Using the Celtix management

Table of Contents

(@ YT VT P URUPRUSUUPRTRRR 2
Default instrumentation iN CeIIX. e e 2
Celtix Instrumentation ConfigUIatioN..............ciiiii i 6
Accessing Celtix MBeans from management CONSOIEScccoeeivieiiiiiiiiiciceee e 7
INStrumMeNntation CeItIX SEIVICE........uuiiiiiiiiiiiiiiiiii s e e e e e e e e e e e e aaaeaaaeeeaeeeeeeeeeeeeeeeees 8
USING the JIMX APIS. .ttt ettt e e e e e e e e e et reeeeeeeaeeeaas 8

Using the Celtix Instrumentation INterface.............ooooiiiiiiiiiiiiiii e 10

Using the Celtix management

Overview

Celtix provides management facilities which bases on Java Management Extensions (JMX) to instrument its
core runtime. Several key runtime components are exposed as JMX Managed Beans (MBeans). This lets
an Celtix runtime be monitored and managed either in process or remotely with the help of IMXRemote API.

A support for registering custom MBeans is avalable in Celtix 1.0. Java developers can create their own
Mbeans statically or dynamically and register them either with their MBeanServer of choice or with a default
MBeanServer created by Celtix.

What is special about Celtix 1.0 though is that some of its key runtime components can now be exposed as
JMX MBeans dynamcially .

Default instrumentation in Celtix

As noted above, the Celtix servers can have their runtime components exposed as JMX
MBeans. At the moment, the following components can be managed :
e CeltixBus

WorkQueue
WSDLManager

Endpoint
HTTPServerTransport

JMXServerTransport

All runtime components are registered with an MBeanServer as Model Dynamic MBeans. This ensures that
they can be viewed by third-party management consoles without any additional client-side support libraries.
These components follow an advice from a JMX Best Practices document on how to
name MBeans. All Celtix runtime MBeans use "or g. obj et web. cel ti x. i nstrunent ati on"
as their domain name when creating ObjectName.

Instance .

Component Object Name Value
name

CeltixBus Bus name io;g. obj ectweb. cel ti x. i nstrunentation:type=Bus, nane=cel t

Bus name . S .

. org. obj ectweb. cel ti x.instrunentation:type=Bus. WrkQueue

WorkQueue and ?trn:g , Bus=cel ti x, name=Wbr kQueue

constan

org. obj ectweb. cel ti x.instrunmentation:type=Bus. WsDLManag

WSDLManager Bus name er, Bus=cel ti x, name=W5DLManager

Bus name,
Name of . . . :
sQervice org. obj ectweb. cel ti x.instrunentation:type=Bus. Endpoi nt,
Endpoint ’f Bus=cel ti x, Bus. Servi ce={http://objectweb. org/ hello_worl
name o d} SOAPSer vi ce", Bus. Por t =SoapPor t , name=Endpoi nt
port, and
Endpoint
HTTP Server Bus name, Org.objectweb.celtix.instrunentation:type=Bus. Service.P

http://java.sun.com/products/JavaManagement/best-practices.html

Default instrumentation in Celtix

Instance

Component Object Name Value
name

QName of

service, . .

name of ort. HTTPServer Transport, Bus=cel ti x, Bus. Servi ce={http://
Transport d obj ect web. or g/ hel | o_wor | d} SOAPSer vi ce", Bus. Por t =SoapPor

port, an t, name=HTTPSer ver Tr anspor t "

HTTPServe

rTransport

Bus name,

QName of) . , .

service org. obj ect web. cel tix.instrunentation:type=Bus. Service. P
JMS Server name o,f ort.JMSServer Transport, Bus=cel ti x, Bus. Servi ce={http://o0
Transport d bj ect web. or g/ hel I o_wor | d} SOAPSer vi ce", Bus. Port =SoapPor t

port, an , hame=JMsSer ver Tr ansport"”

JMSServer

Transport
CeltixBus

The following attributes are currently supported :

Name Description Type Read/Write
TransportFactories Bus Transport Factories name String|[] R
BindingFactories Bus Binding Factories name String|[] R

Used to enable/disable transport performance

o Boolean RW
counters monitoring

ServiceMonitoring

WorkQueue

The following attributes are currently supported :

Name Description Type Read/Write

Threading Model can be SINGLE_THREADED or

ThreadingModel MULTI_THREADED String R
WorkQueueSize The thread pool size Integer R
Empty The flag that indicate the WorkQueue is empty Boolean R

. A number marking the highest busy level of
HighWaterMark WorkQueue reached. Integer RwW
LowWaterMark A number marking the lowest busy level of Integer RW

Using the Celtix management

WorkQueue reached.

