CHAPTER 1: Developing a Consumer with Celtix

Table of Contents

Generating the StUD COdE...... oo e e e e e e
Implementing @ CeltiX ClIENt..........ooeieiie e e e e e e e e
Setting Connection Properties with Contexts.........cccoooiiiiiiiiiiiiiii e,
Asynchronous INVocation MOEL............cooo e

CHAPTER 1: Developing a Consumer with Celtix

Generating the Stub Code

The starting point for developing a service consumer (or client) in Celtix is a WSDL contract, complete with
port type, binding, and service definitions. You can then use the wsd12java utility to generate the Java stub
code from the WSDL contract. The stub code provides the supporting code that is required to invoke
operations on the remote service.

For Celtix clients, the wsd12java utility can generate the following kinds of code:
» Stub code — supporting files for implementing a Celtix client.

» Client starting point code — sample client code that connects to the remote service and invokes every
operation on the remote service.

* Antbuild file — a bui1d.xm1 file intended for use with the ant build utility. It has targets for building and
for running the sample client application.

Basic HelloWorld WSDL contract

Listing 1 shows the HelloWorld WSDL contract. This contract defines a single port type, Greeter, with a
SOAP binding, Greeter SOAPBinding, and a service, soaPservice, which has a single port, soappPort.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="HelloWorld"
targetNamespace="http://objectweb.org/hello world soap http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://objectweb.org/hello world soap http"
xmlns:x1="http://objectweb.org/hello world soap http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<wsdl:types>
<schema targetNamespace="http://objectweb.org/hello world soap http/types"
xmlns="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<element name="sayHi">
<complexType/>
</element>
<element name="sayHiResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>
</sequence>
</complexType>
</element>
<element name="greetMe">
<complexType>
<sequence>
<element name="requestType" type="string"/>
</sequence>
</complexType>
</element>
<element name="greetMeResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>
</sequence>
</complexType>
</element>
<element name="greetMeOneWay">
<complexType>
<sequence>

Generating the Stub Code

<element name="requestType" type="string"/>
</sequence>
</complexType>
</element>
<element name="pingMe">
<complexType/>
</element>
<element name="pingMeResponse">
<complexType/>
</element>
<element name="faultDetail">
<complexType>
<sequence>
<element name="minor" type="short"/>
<element name="major" type="short"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>

<wsdl:message name="sayHiRequest">

<wsdl:part element="x1l:sayHi" name="in"/>
</wsdl:message>
<wsdl:message name="sayHiResponse">

<wsdl:part element="x1:sayHiResponse" name="out"/>
</wsdl:message>
<wsdl:message name="greetMeRequest">

<wsdl:part element="x1:greetMe" name="in"/>
</wsdl:message>
<wsdl:message name="greetMeResponse'">

<wsdl:part element="x1:greetMeResponse" name="out"/>
</wsdl:message>
<wsdl:message name="greetMeOneWayRequest">

<wsdl:part element="x1:greetMeOneWay" name="in"/>
</wsdl:message>
<wsdl:message name="pingMeRequest">

<wsdl:part name="in" element="x1:pingMe"/>
</wsdl:message>
<wsdl:message name="pingMeResponse">

<wsdl:part name="out" element="x1:pingMeResponse"/>
</wsdl:message>
<wsdl:message name="pingMeFault">

<wsdl:part name="faultDetail" element="x1:faultDetail"/>
</wsdl:message>

<wsdl:portType name="Greeter">
<wsdl:operation name="sayHi">
<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
</wsdl:operation>

<wsdl:operation name="greetMe">
<wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
<wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>
</wsdl:operation>

<wsdl:operation name="greetMeOneWay">

<wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>

</wsdl:operation>

<wsdl:operation name="pingMe">
<wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
<wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>
<wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>
</wsdl:operation>

CHAPTER 1: Developing a Consumer with Celtix

</wsdl:portType>
<wsdl:binding name="Greeter SOAPBinding" type="tns:Greeter">

</wsdl:binding>
<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter SOAPBinding" name="SoapPort">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Listing 1: HelloWorld WSDL Contract

The Greeter port type from Listing 1 defines the following WSDL operations:
* sayHi — has a single output parameter, of xsd:string type.
* greetMe — has an input parameter, of xsd:string type, and an output parameter, of xsd:string type.

* greetMeOneWay — has a single input parameter, of xsd:string type. Because this operation has no
output parameters, Celtix can optimize this call to be a oneway invocation (that is, the client does not wait
for a response from the server).

