
Getting Started with Celtix

Table of Contents
Overview... 1
Using a Script to Set Up the Shell Environment.. 1
Celtix Development Environment.. 3

Using Celtix with Eclipse... 3
Using Celtix with Ant... 3

Directory Structure for Celtix Projects... 4
The Celtix Sample Application Approach.. 5
The Developer Driven Approach... 5

Writing a SOAP over HTTP Client and Server with Celtix.. 6
Using the Celtix Sample Application Approach... 8
Using the Developer Driven Approach.. 9

Overview
This document shows you how to get started with Celtix. It describes how how to build and run a basic SOAP
over HTTP client and server.

For information on how to install Celtix and set up your development environment, see The Celtix Installation
Guide, which is included in the product download and is available from the Celtix website,
http://celtix.objectweb.org/docs/index.html

This document was written for the Celtix 1.0 release. As Celtix matures future versions might deviate from the
material covered in this document. The Celtix team will endeavor, however, to keep this document as up-to-date
as possible.

Using a Script to Set Up the Shell Environment
The Celtix Installation Guide describes how to set up your development environment. To avoid having to set the
environment variables for every command window, you can use a script. An example script, setenvs.bat, for
use on Windows with the Celtix binary distribution, is shown below in Example 1.

http://celtix.objectweb.org/docs/index.html

Using a Script to Set Up the Shell Environment:Using a Script to Set Up the Shell Environment

@echo off
REM Ensure that the values for the following variables are
REM set correctly for your installation.
set CELTIX_HOME=c:\Celtix_bin4\celtix
set JAVA_HOME=c:\jdk1.5.0
set ANT_HOME=c:\Ant\apache-ant-1.6.5
REM You should not have to modify anything below this point.
echo.
echo Take note of the following important variables - are they correct for your
echo system? If not then edit this file and correct them!
echo.
echo CELTIX_HOME = %CELTIX_HOME%
echo JAVA_HOME = %JAVA_HOME%
echo ANT_HOME = %ANT_HOME%
echo.
set PATH=%CELTIX_HOME%\bin;%PATH%
set PATH=%JAVA_HOME%\bin;%PATH%
set PATH=%ANT_HOME%\bin;%PATH%
set CELTIX_JAR=%CELTIX_HOME%\lib\celtix.jar
set CLASSPATH=%CELTIX_JAR%;.;.\build\classes;%CLASSPATH%
title Celtix Shell

Example 1: Setting Celtix Environment for Binary Distribution—setenvs.bat

A corresponding script for use on Windows with the Celtix source distribution is shown in Example 2. This script
is only suitable for compiling and running Celtix applications when using the Apache Ant build system, as
described in the rest of this document.

@echo off
REM Ensure that the values for the following variables are
REM set correctly for your installation.
set JAVA_HOME=c:\jdk1.5.0
set ANT_HOME=c:\Ant\apache-ant-1.6.5
set ANT_ARGS=-Dmaven.repo.local=c:\local\celtix\maven\repo
REM You should not have to modify anything below this point.
echo.
echo Take note of the following important variables - are they correct for your
echo system? If not then edit this file and correct them!
echo.
echo JAVA_HOME = %JAVA_HOME%
echo ANT_HOME = %ANT_HOME%
echo.
set PATH=%JAVA_HOME%\bin;%PATH%
set PATH=%ANT_HOME%\bin;%PATH%
set CLASSPATH=.;.\build\classes;%CLASSPATH%
title Celtix Shell

Example 2: Setting Celtix Environment for Source Distribution—setenvs.bat

2

Celtix Development Environment:Celtix Development Environment

Celtix Development Environment
Developing applications with Celtix code is no different from developing with any other Java library or API. You
set the CLASSPATH appropriately and begin coding. You can develop with your favorite text editor, Integrated
Development Environment (IDE), or build system. In this section, we recommend two open-source tools that are
used extensively by Celtix developers:

• Eclipse

• Apache Ant

Using Celtix with Eclipse
Eclipse provides an excellent Java IDE for Celtix development. It is available from http://www.eclipse.org.
Celtix requires you to use Eclipse 3.1.1 or higher. This is because Celtix requires support for Java 1.5 language
constructs, which are only available in Eclipse 3.1.1 or higher.

