Geomajas user guide for developers

Geomajas Developers and Geosparc

Geomajas user guide for developers
by Geomajas Developers and Geosparc

1.8.0
Copyright © 2010-2011 Geosparc nv

Table of Contents

[1 L oo (0T (o o T PP 1
L PIE A0 v aaaan 3
1. About thiS OCUMENEeeveiiiii e e 3

2. ABOUL thisS PrOJECEieeiei e 3

3. License iNfOrmationcoouuuiieiiiiie e 3

v AN 11 o T 01 o012 (o o PP 3

TN (4 11 = o (1 = PP 5
B N (o 1) (= (1= PP 7
O Oa o 11170 o PP 12

2. PIPEIINGES ..ot 13

2.1. Pipeline arChiteCtureoeveiiiiii e e 13

2.2. Application in the back-endcccccooiiiiiiiiii e, 14

G I 1 14

S o 1 11 /S 14

4.1, Security architeCtureovevviiiiii e 14

4.2. Interaction between client and back-endcccooooiiiiiiiiii, 17

4.3. How isthis applied 2coouiiiiiiii e 19

4.4, Server CONfigUIationiviunieiiii e e e e 20

G T . 1 o 3L 22
(o= o A (1 (1 = P 23
1. Face and plug-in registrationoveiueieeein e e e e e e 23

2. MOAUIE OVEIVIBIW ..ot e e e eaea s 23

R . PP 26
5. APL CONEIACE ...ttt ettt e et e e e et e ean s 28
N o - 1400 1o o [PP 28

2. BaCK-n0 AP oo 28

3. Command and PlUG-iN APlueiec e 29

A, GWT FACE AP oo e 29

5. APl compatibility and GEOM@jas VErSIONScc.ueevuiiiiiieiiieeeiiierieeeeineeaines 29

B. COMMEBNGS ...eeetee ettt ettt e e e et e e e et e e e e ab e e e e ab e e e eran e 30
1. CommandDiSPatCher SEIVICEuuiieeiiii e e e e e 30

2. Provided COMMENASoveueiiei e e s 30

8 = £~ 37
I s S = I Y= = Y ol 37

VA= v 0T I (Y= 1= Vo 37

LSS 1 Y/ 38
1. Authentication versus authorizationooeveuiiiiiiiiniee e 38

2. What can be autNONZEdooiiiiiiieec e 38

3. SECUNtYMaNAQEr SEIVICE ..vuiei i e et e e e e e ean s 39

4, SECUNtYCONLEXE SEIVICE .vuiiiii i eiiii e e et e e e e e e e e e e e e e e et e e et e e eanaeees 39

O, PIPE NS ..t 40
O o 1 TS Vo P 40

P22 @) g o 18 =i o) o 40

3. Default PIPEIINES ..vneei i 42

3.1 RaSIErLaYErSEIVICE v iei e 43

3.2, VECIOrLAYEIrSEIVICE . .vvieiii e e e e e 43

O 1 1A= Y =P 45
1. CoNfigUIratiONSEIVICE .. .evuiiii et e e e e e e e e e e ees 45

2. GEOSEIVICE ..ttt e ettt ettt ettt et e e e s 45

3. DIOCONVEITEISEIVICE ...u ettt e e e e s 46

R L= 3= Yo PP 46

I = 1S Y o= PP 46

Y @0 11 To - 1 o o IR 48
11, Configuration DSICSuiiiueeiiiei e e e 50
L WEDXIMD e 50

Geomajas user guide for developers

2. General PriNCIPIES ... 52

3. GeOMaas CONFIGUIALTIONuiiiiiiee et 53

4. Recommended application context SIUCTUNEcoeevviieiiiiiieeeiii e 54

12. M@D CONFIGUIBLION ...eeeti ettt ettt e e e eeeens 55
1. Raster layer ConfigUIrationcoeuuiiiiiiiiiiiii e 55

1.1, Raster 1ayer iNfOooouuiiiii e 55

2. Vector layer ConfigUIationcouuiiiemiiieiiiii e 56

2.1 VeCtor 1ayer iNfOccouuuiiiiiiiieiie e 56

2.2. Bean layer configurationcoouuuieiiiiinieeiiie e 60

3. Client CONfIQUIALIONeieeii e 61

3.1 M@P CONFIQUIBLION ...t 61

3.2. Client layer configurationcocuuuiieieeeiiieiiiie e 65

13. Security CONFIQUIALTIONceeeieieeeiit et e e e e e e e eees 66
14. Transaction CONFIQUIALIONcoevuieiiiii et 68
15. Dispatcher serviet Configurationooeeeuiiiiiiii e 69
16. Coordinate REfEreNCe SYSIEMSccouuiiieiii e 71
VL HOW-TO et et 73
17. Writing YOUr OWN COMMBINGS ... eeertneeeeiii e et e e et e e et e e e bt eeeenb e eeennn e eees 75
18. Create @ PIUG-IN «.oeve e 78
1. Using the plug-in archetypeooooiiiiii e 78

2. PlUG-IN SITUCTUNE L.t 78

3. Plug-in declaration and dependenCiesoveieriiiieieiiiie e 78

19. Create alayer PIUG-IN ...o.vue e 79
1. WIItiNG YOUP OWN TAYEN .o.ueieii e 79

20. Create & SECUNMLY PIUG-IN «.vvuieieiii et 80
1. Writing your OWN SECUNLY SEIVICEuuiiiiiii ittt e e 80

V1 APPENTICES ...t ettt e e e a e aaee 81
A. Migrating between Geomagjas VEISIONScieiuunieeiiiiiee it e e e 83
1. Migrating between Geomajas 1.7.1 and Geomajas (back-end core) 1.8.0............. 83

2. Migrating between Geomajas 1.6.0 and Geomajas (back-end core) 1.7.1 84

3. Migrating from Geomajas 1.5.4 t0 Geomajas 1.6.0cccuvuveieiiniiieninneeennnn, 84

4. Migrating from Geomajas 1.5.310 Geomajas 1.5.4c.covviiiiiiiiiiiiiieeiiie, 85

5. Migrating from Geomajas 1.5.2 to0 Geomajas 1.5.3oevevviiieiiiiiiieiiiiniecenenn, 86

5.1. General APl ChangeSuuiiiiiiieece e 87

5.2. Configuration ChaNGEScceeuuuiieiiiii e 87

6. Migrating from Geomajas 1.5.1 t0 Geomajas 1.5.2cceevvuieiiiiinieiiiineeeennnn, 89

7. Migrating from Geomajas 1.5.0 to0 Geomajas 1.5.1oevevvinieiiiiinieiiiineeeenenn, 89

8. Migrating from Geomajas 1.4.X 10 1.5.0ccovuuniiiiiiiieiiii e 90

List of Figures

2.1. Geomajas back-end and faCESveiuniiiii e 7
A Cc o 1 17 = S = VS 8
2.3. GEOMEas fOr MABSNUPSvuiiiiieii e e e e e e e et e e e e e eaens 9
2.4. GEOMa|as AEPENUENCIESuuiiiieeiii e et et e e et e e e e e e e e e e et s e et e e eaneaaenaes 10
2.5. Geomajas back-end MOAUIESccouiiiiiiiii e e 10
2.6. Geomajas face and COMMEANASuiiiiniiii e e e e e e e e e eeaees 12
2.7. Geomajas PIPEliNg @rChitECIUIEc.ve it e e aens 13
2.8. SECUNitY arChitECIUIEe i e e e e e 15
2.9. Logging into @ GEOMEJAS SYSEEIM ...uuuiiiiieii e ee e e e e e e e e e e e e e et e e e e annas 18
2.10. Building the SECUIity CONEXEcvveciiii i e ean s 19
6.1. Geomajas face and COMMEANASiiiiiiii e e e e e e e e eeaees 30
8.1. SeCUrity arChiteCtUIE i e e e e e e e 39
9.1. Geomajas PIPEliNg @rChITECIUIEccvve it eaans 40
12.1. Geomajas client CONfIGUIAioNc.uuiiiuuieiiieiie e ee e e e e e e e e e e e e e eaneees 61

List of Tables

4.1. List of Geomajas application MOAUIEScc.uvviiiiiiii e 23
4.2. List of Geomajas back-end ModUIESc.uoiiiiiiii e 24
4.3. List of Geomajas build-toolS MOAUIESccvuiiiiiiiie e 24
4.4. List of Geomajas documentation MOAUIESccuueiiiiiiiiiiiii e e e e 24
4.5. List of Geomajas face MOAUIEScuuiiiiiiii e e 25
4.6. List of Geomajas plug-in MOAUIEScovuiiiiieiii e e e e e e 25
4.7. List of GEOM@jas teSt MOTUIEScevuiiii e e e e s 25
6.1. CopyrightCOMMANGciueiiiieeii et e e e e e e e e e e e e e e et e e e e et e e et e eeanaees 31
6.2. GetConfigurationComMIMAaNdeviuiiiiiiie e e e e e e e e e eeaaeees 31
6.3. GetMapConfiguratioNCOMMENGoiiiuieiii e e e e e e e eaeees 31
6.4. GEtRaStErTIHESCOMMENGeiiiiiieieiii e e e eeaa e 32
6.5. GEtVeCtorTilECOMMEANGcoeeieieiiie et e et a b 32
L3 oo [0 114 o P 33
6.7. MergePolygoNCOMMANGccuuuiiiieeiii e i et e e e e e e e et e e e e e e e e e e et e e eanaaees 33
6.8. PersistTransaCtionCOMIMANGcoviuuiiiiiiiiie e e e e e ae s 33
6.9. SearChALtIBULESCOMIMANGiiiiiii et e et e e e eaa e eees 34
6.10. SearchBYL 0CatiONCOMMENGevuuietieiii et re e e eer e e e e et e e e e e e e e e e eateeranaeeanaes 34
6.11. SearchFeatur@COMIMENGiiiieiii et e e et e e et e e e e et e e e eete e eeenes 35
6.12. SplitPolygonCOMIMANGcocuuieiiieiii e e e e e e e e e e e e e e ean s 36
6.13. UserMaximUmEXLENTCOMMBNGcoevviiiiiiiiie et e e e e eaenns 36
I S (= g I (Y= g o 55
A = ox (o] 4 I (Y= 1 oo R 56
12.3. Feature info CONFIQUIALioNccuuiiiii e e e e e e e e e e eaaees 57
12.4. OGC CQL FIlEr TYPES .uuiviniiii et et e e e e e e e e e e s e e e e e et e e e e ean s 58
12.5. BeanLayer CONfIGUIAioNcc.uueieuiiei e ee e e e e e e e e e e e e e e e e e e eannes 60
17.1. Samples of command Name reSOIULIONc.uiiieiiiiii e e 76
A.1 Back end configuration Changesoevuiiiiii i e 85
A.2. Client configuration ChaNGgESovvueieiiii e e e e e e e e e e e e eeans 86
A.3. Back end configuration Changesoovuiiiiii i 87
YN I @ 1= o g o [U = o o 88

Vi

List of Examples

9.1. Simple PIpeling defiNitioNooiriei e 41
9.2. Layer specific pipeline which refersto adelegateccoveviiiiiiiiiiii e, 41
9.3. Define pipeline extension NOOKSiiiiiiiii e e 42
9.4. Extending a delegate PIPEIINE .. .c.uiiii i 42
11.1. Defining spring configuration locations in web.Xmlcccocoiiiiiiiiiiiin e, 50
11.2. Dispatcher servlet declaration in Web.Xmlcoooiiiiiiiiiiii e 51
11.3. Cache filter declaration in WEL.XIMIocouuiiiiiiiiei e 51
11.4. Full cache filter declaration in Web.Xmlcoooiiiiiii e 52
11.5. Spring configuration preambleco.uiiiii i 53
11.6. ClientApplicationInfo definitionc.couiiriii e 53
2t S Y =T) P 56
12,2, FEAUIE INFO Luuieiiiii et e et 57
2 TS Y =TT) P 59
12.4. Attribute validator CONfigUIrationooiiiiiiiii e e e e 60
12.5. Client map CONfigUIaLIONuuiiiiieii e e e e e e e e e aaas 62
12.6. Client map CONfigUIELIONuuiiiiiiiii e e e e e e e e e aaas 62
12.7. Client map configuration - scale configurationc.ccuoviveiiieiiiieii e, 63
12.8. Client map CONfIQUIELIONcuuiiiiiii e e e e e e e e e e aaaas 64
228 T oo oo 0110 0= 1 o] o 64
12.10. Client map CONFIQUILIONueeieiiii e e e e e e e e e e an s 65
13.1. Allow full acCcessto everybodyccouuiiiiiiii 66
13.2. Partial staticsecurity CONfiguIationccuiiiiiiiiiiieii e 67
16.1. Custom CRS &dditiONuiiiiiiiieiiii e 71
16.2. Custom CRS transformation additionooveiiiiiiiiiiiiii e 72
17.1. Example command temMPlatecovuiiriiiii e 75
17.2. Scan to assure command iS avalableoooeiiiiiiiiiiii 76
17.3. Maven SOUICE PIUGIN ..ouuneiii et e e e e e e e e e e e e e e e et e e ean e e aanes 77
17.4. staticsecurity source plugin - iNCIUdING SOUMCEuuiiviieiiii e 77
A.1. Defining spring configuration locations in web.xmlccooiiiiiiiiiin e, 83

Vi

Part I. Introduction

Table of Contents

2. ADOUL thisS PrOJECE ... it e e
I Torc o1 ol T o1 0 4= oo
L2 ANE 11 (o g 1y (o 2= oo P

Chapter 1. Preface

1. About this document

Documentation for developer who want to use and extend the Geomajas GI S framework.

2. About this project

Geomajasisafree and open source GI S application framework for building rich internet applications.
It has sophisticated capabilities for displaying and managing geospatial information. The modular
design makes it easily extendable. The stateless client-server architecture guarantees endless
scalability. The focus of Geomajas is to provide a platform for server-side integration of geospatial
data, allowing multiple users to control and manage the data from within their own browsers. In
essence, Geomajas provides a set of powerful building blocks, from which the most complex GIS
applications can easily be built. Key features include:

* Modular architecture

¢ Clearly defined AP

* Integrated client-server architecture

* Built-in security

» Advanced geometry and attribute editing with validation

» Custom attribute definitions including object relations

» Advanced querying capabilities (searching, filters, style, ...)