Full The flag that indicate the WorkQueue is full Boolean R
WSDLManager
The following attributes are currently supported :
Name Description Type Read/Write

Services A list of Servpes QNames that the celtix wsdl String[] R

manager provides
Ports A |IS'F of ports name that the celtix wsdl manager String[] R

provide
Bindings A Ilst_ of bindings name that the celtix wsdl manager String(] R

provide
the following operation is currently supported :

Name Description Parameters Return Type
GetOperation Get the specified Service and Port's operation ServiceName, String[]
name PortTypeName
Endpoint
The following attributes are currently supported :
Name Description Type ReadWrite

ServiceName Service QName in expanded form String R
PortName The port name which registered with the Endpoint String R
HandlerChains A list of classes name that Endpoint's ServiceBinding String[] R

customed
State Endpoint Service state String R

Default instrumentation in Celtix

The following operations are currently supported :

Name Description Parameters Return Type
start Start (activate) a service None Void
stop Stop (deactivate) a service None Void
HTTPServerTransport
The following attributes are currently supported :
Name Description Type ReadWrite
ServiceName Service QName in expanded form String R
PortName The PortName of the HttpServerTransport String R
Url The url which HTTPServerTransport listens to String R
TotalError Total number of request-processing errors Integer R

Total number of requests (including oneway) to this

RequestTotal .
service

Integer R

RequestOneWay Total number of requests only oneway to this service Integer R

JMSServerTransport
The following attributes are currently supported :
Name Description Type ReadWrite

ServiceName Service QName in expanded form String R

PortName The PortName of the HttpServerTransport String R

Url The url which HTTPServerTransport listens to String R

TotalError Total number of request-processing errors Integer R

RequestTotal Total number of requests (including oneway) to this Integer R

Using the Celtix management

service

RequestOneWay Total number of requests only oneway to this service Integer R

Celtix Instrumentation Configuration

To have the Celtix runtime exposed as JMX MBeans one needs to enable instrumentation and JMX facilities
to work. The other needs to know how to establish a connector to the IMX MBServer. These information
can be provided in Celtix Configuration:

Celtix management configuration is specified using the
org. obj ectweb. cel tix.bus.instrunentation.instrumentation_config.spring.!|nstrunentationCon

fi gBean class for the configuration bean. Using this configuration bean, you specify the Celtix
instrumentation event listener behaviors by using the i nst runent at i onCont r ol property. It has two values
,oneis | nstrunent ati onEnabl ed ,the other is JMXEnabl ed .

I'nstrunentationEnabl e Used to enable/disable Celtix runtime component's created and removed
related event handling

JMXEnabl e Used to enable/disable Celtix IMX related MBean register and unregister event
handling

Using the management configuration bean, you also specify the MBeanServer behaviors using the
MBSer ver property. It has one value which is JMXConnect or

JMXConnect or Specifies how to setup the JIMXConnectorServer which provider the remote
connection to JMXServer. This value contains three subvalues.

Thr eaded ,if it is setted to be true means that JMXConnectorServer run in a
new created thread .

Daenon,if it is setted to be true and the Thr eaded set to be true means that
the JMXConnectorServer thread which run the MBeanServer will be set to
Daemon mode.

JMXSer i vceURL, means the Remote access is done through JMX Remote,

using the JIMXServiceURL. See javax.management.remote.rmi package
details for more details on JMXServiceURLSs.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

Celtix Instrumentation Configuration

<bean id="celtix.|nstrunentation"

cl ass="org. obj ectweb. cel ti x. bus.instrunentation.instrumentation_config.spring.Inst
runent at i onConf i gBean" >

<property nanme="instrunentationControl ">
<val ue>
<iminstrunentation>
<i m | nstrunent ati onEnabl ed>t rue</i m | nst runent at i onEnabl ed>
<i m JMXEnabl ed>t r ue</i m JMXEnabl ed>
</iminstrumentation>
</ val ue>
</ property>
<property name="MBServer">
<val ue>
<i m MBSer ver >
<i m JMXConnect or >
<i m Thr eaded>t rue</i m Thr eaded>
<i m Daenon>f al se</ i m Daenon>

<i m JMXServi ceURL>service:jnx:rm:///jndi/rm://|ocal host: 1099/ nxrm / serve
r</im JMXServi ceURL>

</i m JMXConnect or >
</i m MBSer ver >
</ val ue>
</ property>
</ bean>

Text 1: management setup Information in Celtix Configuration

More information
For more information on using Celtix configuration see the Celtix Configuration Guide.

