
Deploying Celtix into a Servlet Container

Table of Contents
Overview... 1
A Deployed Celtix Web Service.. 1

The XML Files... 2
The Endpoint URL.. 3
Alternative Deployment Approaches... 4

Removing Extraneous Files.. 4
Relocating the Celtix JAR Files... 4
Installing Multiple Web Services into a Common Directory Hierarchy.. 5
Installing Tomcat... 6

Overview
It is possible to deploy a Celtix Web service endpoint into a servlet container such as Tomcat. The sample
applications hello_world and hello_world_RPCLit demonstrate this capability. However, these examples
illustrate a very basic approach to accomplishing this task. This document will discuss alternative approaches
that are more scalable and efficient.

Before discussing these alternative approaches, it is essential that you understand what is needed to deploy a
Celtix Web service endpoint into Tomcat. If you need guidance on installing Tomcat, refer to the last section in
this document – Installing Tomcat on page 6.

A Deployed Celtix Web Service
Go to either the hello_world or hello_world_RPCLit examples and follow the instructions to build the .war file.
Instructions for performing this task are near the end of the README file. The .war file is generated into the
build/war directory. Review the content of the build.xml file in either example. Note that it has targets to
create the .war file and to run the client application against the Tomcat hosted Web service. If you would rather
run the client using java directly, refer to the instructions in the README file.

If desired, copy one, or both, of the .war files to the Tomcat webapps directory, start Tomcat, and run the client
application(s).

Use WinZip to open the .war file and view its contents; then extract the archive to a temporary location.

Alternatively, if you installed the .war file(s) into Tomcat, you can view the contents from the webapps directory;
the files will have been extracted into a directory with a name corresponding to the name of the .war file (without
the .war extension).

A Deployed Celtix Web Service:A Deployed Celtix Web Service

The classes directory includes the code generated from the WSDL file plus any additional files you have added
to the application. Note that files from both the server and client application are included. Obviously, the client
related files are not needed and will not be included in the alternative approaches discussed later in this
document.

The lib directory includes all of the JAR files from your Celtix installation's lib directory, and the wsdl directory
contains the WSDL file for the application.

The WEB-INF directory includes two XML files: web.xml and celtix-servlet.xml. You need to understand the
content of these files in order to appreciate the alternative approaches described in this document.

The XML Files
The web.xml file is the standard servlet deployment descriptor file while the celtix-servlet.xml file includes
configuration information specific to the Celtix Web service endpoint.

The web.xml File

Although this file contains the standard servlet configuration information, you need to review its contents.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<web-app>
 <display-name>celtix</display-name>
 <description>celtix</description>
 <servlet>
 <servlet-name>celtix</servlet-name>
 <display-name>celtix</display-name>
 <description>Celtix endpoint</description>
 <servlet-class>
 org.objectweb.celtix.bus.jaxws.servlet.CeltixServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>celtix</servlet-name>
 <url-pattern>/celtix/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

Note that the servlet class is not actually part of your application. It is pre-written and part of your Celtix
installation. This class file is located in the file celtix-rt-<version number>.jar, which is one of the files
included in the lib directory.

Also note the <url-pattern> entry celtix. This will become part the the URL that client applications use to
invoke on the Web service.

The celtix-servlet.xml File

This file contains content specific to the Celtix Web service application.
<?xml version="1.0" encoding="UTF-8"?>
<endpoints>

2

A Deployed Celtix Web Service:The XML Files

 <endpoint
 name="hello_world"
 interface="org.objectweb.hello_world_soap_http.Greeter"
 implementation="demo.hw.server.GreeterImpl"
 wsdl="WEB-INF/wsdl/hello_world.wsdl"
 service="{http://objectweb.org/hello_world_soap_http}SOAPService"
 port="{http://objectweb.org/hello_world_soap_http}SOAPPort"
 url-pattern="/hello_world" />
</endpoints>

Notice that all information related to a specific Web service is specified as attributes within the <endpoint> tag.
The origin of most of these entries is straight-forward, being derived either from declarations in the WSDL file or
from the class names of code generated from the WSDL file. The value for the wsdl attribute is the path to the
application's WSDL file relative to the application's installation directory under the Tomcat webapps directory, and
the values of the service and port attributes are derived from a combination of the target namespace and
service, or port, name specified in the WSDL file.

The value for the url-pattern attribute is the same as the name attribute, but that is not a firm requirement.
What is important, however, is that this entry will also become part of the URL that client applications will use to
invoke on the Web service.

As you will see later in this document, if you want to deploy multiple Celtix Web service endpoints into the same
Tomcat instance, you can simply add additional <endpoint> elements to this XML file.