See http://www.geomajas.org/.

3. License information

Copyright © 2009-2010 Geosparc nv.

Licensed under the GNU Affero General Public License. You may obtain a copy of the License at
http://www.gnu.org/licenses/

Thisprogramisdistributedin the hopethat it will be useful, but without any warranty; without eventhe
implied warranty of merchantability or fitness for a particular purpose. See the GNU Affero General
Public License for more details.

The project aso depends on various other open source projects which have their respective licenses.

From the Geomajas source (possibly specific module), the dependencies can be displayed using the
"mv/n dependency: tree" command.

For the dependencies of the Geomajas back-end, we only allow dependencies which are freely
distributable for commercial puposes (this for example excludes GPL and AGPL licensed
dependencies).

4. Author information

This framework and documentation was written by the Geomajas Developers. If you have questions,
found abug or have enhancements, please contact usthrough the user foraat http://www.geomajas.org/

http://www.geomajas.org/
http://www.gnu.org/licenses/
http://www.geomajas.org/

Preface

List of contributors for this manual:
» Pieter De Gragf

Jan De Moerloose

* Joachim Van der Auwera

* Frank Wynants

Part Il. Architecture

Table of Contents

P N 1) (= o L1 = PP 7
I o 1 11470 o PP 12

2, PIPEIINES ..t 13

2.1, PIpelin@ arChiteCIUIEcvve e e e e e 13

2.2. Application in the back-endcccouieiiiiiiii e 14

G I 1 P 14

S o 1 11 14

4.1, Security arChiteCtUrecovv e e 14

4.2. Interaction between client and back-endccooviiiiiiiiiii 17

4.3. How isthisapplied 2oveiiiiii e 19

4.4, Server CONFIQUIELIONc.uuiii et e e e e e e e e e eees 20

G 1 o T 0P 22
(0= o £ 1 (1 = 23
1. Face and plug-in regiStrationc.ueiuuieiiii e e e e e e e e e e e e e e e 23

2. MOAUIE OVEIVIBIW ..cevieeiiii et e et e e e et e e e e b 23

Chapter 2. Architecture

Geomajas is an application framework which allows building powerful GIS application. We will try
to look at the architecture starting from a high level overview, drilling down to discover more details.

At the highest level, Geomajas makes a distinction between the back-end and faces.

Figure 2.1. Geomaj as back-end and faces

..!-, geosparc ﬂeomajas \
_ Custom

™ hackend N
backend api plugHn
——————— ba : d
Custom I
layer
backend
backend backend api
T api api -
& o & Custom
dojo face GWT face
server face
server
face face
el o o e - |itemal | mtemal | L
client] . A .
- dojo face G cwr
O
chient face face
client

: fa
- 8 Ja i

The back-end is where you configure your maps, layers and attributes/features. It is always server
side. The back-end has an API for interaction with the outside world and for extension using plug-
ins. While one of the main purposes of the back-end is to provide bitmaps and vector graphics for the
maps and provide data about features to be rendered and edited, it contains no display code.

The actual display and editing is done in the faces. The back-end is agnostic of web (or other) display
frameworks. Faces are often split in two modules, a sever-side module (which directly talks to the
back-end using java calls) and serializes data to the client, and a client-side module which only talks
to the server side module. The communication between the two modules is private to the face. The
faceitself providesaadditional client API. Thiswill typically provide details about available widgets,
parameters for these widgets and other possible interactions (like message queues or topics you can
subscribe to).

The purpose of Geomajasisto providerich editing of GIS datain the browser, but the faces also make
other applications possible. You could unlock the maps which are configured in Geomajas using a
face which makes data available as web services (this would result in a face with only a server-side
module). You could also build a java swing application using the Geomajas back-end by writing a
swing face. Thiswould result in athick client application (possibly accessible using Java Web Start).

Geomajas contains two faces out-of-the-box.

The a dojo face, which uses the dojo toolkit JavaScript widget library in the browser, is mainly
provided for backward compatibility. Up until Geomajas 1.4 this was the only face which existed. It

Architecture

integrates well with dojo but has the disadvantage that you need to develop in both java (for the server
side) and JavaScript (for the client side) and that debugging can be a challenge.

Since 1.5 we aso provide a GWT face. Thisalows all development to be donein Javaand GWT will

handle conversion to Javascript for code which needs to run in the browser. Obviously thisintegrates
best with GWT based applications, but it can be combined with other web frameworks as well.

Figure 2.2. Geomajas services

=

..!; geosparc [Client Ifaces

[Command [Command ‘Command | | Command |

— J|Actonbasedsenviess e == 4 .I.
[Raster layer service J [Other services J ‘ Custom service ‘
[Vector layer service J ‘ Custom service ‘

Topic based services
!

[Security context J

! |

Authentication ‘ ‘ Policy service
service{e.g. 550) {e.g. Pemis)

The Geomajas back-end is built from many services which are wired together using dependency
injection (DI). This wiring is partly done automatically, and partly through the configuration files.
Thanks to the inversion of control (10C) the back-end is very flexible and can be customized at will.

The client-server communication is done through the command dispatcher. This delegates to one of
the action based services which handle the command. These typically interact with one or more of the
topic based services (though the command could also handle everything directly). The most important
built-in topic based services are the raster and vector layer service. They are used to access the GIS
datawhich is stored as either raster or vector layer.

All the services are running in a secured zone and will typically interact with the security context to
verify accessrights (or policies).

Thelayersaccessthe actual GIS data, either directly or using some kind of transformation service (for
example a GeoServer or MapServer instance).

Architecture

Figure 2.3. Geomajas for mashups

..!; geosparc

L -) -
7
DATA

With this advanced configuration, many integration options exist. One example is displayed above,
the inclusion of Geomajas in an existing application. On the client side, you just have to include the
map widget in your web application. On the server side, there are many options, but you could for
exampl e assure that the transactions are shared between your existing application and Geomajas.

ERP }' shared Geomaijas GIS
>

Architecture

Figure 2.4. Geomaj as dependencies

..!; geosparc ﬂmmajas \
Hibemate

Spring
spatial

oG Layers / data access library

iText ~ \

*—-——-\{ Printing plug-in J fspatia| Geotools
_ _ services — ‘
- Rules i
drools /'[ules plug-in J [
] —_—
Caching plug-in J \
_ j
infinispan / dojo face GWT JTS
server face ‘
server
o N— :
el e - |itemal | mtemal | 1L
client
dojo dojo face GWT ‘ GWT
‘ client face ‘
client

Asisthe casefor most powerful frameworks, Geomajas stands on the shoulder of giants. We use some
of the major open source librariesin our framework (and we integrate with alot more).

Figure 2.5. Geomaj as back-end modules

.!-. geosparc

[
/ Geomajas backend \

(Geomajas—api \ command

Geomajas-impl
e

common-
serviet

\. J &)

. /

10

Architecture

The Geomajas back-end is itself built from several modules which are tied together using the Spring
framework (http://springframework.org/). The Geomagjas-api module is a set of interfaces which
shields implementation details between the different modules. The base plumbing and some generic
features are provided by the Geomajas-impl module.

There are four possible ways to extend the back-end.

» command: commands are used as main interaction point between the face (client side) and the
Geomajas back-end. The retrieval of maps and features, calculations, updates on the features and
all all other functionalities which are available client-side are done using commands.

* layer: this groups a set of access options for all details of the layers of amap. A layer can be either
raster or vector based. A vector layer can be editable. The features describing the objects which are
part of the vector layer are accessed through the "feature model” which converts generic feature
objects into something Geomajas can use (thisway, thereis no need for the generic feature objects
toimplement a"feature" interface, allowing the use of pojos). A feature containsageometry and can
contain attributes, style and labels. Attributes can be complex, including one-to-many and many-
to-one relations to other objects.

 pipeline: al Geomajas back-end services which deal with layers are implemented using pipelines.
A pipelineisalist of steps (actions) executed in order. Each pipeline can be overwritten for alayer,
or you can change the default which is used when not overwritten for alayer.

Configuring pipelines can be used to change the rendering method, add additional rendering steps
(for example marking the editable area on atile), to introduce caching,...

 security: these modules contain the pluggable security features. You can configure the security
serviceswhich are used to verify the validity of an authentication token and return the authorization
objects based on it. These authorization objects can read the security policies from your (secure)
policy store.

11

http://springframework.org/

Architecture

1. Command

Figure 2.6. Geomaj as face and commands

..!;. geosparc

backend Command X

Command Z
Commanlespatcher | 4 | SecurityManager
6 Checksecurity |
CommandResponse
Command name,
CommandRequest, ﬁg]splay Ihntseam typically Tile instances,
Usertoken -the Features to render (f any)
-a link to a {raster) image
senallzed
Face server [nmnmndR:—-an—-::t

CommandResponse

senalized

Theinteraction of the client faces with the Geomajas back-end is handled using commands.

1.

When acommand needsto be invoked (probably asresult of auser interaction), theclient will build
aComuandRequest object. This contains the name of the command to be used, the parameters
for the command, and optionally the user authentication token and language of the user interface.

. Thisobject istransferred to the face server. For web applications, thiswill typically be done using

an AJAX request.

. Theface server will use this CommandRequest to invoke the CommandDi spat cher service,

which can be obtained using the Spring context.

. The CommandDi spat cher will start by invoking the Securi t yManager to check whether

the execution of therequested command isallowed. If it isallowed, the actual Command isobtained
using the Spring context. The ConrrandResponse object iscreated and the command isexecuted.

. The Command will now do its job, writing the results in the CommandResponse object. When

problems occur during execution of the command, it can either write this into the response object
or throw an exception.

. When the command has executed, if it threw an exception, the dispatcher will add this in the

response object. It will then convert any exceptions in the response object into some messages
which may be sensible to the user (put the message in the correct language in the result object,
assuring the "cause" chain is also included). Some extrainformation is also added in the response
object (like command execution time).

. The CommandResponse isreturned to the face server.

12

Architecture

8. Theface server serializes the ConmandResponse back to the face client.

When the command had something to do with rendering, then the response object islikely to contain
aTile.

2. Pipelines

Pipelines are used in Geomajas to alow extreme configurability of the services which choose to use
them.

They are comparable with BPM processes. At first sight pipelines are much more limited as the steps
are aways sequential, only allowing each step to either continue to the next stop or stop the pipeline.
Nesting pipelines gives back the expressive power of general BPM processes. A step could loop over
another pipeline, conditionally execute a pipeline, start severa pipelines for parallel processing etc.
Animportant differencesisthe configurability of pipelines. Pipelines are sel ected on a combination of
pipeline name and the layer on which the pipeline operates. When defining pipelines, you can either
define them from scratch, copy an existing pipeline or copy and extend a pipeline. A pipeline can be
defined with extension hooks and these hooks can be used to add additional pipeline steps.

Figure 2.7. Geomajas pipeline ar chitecture

._!-. geosparc

Pipeline

2.1. Pipeline architecture

All the layer access services provided by the Geomajas back-end are implemented by invoking
a pipeline. Using Pi pel i neServi ce, blocks of functionality become reusable and highly
configurable with limited coupling between the pipeline steps.

Some of the services which areimplemented as Pi pel i neSer vi ce include:

» Rast er Layer Ser vi ce: methodsfor accessing araster layer, especially getting tilesfor araster
layer.

13

Architecture

* Vect or Layer Ser vi ce: methods for accessing a vector layer, for example for getting the
features or obtaining vector tiles.

Pipelines can nest. One of the stepsin the default "vectorLayer.saveOrUpdate” pipelinewill loop over
all features to be updated and invoke the "vectorL ayer.saveOrUpdateOne" pipeline for each.

Pipelines are server side only, client access istypically made avail able by invoking a command.

Pipelines are typically invoked for a specific layer. In that case, the default pipeline can be replaced
by a layer specific pipeline. This way, layer specific configurations (like optimizations or specific
rendering) can be applied. When a layer does not overwrite a pipeline, the default is used. Pipelines
are always selected on pipeline name. Y ou can create the layer specific pipeline by setting the layer

id for which it applied. When several pipelines have the same steps, you can define the pipeline once,
and refer to it later by using a pipeline delegate instead of alist of steps.

A pipeline consists of a number of steps. A pipeline is configured using a Pi pel i nel nf o object
which details the pipeline id and steps. When apipelineis started (using the Pi pel i neSer vi ce) it
executes the pipeline steps until the pipelineisfinished (a status which can be set by one of the steps),
or until no more steps are available in the pipeline. Each step gets two parameters.

« acontext which contains amap of (typed) objects which can be used to pass data between the steps
(including initial parameters for the pipeline).

« theresult object which can befilled or transformed during the pipeline's execution.

Pipelines can be extended. When a pipeline is defined, it is possible to include hooks for extensions.
These are specia no-op steps. When apipelineis defined, your can either define al the pipeline steps,
or refer to adel egate pipeline combined with a map of extension steps. The pipeline will then be based
on the del egate pipeline with the extensions steps added after the hooks with matching names.

2.2. Application in the back-end

All the methodsin both RasterL ayerService and V ectorL ayerService areimplemented using pipelines.

3. Layer

The layer extensions allow determining how a layer is built, which data is part of the layer, update
and creation of extra dataon alayer.

A Layer has some metadata (id, coordinate system, label, bbox, stored in the Layer | nf o object)
and allows you get abtain the layer data.

4. Security

The data which is accessed using Geomajas can be security sensitive. Geomajas includes al the
measures to assure protection of sensitive or private data.

4.1. Security architecture

Geomajas is built to be entirely independent of the authentication mechanism and the way to store
policies.

Based on the user who islogged into the system, the following restrictions can apply:
* accessrightsto acommand
» accessrightsfor alayer

« afilter which needs to be applied for alayer

14

Architecture

 aregion which limits the data which may be accessed for alayer
* accessrights on the features

» accessrightson theindividual attributes of the features

Figure 2.8. Security architecture

..!;, geosparc

J

/SecurityManager Authentication

mechanism

Security Services / s SSEeaney)

[Security Service
\ Policy store
{for example PERMIS)

N\ r—
/SecurityContext \

{ Userinfo

LAuthentication 1

\J ~/

To assure the authentication mechanism is pluggable, an authentication token is used. The
authentication token is used to determine the security context. The security context contains the
policies which apply and which can be queried.