* pingMe — has no input parameters and no output parameters, but it can raise a fault exception.

Listing 1 also defines a binding, Greeter soaPBinding, for the SOAP protocol. In practice, the binding is
normally generated automatically — for example, by running either of the Celtix wsd12soap Or wsd12xml
utilities. Likewise, the soaPservice service can be generated automatically by running the Celtix
wsdlZserviceLﬂ”ny.

Generating the Stub Code

After defining the WSDL contract, you can generate client code using the Celtix wsd125ava utility. Enter the
following command at a command-line prompt:

‘wsdl2java -ant -client -d ClientDir hello world.wsdl

Where clientpir is the location of a directory where you would like to put the generated files and

hello world.wsdl is a file containing the contract shown in Listing 1. The -ant option generates an ant
build.xml file, for use with the ant build utility. The -c1ient option generates starting point code for a client
main () function.

The preceding wsd12java command generates the following Java packages:
* org.objectweb.hello world soap http

This package name is generated from the http://objectweb.org/hello world soap http target
namespace. All of the WSDL entities defined in this target namespace (for example, the Greeter port
type and the soapservice service) map to Java classes in the corresponding Java package.

* org.objectweb.hello world soap http.types

This package name is generated from the http://objectweb.org/hello world soap http/types
target namespace. All of the XML types defined in this target namespace (that is, everything defined in
the wsd1:types element of the HelloWorld contract) map to Java classes in the corresponding Java
package.

The stub files generated by the wsd125ava command fall into the following categories:

» Classes representing WSDL entities (in the org.objectweb.hello world soap http package) — the
following classes are generated to represent WSDL entities:

Generating the Stub Code
— Greeter is a Java interface that represents the creeter WSDL port type. In JAX-WS terminology, this
Java interface is a service endpoint interface.
— SOAPService is a Java class that represents the soarservice WSDL service element.

— PingMeFault is a Java exception class (extending java.lang.Exception) that represents the
pingMeFault WSDL fault element.

» Classes representing XML types (in the org.objectweb.hello world soap http.types package)—in
the HelloWorld example, the only generated types are the various wrappers for the request and reply
messages. Some of these data types are useful for the asynchronous invocation model.

Implementing a Celtix Client

This section describes how to write the code for a simple Java client, based on the WSDL contract from
Listing 1. To implement the client, you need to use the following stub classes:

» Service class (that is, soapservice).

» Service endpoint interface (that is, Greeter).

Generated Service Class

Listing 2 shows the typical outline a generated service class, servicename, which extends the
javax.xml.ws.Service base class.

// Java
public class ServiceName extends javax.xml.ws.Service ({

public ServiceName (URL wsdlLocation, QName serviceName) { }
public ServiceName() { }

public Greeter getPortName() { }

}

Listing 2: Outline of a Generated Service Class

The servicename class in Listing 2 defines the following methods:
» Constructor methods — the following forms of constructor are defined:

— ServiceName (URL wsdlLocation, QName serviceName) constructs a service object based on the
data in the serviceName service in the WSDL contract that is obtainable from wsd1Location.

— ServiceName () is the default constructor, which constructs a service object based on the service
name and WSDL contract that were provided at the time the stub code was generated (for example,
when running the Celtix wsd12java command). Using this constructor presupposes that the WSDL
contract remains available at its original location.

* getPortName () methods — for every pPortname port defined on the servicename service, Celtix
generates a corresponding get PortName () method in Java. Therefore, a wsdl:service element that
defines multiple ports will generate a service class with multiple get Portname () methods.

CHAPTER 1: Developing a Consumer with Celtix

Service Endpoint Interface

For every port type defined in the original WSDL contract, you can generate a corresponding service
endpoint interface in Java. A service endpoint interface is the Java mapping of a WSDL port type. Each
operation defined in the original WSDL port type maps to a corresponding method in the service endpoint
interface. The operation's parameters are mapped as follows:

The input parameters are mapped to method arguments.
The first output parameter is mapped to a return value.

If there is more than one output parameter, the second and subsequent output parameters map to
method arguments (moreover, the values of these arguments must be passed using Holder types).

For example, Listing 3 shows the Greeter service endpoint interface, which is generated from the Greeter
port type defined in Listing 1. For simplicity, Listing 3 omits the standard JAXB and JAX-WS annotations.

