Geomajas contributor guide

Geomajas Developers and Geosparc

Geomajas contributor guide
by Geomajas Developers and Geosparc

1.10.0
Copyright © 2010-2012 Geosparc nv

Table of Contents

1. Developers iNFOrMEtioNcouuiiiii e e e e 1
1. maven compilation, targets, profiles, variableS...........ccooeviiiiiii i, 1

L1 GWT DU cenee e e 1

1.2, dOjO DU ..ceeecee e e 1

1.3. Running the example appliCationsooveiiiiiiii e e 2

P22 B Lo Toi 01001 01 (o PR 2

3o APE CONIACE ...ttt e et e e e e e eens 3

Y = 6 Lo 11 oo 4

5. SUDVEISION, COMMILS ..eevtiieiiii et e e e et e e e e s 4

L oo 1 2o S 4

200 I oo o 1 o S 5

L3720 U 1 B (= 1] o S 5

6.3. EXCeption handlingoevvniiiiiiei e 6

L = (1 o [6

B.5. File €NCOUING .. cevniiiiieii e e 6

B.6. OthEr ..o 6

2. Coding qQUAIILY aNd SEYIE ...u.ieeciei e 7
1. Class, method and variable NAMESccuuiiiiiiii e 7

L1, COMIMENE ettt ettt ettt e et et e e e e e et e e e e ean s 8

2 @ =TT 0 Y/ oo Lo 9

0 T T 1= Yo 9

3. SPriNG USA0E IN GEOMGIBS «.vuuevvuereneeitieeeteeeteeetaeeateeat e eetn e e e eean e eateeaanaeetnaeranaaeanns 11
1. Spring dependency INJECHIONoiiueiiiii e e eaa 11

1.1. Bean Naming CONVENTIONuvuuniiiiieiieeeii e et e e e e e e e e e e e et e eanaeeanas 11

1.2. Initialising the application CONLEXTocvviiiiiiieii e e 11

o 3 o) o 0o o 13
O = U T T I o = 13

1.1. Plug-in appliCation CONEXLcveuuieiiiieein e s eei e e s e e e e e e e e e eaneees 13

1.2, PlUg-in WED CONLEXLciveiei e e e e 14

0 T = 10T T oo o 15

1.4, PlUG-IN MOAUIES ... e e e e e 17

2 = [o T o I = (o o 17

G . [0 o T g T 18

3.1 Plug-in graduationiviiiieii e 18

I = 1o B T g T = (1 1= 141 0| 19

TN N ol 1Y/ o] L PSP 20
1. BaSIC iSSUE traCKer TUIESuiieiiiii e 20

1.1. ONe Problem ONE ISSUEu.eveieei e e e e e e e e 20

1.2. Provide a meaningful SUMMAIYcccuiiiiiiiiiiiiei e e e e e 20

1.3. Provide a clear desCriptionocvuuiiiiiiiiii e e e e 20

2. Filling out the JIRA fOrM ... e e e e e 20

6. Setting up your development eNVIFONMENToviiniiiiii e e e e e e 22
O (= =0 U S] (- 22

LLL IMTBVEN ettt 22

S 01V = = o o PP 22

0 TR YT PSPPSR 22

0 TN] o I o] oo 0 S 22

2 o o1 = Y 23

2.1. Running/debugging with M2Eclipse (quickstart)cccooveviiieiiiiiiiiiieiie, 23

2.2. Running/debugging with the maven Eclipse pluginccoevviieviiieeiiiieinnen, 23

B DB A e et 24

A IMTAVEIN oo ettt e e e enes 25

A (o (ol = [= S SN €T o 0 T 26
L Prerel@ase ChECKSuvuiiiii e 26

1.1, SONALYPE ChECKS ...ovvncii e e e 26

Geomajas contributor guide

1.2, MaVeN ChECKS ... 26

2. GENEElL SEEPIS ... eeeeti ettt et e e e e e eee 27
2.1 Prepare FEIEBSEvu et 27

2.2. Put the release in STagiNGcc.vuiiiiiiie e 28

2.3. Finish the staging ProCedUrecoouuuiieiiii e 29

2.4, Start avote for the rel@aseuuiiiiiii e 30

2.5, COUNE VOLES ...evieiei ettt ettt ettt e e e e e e eaaeees 30

2.6. FiNiSh the rel@aseuu i e 30

2.7 ANNOUNCEeetee ettt ettt e e et e e e e e e e e eaa e ees 31

3. Additional notes for releasing the back-end ... 31
3.1 ANNOUNCE ...ttt ettt ettt et et e e e e e e e e eaa e en 31

3.2, DOCUMENTALION ...ttt e et e e et e e e b e eeees 32

4. Additional notes for releasing the GWT faCeccuuiviiiiiiieiiiii e 32
5. Additional notes for releasing the GTW archetypecooeviieiiiiinieiiiiin e 32
5.1. Finish the staging ProCedUrecoouuiiiiiiiiiie e 33

5.2. Start avote for the rel@aseviiiiiiiii e 33

5.3. FiNiSh the rel@ase ... 33

6. Additional notes for releasing the GWT ShOWCESEcccvvviviiiiiiiiiiiiiccei e 33
6.1. FiNish the rel@ase ... e 33

7. Additional notes for releasing GEOMEaS-dEcccvvuiiiiiiieeiiii e 33
8. Possible problems and SOIULIONSiieeiiiiiiii e 33
9. EXample anNOUNCEMENTuiiiiiie ettt e e e 33
A. Geomagjas Contributor LiCense AQreemMENtooeeuueiieiii et 35
L DEFINITIONS ...ttt et e e et e e e e 35
2. Granted Rights - REPreSENtationSuiiieiiieiiii e 35
S WITANTIES ...ttt et e e ettt e e et e e e e et e e e eeba e eees 37
A, IMHISCEITBNEOUSeeiteeee ettt ettt e et e et e e e e et e eeees 37
B. MaVEN FEPOSITONY ...ttt ettt e e et e ettt e et et e e e e et e e e eeae e eaeen 39

List of Figures

6.1. Hierarchical project [ayOULoveuniiiii e e e e
6.2. Open Geomajas project (replace root directory with your own)cccooevviiviiieiinennnnn.

6.3. Project structure for Simple GWT PrOJECEcvvviivii e e e

List of Tables

00 oo o T o T =Y = £

Vi

List of Examples

3.1. web.xml configuration to initialise application CONtEXEcoevvuieiiiiieriii e 12
4.1. Plug-in declaration in geomajasContext. XMlccceuieiiiiiiiiiein e e e e 14
4.2. geomajasWebContext.xml for ResourceControllerccouvvviiieiii i, 15
4.3. Create project using GWT Maven arChetYPEuvivieiii e e e e e 18
4.4, Create project using GWT Maven arChetYPEuuviii i ee e e e e 18

Vi

Chapter 1. Developers information

1. maven compilation, targets, profiles,
variables

When doing an initial compilation of Geomajas, you may need to start compilation from the "build-
tools' and then the "backend" directories. Only when these are compiled, compilation from the project
root will succeed.

cd build-tools

mvn install
cd backend
mvn install
cd ..

mvn install

The source contains one main pom which allows building of the Geomajas framework and each of
the sample applications in one go.

Y ou can a so choose to build them individually.

There are a couple of profiles defined which should help during development:

» - Dski pShri nk: do not use shrinking when building or using the dojo face. When not specified,
ashrinked version of the javascript filesis used. The files are compressed and combined for faster
loading and better caching.

» -DskipDocs: do not build the documentation module. Can speed up the build alittle.

e -DskipGwt: skip the GWT compilation phases. Useful when you just want a quick compile or don't
want/need the compile to JavaScript.

e -Df ul | - bui | d: fromtheroot project, thisenablesinclusion of the build tools and documentation
in the build. Thisis actually enabled by default (to disable use - Dhudson"),

» - Dhudson: profile for running the selenium integration tests on the Jenkins (previously Hudson)
continuous integration server. Aslong as running the tests on the ci server proves problematic, this
will disable these tests.

1.1. GWT build

For faster compilation during testing (when not using development mode), it can be useful to compile
only for the browser used for testing. Thiswill reduce the number of compilation steps by a factor 6.
Removing supported languages can further remove compilation steps. Include the following excerpt
inyour Xxx. gwt . xm fileto set your target browser.

<l-- set target browser to conpile for, use this to linmt to the browser used f

<l-- where value = "ie6/operal/geckol 8/safari/gecko"” , "geckol 8" is FireFox 3
<set-property name="user.agent" val ue="geckol_8" />

1.2. dojo build

For development using the dojo face, apart from using the "-DskipShrink™ setting mentioned higher,
you may also want to configure the ResourceController to try to directly read the JavaScript filesfrom

Developers information

disk beforelooking at the classpath (it also changes the cache headers). Thisallowsasimplerefreshin
the browser to |oad the changed versions. Y ou can configure this using ainit-param for the dispatcher
servlet, likein this example.

<servl et >
<servl et - nane>di spat cher </ ser vl et - name>
<servl et -cl ass>org. spri ngf ranewor k. web. servl et. Di spat cher Servl et </servlet-c
<init-paranp
<par am nanme>fil es-| ocati on</ par am name>
<par am val ue>/ horre/ me/ apps/j aval/ geomaj as/ geonaj as/ geomaj as- doj o-client/
<descri pti on>
When this is specified, files are searched here first.
Files which are found at this |ocations are not cached.
</ descri ption>
</init-paranpr
<init-paranp
<par am nanme>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>cl asspat h*: META- | NF/ geomaj as\WebCont ext . xm </ par am val ue>
<descri pti on>Spri ng Web- WC specific (additional) context files.</descr
</init-paranpr
<l oad- on- st artup>3</1 oad- on-start up>
</servlet>

1.3. Running the example applications

Once you have donea"mvn i nst al | " on either the entire tree or the "Geomajas" directory, you
can use maven to run the example applications.

For the dojo face, you can run the examples using (when in the geomajas-dojo-example directory)
nvn jetty:run

For the gwt face, you have three options. Once in the geomajas-gwt-simple directory, you can run the
application in development mode using

nmn gwt:run
Note

Due to classpath problems and the gwt-maven-plugin which does not properly handle
excluded dependencies (the "provided” scope), this can fail on some systems.