The Endpoint URL
In order to access the Web service endpoint, client applications need a URL. Since the endpoint is hosted within
Tomcat, access will be through the TCP/IP port used by Tomcat and not through the URL specified in the WSDL
file. In the Celtix example applications, access to the hello_world Web service deployed into Tomcat uses the
URL:

http://hostname:port/helloworld/celtix/hello_world
and access to the hello_world_RPCLit Web service uses the URL:

http://hostname:port/helloworldrpclit/celtix/hello_world_rpclit
Where:

– http://hostname:port refer to the host and TCP/IP port used by Tomcat (for Tomcat, the default port is
generally 8080),

– /helloworld or /helloworldrpclit are derived from the name of the subdirectory under the Tomcat
webapps directory that contains the application (note that this subdirectory has the same name as the
.war file),

– /celtix is derived from the value of the <url-pattern> entry in the web.xml file, and

– /hello_world or /hello_world_rpclit are derived from the value of the url-pattern attribute within
the <endpoint> tag in the celtix-servlet.xml file.

You should note how these URLs are specified when running the sample applications. If you choose to run the
client application using Ant, the URL is derived from information supplied on the command line combined with
information that is already included in the <target name=“client-servlet”...><celtix-run.../></target>
tags in the build.xml file. If you run the application using java, you must supply the URL as a command line
parameter.

3

Alternative Deployment Approaches:Alternative Deployment Approaches

Alternative Deployment Approaches
While the approach used in the Celtix example applications demonstrates how Celtix Web services can be
deployed into Tomcat, there are some improvements that you can make.

1. First, the client related files do not need to be included.

2. Second, the server mainline file is also not required.

3. Third, many of the Celtix JAR files are not needed.

4. Fourth, the Celtix JAR files can be moved into the shared/lib subdirectory under your Tomcat installation.
With this arrangement, these files are shared by all Celtix applications that are deployed into Tomcat.

5. And fifth, multiple Web services can be deployed within the same directory hierarchy rather than deploying
each service into a unique subdirectory under the Tomcat webapps directory.

Once you have deployed the first Web service, you can deploy additional endpoints into the same directory
hierarchy by simply copying the .class files and WSDL file corresponding to the Web service and extending
the celtix-servlet.xml file with another <endpoint> entry. There is no need to actually generate the .war
file, which will include files (client mainline, server mainline, Celtix JARS, and web.xml) that you do not need.

To illustrate these points, you can rework the hello_world and hello_world_RPCLit demos, combining them into a
single servlet application.

Removing Extraneous Files
If you have not done so already, copy the .war files from the hello_world and hello_world_RPCLit example
applications into the Tomcat webapps directory. Start Tomcat, which causes the .war files to be unpacked into
subdirectories under webapps. Stop Tomcat and open a command window, or Windows explorer, to the
subdirectory (webapps/helloworld) holding one of the hello_world deployed application.

Removing Unneeded Application Files

Under the webapps/helloworld/WEB-INF/classes/demo/hw directory, delete the entire client subdirectory
and the file Server.class from the server subdirectory; be certain to leave the .class file corresponding to the
implementation class. Also remove the Server.class file from the webapps/helloworldrpclit/WEB-INF/
classes/demo/hwRPCLit/server subdirectory.

Removing Unneeded Celtix JAR Files

Delete the following JAR files from the webapps/helloworld/WEB-INF/lib directory: (REVISIT at v1.0 GA.)

Relocating the Celtix JAR Files
Move the contents of the webapps/helloworld/WEB-INF/lib directory into the shared/lib directory. The
Celtix JAR files will now be available to all Celtix applications deployed into this Tomcat instance. (REVISIT at
v1.0 GA; approach to generating, and contents of, the .war file may change.)

4

Alternative Deployment Approaches:Installing Multiple Web Services into a Common Directory Hierarchy

Installing Multiple Web Services into a Common Directory Hierarchy
To avoid some confusion, you will first rename the webapps/helloworld directory to webapps/applications.
Then you are going to copy the files from the hello_world_RPCLit example into the corresponding subdirectories
under webapps/applications. Finally, you will edit the celtix-servlet.xml file, adding a second
<endpoint> element that describes the hello_world_RPCLit service. When you restart Tomcat both endpoints
will be accessed through a URL beginning with a common context:
http://hostname:port/applications/celtix/.

1. Be certain that Tomcat is not running.

2. Rename the directory webapps/helloworld to webapps/applications. Expand each subdirectory.

3. Copy the directory webapps/helloworldrpclit/WEB-INF/classes/demo/hwRPCLit and paste it into the
directory webapps/applications/WEB-INF/classes/demo. This step copies the directory containing the
endpoint application, specifically the implementation class, from the hello_world_RPCLit example into the
combined deployment.

4. Copy the directory webapps/helloworldrpclit/WEB-INF/classes/demo/org/objectweb/
hello_world_rpclit and paste it into the directory webapps/applications/WEB-
INF/classes/demo/orb/objectweb. This step copies the directory containing the types generated from the
hello_world_RPCLit example's WSDL file into the combined deployment.