Accessing Celtix MBeans from management consoles

Celtix runtime MBeans can be accessed remotely using JMX Remote. As such, any third party consoles
supporting JMXRemote can be used to monitor and manage celtix servers.

We can recommend a jconsole tool shipped with JDK 1.5. Just launch a <JDK_HOME>/bin/jconsole, select
'‘Advanced' tab and enter or paste a JIMXServiceURL (default one or the one copied from instrumentation
configuration JMXSer vi ceURL), and that's it.

Instrumentation Celtix Service

As the abover overview has mentioned, the Celtix application developers can create their own MBean and
registed to the Celtix MBeanServer. Celtix allows the registration of additional MBeans with the Celtix
MBean server. This makes it possible for you to add custom instrumentation to your service
implementations and mange it through the same management console as the other Celtix components.

http://celtix.objectweb.org/docs/user_guides/configuration/configuration.html

Using the Celtix management

There are two methods of instrumenting your service implementations:
® implement one of the JMX MBean interfaces and register it with Celtix's MBean server.

® implement an Celtix i nst runment at i on interface.

Functionally there is no different between the two approaches. The decision on which to use depends on
ease of development, maintainability, and portability.

Using the JMX APIs

The Celtix MBean server can be accessed through the Celtix bus and allows for the registration of user
developed MBeans. This allows you to instrument your service implementation by developing a custom
MBean using one of the JMX MBean interfaces and registering it with the Celtix MBean server. Your custom
instrumentation will then be accessible through the same JMX connection as the Celtix internal components
used by your service.

In order to access Celtix runtime MBeans, one needs to get a handle to the MBeanServer first.

The following code snippet shows how to access it locally :

Bus bus = Bus.getCurrent();
MBeanSer ver mnbeanServer = bus. getlnstrunentati onManager (). get MBeanSer ver () ;

And here is how to access it remotely :

/] The address of the connector server

String url = "service:jnmx:rm :///jndi/rm://|ocal host: 1099/ nxrm /server";
JMXSer vi ceURL address = new JMXServi ceURL(url);

/] Create the JMXConnect or Server

JMXConnect or cntor = JMXConnect or Fact ory. connect (address, null);

/] Obtain a "stub"™ for the renote MBeanServer

MBeanSer ver Connecti on nbsc = cntor. get MBeanSer ver Connecti on();

When you use the JMX APIs to instrument your service implementation, you follow the design methodology
laid out by the JMX specification. This involves the following steps:

1. Decide what type of MBean you wish to use.
- standard MBeans expose a management interface that is defined at development time.
- dynamic MBeans expose their management interface at run time.

2. Create the MBean interface to expose the properties and operations used to manage your service
implementation.

Using the JMX APlIs

- standard MBeans use the MBean interface.

« dynamic MBeans use the Dynani cMBean interface.
3. Implement the MBean class.

4. Register MBean class to Celtix MBeanServer

Example: defined a MBean Interface

public interface ServerMBean {
String get ServiceNane();
String get Address();

Example: Create MBean implementation and register it to Celtix MBeanServer

i mport javax.managenent. MBeanSer ver ;
i mport j avax. managenent. Qbj ect Naneg;
i mport javax.xm .ws. Endpoi nt;

i mport org.obj ectweb. cel tix. Bus;

public class Server inplements Server MBean {

private static G eeterlnpl inplenentor;
private String address;

protected Server() throws Exception {
Systemout.println("Starting Server");
i mpl ementor = new Greeterlnpl ();
address = "http://1 ocal host: 9000/ SoapCont ext / SoapPort";
Endpoi nt . publ i sh(address, inplenentor);