You can aso usejetty to run the normally built application
n/n jetty:run

Alternatively you can run the actual war using

m/n jetty:run-war

Note

It can be advisableto run "mvn clean" between "gwt:run" and "jetty:run-war" or the classpath
problem from the previous footnote may appear again.

2. Documentation

The general documentation is split in three books.

Developers information

» developers guide: guide for developer who want to use Geomgjas in their application.

« contributors guide: guide for people who want to contribute to the project or want to know more
about the functioning of the project (this one).

 end user guide: documentation for end users of applications built using Geomajas.
Apart from that, each face and each plug-in has their own documentation.

All documentation is written in docbook format to allow both PDF and HTML output formats. The
sources can be found in the "documentation™ directory of the project.

For editing the docbook files, we recommend using XMLMind [http://www.xmImind.com/xmleditor/
]. The personal version is free and can (at the time of writing) be used for editing open source
documentation.

The docbook files are currently formatted using XMLMind. When using another tool for editing,
please keep the current formatting to assure diffs remain usable.

The documentation includes a lot of examples which are excerpts from the source of the
example applications. This prevents copy-paste mistakes. The build process for the documentation
automatically updatesthese excepts. Thedirectorieswhich haveto be scanned for exceptsare specified
in the pom. When thisincludes code which is not in the current versioned entity (the root directory for
the face or plug-in), then the source needs to be obtained from a dependency and unpacked. Excerpts
can be annotated using annotations like

<l-- @xtract-start AllowAll Security, Allow full access to everybody -->

<bean name="security.securitylnfo" class="org.geomsjas.security. Securitylnfo">
<property nane="| oopAl | Servi ces" val ue="fal se"/>

</ bean>

<l-- @xtract-end -->

for XML or
// @xtract-start filenane, title
for (String line : lines) {

/1 do sonething

}
// @xtract-end

for javafiles. The start annotation includes the filename which should be used (all files are placed in
the "listing" directory) and optionally atitle for the example.

3. API contract

The Geomajas project has a very strong APl contract. To assure the project adheres to this contract,
we have the following requirements;

* No API classes or interfaces may be removed.

* No API classes or interfaces may be renamed.

* No API classes or interfaces may have their package name modified.

* No APl methods may be removed.

* No APl methods may have their signature changed.

» No methods may be added to classes annotated using "@Jser | npl ement ed".

» Each classon which a"@Api" annotation is added should have a" @since" javadoc comment.

http://www.xmlmind.com/xmleditor/
http://www.xmlmind.com/xmleditor/

Developers information

» Each method on which a"@Api" annotation is added should have a" @since" javadoc comment.

 Each public method which is added in a class which is annotated with " @A pi(allM ethods = true)",
should have a" @since" javadoc comment.

The checkstyle configuration which is used for the project (which is defined in the geomajas-parent
parent) triesto check the API contract. Thisrequired aapi.txt filein src/main/resources which contains
the API for the previous release version. The API for the compiled version is put in target/api.txt.

Note that apart from the class and method signatures, the behaviour should also remain
constant (especially when documented or tested). Just keep a method and throwing
Not | mpl enent edExcept i on cannot be considered "maintaining a stable API".

4. Versioning

Version have a major.minor.patch structure.

» major: indicates that this release has major advances over previous releases. New major versions
do not need to be backwards compatible.

« minor: indicates that there are important new features that do not break compatibility with previous
versions with the same major number. Even minor versions are used for "stable" versions which
will be supported by Geosparc. Odd minor versions are used for work-in-progress and stabilisation
efforts.

* patch: bugfixes and smaller improvements.

5. subversion, commits

New committers need to sign an agreement which hands over copyright to Geosparc. Policies are
needed for assigning commit rights (see below).

All SVN commits should include the JIRA issue number at the start of the commit message, and
a short description of the work done. The JRA issue number allows linking the commits with the
issues (as can be seen in JIRA), the short message allows persons to know what is happening without
referring to JRA. The only times JIRA issue number are not needed is for making "obvious' changes
like fixing typos.

Commits should be grouped by issue as much as possible/sensible (better two commits than one
commit for fixing two issues, better one commit of five files than five commits of one file (for one
issue)).

Development of the "latest-and-greatest” version happensin "trunk”.

Continued development on earlier versions (when not "latest-and-greatest") occur in branches with
the future version number as name.

When arelease is cut, a tag with the release version as name is created. The release should be built
from the tagged files.

After each commit, the system should still compile and all test cases should still succeed. Thereisa

continuous integration engine (Jenkins) which verifies this and send messages to the commit mailing
list on failures.

6. Coding

Note that details about coding style and naming are on the Chapter 2, Coding quality and style page.

Developers information

6.1. Logging

» When inserting debug statements, parameterized messages should be used to prevent the need/
usefulness of i sDebugEnabl ed() .

« al logging is done through sif4f, logger is created using
private final Logger |og = LoggerFactory. get Logger(Contai ni ngC assNane. cl ass

* logging levels

Table 1.1. logging levels

log level default on use

ERROR yes major problems, should always
be visble in logs and are
likely to require action from
a person (to fix the condition
or assure it does not happen
again). Indicates that something
is seriously wrong.

WARN yes warning about potential
problems. Should aways be
visiblein logs and a person will
probably need to assess whether
this is harmless or should be
treated as an error.

INFO yes important information. Y ou can
assume this level is on in
production, so it should be
carefully considered whether
this level is appropriate. In
general only used to indicate
service status (started, stopped).

DEBUG no logging information which is
detailed enough to know what
is happening in the system,
without flooding the logs.

TRACE no very detailed logging, probably

only making sense to the
developer of the code.

» When an exception is caught and (another exception) thrown you should not log the exception. Y ou
should however include the cause in the newly thrown exception.

6.2. Unit testing

Unit testing: At least each class implementing the public APl should have a unit test, testing all
methods. For testing JUnit is used.

» Advantages of unit testing:
» Capturing aJRA [http://jira.geomajas.org/] bug report in areproducible manner.
« Allowing you to specify exactly the behaviour you want, before you start coding.

» How unit testing should be done:

http://jira.geomajas.org/
http://jira.geomajas.org/

Developers information

« If you aretesting src/main/javalorg/geomajas/ToBeTestedClass.java, create a class src/test/javal
org/geomajas/ToBeTestedClassTest.java. Actual test methods have a name starting with "test".
The classitself should extend jnit.framework.TestCase.

e Thetest will automatically be run when running "nvn i nstal | ".

* Integration tests should also be provided. These can also be used for testing the user interface (thanks
to selenium).

6.3. Exception handling

Never throw away exception, either log them or throw them again (possibly wrapped). Do not log
and throw, thisonly clutterslog files with duplicate exceptions.

Do not wrap exceptions unnecessarily (so no Geonmj asException caused by a
CGeomaj asExcept i on) unlessyou add additional information in the message.

When wrapping an exception, always include the cause.

6.4. Refactoring

Changesin the (public) API use a"deprecate, then remove" cycle. It should be marked "deprecated”
in at least one minor version before it can be removed in the next major version.

6.5. File encoding

All sourcefiles, including .properties files should use UTF-8 encoding.

6.6. Other

For the directory structure and file locations, we follow standard maven conventions (see http://
maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html).

Chapter 2. Coding quality and style

As a general note, the coding style and naming conventions should be adhered to. Some parts are
even checked by the checkstyle maven plug-in. However, deviations are always allowed when this
enhances code readability.

Formatters are available for the style as described here (see bottom of document). Y ou can be liberal
on applying this on new code, but be prudent when applying these to the existing code base. Code
style changes make revision changes alot more difficult and should thus be limited. If thereisaneed
to reformat existing code, then this should be done in a separate commit.

1. Class, method and variable names

Rules

Use meaningful names. Especially class and method names should explain their purpose.

For class, method and (non-static) variable names, use camelCase to separate the words, not
underscores. For abbreviations, capitalize hefirst letter, lower case for the others.

Class names start with a capital, for example "CommandDispatcher”.

Method and (non-static) variable names start lower case, for example
"getEmptyCommandResponse”.

All static variables should have capitalized names with words separated by underscores.
Package names are al lower case and should be singular.
Use get/set/isXxx.

Abbreviations and acronyms should not be uppercase when used as name (for example, use
"exportHtml()").

All names should be written in English.
The terms get/set must be used where an attribute is accessed directly.

"is" prefix should be used for boolean variables and methods. In some cases, when this is more
readable, "has", "can" or "should" can also be used as prefix.

Complement names must be used for complement entities. These include get/set, add/remove,
create/destroy, start/stop, insert/delete, increment/decrement, old/new, begin/end, first/last, up/
down, min/max, next/previous, old/new, open/close, show/hide, suspend/resume, etc.

Exception classes should be suffixed with Exception.

Recommendations

Usually class names are nouns and method names are verbs.
Generic variables should have the same name as their type.

Variables with alarge scope should have long names, variables with a small scope can have short
names. Scratch variables used for temporary storage or indices are best kept short. A programmer
reading such variables should be able to assumethat itsvalueis not used outside afew lines of code.
Common scratch variables for integers arei, j, k, m, n and for characters c and d.

The name of the object is implicit, and should be avoided in a method name. For example, use
"line.getLength()" instead of "line.getLineLength()". The latter might seem natural in the class
declaration, but proves superfluous in use, as shown in the example.

Coding quality and style

1.1. Co

The term compute can be used in methods where something is computed.
The term find can be used in methods where something is looked up.

The term initialize can be used where an object or a concept is established.
Plural form should be used on names representing a collection of objects.
Negated boolean variable names must be avoided.

Default interface implementations can be prefixed by Default. However, if it is not expected that
therewill even be another implementation, it can be alot more natural to suffix with "Impl" instead.

Singleton classes should return their soleinstance through method getl nstance, should have aprivate
constructor and be declared final .

Functions (methods returning an object) should be named after what they return and procedures
(void methods) after what they do.