A list of security services can be defined (using Spring bean security. Securi tyl nf o). This
list can be overwritten in configuration. By default the list is empty, which prohibits all access to
everyone. The back-end does however include a security service which can be used to allow all access
to everyone.

The security service is responsible for converting the authentication token into alist of authorization
objects. The security manager will loop all configured security services (using Spring bean
security. Securityl nfo) tofind al the authorization objects which apply for the token. By
default the security manager will stop looping once one of the security services gave aresult. Y ou can
change this behaviour to always combine the authorization objects from all security services.

Note

The system explicitly allows authentication tokensto be generated by different authentication
servers. In that case for each authentication server, at least one security service should be
configured in Geomajas. However, when using such a configuration, you have to verify that
the authentication tokens which are generated by the different servers cannot be the same.

In many systems (including RBAC systems) an authorization object matches a roles for the
authenticated user.

15

Architecture

Note that, as the actual authentication mechanisms are handled by the security services, Geomajas
does not know any passwords or credentials. Similarly the secure, tamper-proof storage of policiesis
not handled by Geomajas either.

Details about the current authentication token and access to the policies (using the authorization
objects) is available using the Secur i t yCont ext . The security context is thread specific. When
threads are reused between different users, the security context needs to be cleared at the end of a
request (group). Thisis normally handled by the faces.

The following general authorization checks exist:

* i sTool Aut hori zed(String tool I d):truewhenthetool canbeused. The"toolld" matches
the"id" parameter which is used in the configuration as specified using the Tool | nf o class.

e i sCommandAut hori zed(String comrandNane) : true when the command is allowed to
be called. The "commandName" parameter is the same as the command name which is passed to
the CommandDi spat cher service.

And for each layer:
» isLayerVisible(String |ayerld):truewhen (part of) the layer isvisible.

e i sLayer Updat eAut hori zed(Stri ng | ayer | d) : truewhen (some of) the visible features
may be editable.

e i sLayer Creat eAut hori zed(String |ayerld): true when there is an area in which
features can be created.

» isLayerDel et eAut hori zed(String | ayer | d) : truewhen (some of) thevisiblefeatures
may be deleted.

e getVisibleArea(String |ayerld):only theareainside the returned geometry isvisible
(uses layer coordinate space). All features which fall outside the layer's MaxExtent area are also
considered not visible.

» get Updat eAut hori zedArea(String |ayerld): only the area inside the returned
geometry may contain updatable features (uses layer coordinate space). All features which fall
outside the layer's MaxExtent area are also considered not updatable.

* getCreateAuthorizedArea(String Ilayerld): only the area inside the returned
geometry can new features be created (uses layer coordinate space). All featureswhich fall outside
the layer's MaxExtent area are also considered not creatable.

e get Del et eAut hori zedArea(String |ayerld): only the area inside the returned
geometry may contain deletable features (uses layer coordinate space). All features which fall
outside the layer's MaxExtent area are also considered not deletable.

e getFeatureFilter(String | ayerld): getanadditional filter which needsto be applied
when querying the layer's features.

* isFeatureVisible(String layerld, Internal Feature feature): check the
visibility of afeature.

e i sFeat ureUpdat eAut hori zed(String | ayerld, Internal Feature feature):
check whether afeature is editable.

* i sFeat ur eUpdat eAut hori zed(String | ayerld, I nt er nal Feat ure
ol dFeat ure, I nternal Feature newreat ure) : check whether the update contained in
the feature is allowed to be saved.

» i sFeatureCreat eAuthorized(String layerld, Internal Feature feature):
check whether afeature is allowed to be created.

16

Architecture

» i sFeatureDel et eAut hori zed(String layerld, Internal Feature feature):
check whether deleting the specific featureis allowed.

e isAttributeReadabl e(String | ayerld, Internal Feature feature,
String attributeNane): check the readability of an attribute. The result can be feature
specific.

e iSAttributeWitable(String ayerld, Internal Feature feature,
String attributeNane): check whether an attribute is editable. The result can be feature
specific.

These authorizations are split in several groups. The security service is not required to provide an
implementation of each authorization test (see API), the security context always ensures that all
methods are available.

Checking authentication and fetching the authorization detail s can be time consuming (not to mention
the hassle of logging in again). To solve this, the results of the security services can be cached. When
a security service can authenticate a token, the reply can contain details about the allowed caching.
Three parameters are allowed to be passed, theval i dUnt i | andi nval i dAft er timestampsand
anext endVal i d duration.

The security manager first checksthe cacheto find (valid) authentication results. A cacheentry isonly
valid until the"validUntil" timestamp. When an entry isvalid, validUntil may be extended until "now"
plus "extendValid" duration. However, "validUntil" is never extended past "invalidAfter". When no
data can be found in the cache, the security services are queried.

Note

There may be multiple authentications stored for a authentication token. When one of them
becomesinvalid, they are al considered invalid.

Note

Entering credentialsis never handled by Geomajas. When the authentication token cannot be
verified, a security exception is thrown. It is up to the client application (the face probably)
to assure that a new authentication token is created.

The authorization have two possible results. When reading or rendering, all unauthorized data should
simply befiltered without warning or exception. When trying toinvoke acommand or to create, update
or delete, any attempt which is not authorized should result in a security exception.

The security usesthe approach that all accessisforbidden unlessisisallowed. Hence, you will aways
need to configure at least one security service to assure the system is usable.

4.2. Interaction between client and back-end

When a user wants to access a secured Geomajas application, she will normally surf to the URL for
the application.

Theapplicationwill then check whether theuser isloggedin. If that isnot the case, the user isredirected
to the login page. This may be an external page as provided by an authentication server (as often used
for SSO (Single-Sign-On) solutions), or it could be alogin widget. Note that the framework does not
handle this redirection itself or even know how the login can be handled. It is up to the application
writer to provide this redirection.

Thelogin page will ask the user to provide her credentials. This could be auser name, password pair,
a request for a code coming from a hardware device, login using a elD or some other means PKI
(Private Key Infrastructure), automatic recognition based on IP address,... When the login handling

17

Architecture

is satisfied with the provided credentials (the user is really authenticated), it will redirect back to the
original application with a security token.

Thistoken is then used by the client to pass authentication information to the back-end.

As seen from this example, the Geomajas client does not handle the authentication and does not need
to know he credentials for the user.

Figure 2.9. Logging into a Geomaj as system

credentials

User who

are you?
URL

not authenticated
>

Geomajas

client {

itc: ken

Geomajas
back-end

Login

token

Note

It is important to know that the security token typically has a limited validity. As such, it
can happen at any moment that the token is no longer valid and the login screen needsto be
presented again. The application author should consider this while devel oping.

At the back-end, the programmer has a reasonably simple job. At each policy enforcement point, you
need an injected security context which can be used for the policy decisions. This can be included
using the following piece of code.

@\ut owi r ed
private SecurityContext securityContext;

The framework handles the instantiation of this security context based on the security token (which
is typically received either through the CommandDispatcher's request or a URL parameter). Thisis
done by the SecurityManager. The SecurityManager uses the configuration supplied by Spring bean
security. Securityl nfo. Each of the security services will check whether the token is valid
(which includes checking whether it was supplied by the authentication services which backs the
service) and extract the principal from the token. That principal isused to fill some information about
the user (like name, to allow the client to display this) and to read the policies from the policy store.
The policies are converted by the service to Authentication objects. The authentication objects are

18

Architecture

combined in the security context, only allowing thingswhich are allowed by at |east one authentication
object.

Figure 2.10. Building the security context

@Autowired
private SecurityContext securityContext;

Securityservice

securityManager

token valid?

SecurityContext principal?

\ Userlnfo Permissions

SecurityContext

Both the authentication service and policy store are outside of the Geomajas framework. They can be
external services which are accessed by the security services or implemented as part of the security
service implementation.

4.3. How is this applied ?

The security is applied throughout Geomajas. A list of places (which is not necessarily complete) and
some additional ideas for application follow.

Back-end services:

* CommandDi spat cher verifies the existence of a SecurityCont ext and creates one if
needed.

» CommandDi spat cher verifieswhether the command is allowed to be used.
VectorLayerService:

e Check layer access.

» Handle the "filter" for the layer (if any).

* Filter on visible area as this can increase query speed.

* Post-process features filtering unreadable attributes, set update flags, remove features which are
not allowed.

Commands:

19

Architecture

« configuration.Get and configuration.GetMap: layers which are invisible should be removed, tools
which are not authorized should be removed, "editable" and "del etable" statusseson layers, features,
attributes need to be set.

* configuration.UserMaximumExtent: max extent should only consider visible features.

» feature.PersistTransaction: making changes to attributes which are not editable should cause a
security exception.

+ feature.SearchByL ocation: only return visible features and readable attributes.
« feature.SearchFeature: only return visible features and readable attributes.

» geometry.Get: only return the geometry for visible features.

» geometry.MergePolygon: no security implications.

 geometry.SplitPolygon: no security implications.

« render.GetRasterTiles: should only return data for visible layers, ideally post-processing the image
to ensure only visible areaisincluded (making the rest transparent).

» render.GetVectorTile: should only return datafor visible layers, only display visible features, only
return visible features, only render visible features. When attributes need to be included, only
readabl e attributes should be included and the "editable" flag needs to be set.

Rendering:

e The individual rendering steps (especialy the layer/feature model) can use the
Securi t yCont ext tofilter the data they produce.

» Images can have areas masked which are not allowed to be seen.

» Therendering pipeline can include steps which check the security. This can make life easier on the
layer model which are not guaranteed (or forced) to handle all security aspects. These are active by
default but can be removed for speed (when you are sure thisis double work).

Cache:

» The caching needs to consider the access rights when storing and retrieving data.

Face:

» Thefaceisresponsible for assuring a authentication token isincluded in all accessto the back-end.

» The "get configuration” commands filter the data to assure invisible layer and attributes and tools
which are not allowed are not displayed. No action needed.

 Specific tests on editability of individual features and attributes would be useful to assure the user
does try to enter or modify data which cannot be saved.

e The face should ask for credentials again when the token was not available or is no
longer valid. Specifically when a Geonaj asSecuri t yExcepti on is received which code
Excepti onCode. CREDENTI ALS M SSI NG _OR_| NVALI D.

4.4. Server configuration

While thisis not really touched by description above, the following system configuration issues are
likely to be important when you want to secure your Geomajas application.

* Make sure the communication between the client and server uses encryption, possibly by using
https. This prevents snooping of your data and/or hijacking the security token.

20

Architecture

» Evenif your application is using http for some reason, at the very least your authentication method
should use httpsto prevent your passwords from being transmitted on the wirein cleartext. | would
expect al authentication servers do this.

» Depending on your needs, it may make sense to store the data encrypted on the server. If you want
that, your need alayer model which can access your secured data (possibly passing on the security

token).

21

Chapter 3. Plug-ins

Geomajas provides a basic set of functionality as part of the back-end core. This can be extended
and made available using plug-ins. One of the functions of the back-end core is to act as a plug-in
container. Plug-ins are optional libraries that extend the core functionality by taking advantage of the
public API. There arethree special typesof plug-ins, faces, layersand security plug-ins. which provide
extrafeatures, faces, layers and other plu

Faces provide external interfaces for Geomajas. These give access to users or external systemsto the
configured data. The faces which are included in the Geomajas project are

» GWT face: our recommended face for displaying and editing GIS data in the browser. Thisallows
you to build your web user interface in Java.

» dojoface: aface which allowsweb display and editing using dojo toolkit. The user interface needs
to be developed using JavaScript.

The layer plug-ins provide access to the actual data which needs to be displayed as part of a maps.
Therearebasically two types of layers, providing either raster data (bitmaps) or vector data. Thelayers
which are provided as part of the normal distribution include

» geomajas-layer-hibernate (vector): allow accessto any kind of featureswhich are stored in aspatial
(relational) database. The data is accessed using the hibernate and hibernate-spatial open source
libraries.

» geomajas-layer-geotools (vector): access data from any vector data source which has a GeoTools
data store defined for it (http://geotool s.org/javadocs/org/geotool s/data/DataStore.html).

» geomajas-layer-google (raster): include Google rasters. This allows access to the normal and
satellite views provided by Google. You gtill have to make sure you comply with Google terms of
use (http://code.google.com/apis/maps/).

» geomajas-layer-openstreetmap (raster): support for raster data coming from the OpenStreetMap
project (http://www.openstreetmap.org/).

» geomajas-layer-wms (raster): access data from a WMS server (http://www.opengeospatial.org/
standards/wmes).

» geomajas-layer-shapeinmem (vector): access data from an ESRI shape file which handled in
memory. The actual data accessif done using GeoTools (http://www.esri.com/library/whitepapers/
pdfs/shapefile.pdf).

Other plug-ins alow extensions in functionality, either by providing additional commands or
extending the rendering pipelines, or they provide additional security services.

» geomajas-command: set of commands which are provided as part of the standard distribution. This
is so fundamental to using Geomajas that it is provided as a back-end module.

» geomajas-plugin-printing: printing extensions for the framework

» geomajas-plugin-staticsecurity: a basic security service which can be configured as part of the
Spring configuration and does not use an external source for users or policies, making the security
configuration entirely static.

The back-end also contains a set of spatial services. These include services for accessing raster and
vector services and a set of utility services.

22

http://geotools.org/javadocs/org/geotools/data/DataStore.html
http://code.google.com/apis/maps/
http://www.openstreetmap.org/
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Chapter 4. Project structure

The project is built from alarge set of modules. A specific application can choose which modules are
used or not. In principle, the back-end module are always required and at least one face and at least
one layer plug-in. More plug-ins or faces can be added as needed.

1. Face and plug-in registration

Plug-ins (which include faces) are automatically discovered when available on the classpath. Thisis
done using two files: META-INF/geomajasContext.xml and META-INF/geomajasWebContext.xml.

The geomajasContext.xml file contains information about the plug-in, the dependencies for the plug-
in (which are checked when the application context is built, assuring that the set of plug-ins is
complete and can be combined) and contains copyright and license information for the plug-in and its
dependencies. Additional beans and services can also be defined.