}

// Java
/* Generated by WSDLToJava Compiler. */

package org.objectweb.hello world soap http;

public interface Greeter {

public java.lang.String sayHi ()

public java.lang.String greetMe (
java.lang.String requestType
) ;

public void greetMeOneWay (
java.lang.String requestType
) ;

public void pingMe () throws PingMeFault;

Listing 3: The Greeter Service Endpoint Interface

Client Main Function

Listing 4 shows the Java code that implements the HelloWorld client. In summary, the client connects to the
SoapPort port on the soapservice service and then proceeds to invoke each of the operations supported by
the Greeter port type.

// Java
package demo.hw.client;

import java.io.File;

import java.net.URL;

import Jjavax.xml.namespace.QName;

import org.objectweb.hello world soap http.Greeter;
import org.objectweb.hello world soap http.PingMeFault;
import org.objectweb.hello world soap http.SOAPService;

public final class Client ({

private static final QName SERVICE NAME
= new QName ("http://objectweb.org/hello world soap http", "SOAPService");

private Client () {
}

public static void main(String args[]) throws Exception {

Implementing a Celtix Client

if (args.length == 0) {
System.out.println ("please specify wsdl");
System.exit (1) ;

}

URL wsdlURL;
File wsdlFile = new File(args([0]);

if (wsdlFile.exists()) {
wsdlURL = wsdlFile.toURL() ;
} else {

wsdlURL = new URL(args[0]);
}

System.out.println (wsdlURL) ;

SOAPService ss = new SOAPService (wsdlURL, SERVICE NAME) ;
Greeter port = ss.getSoapPort ()

String resp;

System.out.println ("Invoking sayHi...");

resp = port.sayHi();

System.out.println ("Server responded with: " + resp);
System.out.println () ;

System.out.println ("Invoking greetMe...");

resp = port.greetMe (System.getProperty ("user.name")) ;
System.out.println ("Server responded with: " + resp);
System.out.println () ;

System.out.println
port.greetMeOneWay
System.out.println
System.out.println

"Invoking greetMeOneWay...");
System.getProperty ("user.name")) ;
"No response from server as method is OneWay") ;

)

try {
System.out.println ("Invoking pingMe, expecting exception...");
port.pingMe () ;

} catch (PingMeFault ex) {
System.out.println ("Expected exception: PingMeFault has occurred.");
System.out.println (ex.toString()) ;

}

System.exit (0) ;

}

Listing 4: Client Implementation Code

The client.main () function from Listing 4 proceeds as follows:

» The Celtix runtime is implicitly initialized — that is, provided the Celtix runtime classes are loaded. Hence,

there is no need to call a special function in order to initialize Celtix.

» The client expects a single string argument that gives the location of the WSDL contract for HelloWorld.
The WSDL location is stored in the variable, wsd1URL.

* A new port object (which enables you to access the remote server endpoint) is created in two steps, as
shown in the following code fragment:

// Java
SOAPService ss = new SOAPService (wsdlURL, SERVICE NAME) ;
Greeter port = ss.getSoapPort():;

To create a new port object, you first create a service object (passing in the WSDL location and service
name) and then call the appropriate get Portname () method to obtain an instance of the particular port
you need. In this case, the soapservice service supports only the soapport port, which is of Greeter

CHAPTER 1: Developing a Consumer with Celtix

type.

» The client proceeds to call each of the methods supported by the Greeter service endpoint interface.

* In the case of the pinglMe () operation, the example code shows how to catch the pingMeFault fault
exception.

Setting Connection Properties with Contexts

You can use JAX-WS contexts to customize the properties of a client proxy. In particular, contexts can be
used to modify connection properties and to send data in protocol headers. For example, you could use
contexts to add a SOAP header, either to a request message or to a response message. The following types
of context are supported on the client side:

» Request context — on the client side, the request context enables you to set properties that affect
outbound messages. Request context properties are applied to a specific port instance and, once set, the
properties affect every subsequent operation invocation made on the port, until such time as a property is
explicitly cleared. For example, you might use a request context property to set a connection timeout or to
initialize data for sending in a header.

* Response context — on the client side, you can access the response context to read the property values
set by the inbound message from the last operation invocation. Response context properties are reset
after every operation invocation. For example, you might access a response context property to read
header information received from the last inbound message.

Setting a Request Context

To set a particular request context property, contextPropertyName, to the value, Propertyvaiue, use the
code shown in Listing 5.