Data transfer objects sometimes exist in two flavors, one which contains the Geomajas geometry
dto's and one which contains JTS geometry objects. In that case, the variant with the geometry dto's
should use the natural name, and the variant with JTS geometry objects should have a class name
which has the "JG" suffix (JG stands for Jts Geometry).

mment

Each file should have the correct copyright notice at the start of thefile.

~
* 0% %k Xk X X X X F

~

This is part of CGeonmjas, a GS franework, http://ww. geongj as. org/.
Copyri ght 2008-2012 Geosparc nv, http://ww. geosparc.com, Bel gi um

The programis avail able in open source according to the GNU Affero
CGeneral Public License. Al contributions in this programare covered
by the Geonmjas Contributors License Agreement. For full |icensing
details, see LICENSE. txt in the project root.

Note that the end year (shown here is 2010) should always be the current year. All headers will be
updated at the beginning of each year.

The copyright message should be at the top of the file. However, for jsfiles, it is allowed to have
the "dojo.provide" line above the copyright as this helps for debugging.

Each class and interface should have class comments indicating the purpose of the class.

Public methods should be commented if the meaning is not entirely clear from method and
parameter names (isit ever?). When the method overrides or implements a method, then repeating
the javadoc is not needed.

Comments in the code are recommended when they explain ablock of code or when they explain
why things are done in a certain way. Repeating the code in human readable wording is wasteful.

Use "@todo" comments to indicate shortcuts or hacks which should be fixed. Better still isjust to
do it right and not have the shortcut.

All comments should be written in English.
Comments should be indented relative to their position in the code.

Javadoc comments should be active, not descriptive (for exampe on method "getXxx()" the
comment could be "Get xxx").

Coding quality and style

 All classes and interfaces need javadoc class comments.

 All classes and interfaces in the geomajas-api module need full javadoc comments on all methods.

 All classes, interfaces and methods which have a"@\pi " annotation needs a" @i nce" javadoc
comment to indicate the version in which the class or method was added. Thisis aso the case for
methods which are added in classeswith "@\pi (al | Met hods = true) " annotation.

1.2. Claim your code

Be proud of your code and take responsibility of your changes. When making any kind of significant
changes (not for reformatting, fixing typing errors or renaming), add your full name at the bottom of

the authors list in the class comments.

1.3. Code layout

See the example below

/*

* This is part of Geonmmjas, a G S framework, http://ww. geomj as. org/.
*

* Copyright 2008-2012 Geosparc nv, http://ww. geosparc.com, Bel gi um
*

* The programis available in open source according to the GNU Affero
* General Public License. Al contributions in this program are covered
* by the Geommjas Contributors License Agreenment. For full 1icensing
* details, see LICENSE.txt in the project root.

*

/

package org. geonmj as. bl adi bl a;

/**

* Short description of the purpose of this class.
*

* @ut hor Author's nane

* @ut hor Anot her Author's nane

*/

@\nnot ati on(paranl = "val uel", paranR = "val ue2")
public class Foo inplements Serializable {

int[] x =newint[] {1, 3, 5, 6, 7, 87, 1213, 2};

/**

* Do sonet hi ng

*

* @aram x some data
* @aramy nore data

*/
public void foo(int x, int y) throws Exception {
for (int i =0; i <x; i++) {
y += (y N 0x123) << 2;
}
do {

try {
if (0 <x && x < 10) {
while (x '=vy) {
x =f(x * 3 +5);
}

Coding quality and style

} else {
synchroni zed (this) {
switch (e.getCode()) {

/...
}
}
\ }
catch (MyException e) {}
finally {
int[] arr = (int[]) g(y);
Xx =y >07?arr[y] : -1,
}
}
while (true);

» The codeiswritten with the right margin at 120 characters and lines should not be longer than that
if possible.

» Tabs should be used for all indents. We assume atab is four spaces for determining line length.
» When lines are split because they are too long, a double indentation should be used.

» Opening braces on the same line as the declaration/for/if..., so not aligned with the closing brace.
» No spaces inside brackets.

 Spaces around operators.

» Nowildcards allowed on import statements.

» Always a space before braces.

» Always use braces (and thus multiple lines) for if, while, do-while.

» Array specifiers must be attached to the type not the variable.

 Classvariables should never be declared public.

 Logical unitswithin ablock should be separated by one blank line.

We have both an eclipse [http://files.geomajas.org/geomajas formatter_eclipse.xml] and IntelliJ
IDEA [http://files.geomajas.org/geomajas_formatter_intellij.xml] formatter which can be used.
However, be careful not to change the entire formatting of a class.

10

http://files.geomajas.org/geomajas_formatter_eclipse.xml
http://files.geomajas.org/geomajas_formatter_eclipse.xml
http://files.geomajas.org/geomajas_formatter_intellij.xml
http://files.geomajas.org/geomajas_formatter_intellij.xml
http://files.geomajas.org/geomajas_formatter_intellij.xml

Chapter 3. Spring usage in Geomajas

1. Spring dependency injection

To assure the spring dependency injection is used, you should obtain beans through either injection
(possibly autowiring) or the application context. When you directly instantiate classes which require
spring dependency injection, you are likely to encounter NullPointerException or other problems.

@onponent
public class MO ass {

@\ut owi red
private ApplicationContainer applicationContainer;

public void myMethod() {
Command comrand = appl i cati onCont ext. get Bean("controll er. general.LogCon

We recommend using the annotations when possible.

You cannot assume that (auto) wired services are initialized while the application context is being
built. If you need to do some initialization of the bean state, this should be removed from the setters
which are called while building the context, and moved to a post construct method.

@ost Const ruct

private postConstruct() {
// donme sone stuff here

}

1.1. Bean naming convention

Bean names match the (fully qualified name of the) interface they implement if there is only one
implementation to be used. When thisis not the case, the bean nameisthe (fully qualified) classname.
When the bean name startswith "org.geomajas.”, thisis cut off. Interfaces which are expected to have
several alternate implementations should be annotated with the " @ExpectAlternatives' interface.

There is a "GeomajasBeanNameGenerator" class which tries to automatically determine the bean
names, assuring that you don't need to mention this explicitly in the "@Component" annotation. If the
firstinterface which isimplemented by the class does not have the " @ExpectAlternatives' annotation,
then the fully qualified name of the first interface is used as bean name. For all other beans, and for
beanswhich arein a"command" package and don't have a class name starting with "Default” the fully
qualified class name is used. In all cases the bean name has the "org.geomajas." prefix removed is
present (using the " GeomajasBeanNameGenerator.simplify()" method.

Note that these rules are built to easily replace instantiation based on class names by instantiating
based on bean names. For the same class name, you can often replace the code

O ass. for Nanme(cl assNane) . new nst ance() ;

by

appl i cati onCont ext . get Bean(Geonaj asBeanNaneGener at or. si npl i fy(cl assNane));
1.2. Initialising the application context

For servlets, you should configure the Spring context loader listener in the web.xml file. Y ou should

also add the request context listener to assure session scoped beans work and can access the request.
Thisis shown in the code below.

11

Spring usage in Geomajas

Example 3.1. web.xml configuration to initialise application context

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//E
<web- app>
<di spl ay- name>Ceonmj as appl i cati on</di spl ay- nane>
<cont ext - par an»
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
cl asspat h: or g/ geonmj as/ spri ng/ geonaj asCont ext . xm
VAEB- | NF/ appl i cati onCont ext . xm
</ par am val ue>
</ cont ext - par an®

<li stener>

<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener <
</listener>
<li stener>

<l i stener-cl ass>org. spri ngframewor k. web. cont ext . request . Request Cont ext
</listener>

root context for geomajas

additional context for your application
assures the application context is available
assures the request can be accessed

The "contextConfigL ocation" context parameter is a space separated list of Spring context files. The
root Geomajas context - which is contained in the Geomajas backend - should always be put on top of
thislist. Theroot context will load all the predefined back-end services and automatically import plug-
in context files of all the available plug-ins on the class path. Below that you may specify additional
application context definition files which are needed for your application. You can include several
filesby separating them using whitespace. Each location can include the protocol/l ocation used to find
the file. Ant-style wild cards can be used. If no protocol is specified, the web application context root
is searched. The following are examples of allowed patterns:

VEB- | NF/ appl i cati onCont ext . xm

VEEB- | NF/ | ayer *. xm
file:C/some/path/*-context.xm

cl asspat h: conf nyconpany/ **/ appl i cati onCont ext . xm
cl asspat h*: conf/ appCont ext . xm

The classpath* pattern is specific in that it will combine all the resources that match this exact pattern
in the class path, not just the first one.

The web application context can conveniently be retrieved from the servlet configuration in other
serviets:

public void init(ServletConfig config) throws Servl et Exception {
return WebApplicationContextUtils.get WebAppl i cati onCont ext (servl et Context);

12

Chapter 4. Face or plug-in

Geomajas is an extensible frameworks which can be extended by including additional plug-inson the
class path when the application is started.

Some of the possible extensions include

* adding security services.

« providing specific rendering pipeline which modify the default rendering.

* additional serviceswhich may be used (also by by other plug-ins), for example printing support.

« adifferent face (in principle aface isjust another plug-in, the term "face" is used when the plug-in
produces data or makes data available to the outside world).

» accessto akind of data store (these are referred to as "layer" plug-ins, they consume data).

1. Plug-in structure

Some conventions are in use to make plug-ins easily accessible and auto-register, and to make plug-
ins good citizens of the Geomajas project.

1.1. Plug-in application context

Each plug-in can have a configuration file in META- | NF/ geomaj asCont ext .xml which is
automatically included in the application context (after the main geomaj asCont ext which comes
fromthei npl module, but before all files which are explicitly added (through web. xm)).

This context file should at least declare the plug-in, the plug-ins and dependent version it depends on,
and the copyright and/or license information for all other dependencies. It a'so hasto indicate the API
version which is used. Thisis also version which is used for the back-end (which includes the API)
which is used in the pom. Assuming this compiles and that you only used

The dependencies are used to check compatibility of the plug-in with the back-end and required plug-
ins. If you only access them using the AP, this should assure that everything stays compatible.