The geomajasWebContext.xml file is provided to allow additional endpoints to be added in the web
tier. Geomajas normally installs a Di spat cher Ser vl et in the web.xml file to alow additional
web endpoints to be added using Spring MV C.

2. Module Overview

Different modules have different impacts and different purposes. Therefore different categories of
modules are required. Geomajas has defined the following set of module categories (matching the
directoriesin the source):

* application: working examples of applications using the Geomajas GI S framework.

* backend: these are essential Geomajas modules. Each Geomajas application needs these modules.
However, you also need some aface and some plug-ins(likelayers) or youwon't be ableto do much.

* build-tools: some moduleswhich are useful for starting or building Geomajas or a Geomajas project.

 documentation: documentation modules, specifically the different Geomajas guides. These are the
general guides, each of the plug-ins also has a documentation module.

« face: faces that present a certain Geomajas client interface to the user.

 plugin: modules that extend Geomgjas. This can either add new functionality, add support for a
certain type of data source, provide a security service or a combination.

« test: modules which are used for (integration) testing of Geomajas.

Full list of Geomajas modules:

Table4.1. List of Geomajas application modules

Name Purpose

geomajas-dojo-example Example application using the dojo face. Is more advanced than
the dojo-simple demo. Can be useful as template project when
starting a new dojo based Geomajas application which uses
project specific JavaScript code.

geomajas-dojo-simple Simple example project using the dojo face. Can be a useful
template project when starting a new dojo based Geomajas
application.

23

Project structure

Name

Purpose

geomajas-gwt-example

Example application using the GWT face which serves both as
showcase and test application.

geomajas-gwt-simple

Simple example project using the GWT face. Very similar to the
GWT archetype which can be used to start anew GWT based
Geomajas project.

Table4.2. List of Geomajas back-end modules

Name

Purpose

geomajas-api

Stable interfaces. Reference guide for other modules.

geomaj as-api-experimental

Experimental interfaces. This contains some experimental stuff
which may be promoted to the supported APl when useful, or
may be changed or dumped. Asthisis not part of the API, it may
change between revisions.

geomajas-command

Lists all basic commands.

geomajas-common-servlet

Code which is shared by the different faces which are servlet
based.

geomajas-impl

Main library with default implementations.

geomajas-testdata

Module which contains data which is used for testing Geomajas.

Table4.3. List of Geomajas build-tools modules

Name

Purpose

geomajas-checkstyle

Module which contains the checkstyle definitions which should
be adhered to for all code in the Geomajas source tree.

geomajas-dep

This module can be included in your "dependencyManagement”
section to set default versions for many possible dependencies.
Thisincludes the current release versions of all Geomajas project
modules and their major dependencies. The versions can always
be overwritten in your pom. It does not indicate that module
versions play well together (though they should if the AP
contract is adhered). This module should never contain snapshot
builds.

geomajas-maven-dojo

Maven plugin which helpsto combine all the JavaScript code for
dojo, Geomagjas and the project itself. Thisis usually referred to
asthe "shrink" or "shrinksafe" step.

geomajas-maven-plugin

Maven plugin which is used for generating the documentation. It
extracts excerpts from the code to alow inclusion in the docbook
guides.

geomeajas-parent

parent project which includes some Geomajas specific settings
like copyright, java version, checkstyle etc.

geomajas-plugin-archetype

Archetype for starting a new plugin.

Table4.4. List of Geomajas documentation modules

Name

Purpose

contributorguide

Guide for contributors to the project. Includes information about
compilation of the project, coding style, how to contribute to the
documentation, JIRA guidelines etc.

devuserguide

Guide for developers who want to use Geomajasin their
applications.

24

Project structure

Name Purpose

enduserguide Guide for end-users who use the Geomajas widgets. This guide
should probably be included in the application documentation.

style Style module for conversion of the docbook filesto usable
output.

xslt Transformation module for conversion of the docbook filesto

usable output.

Table4.5. List of Geomajas face modules

Name Purpose
geomajas-face-dojo Modules for the dojo face, including documentation.
geomajas-face-gwt Modules for the GWT face, including the documentation.

Table 4.6. List of Geomajas plug-in modules

Name

Purpose

geomajas-layer-geotools

Support for any dataformat GeoTools supports.

geomajas-layer-google

Support for GoogleMaps raster format.

geomajas-layer-hibernate

Support for database formats through Hibernate.

geomajas-layer-openstreetmap

Support for OpenStreetMap raster format.

geomajas-layer-wms

Support for the WMS raster format.

geomajas-plugin-printing

Adds printing capabilities beyond printing in the browser, by
delivering the map as PDF.

geomajas-plugin-stati csecurity

Simple security service which allows including the entire security
configuration in the Spring configuration files, making the
configuration static.

geomajas-plugin-caching

Caching plug-in which allows improved speed by calculating
dataonly once.

Table4.7. List of Geomajastest modules

Name

Purpose

geomajas-test-integration

Integrations tests, currently mostly testing the security handling.

25

Part IlIl. API

Table of Contents

5. APE CONIACE ...ttt et e et e et e e e e e eanns 28
N o - 1400 - (o PP 28

2. BaCK-N0 AP oo 28

3. Command and PIUG-IN APli e 29

A GWT FACE AP oo e 29

5. APl compatibility and GEOmMajas VErSIONSevuuieiinieieiiee e eaee e e e e e 29

L o 010> PSP 30
1. CommMandDiSPatCEr SEIVICEuuueiiieiii i eeii et e e e e e e e e e e eanaees 30

2. Provided COMMENASooiieiiieeiii e e a et eaeae s 30

R < £ Y 37
I e S = I (Y= = ot 37

VA= o (0T I Y= = Vot P 37

ST = 1 /P 38
1. Authentication Versus authoriZationoceuuuiieeeiiieeeii e e 38

2. What can be authOriZedcooeuuieii e 38

3. SECUNTYMANAQES SEIVICE .vuuiii et e et e et e e e e e e e e e e et s e e e e e e eeen 39

4, SECUNTYCONLEXE SEIVICE ..uuiiiiieeiiee et e e e e ean s 39

O, PP NS ..t 40
O o 1= TS Vo 40

22 @) o o 18 =i o) o PN 40

3. Default PIPEIINES ... 42

3.1 RASIEILAYEISEIVICE .vuieieii et 43

I VA= v (o I (Y= = Vo Y 43

O 1 ST~ Vo P 45
L. CONfigUIAtiONSEIVICE . .vveeiii i eeie e e e e e e e e e e e eanas 45

2. GEOSEIVICE ..ttt e ettt ettt e et a s 45

3. DIOCONVEITEISEIVICE ... eiiiiiie ettt e e e et e e et e e e b 46

R L= 5= oY o SRR PIN 46

I = 1S Vo= PR 46

27

Chapter 5. APl contract

1. APl annotation

As Geomgjas is a framework for building enterprise application, it is important to be very accurate
about what exactly is considered part of the API, specifically which classes and interfaces and which
methods in these classes and interfaces are considered as part of the API.

For thisreason, we haveintroduced the" @\pi " annotation. A classor interfaceisonly considered part
of the public API when it isannotated using " @\pi ". When all public methodsin the class or interface
are considered part of the API, you could use "@pi (al | Met hods = true)". The dternative
isto annotate the individual methods.

The API includes many interfaces. These interfaces should only be implemented by client code when
they are annotated by "@Jser | npl erent ed". All other interfaces are provided to indicate the
methods available on instances which are obtained through the APl or Spring wiring and may have
extramethods added in future versions.

All classes and methods which are indicated with "@\pi " should also have a "@i nce" javadoc
comment indicating the version in which the class or method was added to the API.

Note

Please beware that only the annotations determine whether something is part of the API or
not. The manual may discuss things which are not considered API, probably because they
are experimental.

2. Back-end API

Thefull details about the API can be found in the published javadoc, available on the Geomajas site at
http://www.geomajas.org/gis-documentation. There you can find the links for the different versions.

The API for the Geomajas back-end is contained in the geomajas-api module. This contains only
interfaces, exceptionsand datatransfer objects. Thedatatransfer objectsare classeswhich only contain
getters and setters. The back-end API isdivided in the following packages:

» command: interfaces, services and data transfer objects related with the command extension points.
« configuration: data transfer objects which are used for defining the configuration in Geomajas.
» geometry: Geomajas geometry related data transfer objects.

 global: some general interfaces, annotations and exceptions which are relevant for a combination
of several extension points or the entire API.

* layer: interfaces, services, exceptions, data transfer objects and some internal objects related with
the layers and objects in alayer. These include the definition of a layer, tiles, features and feature
models.

* security: interfaces, services and data transfer objects related with the security extension points and
security handling.

 service: utility services provided by Geomajas.

The back-end also contains a module geomajas-api-experimental. This contains some experimental
stuff which may be promoted to the supported APl when useful, or may be changed or dumped. As
thisis not part of the API, it may change between revisions.

28

http://www.geomajas.org/gis-documentation

API contract

3. Command and plug-in API

For commands and plug-ins, the samerule appliesasfor the back-end API. That meansthat the" @\pi "
annotation indicates the stability of the interfaces, classes and methods.

These classes can typically befound in packages containing "command.dto” for command request and
response objects or packages containing "configuration” for objects which are expected to be defined
from the Spring configuration files.

The command nameisalso considered part of the APl when theimplementing classin annotated using
the "@A\pi " annotation.

4. GWT face API

The GWT plug-in also uses the "@\pi " annotation to indicate classes and methods which are
supported to remain stable between minor versions of the face.

Y ou can expect to find this annotation on all widgets, though it is likely that not all public methods
will be considered part of the API.

5. APl compatibility and Geomajas versions

Versions have the structure "major.minor.revision”.

The major number indicates major changes in the framework and thus gives no guarantee about API
compatibility with previous major versions.

Minor versions are used for adding features. Revisions are only produced when bugs need to be fixed
which cannot wait for the next minor release (or when the previous revision wasrejected in the release
vote).

The API for Geomajas needs to be upward compatiblefor all stable versionswith same major number.
Specifically this means that

* NO API classes or interfaces may be removed.

No API classes or interfaces may be renamed.

No API classes or interfaces may have their package name modified.

No APl methods may be removed.

No APl methods may have their signature changed.
» No methods may be added to classes annotated using "@Jser | npl enment ed".

Additionally, all methods and classes which are added should include an indication of the version in
which the class and/or method was added. This is done using the "@i nce" javadoc comment for
the methods, class or interface.

Because of the guarantees about AP, the use of the"@epr ecat ed" annotation only indicates that
amethod or class is not recommended to be used. The method or class will not be removed in future
versions with the same major number.

29

Chapter 6. Commands

1. CommandDispatcher service

The command dispatcher is the main command execution service. It accepts commands serializable
data for executing a command and returns a response which can again be serialized. It is the main
entry point into the back-end for use by the faces.

Figure 6.1. Geomajas face and commands

._!; geosparc

-a link to a {raster) image
7

e BN
backend Command X
Command 7
CommandDispatcher] 1) (SecuﬁtyManager
) Checksecurity |
g
Tg é CommandResporse
Commandname, o o ; ;
Commandi % % :’:\:i(:hsplay, Ihntseam typically Tile instances,
Usertoken o il -the Features o render if any)
E =
o [=)
QO Q

serialized
v o A y
Face server —.2 CommandRequest ‘ Face client

e’
oo | MOV)
senalized

The following methods are provided:

» CommandResponse execute(String commandNane, CommandRequest
commandRequest, String userToken, String | ocal e) :giventhecommand name,
request object, user token and locale, try to execute the requested command. The result, including
any exception which may have been thrown are included in the returned response object.

2. Provided commands

The commands are all registered in the Spring context. The "registry key" asindicated below is used
to retrieve the commands. These are services, so a singleton should be sufficient for this.

The default naming for the keys is derived from the fully qualified class name. Thisis automatically
assigned when the command isin a (sub package of) the "command" package. To determine the bean
name, all parent packages of the "command" package are removed. Then the name is simplified.
It will end up having "command." as prefix, optionally followed by a package, followed by the
name. As there already is a"command" prefix, the "Command" suffix is removed from the name if
present. When the resulting name starts or end with the sub package, then that is removed as well.
For example the "org.geomajas.command.configuration.GetConfigurationCommand" class will get
"command.configuration.Get" asregistry key.

30

Commands

Table6.1. CopyrightCommand

CopyrightCommand

Registry key

command.general .Copyright

Module which provides this
command

geomajas-command

Request object class org.geomaj as.command.EmptyCommandRequest

Parameters none

Description This alows you to obtain copyright and license information for
Geomajas, it's dependencies, the plg-ins and the dependencies of
the plug-ins. This can be used to display that information in a
"about" box to assure the copyright and license conditions are
adhered.

Response object class org.geomajas.command.dto.CopyrightResponse

Response values List of Copyri ghtl nfo objects for the dependencies. Any

duplicates are removed based on the copyright info key.

Table 6.2. GetConfigurationCommand

GetConfigurationCommand

Registry key

command.configuration.Get

Module which provides this
command

geomajas-command

Request object class org.geomaj as.command.EmptyCommandRequest

Parameters none

Description Get the client side configuration information. This returns
information about all maps which have been configured.

Response object class org.geomajas.command.dto.GetConfigurationResponse

Response values * name: name of the application.

maps: list of configured maps for the application. Note that
the layer information which is contained in the maps has the
coordinates transformed according to the crs of the map.

screenDpi: screen resolution in dots per inch.

Table 6.3. GetM apConfigurationCommand

GetM apConfigurationCommalhd

Registry key

command.configuration.GetMap

Module which provides this
command

geomajas-command

Request object class org.geomajas.command.dto.GetM apConfigurationRequest
Parameters « mapld: id of map for which the information should be returned.
Description Get the client side configuration information for the specified map.
Response object class org.geomajas.command.dto.GetM apConfigurationResponse
Response values » maplnfo: information about the requested map. Note that the

layer information which is contained in the maps has the
coordinates transformed according to the crs of the map.