Eclipse allows you to store collections of JARs and classes that can be reused across projects as “User
Libraries”. To create a Celtix user library:

1. Open Eclipse and navigate to:

Window | Preferences | Java | Build Path | User Libraries

2. Create a new user library by selecting New and giving it a name, such as Celtix.

3. Highlight your newly created Celtix user library and select Add JARs. Add the celtix.jar file to the user
library. In the Celtix binary distribution, the celtix.jar file can be found in the CELTIX_HOME/lib directory.

At the time of writing, Eclipse could not pick up the manifest classpath present in the celtix.jar file. As a
result, you must add all of the JAX-WS JAR files to your user library as well. In the Celtix binary distribution
these files can be found in the CELTIX_HOME/lib directory.

After you have created a user library for Celtix, you can add it to the Java project build path and Eclipse will auto-
compile your code.

Using Celtix with Ant
Many Java developers use the Apache Ant build system. It is available from http://ant.apache.org. The
Celtix samples, available in the CELTIX_HOME/samples directory of your Celtix installation, include example Ant
build files. Example 3 shows one such file.

3

http://ant.apache.org/
http://www.eclipse.org/

Celtix Development Environment:Using Celtix with Ant

<project default="build">
 <!-- Import generic celtix build.xml file -->
 <property environment="env"/>
 <import file="${env.CELTIX_HOME}/samples/common_build.xml"/>
 <target name="generate.code" unless="codegen.notrequired">

<echo message="Generating code using wsdl2java..."/>
 <wsdl2java file="HelloWorld.wsdl"/>
 <touch file="${codegen.timestamp.file}"/>
 </target>

 <!-- Targets to run the client and server -->
 <target name="server" depends="build">
 <celtixrun classname="helloworld.Server"/>
 </target>

 <target name="client" depends="build">
 <celtixrun classname="helloworld.Client"/>
 </target>
</project>

Example 3: Celtix Sample Applications Ant build.xml File

The build file shown in Example 3 can be explained as follows:

• Imports the common_build.xml file. The common_build.xml file includes most of the commands that
compile and run the sample applications. It can be found in the CELTIX_HOME/samples directory of your
Celtix installation.

• The codegen.notrequired variable is true if no XSD or WSDL files in the project have changed since
the last time the wsdl2java utility was run. If you do not declare wsdl.dir as a property that identifies
the location of XSD and/or WSDL files, then the default value of ./wsdl is used.

• The wsdl2java task generates Java code from the specified WSDL file.

• The celtixrun task runs a Java class with the appropriate CLASSPATH and JVM argument settings for
use with Celtix.

The common_build.xml and build.xml files that are supplied with the Celtix sample applications are useful
models for building applications using a directory structure similar to that used by the Celtix samples.

Directory Structure for Celtix Projects
How you arrange a project's directory structure depends on whether you are modeling your hierarchy on the
Celtix samples, available in the CELTIX_HOME/samples directory of your Celtix installation, or using the Celtix
wsdl2java utility to generate starting point code. The Celtix wsdl2java utility is a command-line utility that you
can use to generate Java files from a specified WSDL file, including files that represent the types, service proxy,
and service interface for an application, starting point code for the client and server mainlines, and the
implementation object. Which files are generated is dependent of the command-line switches that you use. For
more information on the wsdl2java utility, see the Celtix Command-Line Tools documentation, available at
http://celtix.objectweb.org/docs/index.html.

4

http://celtix.objectweb.org/docs/index.html

Directory Structure for Celtix Projects:The Celtix Sample Application Approach

The Celtix Sample Application Approach
The Celtix sample applications use the wsdl2java utility to generate files that represent the types, service proxy,
and service interface for an application. The wsdl2java utility is not used to generate starting point code for the
client and server mainlines or the implementation object. These files are provided as completed implementations
so that the sample applications run without requiring the user to add processing logic.

The Celtix sample applications contain the following directories:

• build/classes, which contains compiled Java classes, including those generated by the wsdl2java utility.

• build/src, which contains Java source code generated by the wsdl2java utility.

• src, which contains the supplied Java source code. These files can be in a different Java package than the
Java source code files generated by the wsdl2java utility.

• wsdl, which contains WSDL and XSD files.

The top-level project directory contains the Ant build file (build.xml).

As shown in Example 3 above, the build.xml file imports the common_build.xml file, which is located at the top
level of the Celtix samples directory, CELTIX_HOME/samples.