13

Face or plug-in

Example 4.1. Plug-in declaration in geomajasContext.xml

<bean cl ass="org. geonsj as. gl obal . Pl ugi nl nfo" >
<property nane="version">
<bean cl ass="org. geonsj as. gl obal . Pl ugi nVer si onl nf 0" >
<property nane="nanme" val ue="Plug-in name" />
<property name="versi on" val ue="${project.version}" />
</ bean>
</ property>
<property nane="backendVersion" value="1.7.1" />
<property nane="dependenci es" >
<list>
<bean cl ass="org. geonsj as. gl obal . Pl ugi nVer si onl nf 0" >
<property nane="nanme" val ue="Static security" />
<property nane="version" value="1.7.1" />
</ bean>
</list>
</ property>
<property name="copyrightlnfo">
<list>
<bean cl ass="org. geonsj as. gl obal . Copyri ght| nfo">
<property nane="key" val ue="Geomgj as"/>

<property nane="copyright" value="(c) 2008-2011 Geosparc nv"/>

<property nane="licenseNane" val ue="GNU Affero Ceneral
<property name="licenseUrl" value="http://ww.gnu.org/licenses/
</ bean>
<bean cl ass="org. geonsj as. gl obal . Copyri ght| nfo">
<property nane="key" val ue="Apache comons"/>
<property nane="copyright" val ue=""/>
<property nane="licenseNane" val ue="Apache Li cense,
<property nane="licenseU|" value="http://ww. apache.org/licens
</ bean>
</list>
</ property>

</ bean>

Y ou can add any other configuration which is necessary in thisfile, for example configure pipelines,
register services.

Note that when adding dependencies, you should run dependency:tree (or similar) to check for sub-
dependencies and assure the copyrightinfo list remains complete with copyright and license details
for the dependent libraries.

1.2. Plug-in web context

Each plug-in can have a configuration filein META- | NF/ geonaj asWWebCont ext . xml whichis
automatically included in the web context for the dispatcher servlet. Thisis used to allow plug-insto
define additional web endpoints without the need to define servlet entriesin web.xml.

The DispatcherServlet allows use of Spring MVC for defining your controllers and views. Any
definitions which are specific to the web tier, should be put in the web context file. The serviceswhich
are defined in the application context can also be used.

A typical context will definethe packageto scan (notethat if the package which containsthe controllers
was aready scanned in geomajasContext.xml, you will till need to redeclare the scanning to allow
controllers to be picked up). The example context as used for the ResourceController looks like this:

14

Public L

Version 2.0

Face or plug-in

Example 4.2. geomajaswWebContext.xml for Resour ceController

<beans

xm ns="http://wwmv. springfranework. org/ schema/ beans”

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schemna- i nst ance"

xm ns: cont ext ="http://wwmv. springfranework. or g/ schema/ cont ext "

xm ns:util="http://ww.springfranework.org/schema/util"

xsi : schermaLocat i on="
htt p: //wwv. spri ngfranewor k. or g/ scherma/ beans http://ww. spri ngfranmework. org/ sche
htt p: //wwv. spri ngfranewor k. org/ scherma/ cont ext http://ww. spri ngframework. org/sc
htt p: //wwv. spri ngfranmework. org/ schema/util http://ww. springframework. org/ schenm

<cont ext : component - scan base- package="or g. geonmaj as. servlet"/>

</ beans>

1.3. Plug-in pom

The pom needsto be compl eteto allow proper release of the plug-in. Thisisbasically doneby including
the geomajas-parent as parent pom (aternatively, you can use geomajas-al-parent for Apachelicensed
modules.

The following sections need to be included:

* name

* description

* repositories

* pluginRepositories

This is for the main pom for the plug-in. All other modules should include this main (-all) pom as
parent (except documentation which requires geomajas-doc-parent).

Version management for all dependencies and plug-ins should be done in the plug-in parent (example
modules may be exceptions to this though it is strongly discouraged).

1.3.1. When not using the Geomajas parent
When not using the Geomajas parent, you should consider the following:
The following sections need to be filled in:
* description
e scm
 organization
» mailinglists
* licenses
* issueManagement
» ciManagement

 developers

15

Face or plug-in

* repositories
* pluginRepositories
The build should aso include the following settings

* properties should contain "<project.build.sourceEncoding>UTF-8</
project.build.sourceEncoding>".

* thefollowing compiler build plug-in declaration should be used:

<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<confi guration>
<encodi ng>ut f 8</ encodi ng>
<sour ce>1. 5</ sour ce>
<target>1.5</target>
</ configuration>
</ pl ugi n>

 The checkstyle plug-in should be activated, using the latest Geomajas style.

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven- checkstyl e-plugin</artifactld>
<ver si on>2. 5- DF</ ver si on>
<confi guration>
<confi gLocati on>confi g/ geomaj as- checkstyl e. xm </ confi gLocati on>
</ configuration>
<executions>
<execution>
<phase>veri f y</ phase>
<goal s>
<goal >check</ goal >
</ goal s>
</ executi on>
</ executi ons>
<dependenci es>
<dependency>
<gr oupl d>or g. geomaj as</ gr oupl d>
<artifactld>geomj as-checkstyl e</artifactld>
<ver si on>1. 0. 6</ versi on>
</ dependency>
</ dependenci es>
</ pl ugi n>

» A sourcejar should be produced.

<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-source-plugin</artifactld>
<version>2. 1. 2</versi on>
<executions>
<execution>
<goal s>
<goal >j ar </ goal >
</ goal s>
<confi guration>
<i ncl udePon®t rue</i ncl udePon®

16

Face or plug-in

</ configuration>
</ execution>
</ executions>
</ pl ugi n>

e Thejar should include indices.

<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-jar-plugin</artifactld>
<confi guration>
<archive>
<mani f est >
<addDef aul t | npl enent ati onEntri es>t rue</ addDef aul t1 npl enent ati ¢
</ mani f est >
<mani festEntri es>
<geomaj as- ver si on>${ pr oj ect . ver si on} </ georaj as- ver si on>
<license>ACGPLv3</|icense>
<nor e-i nfo>http://ww. geongj as. org/ and http://ww. geospar c. cc
</mani festEntri es>
<conpr ess>t rue</ conpr ess>
<i ndex>t r ue</i ndex>
</ archi ve>
</ configuration>
</ pl ugi n>

Many of these requirements can be met by inheriting from the geonmj as- par ent project.

1.4. Plug-in modules

All plug-ins consist of at least three modules, possibly more.

There is a -all module which is the main module for the plug-in. This one is used for compiling,
releasing etc. It should be possible to checkout this module on an empty machine and compile the
plug-in (the other modules need not be individually buildable on an empty machine).

One module contains the documentation for the plug-in in docbook format. A template module is
generated when you use the geonmj as- pl ugi n- ar chet ype.

The actual work should be done in one or more modules. Y ou need more than one module when there
is face specific codein the plug-in.

2. Plug-in creation

To add a plug-in to the Geomajas project, you should write a proposal which is sent to the Geomajas
developers mailing list (majas-dev). It will be discussed and once some kind of consensus seemsto be
reached, you can initiate avote to allow creation of the plug-in. The vote should contain the following
details

 plug-in name
* plug-inlead
 genera description
* technical description

If the persons developing the plug-in don't have commit rights yet, they can get a directory in the
sandbox (a part of our version control system) where they can prove their skills until they get full
commit rights.

17

Face or plug-in

When the vote is accepted and commit rights are in place, the plug-in can be moved to trunk and
a JRA module and continuous integration can be set up. The module should also be added to the
aggregate.sh file (which assures all documentation can be found in one place), and it should be added
in the geomajas-dep pom (until the first release, it should be commented in that file).

To start the actual coding, we have provided aplug-in archetype which can be used using the following
command line (to use the latest rel ease):

Example 4.3. Create project using GWT Maven ar chetype
nmvn archetype: generate -DarchetypeCatal og=http://files.geomgjas. org/archetype-c

Alternatively, you can use the very latest (snapshot) archetype using the following command.

Example 4.4. Create project using GWT Maven archetype
nvn ar chetype: generate -DarchetypeCatal og=http://files.geonmmjas.org/archetype-I|

Y ou first have to select the archetype you want to build (geomajas-plugin-archetype). Then it will ask
you the"groupld", "artifactld", version and base package. Once you confirmed the settings, the project
will be created in a sub-directory with a name equalling the "artifactld" you choose.

3. Plug-in state

A Geomajas plug-in has a"state" which indicates the maturity.
* incubating: work-in-progress plug-in which has not reached graduation criteria yet.

e graduated: the plug-in is considered stable, development is active and there is sufficient
documentation to be usable and testing to prove it works.

* retired: t he plug-in is no longer maintained. It can be deprecated or development just stopped for
some reason. Both graduated and incubation plug-ins can become retired, so this does not give an
indication of quality.

All plug-ins start at in the incubating state.

3.1. Plug-in graduation

The process for a plug-in to move state from incubation to graduated, is called graduation. In order
for aplug-in to graduate, several criteria need to be met.

Thefollowingisalist of plug-in graduation criteria:

* A plug-in requires a maintainer. This is the contact-person for the plug-in. He should watch the
mailing lists and be available for user questions.

« All code should oblige to the programming rules aslaid out in the Geomajas contributor guide (code
style, javadoc, check-style, author tags,...).

e A check must be made to assure all dependencies of the plug-in have their licenses respected.
Examples of issues to consider are compatibility of the license (with the AGPL license for the
module) and possible copyright/license display requirements. All the relevant information needs to
be supplied in the META-INF/geomajasContext.xml file for the plug-in.

« If the plug-in is aface, the copyright information for al plug-ins needs to be included in the user
interface (for example in an "about" box).

18

Face or plug-in

» There must be enough documentation for users to easily start using the plug-in without having to
ask the basic questions and the documentation needs to be in the expected location and format (to
alow inclusion in project documentation).

» There must be enough tests available to prove code stability.