31

Commands

Table 6.4. GetRaster TilesCommand

GetRaster TilesCommand

Registry key

command.render.GetRaster Tiles

Module which provides this
command

geomajas-command

Request object class org.geomaj as.command.dto.GetRaster TilesRequest

Parameters « crs. coordinate reference system that the map uses.
 bbox: total bounding box wherein to fetch raster tiles.

» scale: current scale in the client side map.
« layerld: theid of the raster layer to fetch tiles for.

Description Retrieve a set of raster tiles asimage links for a given layer within
a certain bounding box expressed in a certain coordinate reference
system.

Response object class org.geomajas.command.dto.GetRaster TilesResponse

Response values » rasterData: list of Rast er Ti | e objects.

* nodeld: identifier to be used in the DOM tree.

Table 6.5. GetVector TileCommand

GetVector TileCommand

Registry key

command.render.GetVectorTile

Module which provides this
command

geomajas-command

Request object class

org.geomajas.command.dto.GetV ector TileRequest

Parameters

« layerld: theid of the vector layer to fetch atilein.

« code: the unique code of thetile to retrieve.

« scale: the current scale on the map, client side.

e panOrigin: trandation for the tile on the client-side.
« filter: extrafilter that can be used to filter out data.

« crs. the map's coordinate reference system.

* renderer: should the server render to SVG or VML?

« stylelnfo: extra stylesthat can override the originally configured
styles.

« paintGeometries. should the geometries be painted in the tile?
Thisistrue by default.

 paintLabels: should labels be painted in the tile?

« featurelncludes: indication of which data to include in
the feature. Possible values (add to combine): 1=attributes,
2=geometry, 4=style, 8=label. Default value is to include
everything.

32

Commands

GetVector TileCommand

Description Fetches a single tile for a vector layer. The tile can contain both
vectors and labels. This command is used to paint vector layersin
the map.

Response object class org.geomajas.command.dto.GetV ector TileResponse

Response values * tile: the actual resulting tile.

Table 6.6. LogCommand

L ogCommand

Registry key

command.general.Log

Module which provides this
command

geomajas-command

Request object class org.geomajas.command.dto.L ogRequest

Parameters * level: log level, O for debug, 1 for info, 2 for warn, 3 for error.
 statement: string which needs to be logged.

Description This allows you to send a statement to the server side which will
be logged there.

Response object class org.geomaj as.command.CommandResponse

Response values none

Table 6.7. MergePolygonCommand

M er gePolygonCommand

Registry key

command.geometry.MergePolygon

Module which provides this
command

geomajas-command

Request object class org.geomajas.command.dto.MergePolygonRequest
Parameters polygons: array of polygons that need to be merged
« allowMultiPolygon: is a MultiPolygon allowed when merging
multiple polygons?
Description This command allows the user to merge multiple polygons into a

single polygon or multipolygon.

Response object class

org.geomajas.command.dto.M ergePol ygonResponse

Response values

« geometry: the resulting geometry after the merge.

Table 6.8. PersistTransactionCommand

Per sistFeatur eTransactionCon

mand

Registry key

command.feature.PersistTransaction

Module which provides this
command

geomajas-command

Request object class

org.geomajas.command.dto.PersistTransactionRequest

Parameters

« featureTransaction: the actual transaction object. Contains alist
of features asthey where, and alist of features asthey should be.

« crs. the map's coordinate reference system.

33

Commands

Per sistFeatur €T ransactionCon

mand

Description Persist a single transaction on the backend (create, update, delete
of features).

Response object class org.geomajas.command.dto.PersistTransactionResponse

Response values « featureTransaction: the same transaction that was sent to the

server. Unless something went wrong, in which case this could
be null.

Table 6.9. Sear chAttributesCommand

Sear chAttributesCommand

Registry key

command.feature.SearchAttributes

Module which provides this
command

geomajas-command

Request object class org.geomgj as.command.dto.SearchAttributesRequest
Parameters * layerld: the layer to search in.
« attributeName: the name of the attribute as configured in the
feature info.
« filter: afilter, to limit thelist of returned features.
Description Search for attribute possible values for a certain attribute.

This command is only used for many-to-one and one-to-many
relationships, to search for possible values.

Response object class

org.geomajas.command.dto.SearchAttributesResponse

Response values

« attributes: list of attribute values.

Table 6.10. Sear chByL ocationCommand

Sear chByL ocationCommand

Registry key

command.feature.SearchByL ocation

Module which provides this
command

geomajas-command

Request object class

org.geomaj as.command.dto.SearchByL ocationRequest

Parameters

location: geometry which should be used for the searching.

queryType: specify exactly whether to search, possible
vaues are QUERY_I NTERSECTS, QUERY_TOUCHES,
QUERY_W THI Nor QUERY_CONTAI NS.

ratio: if queryType is QUERY_I NTERSECTS, you can
additionally specify what percentage of overlap is enough to be
included in the search.

layerlds: array of layer idsto searchin.

searchType: determines whether to stop searching once
something in found in one of the layers (in order of course), or
whether to continue searching, and include matching features
from al layers.

crs. the map's coordinate reference system. The location
geometry will also be expressed in this crs.

Commands

Sear chByL ocationCommand

* buffer: before any calculation is made, it is possible to have the
location geometry expanded by a buffer of this width (in crs

space).

« featurelncludes: indication of which data to include in
the feature. Possible values (add to combine): 1=attributes,
2=geometry, 4=style, 8=label. Default value is to include
everything.

Description This command alows you to search for features, based on
geographic location.

Response object class org.geomajas.command.dto.SearchByL ocationResponse

Response values « featureMap: map with layer ids as key and a list of features as

value. Only layers in which features were found are included in
the map.

Table 6.11. Sear chFeatureCommand

Sear chFeatur esCommand

Registry key

command.feature.Search

Module which provides this
command

geomajas-command

Request object class

org.geomaj as.command.dto.SearchFeatureRequest

Parameters

« layerld: id of layer in which features need to be searched.

* max: maximum number of featuresto alow intheresult. 0 means
unlimited.

« crs: crswhich needsto be used for the geometry in the retrieved
features.

e criteria: array of criteria which need to be matched when
searching. Each criterion contains the attribute name, the
operator (optionsinclude "like" and "contains") and the value to
compare. Note that the value usually needs to be contained in
single quotes.

« booleanOperator: operator which should be used to combinethe
different criteria when more than one was specified. Should be
either "AND" or "OR". Default valueis"AND".

« filter: an additional layer filter which needs to be applied when
searching.

« featurelncludes: indication of which data to include in
the feature. Possible values (add to combine): 1=attributes,
2=geometry, 4=style, 8=label. Default value is to include
everything.

Description

This command allows you to search for features, based criteria
which alow matching on feature attributes. You can specify
multiple search criteriaand afilter.

Response object class

org.geomajas.command.dto. SearchFeatureResponse

Response values

« layerld: id of the layer which contains the features. Equals the
layerld parameter from the request.

35

Commands

Sear chFeatur esCommand

« features: array of features which match the search criteria. Any
geometry contained in the features uses the request crs.

Table 6.12. SplitPolygonCommand

SplitPolygonCommand

Registry key command.geometry.SplitPolygon
Module which provides this|geomajas-command
command
Request object class org.geomaj as.command.dto.SplitPolygonRequest
Parameters » geometry: the geometry that needs splitting.
« gplitter: the splitting geometry (usualy a LineString).
Description Split up a geometry into many pieces by means of a splitting

geometry.

Response object class

org.geomaj as.command.dto.SplitPolygonResponse

Response values

» geometries: the list of resulting geometries after the split.

Table 6.13. User M aximumExtentCommand

User M aximumExtentComman

d

Registry key

command.configuration.UserMaximumExtent

Module which provides this
command

geomajas-command

Request object class

org.geomajas.command.dto.UserM aximumExtentRequest

Parameters * layerlds: list of layersto include.
* includeRaster Layers: truewhen raster layers should beincluded.
Defaultsto false.
« crs: crswhich should be used for the response.
Description Get the bounding box of the visible features across the requested
layers (visible areafor the raster layers).
Response object class org.geomajas.command.dto.UserM aximumExtentResponse
Response values * bounds : bounding box.

36

Chapter 7. Layers

Layers alow access to data which needsto be displayed in a map.

For the existing layers, the details about configuring you map to include that layer are included in the
map configuration chapter.

1. RasterLayerService

All accessto raster layers should be done using the raster layer service. The following methods exist

Li st<RasterTil e> getTiles(String | ayerld,
Coor di nat eRef erenceSystem crs, Envel ope bounds, double scale)
t hrows Geommj asExcepti on : thismethod allows you to obtain the list of raster tileswhich
need to be displayed for the given bounds at the requested scale.

2. VectorLayerService

Vector layers and the data contained within are accessible using the vector layer service. Y ou should
not try to access the layers directly. This service assures that the security constraints are adhered.
Following access methods are available

voi d saveOr Update(String l ayerld, Coor di nat eRef er enceSyst em
crs, Li st<Internal Feature> ol dFeat ures, Li st <I nt er nal Feat ur e>
newFeat ures) throws GeonmjasException : alows creating or updating several
features. Y ou have to pass both the old features (null or the feature before it was modified) and the
new value of the feature. The two are at compared to determine whether to create, update or del ete.

Li st <I nt er nal Feat ur e> get Features(String | ayerld,
Coor di nat eRef erenceSystemcrs, Filter filter, NamedStyl el nfo style,
i nt featurelncludes) throws Geomaj asExcepti on:readall featuresfromthelayer
which match thefilter. Y ou can specify which aspects of the feature need to be set.

Li st <I nt er nal Feat ur e> get Features(String | ayerld,
Coor di nat eRef erenceSystemcrs, Filter filter, NamedStyl el nfo style,
int featurelncludes, int offset, int maxResultSize) throws

Geonmj asExcepti on : read a batch of features from the layer which match the filter. You can
specify which aspects of the feature need to be set.

Envel ope getBounds(String | ayerld, CoordinateReferenceSystem crs,
Filter filter) throws Geonmmj asExcepti on : getthe bounds of the visible features
which match the filter. This can be useful for fit-to-page like functionality.

Li st<Attri but e<?>> getAttributes(String | ayerld, String
attributeName, Filter filter) throws Geonmaj asExcepti on : get thelist of
possible attribute values.

Internal Tile getTil e(Til eMet adat a til eMet adat a) t hr ows
Geonmj asExcepti on : get avector tile.

37

Chapter 8. Security

Geomajas has security built-in. If you don't provide a security configuration, nothing will be
authorized. For unsecured access, you can use the AllowAll SecurityService security service.

which will allow all accessto everybody, including full accessto featureswhich are only partly within
configured bounds.

It isalso possible to configure other security services, to allow authentication and authorization to be
done by the services which are configured.

Note

When configuring security services, it isimportant to assure that login is possible. Anything
which is not explicitly allowed is not allowed, which likely includes the command which is
used to login. You have to make sure that everybody can access the login command.

Specific configuration depends on the configured security services, details of which can be found in
the specific plugin's documentation.

1. Authentication versus authorization

The security infrastructure makes a clear distinction between authentication and authorization.

Authentication is the act of identifying the user and user the user is how he/she says he is (whether
that person is "authentic"). In Geomajas the authentication will result in a authentication token which
encapsulated that a user has provided valid credentials. The token in itself does not contain either
information about the user or information about what is allowed or authorized (no policies). These
can however be accessed using the token.

The Geomajas back-end core does not do authentication, though it islikely that your security plug-in
either provide commandsto allow creation of atoken (by supplying user credentials) and invalidating
the token (logout), or the plug-in will stipulate where this can be done (possibly supplying a redirect
to an SSO service or similar).

Authorization on the other hand reads the policies which are in effect to determine what an
authenticated user if allowed or disallowed to do and/or access. Geomajas only uses policies which
allow access, Everything which is not explicitly allowed is disallowed.

2. What can be authorized

Based on the user who islogged into the system, the following restrictions can apply:
* accessrightsto acommand

» accessrightsfor alayer

« afilter which needs to be applied for alayer

 aregion which limits the data which may be accessed for alayer

 accessrights on the features

» accessrightson theindividual attributes of the features

Y ou can extend this by providing additional authentication interfaces which are also implemented by
the authentication object returned by your security service. Details can be found in Chapter 20, Create
a security plug-in.

38

Security

3. SecurityManager service

The security manager managesthe (thread-local) security context. It delegatesto the available security
services to build the authentication objects and get the user information which is then stored in the
in the security context. The security services themselves will check with the authentication server or
service whether the token is till valid, and will get the policies from a policy server or service to
populate the authentication objects with the credentials.

Figure 8.1. Security architecture

._!;, geosparc

J

/SecurityManager Authentication

mechanism

Security Services / (forexample SSO serves)

{ Security Service)
\ Policy store
{for example PERMIS)
N\ /
/SecurityContext ' \
v
{ Userinfo |

LAuthentica-tf(-)n J]
\ ~/

The SecurityManager service has the following methods:

* bool ean createSecurityContext(String authenticationToken) : create the
security context for this thread, based on the authentication token.

» void cl ear SecurityContext () : clear the security context for this thread.

4. SecurityContext service

The security context allows access to the currently valid user's policies and some limited information
(user id, name and organization). In your code, you just have to inject the security context. The face
isresponsible for assuring the current thread has the correct security context based on the credentials
used when accessing the back-end (it will use the SecurityManager service to do that).

The security context contains all methods from the UserInfo and Authorization interfaces, plus some
methods to get the current token and get the list of authentication objects which have been combined.

39

Chapter 9. Pipelines

Pipelines are building blocks which are used in Geomajas to make certain aspects highly extend- and
customizable. For more details, see the architecture Section 2, “Pipelines’.

Figure 9.1. Geomaj as pipeline ar chitecture

._!-. geosparc

Pipeline

1. PipelineService

The pipeline service helps you to execute a pipeline. It allows you to fetch a named pipeline which
appliesfor aspecificlayer (either thelayer specific pipeline or the default pipeline). It also has methods
to create an empty pipeline context and execute a pipeline.

2. Configuration

A pipeline can be defined by specifying the pipeline name and the pipeline steps.