// Java

// Set request context property.

java.util.Map<String, Object> requestContext =
((javax.xml.ws.BindingProvider)port) .getRequestContext () ;

requestContext.put (ContextPropertyName, PropertyValue) ;

// Invoke an operation.
port.SomeOperation() ;

Listing 5: Setting a Request Context Property on the Client Side

You have to cast the port object to javax.xml.ws.BindingProvider type in order to access the request
context. The request context itself is of type, java.util.Map<String, Object>, which is a hash map that
has keys of string type and values of arbitrary type. Use the java.util.Map.put () method to create a
new entry in the hash map.

Reading a Response Context

To retrieve a particular response context property, contextPropertyName, use the code shown in Listing 6.

// Java
// Invoke an operation.
port.SomeOperation() ;

// Read response context property.

java.util.Map<String, Object> responseContext =
((javax.xml.ws.BindingProvider)port) .getResponseContext () ;

PropertyType propValue = (PropertyType) responseContext.get (ContextPropertyName) ;

Listing 6: Reading a Response Context Property on the Client Side

Setting Connection Properties with Contexts
The response context is of type, java.util.Map<String, Object>, which is a hash map that has keys of

String type and values of arbitrary type. Use the java.util.Map.get () method to access an entry in the
hash map of response context properties.

Contexts Supported by Celtix

Celtix supports the following context properties:

Context Property Name Context Property Type
org.objectweb.celtix.ws.addressing.JAXWSACo |org.objectweb.celtix.ws.addressing.Addressi
nstants.CLIENT ADDRESSING PROPERTIES ngProperties

Table 1: Celtix Context Properties

Asynchronous Invocation Model

In addition to the usual synchronous mode of invocation, Celtix also supports two forms of asynchronous
invocation, as follows:

* Polling approach — in this case, to invoke the remote operation, you call a special method that has no
output parameters, but returns a javax.xml.ws.Response instance. The response object (which inherits
from the javax.util.concurrency.Future interface) can be polled to check whether or not a response
message has arrived.

» Callback approach — in this case, to invoke the remote operation, you call another special method that
takes a reference to a callback object (of javax.xml.ws.AsyncHandler type) as one of its parameters.
Whenever the response message arrives at the client, the Celtix runtime calls back on the AsyncHandler
object to give it the contents of the response message.

Both of these asynchronous invocation approaches are described here and illustrated by code examples.

WSDL Contract for Asynchronous Example

Listing 7 shows the WSDL contract that is used for the asynchronous example. The contract defines a single
port type, GreeteraAsync, which contains a single operation, greetMeSometime.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://objectweb.org/hello world async_soap http"
xmlns:x1="http://objectweb.org/hello world async_soap http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://objectweb.org/hello world async soap http" name="HelloWorld">
<wsdl:types>
<schema targetNamespace="http://objectweb.org/hello world async soap http/types"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:x1="http://objectweb.org/hello world async_soap http/types"
elementFormDefault="qualified">
<element name="greetMeSometime">
<complexType>
<sequence>
<element name="requestType" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="greetMeSometimeResponse">
<complexType>
<sequence>
<element name="responseType" type="xsd:string"/>

CHAPTER 1: Developing a Consumer with Celtix

</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<wsdl:message name="greetMeSometimeRequest">
<wsdl:part name="in" element="x1l:greetMeSometime"/>
</wsdl:message>
<wsdl:message name='"greetMeSometimeResponse'">
<wsdl:part name="out" element="x1:greetMeSometimeResponse"/>
</wsdl:message>

<wsdl:portType name="GreeterAsync">
<wsdl:operation name="greetMeSometime">
<wsdl:input name="greetMeSometimeRequest"
message="tns:greetMeSometimeRequest"/>
<wsdl:output name="greetMeSometimeResponse"
message="tns:greetMeSometimeResponse" />
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="GreeterAsync SOAPBinding" type="tns:GreeterAsync">
</wsdl:binding>

<wsdl:service name="SOAPService">
<wsdl:port name="SoapPort" binding="tns:GreeterAsync SOAPBinding">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Listing 7: HelloWorld WSDL Contract for Asynchronous Example

Generating the Asynchronous Stub Code

The asynchronous style of invocation requires extra stub code (for example, dedicated asychronous
methods defined on the service endpoint interface). This special stub code is not generated by default,
however. To switch on the asynchronous feature and generate the requisite stub code, you must use the
mapping customization feature from the WSDL 2.0 specification.

Customization enables you to modify the way the wsd12java utility generates stub code. In particular, it
enables you to modify the WSDL-to-Java mapping and to switch on certain features. Here, customization is
used to switch on the asynchronous invocation feature. Customizations are specified using a binding
declaration, which you define using a jaxws:bindings tag (where the jaxws prefix is tied to the
http://java.sun.com/xml/ns/jaxws namespace). There are two alternative ways of specifying a binding
declaration:

» External binding declaration — the jaxws:bindings element is defined in a file separately from the
WSDL contract. You specify the location of the binding declaration file to the wsd125ava utility when you
generate the stub code.