Graduation is an all-or-nothing process. A plug-in either meets all criteria, or it does not. The plug-in
maintainer can propose to graduate a plug-in on the majas-dev mailing list. When there is community
agreement on the proposal, he or she can initiate a PSC vote. A request for graduation can only be
vetoed by including the steps which need to be taken to graduate. Once these steps are taken, the plug-
in maintainer can again propose to graduate.

3.2. Plug-in retirement

Plug-in retirement is also handled by a PSC vote. This will typically happen when a plug-in is
deprecated (focus moves to a different plug-in which supersedes the retired one), or when a plug-
in maintainer wants to quit without having someone to follow up. However, anyone can propose to
retire a module. This will normally be denied if the plug-in maintainer is still actively maintaining
the module.

Both incubation and graduated plug-in can become retired. Reactivation of a retired plug-in, is of
course possible when a new maintainer can be found. In this case the plug-in becomes an incubation
plug-in again (and the maintainer must have signed a CLA).

19

Chapter 5. JIRA conventions

1. Basic issue tracker rules

1.1. One problem one issue

When you report a problem, please submit one issue per problem. There are various reasons for this,
amongst them:

» Themore crowded an issueis, the more likely isit that some problems may get lost over time.

« Different problems are likely to be handled by different people. The more problems you put into
the issue, the more difficult isthisissue to handle for al involved parties.

In particular, if you're going to write sentences like "Besides this, | noticed that..." or "There are
several problems with....", then please seriously ask yourself whether you should submit multiple
issues instead of asingle one.

If you don't follow thisrule, be prepared for people asking you to split up your issue.

1.2. Provide a meaningful summary

Providing a meaningful summary helps the committersto easily recognize anissuein alist of dozens
of others. Since duplicate issues are draining alot of work from committers, you should aways check
if theissue you wish to report hasn't already been reported. Of course thisworks best if the summaries
of the existing issues are as descriptive as possible.

1.3. Provide a clear description

You, as the submitter of a problem, know exactly what you were doing when you were hit by the
problem. However, most other people probably don't. For instance, they may have a completely
different workflow for doing the same things you are doing.

In order to prevent committersto haveto ask back how exactly anissue can bereproduced, itisthetask
of theissue's submitter to beasclear onthisaspossible- preferably by given astep-by-step description.

2. Filling out the JIRA form

In order to create a new issue, you need to log in to the JIRA issue tracker [http://jira.geomajas.org/].
When creating anew issue, the first thing you will be asked, isto select the project and issue type:

* Project: the project you wish to report an issue for (please try to use the correct module, only use
the Geomajas when it doesn't fit a specific module - if it fits multiple modules, please add to al).

* Issue Type: the type of issue you want to report. Is it a bug, task or a question? Please be correct
inthis.

Then anew form appears with new fieldsto fill in. The summary and description have been discussed
earlier. Asfor the other fields:

* Priority: how urgent is the issue? This value can always be changed by the Geomajas committers
if they feel that the priority does not match the issue's impact.

* Duedate: not used.

20

http://jira.geomajas.org/
http://jira.geomajas.org/

JIRA conventions

Components. What component do you think the issue relates to? Not necessary to fill thisin.
Affects version: In what version of Geomajas did you encounter the issue?
Assignee: Assign the issue to someone you believe is best suited to fix the issue.

CLA: Whether you agree to the CLA. This needs to be ticked when you include a patch with the
issue and haven't sent asigned CLA to the project.

Therest is not used.

21

Chapter 6. Setting up your
development environment

1. Prerequisites
1.1. Maven

Geomajas is uses the Apache Maven project management tool for its build and documentation
process. Maven can be downloaded from the Apache project site: http://maven.apache.org [http://
maven.apache.org] Installing Maven is quite simple: just unzip the distribution file in the directory of
your choice and make some environment changes so you can access the executable. Moreinformation
for your specific OS can be found at the bottom of http://maven.apache.org/download.html [http://
maven.apache.org/download.htmi]

1.2. Subversion

Geomajas uses subversion asits version control system. Accessing subversion requiresyou to at least
install a compatible client. There are numerous client solutions available, some as standalone clients
and some as IDE plug-ins:

e Tortoise SVN: an excellent SVN client for Windows (http://tortoi sesvn.tigris.org/)
e Subversive: Eclipse plug-in, can be found on the following Eclipse update site (http://
download.eclipse.org/rel easeshelios [http://downl oad.eclipse.org/rel eases/galil eo] > Collaboration

Tools)

e Subclipse: Eclipse plug-in, can be found on the following Eclipse update site (http://
subclipse.tigris.org/update_1.6.x [http://subclipse.tigris.org/update 1.6.x])

» IDEA SVN plug-in (part of the default IDEA installation)
The Geomajas repository can be found at https://svn.geomajas.org/majas. The standard SVN

repository layout is followed: trunk, tags and branches. For the latest and greatest code (including
GWT face) you should check out the trunk:https://svn.geomajas.org/majas/trunk.

1.3. GWT

The GWT (Google Web Toolkit) software development kit (SDK) should be downloaded from the
Google site: http://code.google.com/webtool kit/download.html [http://code.google.com/webtoolkit/
download.html]. After downloading you should unzip it in adirectory of choice.

1.4. Build procedure

Start by recursively checking out the trunk directory to anew local folder with a name of your choice
(e.g. geomajas-trunk). Y ou will see that the source code layout follows the recommended hierarchical
layout structure for multi module maven projects:

22

http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://tortoisesvn.tigris.org/
http://download.eclipse.org/releases/galileo
http://download.eclipse.org/releases/galileo
http://download.eclipse.org/releases/galileo
http://subclipse.tigris.org/update_1.6.x
http://subclipse.tigris.org/update_1.6.x
http://subclipse.tigris.org/update_1.6.x
https://svn.geomajas.org/majas
https://svn.geomajas.org/majas/trunk
http://code.google.com/webtoolkit/download.html
http://code.google.com/webtoolkit/download.html
http://code.google.com/webtoolkit/download.html

Setting up your
development environment

Figure 6.1. Hierarchical project layout

Ble Edt WVew Favortes Tods Help ‘ o

Qo - - ¥ ‘) search |lL Folders ‘El'
Address) Ci\geomaias-trurk =
Folders

Build the code by running the install command on the pom in the top directory:
geonmj as-t r unk> mvn install

The install procedure will build all code, run all unit tests and install the artifacts in the repository.
Integration tests based on Selenium will also be run.

2. Eclipse

The Eclipse setup is described in the "Getting Started" documentation (see documentation root). For
framework development, take the setup described in "Running/debugging with the Google Plug-in
for Eclipse (embedded Jetty option)". The embedded Jetty setup is needed to avoid problems with
references to multiple versions of Geomajas artifacts like the backend. When using the direct GWT
setup, these artifacts are not always correctly mediated.

2.1. Running/debugging with M2Eclipse (quickstart)

The following steps are required (see "Getting Started” for more detail)

o Install the GWT plugin

Install the m2eclipse plugin

Import the project as a maven project

Check the "Use GWT" option in project properties

Set "src/main/webapp” as webapp directory in the War tab

Run/debug the embedded Jetty server (normal Java A pplication with JettyRunner as main class)

* Run/debug the GWT plugin with option (on external server)

2.2. Running/debugging with the maven Eclipse plugin

Eclipse project configurations can be aternatively be generated using the maven Eclipse plug-
in. Running eclipseieclipse fails on trunk because of an issue with maven filtering: http://
jira.codehaus.org/browse/MECLIPSE-576. This will be fixed in the upcoming 2.9 release of the
plugin, in the meantime you can back up to 2.6:

m/n -P noshrink eclipse:clean org. apache. maven. pl ugi ns: maven-ecl i pse-plugi n: 2. 6

23

http://jira.codehaus.org/browse/MECLIPSE-576
http://jira.codehaus.org/browse/MECLIPSE-576

Setting up your
development environment

After the command has completed, Eclipse project definitions will have been generated for all
subprojects (except the pom projects). These projects can now be imported into Eclipse.

3. IDEA

The setup in IntelliJ IDEA is quite straightforward and does not require running a separate maven
command. Make sure you use the maven import wizard to open your project, it can be activated from
the File menu "Open project” and selectthe root pom.xml file.

Figure 6.2. Open Geomajas project (replaceroot directory with your own)

Open Project h
Project files {ipr, pom.xmi)

I, X & Hide path
|,fh0mejjoachimjmv,&pp,fp0m.}{ml |
o= [Music -

D~ = myApp
% 3 src B

3 war
2= 3 Photos =

Drag and deop afile into the space above to quickly locate it in the tree,

| ok |]| Cancel ‘

Developing with the GWT face will require you to install the latest version of IntelliJ IDEA (9.0) as
thisisthe only version that supports GWT 2.0. The IDE will recognize the GWT projects and assign
the correct facet but as always you will have to make your own run configuration (which isfortunately
trivial).

Depending ontheactual IDEA version, some additional settingshaveto bedoneinthe project structure
dialog. Apart from specifying the GWT installation directory, there is a specific project setting which
has to be done manually, which is setting the target Web facet to "Web". The project structure for the
simple GWT project should look as follows:

Figure6.3. Project structurefor smple GWT proj ect

& B % = [Facetrowr
——Project Settings —{ | — @ Bean Validation Path to GWT installation directory
Project - Ges [Iheme/joachim/iava/am-2.0.0 =
Modules o~ [l CwT ———
Libraries L GG (myapp)! Target Web Facet: [web |+]
Facets o € Hibernate GWT C:
Artifacts [~ @ JavaEE Application JavaScript utput style [perallea =]
- ings —| | — @@ IPA
Platform Settings o Compiler maximum heap size (Mb): (128
SDKs i I5F

Clotyal Libraries o #spring Addlitional compiler VM parameters: |

= € Tapestry Compiler parameters \

[GWT Module [Output Relative Path
‘mv app. CeomajasEntryPoint Jmy.app. GeemajasEntryPoint

B

4\ GWT compiler output isn't included in an artifact ‘ Eix

[ox [cancel |[pob |[Hewm |

After this, you should be able to run and debug the project. Note that this setting is needed for each
of the GWT modules you want to be able to run.