The Developer Driven Approach
The developer driven approach uses the wsdl2java utility to generate the complete complement of source code
files, starting point code for the client mainline, server mainline, and implementation object. These files are
included in the same Java package as the files representing the types, service proxy, and service interface.

Developer written Celtix applications contain the following directories:

• A project directory that includes:

• One, or more, top-level application directories that contain:

• The source code files for the application. The source code files include both the files generated
by the wsdl2java utility as well as any other files that you want to include in the application.

• A build/classes subdirectory that contains the compiled application files.

• The Ant build file (build.xml) generated by the wsdl2java utility.

• A wsdl directory that contains WSDL and XSD files.

The following figure illustrates this directory hierarchy:

• The project directory is hello_world.

• The top-level application directory is client.

5

Directory Structure for Celtix Projects:The Developer Driven Approach

• The source code generated by the wsdl2java utility is in the package hierarchies
org/objectweb/hello_world_soap_http and
org/objectweb/hello_world_soap_http/types under the hello_world/client directory.
The package name was derived from the target namespace defined in the WSDL file.

• The hello_world/client/build/classes directory includes the compiled code in the package
hierarchies org/objectweb/hello_world_soap_http and
org/objectweb/hello_world_soap_http/types.

• The wsdl directory contains the WSDL file used to generate the application code.

Writing a SOAP over HTTP Client and Server with Celtix
This section describes how you can use Celtix to write a SOAP over HTTP client and server. Both the Celtix
sample application approach and the developer driven approach are discussed.

The HelloWorld interface used in this section is defined in the HelloWorld.wsdl WSDL file shown in Example
5. It corresponds to the Java interface shown in Example 4. It is slightly different to the WSDL file used in the
HelloWorld sample that is included with the Celtix distribution.

public interface HelloWorld {
 public String sayHello(String message);
}

Example 4: HelloWorld Interface—Java

6

Writing a SOAP over HTTP Client and Server with Celtix:Writing a SOAP over HTTP Client and Server with Celtix

7

<?xml version="1.0" encoding="UTF-8"?>
<!--WSDL file template-->
<!--(c) 2005, IONA Technologies, Inc.-->
<definitions name="HelloWorld.wsdl"

targetNamespace="http://www.celtix.org/courseware/HelloWorld"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.celtix.org/courseware/HelloWorld"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <schema targetNamespace="http://www.celtix.org/courseware/HelloWorld"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <element name="sayHello">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="1" name="message"
 nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="sayHelloResponse">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="1" name="return"
 nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>
 <message name="sayHello">
 <part element="tns:sayHello" name="parameters"/>
 </message>
 <message name="sayHelloResponse">
 <part element="tns:sayHelloResponse" name="parameters"/>
 </message>
 <portType name="HelloWorld">
 <operation name="sayHello">
 <input message="tns:sayHello" name="sayHello"/>
 <output message="tns:sayHelloResponse" name="sayHelloResponse"/>
 </operation>
 </portType>
 <binding name="HelloWorld_DocLiteral_SOAPBinding" type="tns:HelloWorld">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHello">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHello"> <soap:body use="literal"/>
 </input>
 <output name="sayHelloResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="HelloWorldService">
 <port binding="tns:HelloWorld_DocLiteral_SOAPBinding" name="SOAPOverHTTP">
 <soap:address location="http://localhost:9090/helloworld"/>
 </port>
 </service>
</definitions>

Example 5: HelloWorld.wsdl File

http://www.w3.org/2001/XMLSchema

Writing a SOAP over HTTP Client and Server with Celtix:Using the Celtix Sample Application Approach

Using the Celtix Sample Application Approach
Use the Celtix sample application approach to build applications when working with the Celtix source distribution.
In the Celtix source distribution, the collection of JAR files that comprise the Celtix product are distributed
throughout the product directories. As a result, it is somewhat involved to list all of these JAR files on the
CLASSPATH. When you use the Celtix sample application approach, the common_build.xml file correctly sets the
CLASSPATH.
To use the Celtix sample application approach, do the following:

• Replicate the directory hierarchy used in the sample applications. For instance, using the HelloWorld
interface described in Example 4 as an example, create the following directory structure:

• Place your WSDL file into the wsdl directory. For example, place the the HelloWorld.wsdl file, shown in
Example 5 in the wsdl directory.

