpl implementor;
 private String address;

 protected Server() throws Exception {
 System.out.println("Starting Server");
 implementor = new GreeterImpl();
 address = "http://localhost:9000/SoapContext/SoapPort";
 Endpoint.publish(address, implementor);

//register to the bus MBServer

 Bus bus = Bus.getCurrent();
 MBeanServer mbserver = bus.getInstrumentationManager().getMBeanServer();
 ObjectName name = new
ObjectName("org.objectweb.celtix.instrumentation:type=ServerMBean,Bus="

 + bus.getBusID() + ",name=ServerMBean");
 mbserver.registerMBean(this, name);
 }

 public String getServiceName() {
 return "SoapService";
 }

 public String getAddress() {
 return address;

9

Using the Celtix management

 }

}

Using the Celtix Instrumentation Interface
If you do not want to use the JMX interfaces to add custom instrumentation to your service, you can use the
Celtix Instrumentation interface. This interface wraps the JMX subsystem in proprietary interfaces. You
do not need to access the Celtix JMX server to add instrumentation to your service.

To add custom instrumentation to your service using the ManagedComponent interface you need to do the
following:

1. Implement an instrumentation class that implements the
org.objectweb.celtix.Instrumentation interface.

2. In the service’s initialization routine, instantiate your instrumentation object and register it with the
bus.

3. In the service’s shutdown routine, unregister your instrumentation object.

Implementing the Instrumentation Class

Like an MBean, a instrumentation class is responsible for providing access to the attributes you want to
track and any management operations you want to expose.

Unlike an MBean, you do not need to define an interface for your instrumentation class. Instead, your
instrumentation object implements an Celtix management interfaces and defines the operations required to
expose the attributes and operations you want.

Celtix management facilities also provide an MBeanInfoAssembler which can get instrumented
component management interface which is defined with JDK5.0 annotation at the runtime. To enable the
use of JDK 5.0 annotations for management interface definition, Celtix provides a set of annotations that
mirror the ModelMBean's description, that allows the MBeanInfoAssembler to read them and Generate
correct ModelMBeanInfo.

To mark a components for export to JMX, you should annotate the instrumentation class with the
ManagedResource attribute. Each method you wish to expose as an operation should be marked with a
ManagedOperation attribute and each property you wish to expose should be marked with a
ManagedAttribute attribute. When marking properties you can omit either the getter or the setter to
create a write-only or read-only attribute respectively.

The example below shows a class with a JDK 5.0 annotation defined management interface:

package demo.hw.server;

import org.objectweb.celtix.bus.management.jmx.export.annotation.ManagedAttribute;
import org.objectweb.celtix.bus.management.jmx.export.annotation.ManagedOperation;
import org.objectweb.celtix.bus.management.jmx.export.annotation.ManagedResourec;
import org.objectweb.celtix.bus.management.Instrumentation;

@ManagedResource(componnetName=”GreeterInstrumentation”,
 decription = "The Celtix Service instrumentation demo component ",
 currencyTimeLimit = 15, persistPolicy = "OnUpdate")

10

Using the Celtix Instrumentation Interface

public class GreeterInstrumentation implements Instrumentation {

 private GreeterImpl greeter;

 public GreeterInstrumentation(GreeterImpl gi) {
 greeter = gi;
 }

 //set up the management component type name
 public String getInstrumentationName() {
 return "GreeterInstrumentation";
 }

 //The instrumentation managemented component reference
 public Object getComponent() {
 return this;
 }

 //The instrumentation unique name for Object Name
 public String getUniqueInstrumentationName() {
 return ",name=Demo.Management"
 }

 @ManagedAttribute(description = "Get the GreetMe call counter")
 public Integer getGreetMeCounter() {
 return greeter.requestCounters[0];
 }

 @ManagedAttribute(description = "Get the GreetMeOneWay call counter")
 public Integer getGreetMeOneWayCounter() {
 return greeter.requestCounters[1];
 }

 @ManagedAttribute(description = "Get the SayHi call counter")
 public Integer getSayHiCounter() {
 return greeter.requestCounters[2];
 }

 @ManagedAttribute(description = "Get the Ping me call counter")
 public Integer getPingMeCounter() {
 return greeter.requestCounters[3];
 }

 @ManagedAttribute(description = "Set the Ping me call counter")
 public void setPingMeCounter(Integer value) {
 greeter.requestCounters[3] = value;
 }

 @ManagedOperation(description = "set the SayHi return name",
 currencyTimeLimit = -1)
 public void setSayHiReturnName(String name) {
 greeter.returnName = name;
 }
}

Listing 2: This is an example of using JDK 5.0 annotation to define the management interface.