24

Setting up your
development environment

4. Maven

If you are working with another IDE or not using an IDE, it is aways possible to run the example
projects directly from maven. For the Dojo face (geomajas-dojo-simple and geomajas-doj o-example-
war) the maven command is as follows:

geomrmj as- doj o- si nmpl e> mvn jetty:run

This command will start up the Jetty servlet engine, after which you can connect to the process for
debugging.

InaGWT project, you should run the following goal:
geommaj as- gwt - si npl e> mvn gwt:debug

Thiswill start up GWT development mode, debugging should also be possible here.

25

Chapter 7. How to release Geomajas

The Geomajas project consists of many pieces which each have their own release cycle. The most
important parts are the back-end, faces and plug-ins. The example programs, documentation and and
build tools also have individual release cycles.

This chapter tries to explain how to release any of these modules. The procedure is similar for all
modules, but there are some specific checks to be done which only apply for certain parts.

Make sure you have read through the entire chapter before actually attempting arelease, so you know
what to do and when to do it.

1. Pre-release checks

1.1. Sonatype Checks
1.1.1. Sonatype general

In order to create a successful release, it is necessary to perform afew checks before actually starting
the release procedure.

Before actually starting, know that creating a release means that the artifact in question will be placed
in“staging” in the Sonatype nexusrepository (whichissynced to Maven Central). Thisin turn requires
you to have an account, and a PGP signature. So make sure you have read both:

» Sonatype: Sonatype OSS Maven Repository Usage Guide [https://docs.sonatype.org/display/
Repository/Sonatypet+OSS+M aven+Repository+Usage+Guide]

* How to create a public PGP signature and distribute it on hkp://pgp.mit.edu. [http://
www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/]

1.1.2. Creating PGP key signhatures

Authentication when uploading a release candidate on Sonatype is done through the PGP key
signatures (as described in the link above). In order to create such akey for yourself do the following:

1. Createakey:j uven@ uven- ubunt u: ~$ gpg —gen- key
2. List keys:
juven@ uven- ubuntu: ~$ gpg -l i st-keys
/ hone/ j uven/ . gnupg/ pubri ng. gpg
pub 10240/ C6EED57A 2010-01-13
uid Juven Xu (Juven Xu works at Sonatype) <juven@onatype.conp
sub 2048g/ D704745C 2010-01- 13

3. Upload key: gpg - - keyserver hkp://pgp.nit.edu --send-keys C6EED57A

1.2. Maven Checks

Next you have to make sure that you have a personal SVN profile configured in your maven
settings.xml. Concretely, make sure you have a settings.xml file in your maven directory (~/.m2/
settings.xml) with the following content:

26

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/

How to release Geomajas

<settings>
<servers>
<server>
<i d>svn. geonmj as. org</i d>
<user nane>ny SVN user nanme</ user nane>
<passwor d>my SVN passwor d</ passwor d>
</ server>
</ servers>
<server>
<i d>sonat ype- nexus- snapshot s</i d>
<user nane>pi et er dg</ user nanme>
<passwor d>ny sonatype paswor d</password>
</ server>
<server>
<i d>sonat ype- nexus- st agi ng</i d>
<user nane>pi et er dg</ user nane>
<passwor d>ny sonatype paswor d</password>
</ server >
</settings>

2. General steps

Releasing is done in the following steps, each will be detailed below. Do also check the part specific
notes below.

1. Preparerelease (on trunk)
2. Put therelease in staging

3. Finish the staging procedure
4. Start avote for the release
5. Count votes

6. Finishtherelease

7. Announce

2.1. Prepare release

The pre-release checks above only need to be done the first time you wish to release a Geomajas
artifact. Here we describe the checks that need to be done every time asingle artifact isto be released.

These checks are the following:

» Make sure that there are now references to snapshot repositories in the pom.xml files. These must
be commented out.

» Make sure there are no snapshot dependencies in the pom.xml. This can often be the case for the
showcase application or the maven archetypes.

 Search for occurrencesto the version number (with and without -SNAPSHOT" in the part. Fix when
needed (not in the pom, this will be changed by the release procedure itself).

» Warn the Geomajas community that you are about to start a release, so they do not commit any
changes. Changes in other plug-ins than the one you are releasing should not affect the release.

27

How to release Geomajas

» Do a "mvn dependency:tree” and check that all dependencies (excluding the back-end/plug-in
dependencies) are included with the license and/or copyright message.

Commit any changes you have had to make.

2.2. Put the release in staging

The basic procedureis quite easy: we let the maven release plug-in do all thework for us. Essentially,
it is atwo-step procedure: first prepare the rel ease, then perform the release.

Make sure you start with a fresh checkout from trunk before actually attempting to release anything.
Checkout command:

svn checkout https://svn.geomgjas. org/ majas/trunk <destination fol der>

It might be that after the checkout you have to make sure that you have write access to all files and
folders within the newly created <destination folder>.

2.2.1. Maven release-prepare
Go to the top folder of the plug-in you want to rel ease and execute the following maven command:
nvn - Ddevel opnent Ver si on=1. 8. 0- SNAPSHOT r el ease: prepare

The version is not strictly required, but makes it easier. It points to the NEXT snapshot (after the
release).

Should something go wrong, calling the rel ease:prepare again, will take off where the previous call
left off. In order to reset everything (mainly the committed changes), you can execute the following
command:

nvn rel ease: rol | back

The release:prepare will execute the following steps (taken from the maven release plug-in website):

1. Check that there are no SNAPSHOT dependencies

2. Change the version in the POMs from x-SNAPSHOT to a new version (you will be prompted for
the versions to use)

3. Transform the SCM information in the POM to include the final destination of the tag

4. Run the project tests against the modified POMs to confirm everything isin working order
5. Commit the modified POMs

6. Tag the codein the SCM with aversion name (thiswill be prompted for)

7. Bump the version in the POMsto anew value y-SNAPSHOT (these values will aso be prompted
for)

8. Commit the modified POMs

2.2.2. Maven release-perform

The next step is to actually let maven perform the release. This can be done with the following
command:

nmvn rel ease: perform

28

How to release Geomajas

Note that you will be asked to give your PGP passphrase. Now go to the sonatype nexus (http://
oss.sonatype.org/) and log in with your personal account. There, in the staging repositories, you will
find the release in staging.

2.3. Finish the staging procedure

Now that the rel ease has been placing in the staging area on sonatype, we can work towards finishing
the staging procedure. In order to do so, the following steps need to be undertaken:

» Update trunk. Check if the versions have rolled to the next snapshot version.

* (Only for final releases, not for milstones!) For each of the modules in the part, the src/main/
resources/api.txt file needs to be updated. The header at the top should remain, with the version
updated. The rest of the file needs to be replaced by the contents of target/api.txt. This api.txt file
must reflect the API status of the release so that it can be used for API regression checking.

» The aggregate.sh need to be updated for the new snapshot versions respectively.

* InJRA, create the next version for the project if that did not yet exist. Close any issues which are
fixed inthisrelease but only marked asresolved. Mark the project as released, moving issueswhich
are not fixed to the next version.

» Login to http://oss.sonatype.org/. Check if the correct artifacts are in the staging repository, and
check their contents. From sonatype, you can download the artifacts, and see if everything is fine
(correct version, javadoc present, ...). If al iswell, closeit.

The artifacts are now ready for testing. When staging several parts, it is recommended to close each
separately. This allows more fine-grained promotion and/or dropping of artifacts.

» Searchfor all occurrencesto the previous snapshot version in trunk, replace by the released version
(yesthiswill cause a dependency on the staged artifacts).

£ Sonatype Nexus Maven ...

+* o & https://oss.sonatype.org/index.html#stagingRepositories {2{' X
— pieterdg | Log Out
— So n a't e OS S Sonatype Mesus™ Professional Edition, Version: 1.8.0.1
—
Sonatype™ Servers « Welcome Staging Repositories *
Nexus @Refresh Release Drop Select one or more Staging profiles or none to show
Artifact Search - |:| Repository Status « Profile Release Repositor
o) |:| org.geomajas-172 (u:pieterdg, a:193.191.7.103) closed org.gecmajas Releases
Advanced Search org.gecmajas-193 (u:pieterdg, a:193.191.7.109) closed org.gecmajas Releases
Build Promotion -

Staging Profiles 4
Staging Repositories
Staging Upload

%

Browser
Views/Repositories -
p “Refresh Path Lookup: £
Repositori es = =5 org.geomajas-193 (u:pieterdg, a:193.191.7.109)
Central Statistics @ 7] index
Help - @ 3 .meta
2 5org
= 7 geomajas
= -5 geomajas-gwt-archetype: i
959180 |

=] geomajas-gwt-archetype-1.8.0-sources jar

5 gecmajas-gwi-archetype-1.8.0-sources jar.asc

=] geomajas-gwt-archetype-1.8.0-sources jar.asc.md5
/=] geomajas-gwt-archetype-1.8.0-sources jar.asc.shal
=] geomajas-gwi-archetype-1.8.0-sources.jar.md5

=1 nenmaias-mat-archetvne-1 A NLsources iar shat hd

29

http://oss.sonatype.org/
http://oss.sonatype.org/
http://oss.sonatype.org/

How to release Geomajas

2.4. Start a vote for the release

Start avote on majas-dev for release of the part. The voting period should be at |east two working days
and span aweekend. The voting message should read something like "V OTE: release blabla plug-in
v1.0.0" (please note capitalization).

The body of the vote needs to include:

* Short introduction to the released part.

* Magjor improvements of the release.

Link to release notes.

Link to migration notes if any.

An indication of how to test, typically atext like the following will do:

The artifacts are available in the staging repository: https.//0ss.sonatype.org/
content/groups/staging

To make sure you can use the artifacts you have to add this repository in your
local maven settings. ~/.m2/settings.xml:

<settigs>
<profil es>
<profil e>
<i d>m ne</i d>
<l-- add staging repository -->
<repositories>
<repository>
<i d>o0ss- st agi ng</i d>
<url >https://oss. sonat ype. org/ cont ent/ groups/ st agi ng</url >
</ repository>
</repositories>
</profile>
</profil es>
<activeProfil es>
<activeProfil e>m ne</activeProfile>
</activeProfil es>
</settings>

e Your vote.