40

Pipelines

Example 9.1. Smple pipeline definition

<bean cl ass="org. geomsj as. servi ce. pi pel i ne. Pi pel i nel nfo">
<property nane="pi pel i neNane" val ue="pi pelineTest"/>
<property name="pi peline">
<list>
<bean cl ass="org. geomgj as. i nternal . service. pi peline. Stepl">
<property nane="id" val ue="sl1"/>
</ bean>
<bean cl ass="org. geomgj as. i nternal . service. pi peline. Step2">
<property nane="id" val ue="s2"/>
</ bean>
<bean cl ass="org. geonsj as. i nternal . service. pi peline. Step3">
<property nane="id" val ue="s3"/>

</ bean>
</list>
</ property>

</ bean>

A pipeline can be layer specific and can refer to a delegate (bean reference). The use of the delegate
means that the pipeline definition (list of steps) is copied from the delegate. The following pipeline
extends the previous one (the ref value indicates that the pipeline is referenced by bean name/id).

Example 9.2. Layer specific pipeline which refersto a delegate

<bean id="inter" class="org.geonnjas. service. pi peline. Pi pelinelnfo">
<property nane="pi pel i neNane" val ue="pi pelineTest"/>
<property nane="layerld" value="inter"/>
<property nane="del egat ePi pel i ne" ref="stop" />

</ bean>

When referring to the pipeline definition using a delegate, the pipeline can aso be extended by
inserting additional steps at the extension hooks. Y ou can passamap of "extensions’ which are named
steps. When a extension hook of the name isfound, that step will be included in the pipeline just after
the hook definition.

First you have to define the actual extension hooks by adding steps of class Pi pel i neHook.

41

Pipelines

Example 9.3. Define pipeline extension hooks

<bean i d="hooked" cl ass="org. geomsj as. servi ce. pi peline. Pi pelinelnfo">
<property nane="pi pel i neNane" val ue="hookedTest"/>
<property nane="layerld" val ue="base"/>
<property name="pi peline">
<list>
<bean cl ass="org. geomsj as. servi ce. pi pel i ne. Pi pel i neHook" >
<property nane="id" val ue="PreStepl"/>
</ bean>
<bean cl ass="org. geomgj as. i nternal . service. pi peline. Stepl">
<property nane="id" val ue="sl1"/>
</ bean>
<bean cl ass="org. geomsj as. servi ce. pi pel i ne. Pi pel i neHook" >
<property nane="id" val ue="Post Stepl"/>
</ bean>
<bean cl ass="org. geomsj as. servi ce. pi pel i ne. Pi pel i neHook" >
<property nane="id" val ue="PreStep2"/>
</ bean>
<bean cl ass="org. geomgj as. i nternal . service. pi peline. Step2">
<property nane="id" val ue="s2"/>
</ bean>
<bean cl ass="org. geomsj as. servi ce. pi pel i ne. Pi pel i neHook" >
<property nane="id" val ue="Post St ep2"/>

</ bean>
</list>
</ property>

</ bean>

The hooks can then be used to add extra steps to the pipeline at the pre-defined places. Note that
multiple steps can be added for each hook, but the order of the steps at the hook is not defined.

Example 9.4. Extending a delegate pipeline

<bean i d="hooked2" cl ass="org. geongj as. servi ce. pi peline. Pi pelinel nfo">
<property nane="pi pel i neNanme" val ue="hookedTest"/>
<property nane="layerld" val ue="del egate"/>
<property nane="del egat ePi pel i ne" ref="hooked" />
<property nane="extensi ons">
<map>
<entry key="PreStep2">
<bean cl ass="org. geomgj as. i nternal . service. pi peline. Step2">
<property nane="id" val ue="ps2"/>
</ bean>
</entry>
</ map>
</ property>
</ bean>

3. Default pipelines

The default pipelines are detailed here. All the steps mentioned here have a hook before and after the
step to allow customization of the pipeline. These hooks have the name of the step as mentioned here,
with either "pre" or "post” as prefix (note that these keys are case dependent).

42

Pipelines

3.1. RasterLayerService
3.1.1. getTiles()

o "Get" : get theraster tile.
3.2. VectorLayerService
3.2.1. saveOrUpdate()

» "EqualSize" : verify that the list of old and new features match.

» "SaveOrUpdate" : this handles the save or update for the individual features using the pipeline
below.

3.2.2. saveOrUpdate each feature

» "Delete" : delete the featureif it has been removed.

"Checkld" : check that the id for the old and new feature match.

» "TransformGeometry" : assure the geometry is transformed to layer coordinate space.
» "Create" : handle the creation of a new feature.

» "Update" : update the feature.

» "UpdateSave" : save it back to the data store.

» "UpdateFeature" : and assure the feature itself reflects the state from the database.

3.2.3. getFeatures()
» "LayerFilter" : calculate the correct filter based on security and layer extent.
» "GetFeaturesStyle" : get the styles which are relevant for the features.

» "GetFeatures' : fetch and fill the features.

3.2.4. getBounds()

» "LayerFilter" : calculate the correct filter based on security and layer extent.

» "GetBounds' : calculate the bounds for the features which comply with the filter.

3.2.5. getAttributes()

» "LayerFilter" : calculate the correct filter based on security and layer extent.

» "GetAttributes' : get the attributes for the filtered features.

3.2.6. getTile()
» "TileFilter" : calculate the correct filter based on security and tile extent.
» "GetFeatures' : fetch and fill the features.

» "TileTransform" : transform the tile to the requested coordinate reference system.

43

Pipelines

» "GetStringContent" : render the features to the requested string content.

Chapter 10. Utility Services

The Geomajas back-end core also contains a set of utility services.

1. ConfigurationService

This service allows you to easily access some of the configuration information.

Provided methods are;

Vect or Layer get VectorLayer(String id) :getavector layer based on the layer id.
Rast er Layer get RasterLayer(String id) :getaraster layer based on the layer id.

Layer<?> getLayer(String id) :getalayer (can be either vector or raster), based on
the layer id.

ClientMapl nfo get Map(String mapld, String applicationld) :getthemap
with given id for a specific application.

voi d invalidatelLayer(String |ayerld): shouldbe called when the configuration of
the layer has been changed in away which may affect the rendering of the layer. It istypically used
toinvalidate cached. It should for example be used when the layer is deleted or reconfigured, when
authorizations for the layer change, etc.

voi d invalidateAl | Layers(): similar to invalidateLayer(), but invalidates al layers. A
possible reason to call thisis changesin security configuration.

2. GeoService

GeoServices provides a set of methods which ease the working with geometries and related objects.

Coor di nat eRef erenceSystemget Crs(String crs) throws Layer Exception
: get the CRS object based on the CRSid (it is advised to use getCrs2() instead of this one).

Crs getCrs2(String crs) throws Layer Excepti on : get the CRS object based on
the CRSid (preferred, this aso contains the Crsid).

int getSridFronCrs(String crs) :attemptsto extract the SRID (Spatial Reference Id)
from the CRS.

int getSridFronCrs(Coordi nat eRef erenceSystem crs) : attempts to extract the
SRID (Spatial Reference Id) from the CRS.

String get CodeFronCrs(Coor di nat eRef er enceSyst em crs) : attemptsto extract
the code (e.g. "EPSG:4326") from the CRS.

String get CodeFronCrs(Crs crs) : getthecode(eg. "EPSG:4326") from the CRS.

Mat hTr ansf orm fi ndMat hTr ansf or n{ Coor di nat eRef er enceSyst em
sourceCrs, Coor di nat eRef er enceSyst em target Crs) t hr ows
Geonmj asExcept i on : get the transformation which converts between two coordinate systems.

CrsTransform get CrsTransf or m(Coor di nat eRef erenceSyst em sourceCrs,
Coor di nat eRef erenceSystem target Crs) throws Geonmj asException : get
the transformation which converts between two coordinate systems.

CrsTransform get GrsTransform(Crs sourceCrs, Crs targetCrs) throws
Geonaj asExcept i on : get the transformation which converts between two coordinate systems.

45

Utility Services

e OsTransform getCrsTransforn(String sourceCrs, String targetCrs)
t hr ows Geonmaj asExcept i on : get thetransformation which converts between two coordinate
systems.

* Geonetry transforn(Geonetry source, CrsTransformtransformn :transform
ageometry from source to target CRS.

e Geonetry transforn{Geonetry source, Crs sourceCrs, Crs targetCrs)
t hrows Geommj asExcepti on : transform a geometry from source to target CRS.

» Geonetry transform(Geonetry source, String sourceCrs, String
target Crs) throws Geommj asExcepti on : transform a geometry from source to target
CRS.

» Geonetry transforn(Envel ope source, CrsTransformtransformn :transform
an envelope from source to target CRS.

e Geonetry transforn(Envel ope source, Crs sourceCrs, Crs targetCrs)
t hrows Geommj asExcepti on : transform an envelope from source to target CRS.

e Ceonetry transform Envel ope source, String sourceCrs, String
targetCrs) throws Geommj asExcepti on :transform an envelope from source to target
CRS.

 Geonetry transform Bbox source, CrsTransform transforn) :transform a
bounding box from source to target CRS.

e Geonetry transform Bbox source, Cs sourceCrs, Crs targetCs)
t hrows Geommj asExcepti on : transform a bounding box from source to target CRS.

e Geonetry transform Bbox source, String sourceCrs, String targetCrs)
t hrows Geommj asExcepti on : transform a bounding box from source to target CRS.

» Coordinate cal cDef aul t Label Position(Internal Feature feature)
determine a default position for positioning the label for afeature.

» Geonetry createCircle(Point center, double radius, int nrPoints) :
get a geometry which approximates acircle (if only a geometry could contain curves).

3. DtoConverterService

This service alows conversion between objects which are used internally (which may contain JTS
or Geotools objects) and data transfer objects which can be used for communication with the outside
world (including the faces).

There aretwo methods which are provided, tol nternal () and toDto() and these are overloaded for many
different types of objects.

4. FilterService

FilterService alows you to build filters which can be applied when requesting vector features.

5. TextService

Utility functions for calculating text and font related parameters server-side. These parameters could
in principle be calculated more accurately on the displaying device itself, but unfortunately there is
no support for thisin browser environments.

46

Utility Services

* Rectangl e2D get StringBounds(String text, FontStylelnfo fontStyle)
: get the bounds for the given string.

47

Part IV. Configuration

Table of Contents

11, Configuration DASICScvvueiiiii e e e e e e e e e e e e r e 50
Lo WEDXIMD o e 50

A €= o 1= = o] Vol o] =P 52

3. GEOMaas CONFIGUIALION .. .c.uuiiieeeii e e e e e e e e e e e e e e e e e e ana s 53

4. Recommended application Context StrUCIUIEccvveeviiieeiieei e e e e 54

12, M@ CONfIQUIBEION ..ovutiit e e e e e e e e e e e e e e e e et e e e e et e e ean e e et e e aneeannaees 55
1. Raster layer CONfigUIrationooviunieiiiei e e e e e e e e e e aaas 55

1.1 Raster 1ayer iNfO ..oovuieiiici e 55

2. Vector layer CONfIQUIaLioNuuiiiei e e e e e e e e e eaens 56

2.1, VECOr 1ayer INfO ..ovvniii e 56

2.2. Bean layer Configurationoeiuniiiiiieeis s e e e e e 60

I @ 11" oo 01 To 1= 4 o] o 61

300 V= wlo) 1 [0 1o o PP 61

3.2. Client layer Configurationoeveuiieiuieeiier e e e e e e e e e e e eens 65

13, SeCurity CONFIGUIALIONuueiie e e e e e e e e e e e e et e e e e eenn s 66
14. Transaction CONFIQUIAIONiiie e e e e e e e e e e eaens 68
15. Dispatcher servliet Configurationvceuuieiiiiie e e e e e e e e 69
16. Coordinate REFENENCE SYSLEIMSuieiiiiii e e e e e e e e e e e s 71

49

Chapter 11. Configuration basics

Geomajas leverages the Spring framework for configuration. The initial configuration needs to be
done using web.xml. There you need to indicate the files which contain the configuration information.

1. web.xml

Inyour web. xm file, you need to assure the configuration is made available to the application, and
you can indicate which files are used to contain the configuration. Though it is possible to put all
configuration information in one file, we recommend splitting your configuration in several files (see
Section 4, “Recommended application context structure”).

The listener class initialises the application context as needed for Geomajas. Y ou have to specify the
files which contain the application context in the cont ext Conf i gLocat i on context parameter.
Y ou have to add the Geomajas context file asfirst item in the list. Each entry can start with alocation
prefix. When no location prefix is specified, the file is searched in the web context. Y ou can also use
location prefixes as defined by Spring, e.g. "classpath:" or "classpath*:". Note that whitespace is used
as separator which means that the path itself should not contain spaces. It is possible to use wildcards
(e.g. "WEB-INF/* xml").

These are defined using an excerpt like the following:

Example 11.1. Defining spring configur ation locationsin web.xml

<cont ext - par anp
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>
cl asspat h: or g/ geonmj as/ spri ng/ geonaj asCont ext . xm
VAEB- | NF/ appl i cati onCont ext . xm
</ param val ue>
</ cont ext - par anp

<listener>
<listener-class>org. springframework. web. cont ext. Cont ext Loader Li stener</1|i st

</listener>

<listener>
<listener-class>org.springframework. web. cont ext . request . Request Cont ext Li ste

</listener>

root context for geomajas

additional context for your application
assures the application context is available
assures the request can be accessed

Y ou also need to define at least the dispatcher servlet and possible an additional servlet for your faces.
The dispatcher servlet can be defined as follows.

50

Configuration basics

Example 11.2. Dispatcher servlet declaration in web.xml

<servl et >
<servl et - name>di spat cher </ servl et - nane>
<servl et -cl ass>org. spri ngf ranewor k. web. servl et. Di spat cher Servl et </servlet-c
<init-paranp
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>cl asspat h*: META- | NF/ geomaj as\WebCont ext . xm </ par am val ue>
<descri ption>Spri ng Web- MWC specific (additional) context files.</descr
</init-paranpr
<l oad- on- st artup>3</ 1| oad- on- startup>
</servl et>

<servl et - mappi ng>
<servl et - name>di spat cher </ servl et - nane>
<url-pattern>/d/*</url-pattern>

</ servl et - mappi ng>

Another option you have in setting up the web.xml file, is a specially designed filter that improves
caching behaviour and compresses some when sending them to the browser. The default configuration
of this filter is tuned to be used in combination with the GWT face. All files containing ".nocache."
in their name will not be cached, while all files containing ".cache.” in their name will be cached. It
will cache all graphicsfiles, css, html and jsfiles. The javascript, HTML and CSS files will also be
gzip compressed if the client supportsit. The caching will is not enable for requests to localhost, and
all handling is disabled for paths which are handled by the dispatcher servlet.