* Embedded binding declaration — you can also embed the jaxws:bindings element directly in a WSDL
contract, treating it as a WSDL extension. In this case, the settings in jaxws:bindings apply only to the
immediate parent element.

This section considers only the first approach, the external binding declaration. The template for a binding
declaration file that switches on asynchronous invocations is shown in Listing 8.

10

Asynchronous Invocation Model

<bindings
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="AffectedWSDLContract"
xmlns="http://java.sun.com/xml/ns/jaxws">
<bindings node="AffectedNode">

<enableAsyncMapping>true</enableAsyncMapping>

</bindings>

</bindings>

Listing 8: Template for an Asynchronous Binding Declaration

Where affectedwspLcontract specifies the URL of the WSDL contract that is affected by this binding
declaration. The affectednode is an XPath value that specifies which node (or nodes) from the WSDL
contract are affected by this binding declaration. You can set aAffectedNode t0 wsdl:definitions, if you
want the entire WSDL contract to be affected. The jaxws:enableAsyncMapping element is set to true to
enable the asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the Greeterasync port type, you could
SpeCWy<bindings node="wsdl:definitions/wsdl:portType [@name="'GreeterAsync']"> in the
preceding binding declaration.

Assuming that the binding declaration is stored in a file, async_binding.xml, you can generate the requisite
stub files with asynchronous support by entering the following wsd12java command:

stdleava -ant -client -d ClientDir -b async binding.xml hello world.wsdl ‘

When you run the wsd12java command, you specify the location of the binding declaration file using the -b
option. After generating the stub code in this way, the Greeterasync service endpoint interface (in the file
GreeterAsync.java) is defined as shown in Listing 9.

/* Generated by WSDLToJava Compiler. */
package org.objectweb.hello world async soap http;

import java.util.concurrent.Future;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

public interface GreeterAsync {

public Future<?> greetMeSometimeAsync (
java.lang.String requestType,
AsyncHandler<org.objectweb.hello world async soap http.types.GreetMeSometimeResp
onse> asyncHandler

)i

public
Response<org.objectweb.hello world async soap http.types.GreetMeSometimeResponse>
greetMeSometimeAsync (
java.lang.String requestType
)i

public java.lang.String greetMeSometime (
java.lang.String requestType
) 7

}

Listing 9: Service Endpoint Interface with Methods for Asynchronous Invocations

11

CHAPTER 1: Developing a Consumer with Celtix

In addition to the usual synchronous method, greetMeSometime (), two asynchronous methods are also
generated for the greetMesometime Operation, as follows:

* greetMeSometimeAsync () method with Future<?> return type and an extra
javax.xml.ws.AsyncHandler parameter — call this method for the callback approach to asynchronous
invocation.

* greetMeSometimeAsync () method with Response<GreetMeSometimeResponse> return type — call this
method for the polling approach to asynchronous invocation

The details of the callback approach and the polling approach are discussed in the following subsections.

Implementing an Asynchronous Client with the Polling Approach

Listing 10 illustrates the polling approach to making an asynchronous operation call. Using this approach, the
client invokes the operation by calling the special Java method, operationNameasync (), that returns a
javax.xml.ws.Response<T> object, where T is the type of the operation's response message. The
Response<T> Object can be polled at a later stage to check whether the operation's response message has
arrived.

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.objectweb.hello world async soap http.GreeterAsync;
import org.objectweb.hello world async soap http.SOAPService;
import org.objectweb.hello world async soap http.types.GreetMeSometimeResponse;

public final class Client ({

private static final QName SERVICE NAME
= new QName ("http://objectweb.org/hello world async soap http", "SOAPService");

private Client () {
}

public static void main(String args[]) throws Exception ({

// Polling approach:
Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync (System.getProperty ("user.name")) ;
while (!greetMeSomeTimeResp.isDone()) {
Thread.sleep (100) ;
}

GreetMeSometimeResponse reply = greetMeSomeTimeResp.get () ;
System.exit (0) ;