2.5. Count votes

When the voting period has ended, count the votes. The voteis successful when there are at |ease two
+1 hinding votes and no -1 binding votes.

Reply to your origina vote message on majas-dev, change the title to start with "VOTE
SUCCESSFUL" or "VOTE FAILED" (please note capitalization). In the body of the vote, include the
full name of all voters and their vote.

2.6. Finish the release

When the vote faled, drop the repository. All the references to the release version in trunk need to
be rolled to the new snapshot version. The version number is skipped. The release date in JRA is
actually the staging date.

30

How to release Geomajas

The geomajas-dep pom and aggregate.sh need to be updated for the newly released versions
respectively.

2.7. Announce

Build announcement message, it is recommended this contains the following:
« Short introduction to the released part.

* Magjor improvements in the release.

 Link to release notes.

 Link to migration notesif any.

Send announcement to majas-dev (plain text).

Publish on general forum.

Announce on freecode.

Create news item on geomajas.org site.

Send mail to jan.pote@geosparc.com to alow sending a press release.

3. Additional notes for releasing the back-end

When releasing the back-end core, you will have problems building the javadocs. Once the
"release:perform" failed, execute the following steps.

cd target/checkout
mvn install

cd ../..

mvn rel ease: perform

At this moment, the back-end should be available in sonatype. Download one of the jars and check
the contents to see if all iswell. If it is, close the staging repository to place the back-end officially

in staging.

When releasing the back-end, you must also be aware that this releases only the modules within the
backend folder. The following modules might need to be released separately:

» documentation (user guide, contributor guide, getting started guide)

* geomajas-dep

GWT client

GWT archetype

GWT showcase

3.1. Ahnounce

Create download image for this version (278x61 pixels).

Add release on download page (remember to name the page "release 1.5.0" with correct version
number).

31

How to release Geomajas

Update the download block on the Geomajas site.
Update the javadoc links on the documentation page.

Update Geomajas wikipedia page.

3.2. Documentation

The documentation uses the exampl e applicationsfor extracting code which isincluded in the manual .
Thisisacircular dependency when it includes the part to be released. It may be useful to do alocal
build using the next release version locally, to allow the release the work for the documentation part.
Y ou can do the actual release of the example application at the end.

4. Additional notes for releasing the GWT
face

Before releasing the GWT face, make sure that the “getVersion” method in the Geomajas.java class
has been set to the correct version.

5. Additional notes for releasing the GTW
archetype

The GWT archetype is usualy released after the release of the GWT client. Before actually starting,
make sure that the dependency versions are correct in:

geomnmj as- gwt - ar chet ype/ src/ mai n/ resour ces/ ar chet ype-r esour ces/
pom xni

After the archetype has been released, one must be able to test it while it isin staging. In order to do
so the pointer to the correct repository for the archetype must used. This pointer is provided by the
file: http://files.geomajas.org/archetype-staging.xml

Thisfile must therefore be updated to make use of the newest version. It should look like:

<?xm version="1.0" encodi ng="UTF-8"?>
<ar chet ype- cat al og
xm ns="http://maven. apache. or g/ pl ugi ns/ maven- ar chet ype- pl ugi n/ ar chet ype- cat al
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="htt p:// maven. apache. or g/ pl ugi ns/ maven- ar chet ype- pl ugi n/ ar.
http: // maven. apache. or g/ xsd/ ar chet ype- cat al og-1. 0. 0. xsd" >
<ar chet ypes>
<ar chet ype>
<gr oupl d>or g. geonaj as</ gr oupl d>
<artifactld>geomj as-gw - archetype</artifactld>
<versi on>1. 8. 0</ ver si on>
<descri pti on>Geormaj as GAM applicati on archetype</description>
<repository>https://oss. sonatype. org/ content/ groups/ stagi ng</repository>
</ archet ype>
</ archet ypes>
</ ar chet ype- cat al og>

The correct command to create a new Geomajas project using the archetype in staging is:
nvn ar chetype: generate -DarchetypeCatal og=http://files.geonmmjas.org/archetype-s

Make sure that this command is also mentioned in the vote mail on the majas-dev mailing list.

32

http://files.geomajas.org/archetype-staging.xml

How to release Geomajas

5.1. Finish the staging procedure

On gaya, update/var/www/files.geomajas.org/htdocs/archetype-latest.xml. Make sure the version is
correct.

5.2. Start a vote for the release

On gaya, update/var/www/files.geomajas.org/htdocs/archetype-staging.xml. Make sure the version is
correct.

Include the command to try the archetype in the vote message.

It is recommended to start this vote only when all modules which are referenced are already rel eased.
In that case, you don't have to mention the staging repository in the vote message.

5.3. Finish the release

On gaya, update/var/www/files.geomajas.org/htdocs/archetype-catalog.xml. Make sure the version is
correct.

6. Additional notes for releasing the GWT
showcase

Just like the geomajas-dep and the archetype, the showcase must be built upon the new stable releases
of the back-end and GWT client.

6.1. Finish the release

Upload war files to sourceforge download area.

Update the showcase on gaya. Make sure the Google APl key is set.

7. Additional notes for releasing Geomajas-
dep

Update the aggregate.sh as well as the dependenciesin the pom before releasing. Don't forget the the
version of geomajas-dep should reflect the <major>.<year>.<week>, where the week number should
be even. Example: 1.11.4, meansthe 4th week in 2011. The major number should be equal to the back-
end version referenced in the pom.xml.

8. Possible problems and solutions

When releasing the back-end core, there may be a problem building the javadocs. The solution can be
to do alocal build of the back-end using the next rel ease version before doing the actual release.

The documentation uses the exampl e applicationsfor extracting code which isincluded in the manual.
Sometimes (it shouldn't) thisisacircular dependency when it includes the part to be released. It may
be useful to do alocal build using the next release version locally, to allow the release the work for
the documentation part. Y ou can do the actual release of the example application at the end.

9. Example announcement

title: Geomajas 1.5.0 technology preview/rel ease candidate/stable released

33

How to release Geomajas

The Geomajas project is proud to release Geomajas 1.5.0, a technology preview showcasing the
progress we are making towards our next stable build.

The major advances in this version include (indicate major contributors when appropriate)
» modularization of the system
* introduction of a GWT face

For the full list of changes, see http://jira.geomajas.org/jira/secure/Rel easeNote.jspa?
version=10131& styleName=Html & project|d=10000& Create=Create

Documentation for this release can be found at http://files.geomajas.org/maven/1.5.0/geomajas/
userguide.html .

Download links can be found at http://geomajas.org/release 1.5.0.
For the next release we plan to include the following features

* absorb CO2 from the air to reduce global warming

» remove need for system to be powered

Please note that thisis an unstable release, all the new features since the previous stable rel ease may
till change and we some new bugs may have been introduced.

If you want to help us, join the discussions on the developer list, list bugs in jira and make feature
requestsin our fora. See http://www.geomajas.org/gis-development .

Geomajas is the extensible open source web mapping framework, enabling integrated GIS solutions
for businesses and government.

Appendix A. Geomajas Contributor
License Agreement

In order for N.V. Geosparc (hereinafter “Geosparc”), a company under Belgian Law having its
registered office at Gaston Crommenlaan 10, box 101, 9050, Gent, Belgium which is registered at
the commercial register in Ghent, n° 0808.353.458, to have a clear understanding on the intellectual
property rights associated with the Geomajas software library (hereinafter “Geomajas Project”)
and to clearly determine the responsibilities and obligations associated with the Contributions (as
defined hereinafter), Geosparc must receive a signed Geomajas Contributor License Agreement of
the Contributor (as defined hereinafter) indicating that the Contributor agrees with the terms and
conditions as defined hereunder. This Geomajas Contributor License Agreement (hereinafter “the
Agreement”) intends to protect the Contributor as well as Geosparc.

Contributor hereby accepts and agrees to the following terms and conditions with regard to past,
current and future Contributions submitted by Contributor to Geosparc, and has accepted the policy
“Geomajas Contributions Palicy”

1. Definitions

When used in this Agreement the following words and or expressions shall have the meaning as stated
hereunder unless the context expressly requires otherwise:

1. “Contributor” means 1/ any individua and/or legal entity that voluntarily submits (@)
Contribution(s) to the Geomajas Project or 2/ any individual legally representing his’her Company.

2. “Contribution” means any origina work, including any modification and/or addition to the existing
work that is submitted for introduction in, or documentation of, any of the products owned or
managed by Geosparc, where such work originates from a Contributor. A Contribution may be
submitted in any form of electronic, verbal and/or written communication or documentation,
including without limitation, communication on electronic mailing lists, source code control
systems and issue tracking systems that are managed by or on behalf of Geosparc for the purpose
of discussion and improving the results of the Geomajas Project.

2. Granted Rights - Representations

1. For the benefit of Geosparc, the Contributor hereby:

a. irrevocably assigns, transfers and conveys to Geosparc al right, title and interest in and
to the Contribution(s). Such assignment includes copyrights (to the extent permitted by
applicable mandatory law) and al other intellectual property rights other than patents and patent
applications (“Patent”), together with all causes of actions accrued in favour for infringement
thereof, recognized by any jurisdiction (“Proprietary Rights’). Without limitation of the
foregoing, Geosparc shall be entitled to determinein its sole discretion whether or not to use the
Contribution(s) and to use, sell, distribute, license, re-produce, re-use, modify, update, edit or
otherwise make available the Contribution(s) asit seesfit, in any manner currently known or in
the future discovered and for any and all purposes;

b. grants(to the extent that under applicable mandatory law, Proprietary Rights cannot be assigned,
transferred or conveyed) to Geosparc and to the recipients of the software incorporating
the Contribution(s) an irrevocable, worldwide, non-exclusive, fully paid-up and royalty-free
copyright licenseto reproduce, modify, prepare derivative worksof, (publicly) display, perform,
sub license and distribute the Contribution(s);

C. grants to Geosparc and to recipients of software distributed by Geosparc a worldwide, non-
exclusive, fully paid-up, royalty-free, irrevocable (except as stated in this Agreement) Patent

35

Geomajas Contributor
License Agreement

license to make, have made, use, offer to sell, sell, import, and otherwise transfer the
Contribution(s), where such license applies only to the Patent claims licensable by Contributor
that are necessarily infringed by the Contributor’s Contribution(s) alone or by combination
of such Contribution(s) with other work of Geosparc. Contributor furthermore agrees to
immediately notify Geosparc of any patents that Contributor knows or comes to know are
likely infringed by the Contribution(s) and/or are not licensable by the Contributor. If any
entity institutes patent litigation against the Contributor or any other entity (including a cross-
claim or counterclaim in alawsuit) aleging that Contributor’s Contribution(s) or the Geomajas
Project work to which the Contributor has contributed constitutes direct or contributory patent
infringement, then any Patent licenses granted under this Agreement for that Contribution or
Geomajas Project work shall immediately terminate as of the date such litigation is filed.