11

Using the Celtix management

JMX annotation class

The following annotation shows metadata types are available for use in Celitx JMX:

Celtix JMX annotation Types

Purpose JDK 5.0 Annotation
Attribute /

Annotation Type
Mark all instances of a Class
as JMX managed resources

@ManagedResource Class

Mark a method as a JMX
operation

@ManagedOperation Method

Mark a getter or setter as one
half of a JMX attribute

@ManagedAttribute
Method (only getters
and setters)

Define descriptions for
operation parameters

@ManagedOperationParameter and
@ManagedOperationParameters

Method

The following configuration parameters are available for use on these metadata types:

Parameter Description Applies to

componentName
Used to set the name description of
a managed resource

ManagedResource

description
Sets the friendly description of the
resource, attribute or operation

ManagedResource,
ManagedAttribute,
ManagedOperation,
ManagedOperationParameter

currencyTimeLimit
Sets the value of the
currencyTimeLimit descriptor
field

ManagedResource,
ManagedAttribute

defaultValue
Sets the value of the
defaultValue descriptor field

ManagedAttribute

log
Sets the value of the log descriptor
field

ManagedResource

logFile
Sets the value of the logFile
descriptor field

ManagedResource

persistPolicy
Sets the value of the
persistPolicy descriptor field

ManagedResource

persistPeriod
Sets the value of the
persistPeriod descriptor field

ManagedResource

persistLocation
Sets the value of the
persistLocation descriptor field

ManagedResource

persistName
Sets the value of the persistName
descriptor field

ManagedResource

name
Sets the display name of an
operation parameter

ManagedOperationParameter

index
Sets the index of an operation
parameter

ManagedOperationParameter

12

Using the Celtix Instrumentation Interface

Creating and Removing your Instrumentation

To make your custom instrumentation available to management consoles, you must create an instance of
your instrumentation class. Then you just need to register your instrumentation to the bus. The bus
automatically registers the MBean with the Celtix JMX server.

Unlike JMX-style instrumentation, Celtix API instrumentation must be cleaned up. In your services
shutdown() routine you need to tell the bus to remove the MBean created for your instrumentation. This also
cleans up any other resources created to support the custom instrumentation.

As with JMX-style instrumentation Celtix API instrumentation is not available until an MBean is created and
registered with the Celtix MBean server. However, when you create Celtix API instrumentation you do not
directly create an MBean or register it with the MBean server. This is all handled by the bus.

To create an MBean for your instrumentation and register it with the MBean server do the following:

1. Instantiate an instance of your instrumentation class.

2. Register instrumentation class with Instrumentation Manager.

 Instrumentation in = new GreeterInstrumentation(this);
 Bus bus = Bus.getCurrent();
 InstrumentationManager im = bus.getInstrumentationManager();
 im.register(in);

To clean up your custom instrumentation you need to unregister the MBean created to support it and
destroy the MBean. This is all done by call the instrumentation manager unregister method.

To remove your custom instrumentation from the JMX server do the following:

Unregist instrumentation object with Instrumentation Manager.

 Bus bus = Bus.getCurrent();
 InstrumentationManager im = bus.getInstrumentationManager();
 im.unregister(in);

13

	Using the Celtix management
	Overview
	Default instrumentation in Celtix
	CeltixBus
	WorkQueue
	WSDLManager
	Endpoint
	HTTPServerTransport
	JMSServerTransport

	Celtix Instrumentation Configuration
	Accessing Celtix MBeans from management consoles
	Instrumentation Celtix Service
	Using the JMX APIs
	Using the Celtix Instrumentation Interface
	Implementing the Instrumentation Class
	JMX annotation class
	Creating and Removing your Instrumentation