• Copy a build.xml file from one of the sample applications and modify it as required. For example, place the
build.xml file shown in Example 6 in the top-level HelloWorld directory.

• Write the client mainline, server mainline, and implementation object source code files and add them to the
src directory.

• Use Ant to generate code for the type, service proxy, and service interface files and to compile the
applications. For example, from the top-level HelloWorld directory, issue the ant build command. This
creates the build/classes directory hierarchy and generates the type, service proxy, and service interface
files, and compiles the applications.

• Use Ant to run the client and server applications. For example, from the top-level HelloWorld directory, issue
the ant server and ant client commands to run the client and server applications.

8

Writing a SOAP over HTTP Client and Server with Celtix:Using the Celtix Sample Application Approach

<?xml version="1.0"?>
<project name="HelloWorld Application" default="build" basedir=".">
 <import file="../common_build.xml"/>

 <target name="client" description="run client">
 <property name="param" value=""/>
 <celtixrun classname="<full package name of client>"
 param1="${basedir}/wsdl/HelloWorld.wsdl"
 param2="${op}" param3="${param}"/>
 </target>
 <target name="server" description="run server">
 <celtixrun classname="<full package name of server>"
 param1="${basedir}/wsdl/HelloWorld.wsdl"/>
 </target>
 <target name="generate.code">
 <echo level="info" message="Generating code using wsdl2java..."/>
 <wsdl2java file="HelloWorld.wsdl"/>
 </target>
</project>

Example 6: HelloWorld Application Ant Build File

Using the Developer Driven Approach
The developer driven approach refers to an approach in which you use the Celtix wsdl2java utility to generate
an Ant build.xml file that accurately lists all Celtix JARs on the CLASSPATH. This approach is suitable when you
are working with the Celtix binary distribution.

To use the developer driven approach, do the following:

• Create the project directory structure as shown below:

• Place the WSDL file into the wsdl directory. Use the HelloWorld.wsdl file shown in Example 5 as an
example.

• Use the wsdl2java utility to generate the starting point code, including the client mainline, for the client
application. For example, from the HelloWorld top-level directory, issue the following command:
wsdl2java -client -d client -ant .\wsdl\HelloWorld.wsdl

• Use the wsdl2java utility to generate starting point code, including the server mainline and implementation
object, for the server application. For example, from the HelloWorld top-level directory, issue the following
command:
wsdl2java -server -impl -d server -ant .\wsdl\HelloWorld.wsdl

9

Writing a SOAP over HTTP Client and Server with Celtix:Using the Developer Driven Approach

• Complete coding the client mainline and implementation object.

• The wsdl2java utility creates an Ant build.xml file in each of the top-level application directories—client
and server. Issue the command ant build in each of these directories to compile your applications.

Running the Applications using Ant

You can use Ant to run each of the applications. The actual syntax of the command depends on the name of the
port type defined in the WSDL file. For example, in the HelloWorld.wsdl file, the port type is called
HelloWorld, and the build.xml file targets used to run the client and server applications are
HelloWorld.Client and HelloWorld.Server.

Running the Applications using java

The Celtix runtime uses the java.util.logging framework. You can configure Celtix logging levels by pointing
the JVM to a logging.properties file by defining the JVM system variable java.util.logging.config.file.
Celtix provides a default logging.properties file in the etc directory, so you can use:

-Djava.util.logging.config.file=%CELTIX_HOME%/etc/logging.properties
To run the server application using java, move to the server/build/classes directory and issue the following
command:

java -Djava.util.logging.config.file=%CELTIX_HOME%/etc/logging.properties
 <full package name of server>
To run the client application, move to the client/build/classes directory and issue the following command:

java -Djava.util.logging.config.file=%CELTIX_HOME%/etc/logging.properties
 <full package name of client> <path to WSDL file>

Note that you must supply the relative, or absolute, path to the WSDL file when running the client.

10

	Overview
	Using a Script to Set Up the Shell Environment
	Celtix Development Environment
	Using Celtix with Eclipse
	Using Celtix with Ant

	Directory Structure for Celtix Projects
	The Celtix Sample Application Approach
	The Developer Driven Approach

	Writing a SOAP over HTTP Client and Server with Celtix
	Using the Celtix Sample Application Approach
	Using the Developer Driven Approach