//register to the bus MBServer
Bus bus = Bus.getCurrent();
MBeanServer nbserver = bus. getlnstrunentati onManager (). get MBeanServer () ;

Ooj ect Name nane = new
Chj ect Nane(" or g. obj ect web. cel ti x. i nstrunent ati on: t ype=Ser ver MBean, Bus="

+ bus. getBusl D() + ", nane=Server MBean");
nbserver. regi ster MBean(this, nane);

public String getServiceNanme() ({
return "SoapService";

public String getAddress() {
return address;

Using the Celtix management

Using the Celtix Instrumentation Interface

If you do not want to use the JMX interfaces to add custom instrumentation to your service, you can use the
Celtix | nst runent at i on interface. This interface wraps the JMX subsystem in proprietary interfaces. You
do not need to access the Celtix JMX server to add instrumentation to your service.

To add custom instrumentation to your service using the ManagedComponent interface you need to do the
following:

1. Implement an instrumentation class that implements the
org. obj ect web. cel ti x. | nstrunent ati on interface.

2. Inthe service’s initialization routine, instantiate your instrumentation object and register it with the
bus.

3. Inthe service’s shutdown routine, unregister your instrumentation object.

Implementing the Instrumentation Class

Like an MBean, a instrumentation class is responsible for providing access to the attributes you want to
track and any management operations you want to expose.

Unlike an MBean, you do not need to define an interface for your instrumentation class. Instead, your
instrumentation object implements an Celtix management interfaces and defines the operations required to
expose the attributes and operations you want.

Celtix management facilities also provide an MBeanl nf oAssenbl er which can get instrumented
component management interface which is defined with JDK5.0 annotation at the runtime. To enable the
use of JDK 5.0 annotations for management interface definition, Celtix provides a set of annotations that
mirror the ModelMBean's description, that allows the MBeanl nf oAssenbl er to read them and Generate
correct ModelMBeanlnfo.

To mark a components for export to JMX, you should annotate the instrumentation class with the
ManagedResour ce attribute. Each method you wish to expose as an operation should be marked with a
ManagedOper at i on attribute and each property you wish to expose should be marked with a
ManagedAt t ri but e attribute. When marking properties you can omit either the getter or the setter to
create a write-only or read-only attribute respectively.

The example below shows a class with a JDK 5.0 annotation defined management interface:
package deno. hw. server;

i mport org.obj ectweb. cel tix. bus. managenent. j nx. export.annotati on. ManagedAttri bute;
i mport org.obj ectweb. cel tix.bus. managenent. j nmx. export.annotati on. ManagedOper ati on;
i mport org.obj ectweb. cel tix.bus. managenent. j nx. export. annot ati on. ManagedResour ec;

i mport org.obj ectweb. cel tix.bus. managenent. | nstrunentati on;

@mnagedResour ce(conmponnet Nane=" G eet er | nstrunent ati on”,
decription = "The Celtix Service instrunmentati on deno conponent
currencyTimeLimt = 15, persistPolicy = "OnUpdate")

10

Using the Celtix Instrumentation Interface

public class Geeterlnstrumentation inplenments Instrunentation {
private Greeterlnpl greeter;

public Greeterlnstrunentati on(Geeterlnpl gi) {
greeter = gi;

}

//set up the management conponent type nane
public String getlnstrumentationName() ({
return "G eeterlnstrunentation";

}

/1 The instrunentation nanagenented conponent reference
publ i c Obj ect getConponent () {
return this;

}

/1 The instrunmentati on uni que name for Object Nane
public String getUni quel nstrunmentati onName() {
return ", nane=Denp. Managenent "

}

@mnagedAttri bute(description = "Get the GreetMe call counter")
public Integer getG eet MeCounter() {
return greeter.request Counters[0];

}

@mnagedAttribute(description = "Get the Geet MeOneWay cal |l counter")
public I nteger getG eet MeOneWayCounter () {
return greeter.requestCounters[1];

}

@mnagedAttribute(description = "Get the SayH call counter")
public Integer getSayH Counter() {
return greeter.request Counters[2];

}

@mnagedAttribute(description = "Get the Ping ne call counter")
public Integer getPi ngMeCounter() {
return greeter.request Counters[3];

}

@mnagedAttri bute(description = "Set the Ping ne call counter™)
public void set Pi ngMeCount er (I nteger val ue) {
greeter.request Counters[3] = val ue;

}

@mnagedQOper ati on(description = "set the SayH return nane",
currencyTimeLimt = -1)
public void set SayH Ret urnNane(String nanme) {
greeter.returnNane = nane;

}
}

Listing 2: This is an example of using JDK 5.0 annotation to define the management interface.