To activate thisfilter (highly recommended!) add the following to the web.xml:

Example 11.3. Cachefilter declaration in web.xml

<filter>

<filter-nane>CacheFilter</filter-nane>

<filter-class>org. geongjas. servlet.CacheFilter</filter-class>
</filter>

<filter-mappi ng>

<filter-name>CacheFilter</filter-nane>

<servl et - name>Ceonnj asSer vi ceSer vl et </ servl et - nane>
</filter-mappi ng>

Itisalso possible to configure all aspects of thisfilter. The full (default) configurationislike this:

51

Configuration basics

Example 11.4. Full cachefilter declaration in web.xml

<filter>
<filter-nane>CacheFilter</filter-nane>
<filter-class>org. geongjas. servlet.CacheFilter</filter-class>
<init-paranp

<descri ption>Ti ne that cache stuff should be cached, defaults to 1 year

<par am nane>cacheDur ati onl nSeconds</ par am nane>
<par am val ue>31536000</ par am val ue>
</init-paranpr
<init-paranp

<description>All uris which start with one of these prefixes remain unt

<par am nane>ski pPr ef i xes</ par am nane>
<par am val ue>/ d/ </ par am val ue>
</init-paranpr
<init-paranp

<descri pti on>Wen the uri contains one of these, the cache headers are

<par am nane>cachel denti fi er s</ par am nane>
<par am val ue>. cache. </ par am val ue>
</init-paranpr
<init-paranp

<descri pti on>Wen the uri ends in one of these, the cache headers are a

<par am nane>cacheSuf f i xes</ par am nane>

<paramvalue>.js .png .jpg .jpeg .gif .css .htnl </ paramval ue>

</init-paranpr
<init-paranp

<descri pti on>Wen the uri contains one of these, the cache headers are

<par am nanme>noCachel dent i fi er s</ par am nanme>
<par am val ue>. nocache. </ par am val ue>
</init-paranpr
<init-paranp

<descri pti on>Wen the uri end in one of these, the cache headers are re

<par am nane>noCacheSuf f i xes</ par am nane>
<par am val ue></ par am val ue>
</init-paranpr
<init-paranp

<descri pti on>Wen the uri ends in one of these, the response is gzip co

<par am nane>zi pSuf f i xes</ par am nanme>
<paramvalue>.js .css . htnl </ param val ue>
</init-paranpr
</[filter>

<filter-mappi ng>
<filter-name>CacheFilter</filter-nane>

<servl et - name>Ceonnj asSer vi ceSer vl et </ servl et - nane>
</filter-mappi ng>

2. General principles

Each configuration file needs the following header:

52

Configuration basics

Example 11.5. Spring configuration preamble

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schemna- i nst ance"

xm ns:util="http://ww.springfranework.org/schema/util"

xm ns:aop="http://ww. spri ngframewor k. or g/ schema/ aop"

xm ns: tx="http://ww. springfranmework. org/schena/tx"

Xsi : schermaLocat i on="
htt p: //wwv. spri ngf ranmewor k. or g/ scherma/ beans http://ww. spri ngframewor k. org/ sche
http: //ww. spri ngfranmework. org/ schema/util http://ww. springframework. org/ schenm
htt p: //wwv. spri ngfranmewor k. org/ scherma/ aop http://ww. spri ngfranework. org/ schema
htt p: //wwv. spri ngfranmewor k. org/ schema/tx http://ww. springframework. org/ schema/

This definesthe most common schemas which are needed. The configuration isbuilt by populating the
configuration classes. The configuration classes are split up between client-side and back-end. Only
the back-end classes are necessary to configure the back-end, which behaves as a catalog of layers.
The client side classes are used to define applications and maps, which are purely client-side concepts
in the Geomajas architecture.

The back-end classes exist in the have a class name ending in "Info" and are mostly found in the
or g. geonmj as. confi gur at i on package. These classes are actually used to represent the DTO
part of the back-end layers, thereby allowing to transfer information or metadata of these layers to
the client.

Configuration is done using the Spring Framework. We will give some notions here, but for a full
introduction to Spring, please read the reference documentation http://static.springsource.org/spring/
docs/3.0.x/spring-framework-reference/.

Each configuration file can contain one or more bean definitions, which correspond to actual Javabean
instances. Y ou can set all the properties of the objects using this configuration file. Primitive types can
be set directly using a string representation of the value. When the value is another bean, then it can
either be defined in-line, or you can use areference. Y ou can choose whether the referenced bean is
defined inthe samefile or adifferent one. Aslong asthe bean nameisunique, and thelocationisadded
inthecont ext Conf i gLocat i on context parameter in theweb.xml file, the referenceisresolved.

It is possible to define a bean with the same name (or id) more than once. In that case, the last
occurrence will be used.

3. Geomajas configuration

The initial bean which needs to be defined is a bean indicating the client application info.

Example 11.6. ClientApplicationl nfo definition

<bean name="gw -si npl e" cl ass="org. geonnj as. configuration.client.CientApplicat
<property nane="maps" >
<list>
<ref bean="sanpl eFeat ureshap" />
<ref bean="sanpl eOvervi ewap" />
</list>
</ property>
</ bean>

Asyou can see, this defines the list of maps for the application. It may (optionally) also define some
additional user info and a screen DPI parameter. The DPI refers to the resolution in pixels per inch of
your monitor, for aPC its usually 96 (the default) or 72.

There needs to be at least one Cl i ent Appl i cati onl nf o bean. The bean name is used when
requesting the application info.

53

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/

Configuration basics

4. Recommended application context
structure

Geomajas requires some configuration, especially of the maps and layers, and some additional
configuration for security, plug-ins etc. Thisis typically done using the applicationContext.xml file.
There can be quite alot of configuration, pieces can be split off to make that file less overwhelming.
You should still be able to know where to find something without inspecting file contents (this
particularly means that a bean which is referenced from more than one file needs a predictable file for
finding that bean). We recommend using the following scheme.

The context files are normally put in the WEB-INF directory in the web context (src/main/webapp/
WEB-INF in your maven project).

Application/map configuration: the configuration can be split at several levels. You can aways put
stuff in the parent (# indication is used for cases where thiswill probably be the default)l.

 application info: appXxx.xml (# typicaly inside the applicationContext.xml is there is only one
application).

* map info: mapYyy.xml (#)
« client layer info: clientLayerZzz.xml (#)
* server layer info: layerUuu.xml

The main object of afile should have the same name or id as the filename. For examplethe client layer
"clientLayerRivers' would bein thefile "clientLayerRivers.xml” (if it isin a separatefile).

General configuration (security, pipelines, tools for toolbars etc) will be in applicationContext.xml.
Extra files with clear names can be created to store configuration for specific plug-ins. For example,
when extensive security configuration is needed, there may be a separate security.xml file.

Un many configurations, only the applicationContext.xml and server-side layer fileswill exist.

Chapter 12. Map configuration

The central configuration which needs to be done is the map and the collection of layers which are
part of that map.

1. Raster layer configuration

Raster layers are image-based layers which, depending on the type, may be configured to retrieve their
images from WMS, Google Maps or OpenStreetMap (tile) servers. All raster layer implementations
implement the or g. georgj as. | ayer. Rast er Layer interface, which means they provide an
accessor for a Rast er Layer | nf o metadata object. The info object configuration is normally
defined in the Spring configuration as part of the entire layer configuration. Depending on the type of
layer, extra properties are needed to provide a full configuration.

1.1. Raster layer info

For al raster layers, you will need to define a raster layer info object to define the back-end
configuration for the layer. The exact meaning for some of the fields depend on the actual layer, but
most important features include:

Table 12.1. Raster Layer info

Name Description
dataSourceName The name of the data source as used by the layer.
crs The coordinate reference system, expressed as "EPSG:<srid>".

Cavesat: make sure this is the same as the maps crs as full raster
image reprojection is not supported! If the crsis not the same, an
attempt will be done to rescale and align the center coordinates,
though.

maxExtent The bounds of the layer, specified in layer coordinates. After
transformation to map coordinates, this determines the locations
and absolute size of thetiles.

zoomLevels A list of scale values corresponding to the zoom levels at which the
raster data should be fetched.

An image or tile scale is obtained by dividing the size of the tile
in pixels by the size of the tile in map units. For example, if the
tile is 256 x 256 pixels and this corresponds to an area of 100
m x 100 m, the scale can be calculated as 256/100 = 2,56 pixels
per meter.The inverse value of the scale is more often used and is
sometimes called theresolution. Images are usually optimized or
prerendered for aspecific (set of) resolution(s), so it isimportant to
specify these here if they are known. On top of that, some servers
provide specific tile caching for these predefined resolutions (for
example WMS-T).

A word of caution concerning zoom levels: setting the zoom levels
here will only make sure that tiles will be fetched at predefined
levels but does not impose any restrictions on the zoom levels of
the map itself. If the zoom levels of the map have different values
or are not specified at all (arbitrary zooming), raster imageswill be
stretched on the client side to accommodeate for these differences.

tileWidth Width in pixels of the requested images.

tileHeight Height in pixels of the requested images.

55

Map configuration

The location of the images or tiles is defined by calculating the real width and height (based on the
resolution) and "paving" the maximum extent with tiles starting at the origin (x,y) of the extent. If
no resolutions are predefined, the tiles are calculated by dividing the maximum extent by successive
powers of 2. Make sure the width/height ratio of the maximum extent corresponds to the width/height
ratio of thetile.

2. Vector layer configuration

Vector layers contain homogeneous vector based features. All vector layer implementations
implement the or g. geomgj as. | ayer. Vect or Layer interface, which means they provide an
accessor for a Vect or Layer | nf o metadata object. The info object configuration is normally
defined in the Spring configuration as part of the entire layer configuration. Depending on the type of
layer, extra properties are needed to provide a full configuration.

The definition of the actual layer is similar to the definition of araster layer.

2.1. Vector layer info

For the layer configuration, you have to create the layer info object.

Example 12.1. Styleinfo

<bean name="ai rportslnfo" class="org. geomsj as. configuration. VectorLayerl| nfo">
<property nane="|ayer Type" val ue="PO NT" />
<property nane="crs" val ue="EPSG 4326" />
<property name="maxExtent">
<bean cl ass="org. geonnj as. geonet ry. Bbox" >
<property nane="x" val ue="-87.4" />
<property nane="y" value="24.3" />
<property nane="w dth" val ue="8.8" />
<property nane="hei ght" val ue="6.4" />
</ bean>
</ property>
<property nane="featurelnfo" ref="airportsFeaturelnfo" />
<property nane="nanmedStyl el nf os">
<list>
<ref bean="airportsStylelnfo" />
</list>
</ property>
</ bean>

This defines the details common to both raster and vector layers, like layer id, crs, layer type, max
extent (bounding box) etc.

The following table describes the properties of the Vect or Layer | nf o object:

Table 12.2. VectorLayer info

Property Description

layerType This property determines the type of the default
geometry of the features. The following types are
supported: POINT, LINESTRING, POLYGON, MULTIPOINT,
MULTILINESTRING and MULTIPOLY GON

crs The coordinate reference system, expressed as "EPSG:<srid>".
This is probably determined by the layer, but has to be specified
anyhow as we have no auto detection in place yet.

56

Map configuration

Property Description

maxExtent The bounds of the layer, specified in layer coordinates. After
transformation to map coordinates, this determines the locations
and absolute size of thetiles.

featurelnfo The feature metadata

namedStylelnfos The list of predefined style metadata objects which define the
named styles for this layer

The feature metadata can be found in the Feat ur el nf o object. This objects contains the complete
feature type description (id, attributes and geometry) as well as the validation rules for the attributes.
An example definition of this object is given below:

Example 12.2. Featureinfo

<bean cl ass="org. geomj as. confi gurati on. Feat urel nf 0" nane="ai r portsFeat urel nfo"
<property name="dat aSour ceNanme" val ue="airprtx020" />
<property nane="identifier">
<bean cl ass="org. geomaj as. configuration.PrimtiveAttributelnfo">
<property nane="|abel" value="1d" />
<property nane="nanme" value="ID" />
<property name="type" val ue="LONG' />
</ bean>
</ property>
<property nane="geonetryType">
<bean cl ass="org. geomsj as. confi gurati on. GeonetryAttri butel nfo">
<property name="nane" val ue="the_geont />
<property name="editable" value="true" />
</ bean>
</ property>
<property name="attri butes">
<list>
<bean cl ass="org. geomj as. configuration.PrimtiveAttributelnfo">
<property name="|abel" val ue="Nanme" />
<property nane="nanme" val ue="NAME" />
<property name="editable" value="true" />
<property name="identifying" value="true" />
<property name="type" val ue="STRI NG' />
</ bean>
<bean cl ass="org. geomaj as. configuration.PrimtiveAttributelnfo">
<property nane="|abel" val ue="County" />
<property nane="nanme" val ue="COUNTY" />
<property name="editable" value="true" />
<property name="identifying" value="fal se" />
<property name="type" val ue="STRI NG' />

</ bean>
</list>
</ property>

</ bean>

The following table describes the properties of the Feat ur el nf o object:

Table 12.3. Feature info configuration

Name Description

dataSourceName This name is used by the layer to internally reference the source
that provides the data. Depending on the type of layer, this could

57

Map configuration

Name Description

be a table name (geotools-postgis), a shape file name (geotools-
shapeinmem, in this case there is a 1-to-1 correspondence withe
the geotool s datastore), a WFS layer name (geotools-wfs) or ajava
class name (hibernate).

identifier Metadata of the primitive attribute that provides a unique
identification of the feature.

geometryType Metadata of the geometrical attribute that provides the default
geometry of the feature.

attributes Metadata of all other attributes

This defines the identifier, geometry object and attributes for the feature.