2. Upon the assignment of the Proprietary Rights and the grant of thelicense as set forth in thisarticle
2, Geosparc hereby grants anon-exclusive, worldwide, fully-paid up, royalty-free license to make,
use reproduce, distribute, modify and prepare derivative works based on the Contribution(s) of
Contributor.

3. Contributor hereby represents and warrants that:

a. Inthe casethat the Contributor is an individual who worksin his’her own name the Contributor
guarantees that he/sheislegally entitled to assign the Proprietary Rights and to grant the above
license.

b. Inthe casethat the Contributor isan employee the Contributor guaranteesthat he/she can legally
represent the Company and is entitled to assign the Proprietary Rights and to grant the above
license.

¢. In the case the Contributor is a Company and the Contributor’s employee(s) or consultant(s)
have rights to intellectual property the Contributor warrants that its employee(s) has waived
such rights;

d. each Contribution is the original creation of the Contributor. Contributor represents that each
submission of a contribution includes complete details of any third-party license or other
restrictions of which you are aware and which are associated with any part of the Contribution(s);

e. no claim or dispute has been threatened or filed in connection with the ownership, use or
distribution of the Contribution(s); and

f. theexecution of this Agreement does not constitute a breach under any other agreement to which
Contributor and/or its employer isa party, does not require the consent, approval or waiver from
or notice to any third party and does not violate any law or regulation.

Contributor shall immediately inform Geosparc of any facts and/or circumstances of which
Contributor becomesawarethat would makethe representations and warrantiesinaccurate or untrue
in any respect.

Contributor further agreesthat Contributor shall at no time hereafter dispute, contest or aid or assist
third party in disputing and/or contesting, either directly or indirectly, theright, title and interest in
any and all Contributions of Geosparc as detailed in this Agreement.

4. In case that under applicable mandatory law the Contributor retains the moral rights or other
inalienable rights to the Contributions, the Contributor agrees not to exercise such rights without
the prior written permission of Geosparc.

5. In order to ensure that Geosparc will be able to acquire, use and protect its Proprietary Rights
as detailed in this article 2, Contributor will (i) sign any documents to assist Geosparc in the
documentation, perfection and enforcement of its rights, and (ii) provide Geosparc with support
and reasonable access to information for applying, securing, protecting, perfecting and enforcing
itsrights.

36

Geomajas Contributor
License Agreement

3. Warranties

EXCEPT FOR THE EXPRESS WARRANTIES DETAILED IN ARTICLE 2, THE
CONTRIBUTION(S) ARE PROVIDED “AS IS" AND NEITHER CONTRIBUTOR NOR THE
Geosparc MAKES ANY WARRANTIES OF ANY KIND TO THE OTHER PARTY, EITHER
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION OF ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

4. Miscellaneous

1. This Agreement shall enter into force upon execution of this document by Contributor. This
Agreement may be terminated by a party if the other party commits a breach of this Agreement
provided that if the breach is capable of remedy termination shall not occur if the breach shall
not have been remedied within 90 days of such other party having been given notice in writing
specifying the breach and requiring it to be remedied. The termination of this Agreement shall
however remain in full force and effect with respect to any Contribution submitted prior to the
termination date of the Agreement.

2. This Agreement contains the entire agreement between the parties and supersedes all prior or
contemporaneous agreements or understanding, whether written or oral, relating to its subject
meatter. If any provision of this Agreement shall be deemed invalid or unenforceable, the validity
and enforceability of the remaining provisions of this Agreement shall not be affected and such
provision shall be deemed modified only to the extent necessary to make such provision consi stent
with applicable law.

3. 4.3.The Agreement is governed by the laws of Belgium, without reference to its conflict of law
principles.

4. Geosparc shall have the right to assign its rights and obligations hereunder to any successor or
assignee of itsbusiness or assetsto which this Agreement rel ates, whether by merger, establishment
of alegal entity, acquisition, operation of law or otherwise without the prior written consent of
the Contributor.

Please execute (2) original copies of the above document and send this to the following recipient:
Address of recipient

Geosparc
Gaston Crommenlaan 10/101
BE-9050 Ghent

BELGIUM

The Contributor:

Name:

Title (if applicablein case of lega entity):

37

Geomajas Contributor
License Agreement

Full name of legal entity and address registered office (if applicable):

Date:

Signature:

The Company:

Name:
Title (if applicable in case of legal entity):

Full name of legal entity and address registered office (if applicable):

Date:

Signature:

N.V. Geosparc — Register N° BE 0808.353.458

38

Appendix B. Maven repository

The project use the nexus repository manager [http://nexus.sonatype.org/] to store all Geomajas jars
and all dependencies.

The following configuration can be used in your maven profile :
<repositories>
<repository>
<i d>CGeonmj as</i d>
<nanme>Ceonmj as repository</ nane>

<url >http://maven. geommj as. org/ </ url >
</repository>
<l-- uncomment if you want to use Geommj as snapshots, coment for faster bu
<repository>
<i d>Geonnj as snapshots</id>
<nanme>Ceonmj as repository</ nane>
<url >http://maven. geommj as. org/ </ url >
<snapshot s>
<enabl ed>t r ue</ enabl ed>
</ snapshot s>
</repository>
</repositories>

If you do not need access to the snapshot releases, then it is recommended to remove that repository
from your pom (it will make your compilation alittle faster).

The Geomajas build has quite a few dependencies which are gathered from several repositories.
Our nexus instance functions as a proxy for the following repositories;;

» maven central: http://repol.maven.org/maven2/

* javanet repo: http://download.java.net/maven/2/

* jtsAgwt: http://jtsAgwt.sourceforge.net/maven/repository/

» OSGeo: http://download.osgeo.org/webdav/geotool s/

* OpenGeo: http://repo.opengeo.org/

* geotoals: http://downl oad.osgeo.org/webdav/geotools/

o smartgwt: http://www.smartclient.com/maven2

* spring milestones: http://repository.springsource.com/maven/bundles/milestone
* spring releases: http://repository.springsource.com/maven/bundles/rel ease

* selenium: http://nexus.openga.org/content/repositories/rel eases

* selenium snapshots: http://nexus.openga.org/content/repositories/snapshots

* hibernate-spatial: http://www.hibernatespatial .org/repository

« afresco: http://maven.alfresco.com/nexus/content/repositories/public/

* vaadin-addons: http://maven.vaadin.com/vaadin-addons

39

http://nexus.sonatype.org/
http://nexus.sonatype.org/

	Geomajas contributor guide
	Table of Contents
	Chapter 1. Developers information
	1. maven compilation, targets, profiles, variables
	1.1. GWT build
	1.2. dojo build
	1.3. Running the example applications

	2. Documentation
	3. API contract
	4. Versioning
	5. subversion, commits
	6. Coding
	6.1. Logging
	6.2. Unit testing
	6.3. Exception handling
	6.4. Refactoring
	6.5. File encoding
	6.6. Other

	Chapter 2. Coding quality and style
	1. Class, method and variable names
	1.1. Comment
	1.2. Claim your code
	1.3. Code layout

	Chapter 3. Spring usage in Geomajas
	1. Spring dependency injection
	1.1. Bean naming convention
	1.2. Initialising the application context

	Chapter 4. Face or plug-in
	1. Plug-in structure
	1.1. Plug-in application context
	1.2. Plug-in web context
	1.3. Plug-in pom
	1.3.1. When not using the Geomajas parent

	1.4. Plug-in modules

	2. Plug-in creation
	3. Plug-in state
	3.1. Plug-in graduation
	3.2. Plug-in retirement

	Chapter 5. JIRA conventions
	1. Basic issue tracker rules
	1.1. One problem one issue
	1.2. Provide a meaningful summary
	1.3. Provide a clear description

	2. Filling out the JIRA form

	Chapter 6. Setting up your development environment
	1. Prerequisites
	1.1. Maven
	1.2. Subversion
	1.3. GWT
	1.4. Build procedure

	2. Eclipse
	2.1. Running/debugging with M2Eclipse (quickstart)
	2.2. Running/debugging with the maven Eclipse plugin

	3. IDEA
	4. Maven

	Chapter 7. How to release Geomajas
	1. Pre-release checks
	1.1. Sonatype Checks
	1.1.1. Sonatype general
	1.1.2. Creating PGP key signatures

	1.2. Maven Checks

	2. General steps
	2.1. Prepare release
	2.2. Put the release in staging
	2.2.1. Maven release-prepare
	2.2.2. Maven release-perform

	2.3. Finish the staging procedure
	2.4. Start a vote for the release
	2.5. Count votes
	2.6. Finish the release
	2.7. Announce

	3. Additional notes for releasing the back-end
	3.1. Announce
	3.2. Documentation

	4. Additional notes for releasing the GWT face
	5. Additional notes for releasing the GTW archetype
	5.1. Finish the staging procedure
	5.2. Start a vote for the release
	5.3. Finish the release

	6. Additional notes for releasing the GWT showcase
	6.1. Finish the release

	7. Additional notes for releasing Geomajas-dep
	8. Possible problems and solutions
	9. Example announcement

	Appendix A. Geomajas Contributor License Agreement
	1. Definitions
	2. Granted Rights - Representations
	3. Warranties
	4. Miscellaneous

	Appendix B. Maven repository