11

Using the Celtix management

JMX annotation class

The following annotation shows metadata types are available for use in Celitx IMX:

Celtix JIMX annotation Types

Purpose

JDK 5.0 Annotation

Attribute /
Annotation Type

as JMX managed resources

Mark all instances of a Class

@mnagedResour ce

Class

Mark a method as a IMX
operation

@mnagedQper ati on

Method

half of a IMX attribute

Mark a getter or setter as one

@mnagedAttri bute

Method (only getters
and setters)

Define descriptions for
operation parameters

@mnagedQOper at i onPar anet er and
@mnagedQOper at i onPar anet er s

Method

The following configuration parameters are available for use on these metadata types:

Parameter

Description

Applies to

conmponent Name

Used to set the name description of
a managed resource

ManagedResour ce

description

Sets the friendly description of the
resource, attribute or operation

ManagedResour ce,
ManagedAttri but e,
ManagedQper at i on,
ManagedQOper at i onPar anet er

currencyTi meLim t

Sets the value of the
currencyTi meLi mi t descriptor
field

ManagedResour ce,
ManagedAttri bute

def aul t Val ue

Sets the value of the
def aul t Val ue descriptor field

ManagedAttri bute

| og

Sets the value of the | og descriptor
field

ManagedResour ce

logFile

Sets the value of the | ogFi | e
descriptor field

ManagedResour ce

persi stPolicy

Sets the value of the
per si st Pol i cy descriptor field

ManagedResour ce

per si st Peri od

Sets the value of the
per si st Peri od descriptor field

ManagedResour ce

persi st Locati on

Sets the value of the
per si st Locat i on descriptor field

ManagedResour ce

per si st Nane

Sets the value of the per si st Nane
descriptor field

ManagedResour ce

nane

Sets the display hame of an
operation parameter

ManagedQOper at i onPar aret er

i ndex

Sets the index of an operation
parameter

ManagedQOper at i onPar anet er

12

Using the Celtix Instrumentation Interface

Creating and Removing your Instrumentation

To make your custom instrumentation available to management consoles, you must create an instance of
your instrumentation class. Then you just need to register your instrumentation to the bus. The bus
automatically registers the MBean with the Celtix JMX server.

Unlike JMX-style instrumentation, Celtix API instrumentation must be cleaned up. In your services
shutdown() routine you need to tell the bus to remove the MBean created for your instrumentation. This also
cleans up any other resources created to support the custom instrumentation.

As with JMX-style instrumentation Celtix API instrumentation is not available until an MBean is created and
registered with the Celtix MBean server. However, when you create Celtix APl instrumentation you do not
directly create an MBean or register it with the MBean server. This is all handled by the bus.

To create an MBean for your instrumentation and register it with the MBean server do the following:
1. Instantiate an instance of your instrumentation class.
2. Register instrumentation class with Instrumentation Manager.

Instrumentation in = new Geeterlnstrunmentation(this);
Bus bus = Bus.getCurrent();
I nst runment ati onManager i m = bus. get | nstrunent ati onManager () ;

imregister(in);

To clean up your custom instrumentation you need to unregister the MBean created to support it and
destroy the MBean. This is all done by call the instrumentation manager unregister method.

To remove your custom instrumentation from the JMX server do the following:
Unregist instrumentation object with Instrumentation Manager.

Bus bus = Bus.getCurrent();
I nst runment at i onManager i m = bus. get | nstrunent ati onManager () ;
i munregister(in);

13

	Using the Celtix management
	Overview
	Default instrumentation in Celtix
	CeltixBus
	WorkQueue
	WSDLManager
	Endpoint
	HTTPServerTransport
	JMSServerTransport

	Celtix Instrumentation Configuration
	Accessing Celtix MBeans from management consoles
	Instrumentation Celtix Service
	Using the JMX APIs
	Using the Celtix Instrumentation Interface
	Implementing the Instrumentation Class
	JMX annotation class
	Creating and Removing your Instrumentation