5. Copy the file webapps/helloworldrpclit/WEB-INF/wsdl/hello_world_RPCLit.wsdl and paste it into the
directory webapps/applications/WEB-INF/wsdl.

6. In a text editor, open the file webapps/helloworldrpclit/WEB-INF/celtix-servlet.xml and copy the
entire <endpoint> element. Paste this content into the file webapps/applications/WEB-INF/
celtix-servlet.xml and save the file.

<?xml version="1.0" encoding="UTF-8"?>
<endpoints>
 <endpoint
 name="hello_world_rpclit"
 interface="org.objectweb.hello_world_rpclit.GreeterRPCLit"
 implementation="demo.hwRPCLit.server.GreeterRPCLitImpl"
 wsdl="WEB-INF/wsdl/hello_world_RPCLit.wsdl"
 service="{http://objectweb.org/hello_world_rpclit}SOAPServiceRPCLit"
 port="{http://objectweb.org/hello_world_rpclit}SOAPPortRPCLit"
 url-pattern="/hello_world_rpclit" />

5

Alternative Deployment Approaches:Installing Multiple Web Services into a Common Directory Hierarchy

 <endpoint
 name="hello_world"
 interface="org.objectweb.hello_world_soap_http.Greeter"
 implementation="demo.hw.server.GreeterImpl"
 wsdl="WEB-INF/wsdl/hello_world.wsdl"
 service="{http://objectweb.org/hello_world_soap_http}SOAPService"
 port="{http://objectweb.org/hello_world_soap_http}SOAPPort"
 url-pattern="/hello_world" />

</endpoints>

7. Delete the helloworldrpclit subdirectory and the two .war files from the webapps directory.

8. Restart Tomcat.

9. Access the hello_world_RPCLit Web service using the URL:
http://hostname:port/applications/celtix/hello_world_rpclit

From the celtix/samples/hello_world_RPCLit directory, run the client with the command:
java -Djava.util.logging.config.file=%CELTIX_HOME%\etc\logging.properties
 demo.hwRPCLit.client.Client
 http://localhost:8080/applications/celtix/hello_world_rpclit

Access the hello_world Web service using the URL:
http://hostname:port/applications/celtix/hello_world

From the celtix/samples/hello_world directory, run the client with the command:
java -Djava.util.logging.config.file=%CELTIX_HOME%\etc\logging.properties
 demo.hw.client.Client http://localhost:8080/applications/celtix/hello_world

Installing Tomcat
Since Celtix requires the Java 2 Standard Edition, v5.0 or later, it is essential that you use a version of Tomcat
that is compatible with this version of Java. Tomcat v5.5.x is the proper choice and may be downloaded from
the Apache Software Foundation site at http://tomcat.apache.org/download-55.cgi.

For Windows, an executable installer is available. Alternatively Windows users can download a .zip file and
UNIX/Linux users can download a .tar.gz file. If you download one of the archive files, you can simply extract
the file to a convenient location. If you downloaded the Windows executable, double click on its icon to run the
installation program. Windows users will generally find the executable installer more convenient to use as it
eliminates a number of environment and batch files and sets up some management applications and Start menu
items that you may find useful.

Once you have completed the installation, you must be certain that the environment is properly set before you try
to launch Tomcat. If you installed Tomcat from one of the archives, then you must set two environment
variables. Open a command window and issue the following commands:

set JAVA_HOME=C:\j2sdk5.0
set CATALINA_HOME=C:\apache-tomcat-[version]

If you installed Tomcat using the Windows installer, you only need to set one environment variable. Open a
command window and issue the following commands:

set JAVA_HOME=C:\j2sdk5.0

6

http://tomcat.apache.org/download-55.cgi

Alternative Deployment Approaches:Installing Tomcat

Rather than setting these values explicitly in a command window, you may find it more convenient to set these
variables through your global configuration.

Once the environment has been set, start Tomcat. If you installed Tomcat using one of the archives, run the
script startup.bat or startup.sh. If you installed Tomcat using the Windows installer, start the executable
program Tomcat5.exe. Both the scripts and the executable are in the CATALINA_HOME/bin directory.

By default, Tomcat is configured to use TCP/IP port 8080 to service requests. You can confirm that your Tomcat
has been properly installed and configured by opening a Web browser and entering http://localhost:8080
into the address text box. If everything is properly set, the browser will display a confirmatory page. If
necessary, you can change any of the Tomcat TCP/IP ports used by editing the server.xml file, which is
located in the CATALINA_HOME/conf directory.

7

	Overview
	A Deployed Celtix Web Service
	The XML Files

	The Endpoint URL
	Alternative Deployment Approaches
	Removing Extraneous Files
	Relocating the Celtix JAR Files
	Installing Multiple Web Services into a Common Directory Hierarchy
	Installing Tomcat