}

Listing 10: Polling Approach for an Asynchronous Operation Call

12

Asynchronous Invocation Model

The greetMeSometimeAsync () method invokes the greetMeSometimes operation, transmitting the input
parameters to the remote service and returning a reference to a
javax.xml.ws.Response<GreetMeSometimeResponse> Object. The Response class is defined by extending
the standard java.util.concurrency.Future<T> interface, which is specifically designed for polling the
outcome of work performed by a concurrent thread. There are essentially two basic approaches to polling
using the response object:

* Non-blocking polling — before attempting to get the result, check whether the response has arrived by
calling the non-blocking Response<T>.isDone () method. For example:

// Java
Response<GreetMeSometimeResponse> greetMeSomeTimeResp =

if (greetMeSomeTimeResp.isDone()) {
GreetMeSometimeResponse reply = greetMeSomeTimeResp.get () ;

}
» Blocking polling — call rResponse<T>.get () right away and block until the response arrives (optionally
specifying a timeout). For example, to poll for a response, with a 60 second timeout:

// Java
Response<GreetMeSometimeResponse> greetMeSomeTimeResp = ...;

GreetMeSometimeResponse reply = greetMeSomeTimeResp.get (
60L,
java.util.concurrent.TimeUnit.SECONDS

)

Implementing an Asynchronous Client with the Callback Approach

An alternative approach to making an asynchronous operation invocation is to implement a callback class, by
deriving from the javax.xml.ws.AsyncHandler interface. This callback class must implement a
handleResponse () method, which is called by the Celtix runtime to notify the client that the response has
arrived. Listing 11 shows an outline of the AsyncHandler interface that you need to implement.

// Java
package javax.xml.ws;

public interface AsyncHandler<T>
{

void handleResponse (Response<T> res) ;

}

Listing 11: The javax.xml.ws.AsyncHandler Interface

In this example, a callback class, TestAsyncHandler, is defined as shown in Listing 12.

package demo.hw.client;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import org.objectweb.hello world async soap http.types.GreetMeSometimeResponse;

public class TestAsyncHandler implements AsyncHandler<GreetMeSometimeResponse> {
private GreetMeSometimeResponse reply;

public void handleResponse (Response<GreetMeSometimeResponse> response) {
try {
reply = response.get();
} catch (Exception ex) {
ex.printStackTrace() ;

}

13

CHAPTER 1: Developing a Consumer with Celtix

public String getResponse () {
return reply.getResponseType () ;
}

}
Listing 12: The TestAsyncHandler Callback Class

The implementation of the handleResponse () method shown in Listing 12 simply gets the response data
and stores it in a member variable, reply. The extra getResponse () method is just a convenience method
that extracts the sole output parameter (that is, responseType) from the response.

Listing 13 illustrates the callback approach to making an asynchronous operation call. Using this approach,
the client invokes the operation by calling the special Java method, operationNameasync (), that returns a
java.util.concurrency.Future<?> object and takes an extra parameter of AsyncHandler<T> type.

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.objectweb.hello world async soap http.GreeterAsync;
import org.objectweb.hello world async soap http.SOAPService;
import org.objectweb.hello world async soap http.types.GreetMeSometimeResponse;

public final class Client {

private static final QName SERVICE NAME
= new QName ("http://objectweb.org/hello world async soap http", "SOAPService");

private Client () {
}

public static void main (String args[]) throws Exception ({

// Callback approach

TestAsyncHandler testAsyncHandler = new TestAsyncHandler () ;

System.out.println ("Invoking greetMeSometimeAsync using callback object...");

Future<?> response = port.greetMeSometimeAsync (System.getProperty ("user.name"),
testAsyncHandler) ;

while (!response.isDone()) {

Thread.sleep(100) ;
}

resp = testAsyncHandler.getResponse () ;
é;étem.exit(O);
}
Listing 13: Callback Approach for an Asynchronous Operation Call

The Future<?> object returned by greetMeSometimeAsync () can be used only to test whether or not a
response has arrived yet — for example, by calling response. isbone (). The value of the response is only
made available to the callback object, testasyncHandler.

14

	CHAPTER 1: Developing a Consumer with Celtix
	Generating the Stub Code
	Basic HelloWorld WSDL contract
	Generating the Stub Code

	Implementing a Celtix Client
	Generated Service Class
	Service Endpoint Interface
	Client Main Function

	Setting Connection Properties with Contexts
	Setting a Request Context
	Reading a Response Context
	Contexts Supported by Celtix

	Asynchronous Invocation Model
	WSDL Contract for Asynchronous Example
	Generating the Asynchronous Stub Code
	Implementing an Asynchronous Client with the Polling Approach
	Implementing an Asynchronous Client with the Callback Approach