Attributes can be either primitive attributes or association attributes. Primitive attributes represent
primitive Java types as well as some common types like Date and String. The following
primitive attribute types are defined: BOOLEAN, SHORT, INTEGER, LONG, FLOAT, DOUBLE,
CURRENCY, STRING, DATE, URL and IMGURL. Association attributes represent non-
primitive Java types. There are two types of association attributes defined: MANY_TO_ONE and
ONE_TO_MANY. These reflect the many-to-one and one-to-many relationships as defined in an
entity-relationship model and can only be used in conjunction with the Hi ber nat eLayer .

Last but not least, you can define one or more named style definitions which should be used for
rendering of the layer. The actua style that is being used by the client is determined in the client
configuration, but you predefine a number of styles (of type NamedSt yl el nf o) here for later
reference in the client configuration.

Each style object is itself composed of a number of feature styles (Feat ur eStyl ei nfo) and a
label style (Label Styl el nf 0). You can define formulas to determine which feature style should
be used. Formulas are defined as CQL strings that are parsed to OpenGIS Filter Objects [http://
geoapi .sourceforge.net/2.0/javadoc/org/opengi /filter/package-summary.html] The first style whose
formula passes will be applied for the feature. Note that when applying filtersto astyle an 'other filter'
should be defined to prevent null pointer exceptions for featuresthat are not captured by thefilter. The
following table describes a subset of the CQL filter types:

Table12.4. OGC CQL Filter Types

Type Operators |Example
Comparison |=, <, > (ATTRIBUTE ='GEORGE') (ATTRIBUTE > 10 AND ATTRIBUTE
< 20)

Text LIKE, NOT |(ATTRIBUTELIKE'SAMUEL") (ATTRIBUTE NOT LIKE 'TOM
LIKE %))

Null ISNULL, IS|(ATTRIBUTE ISNULL) (ATTRIBUTE ISNOT NULL)
NOT NULL

Exists EXISTS, (ATTRIBUTE EXISTS) (ATTRIBUTE DOES-NOT-EXIST)
DOES
NOT-EXIST

Between BETWEEN |(ATTRIBUTE BETWEEN 10 AND 20)

An example definition of this object is below:

58

http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/filter/package-summary.html
http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/filter/package-summary.html
http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/filter/package-summary.html

Map configuration

Example 12.3. Styleinfo

<bean cl ass="org. geonsj as. confi gurati on. NanmedStyl el nfo" nanme="airportsStylelnfo
<property nane="featureStyl es">
<list>
<bean cl ass="org. geonsj as. confi gurati on. FeatureStyl el nfo">
<property nane="nanme" val ue="Airports (Florida)" />
<property nane="fill Col or" val ue="#FF3333" />
<property nane="fill Qpacity" value=".7" />
<property nane="strokeCol or" val ue="#333333" />
<property nane="strokeOpacity" value="1" />
<property nane="strokeWdth" val ue="1" />
<property nane="synbol ">
<bean cl ass="org. geonsj as. confi gurati on. Synbol | nf 0" >
<property name="rect">
<bean cl ass="org. geongj as. confi gurati on. Rectlnfo">
<property nane="w' val ue="12" />
<property nane="h" val ue="12" />
</ bean>
</ property>
</ bean>
</ property>
</ bean>
</list>
</ property>
<property nane="|abel Styl e">
<bean cl ass="org. geonsj as. confi gurati on. Label Styl el nfo">
<property nane="|abel Attri but eName" val ue="NAME" />
<property nane="font Styl e">
<bean cl ass="org. geonsj as. confi guration. Font Styl el nfo">
<property nane="col or" val ue="#FEFEFE" />
<property nane="opacity" val ue="1" />
</ bean>
</ property>
<property nane="backgroundStyl e">
<bean cl ass="org. geonsj as. confi gurati on. FeatureStyl el nfo">
<property nane="fill Col or" val ue="#888888" />
<property nane="fill Qpacity" val ue=".8" />
<property nane="strokeCol or" val ue="#CC0000" />
<property nane="strokeOpacity" value=".7" />
<property nane="strokeWdth" val ue="1" />
</ bean>
</ property>
</ bean>
</ property>
</ bean>

2.1.1. Validation

Most feature attributes should be validated before they can be saved to afile or database. Validationisa
concern that stretches across many layers of atypical application: thereisusually aneed for client-side
validation (making the application more user friendly) , server-side validation (to protect the server
from invalid data) as well as database validation (to preserve data integrity). Preferably validation
rules should be defined as much as possible in a single place to avoid conflicts and duplication.

Our attribute configuration supports several typesof validation by defininga" val i dat or " property
inside the attribute:

59

Map configuration

Example 12.4. Attribute validator configuration

<property nane="validator">
<bean cl ass="org. geonsj as. confi guration.validation. Validatorlnfo">

<property name="tool Ti p* value="Is this city a capital city or not? (Y

<property nane="error Message" value="Invalid value: The val ue nust be e

<property nane="constraints">

<list>
<bean cl ass="org. geonsj as. confi gurati on. validati on. Not Nul | Const
<bean cl ass="org. geonsj as. confi guration. validation. PatternConst
<property name="regexp" val ue="[YN $" />

</ bean>
</list>
</ property>

</ bean>
</ property>

This property contains some general validator information and a set of constraints that should be

applied to the attribute. The available constraint types have been based on the new JavaBeans standard:
JSR-303.

2.2. Bean layer configuration

Bean layer providesan in-memory layer which isnot persisted in any way. Thefeatures can be defined
in the configuration file using some specialised beans. It is particularly useful for testing.

Table 12.5. BeanL ayer configuration

Name Description

features List of features, which should be
org. geonyj as. | ayer. bean. Feat ur eBean instances.

60

Map configuration

3. Client configuration

Figure 12.1. Geomajas client configuration

ClientApplicationinfo

id

screenDpi

ClientToolbarinfo

id

Et==

maps

==L

userD

<=interface=>
ClientUserDatalnfo

userData

ClientMaplinfo

==|f5t==
tools

ClientToollnfo

toolbar

3 id

crs

backgroundColor

precision
scaleBarEnabled
panButtonsEnabled

-

£ unitLength
laperTree pixelLength
ClientLayerTreelnfo
id
==| ji5t==
parameters

Parameter

name

value

==l
zoomlLevels

ScaleConfigurationinfo

Scalelnfo

pixelPerlUnit
numerator
denominator

3.1. Map configuration

A map is a client side object. The Geomajas back-end works almost exclusively on Iayers.lon the
client side however, these layers are combined into maps. In general, the back-end never needs to
know which map the layer is displayed in when doing its work. However the back-end does need to

maxBounds
Bbox
X
¥
) width
scaleConfiguration height

maximumsScale

userData

=[St ayers

displayUnitType

=<Enums==
UnitType

METRIC
ENGLISH
CRS

know the coordinate reference system which is used.

The only current exception is the printing command which converts maps to PDF document. Clearly this also uses the map configuration.

Circlelnfo

'

ClientVectorLayerinfo

ClientLayerinfo creatable

label updatable
isi 1 deletable

visible

id

serverLayerld g\

polygonSelectsty

ClientRasterLayerinfo

style

FeatureStylelnfo

index
name
formula
fillColor
fillOpacity
strokeColo

strokeWidt
dashArray
styleld

strokeOpacity

r

h

Symbolinfo

symbol

\/red image
Rectinfo Imagelnfo
h href
w selectionHref
width
height

61

Map configuration

Example 12.5. Client map configuration

<bean nane="sanpl eFeat ur esMap" cl ass="org. geomnj as. configuration.client.dientVN
<property nane="crs" val ue="EPSG 4326" />
<property nane="di spl ayUnit Type" val ue="CRS" />
<property nane="initial Bounds">
<bean cl ass="org. geonnj as. geonet ry. Bbox" >
<property nane="x" val ue="-180"/>
<property nane="y" val ue="-90"/>
<property nane="w dth" val ue="360"/>
<property nane="hei ght" val ue="180"/>
</ bean>
</ property>
<property nane="|ayers">
<list>
<ref bean="wnsLayer" />
<ref bean="countriesllOniLayer" />
</list>
</ property>

The crs evidently refers to the map's coordinate reference system. The display unit type determines
the unit type of the scale bar (METRIC, ENGLISH or CRS). Theinitial bounds determine the visible
area of the map at startup time. The layers refers to the client layer info objects, not the server layer
info or layer instances.

Additionally, a lot of style information can be included in the map configuration. This includes
information like background colour, styles which should be used for selected points, lines and
polygons and whether scale bare or pan buttons should be enabled.

Example 12.6. Client map configuration

<property nane="backgroundCol or" val ue="#FOFOFQ" />
<property nane="lineSel ect Styl e">
<bean cl ass="org. geonnj as. confi guration. FeatureStyl el nfo">
<property nane="fill Qpacity" val ue="0" />
<property nane="strokeCol or" val ue="#FF6600" />
<property nane="strokeOpacity" value="1" />
</ bean>
</ property>
<property nane="point Sel ect Styl e">
<bean cl ass="org. geonnj as. confi gurati on. FeatureStyl el nfo">
<property nane="fill Col or" val ue="#FFFF00" />
</ bean>
</ property>
<property nane="pol ygonSel ect Styl e" >
<bean cl ass="org. geonnj as. confi gurati on. FeatureStyl el nfo">
<property nane="fill Col or" val ue="#FFFF00" />
<property nane="fill Qpacity" value=".5" />
</ bean>
</ property>
<property nane="scal eBar Enabl ed" val ue="true" />
<property nane="panButtonsEnabl ed" val ue="true" />

An other important aspect of the map is the scale configuration. The scale configuration allows to
define a maximum scale beyond which the user is not allowed to zoom in. This is not needed for
zooming out asthereis aways amaximum bounds defined for the map (either explicitly or calculated
asthe union of the layer bounds). Next to that you can define alist of zoom levels. By default, the map
will allow zooming to arbitrary scale levels but you may wish to enforce certain scale or zoom levels

62

Map configuration

upon the user (like Google Maps does). By doing so, continuous zooming will no longer be possible
and any zooming action will "snap" to the predefined scale levels.

Example 12.7. Client map configuration - scale configuration

<property nane="scal eConfi guration">
<bean cl ass="org. geonsj as. configuration.client. Scal eConfigurationlnfo">
<property nane="nmaxi nuncal e" val ue="1:1000" />
<property name="zoonlevel s">
<list>
<val ue>1: 128000000</ val ue>
<val ue>1: 64000000</ val ue>
<val ue>1: 32000000</ val ue>
<val ue>1: 16000000</ val ue>
<val ue>1: 8000000</ val ue>
<val ue>1: 4000000</ val ue>
<val ue>1: 2000000</ val ue>
<val ue>1: 1000000</ val ue>
<val ue>1: 500000</ val ue>
<val ue>1: 100000</ val ue>
<val ue>1: 25000</ val ue>
<val ue>1: 15000</ val ue>
<val ue>1: 10000</ val ue>
<val ue>1: 5000</ val ue>
<val ue>1: 2500</ val ue>
<val ue>1: 1000</ val ue>
</list>
</ property>
</ bean>
</ property>

Scales can be defined in 2 possible notations:

» the 1l : x notation (see the above listing) is most commonly used in geographics and expresses the
ratio between 1 meter on the screen and 1 meter on the earth's sphere

* thefloating point notation (e.g. 0.0001) is used by usto express the number of pixels on the screen
that correspond to 1 unit on the map (1 pixel per 10000 map unitsin our example)

Both scale definitions serve a different purpose. The 1 : x scale should give you an idea of what the
true scaleis at which the map is shown, athough in practice this may depend on the DPI (actually PPI)
and pixel size of your device. The floating point scale (which has units of pixel/m or pixel/deegree) is
used to precisely define the resolution of raster images on the screen. If you use floating point notation,
you can make sure that the scales that are being used in an application are the same as those of the
raster layer(s) that lies beneath (see raster layer configuration). Otherwise the raster images may get
blurry or unreadable when they need to be resized.

A map typically also containsatool bar. If you want one, you haveto specify thetoolsit should include.

63

Map configuration

Example 12.8. Client map configuration

<property nane="t ool bar" >
<bean nane="sanpl eFeat ur esMapTool bar" cl ass="org. geomgj as. configuration.cli
<property nane="t ool s">
<list>
<ref bean="Zoom n" />
<ref bean="Zoontut" />
<ref bean="ZoonmToRect angl eMode" />
<ref bean="Panhbde" />
<ref bean="Tool bar Separator" />
<ref bean="ZoonPrevious" />
<ref bean="ZoonmNext" />
<ref bean="Tool bar Separator" />
<ref bean="EditMde" />
<ref bean="MeasureD stanceMde" />
<ref bean="Sel ecti onMode" />
</list>
</ property>
</ bean>
</ property>

Obviously the tools themsel ves need to be defined aswell. Y ou can pass some parametersto the tools.
An example tool definition look like this.

Example 12.9. Tool configuration

<bean nane="Zoonl n" cl ass="org. geonmgj as. configuration.client.dientToollnfo">
<property nanme="paraneters">
<list>
<bean cl ass="org. geonsj as. confi gurati on. Paraneter">
<property nane="nanme" val ue="delta" />
<property nane="val ue" val ue="2" />

</ bean>
</list>
</ property>

</ bean>

Note that the tool id and the names of the parameters are interpreted by the client, so it is the client
face which defines the possible values.

Last but not least, you can also configurethe layer tree component which may be connected to the map.

Map configuration

Example 12.10. Client map configuration

<property nane="|ayer Tree">
<bean name="sanpl eFeat uresTree" cl ass="org. geonnj as.configuration.clien
<property name="t ool s">
<list>
<ref bean="Layer Vi si bl eTool " />
<ref bean="LayerlLabel edTool" />
<ref bean="ShowTabl eAction" />
<ref bean="Layer RefreshAction" />
</list>
</ property>
<property name="treeNode">
<bean cl ass="org. geonnj as. configuration.client.dientLayerTreeN
<property nane="|abel " val ue="Layers" />
<property nane="|ayers">
<list>
<ref bean="wrsLayer" />
<ref bean="countriesllOnlLayer" />
</list>
</ property>
<property nane="expanded" val ue="true" />
</ bean>
</ property>
</ bean>
</ property>
</ bean>

This defines the tools which are available in the layer tree widget, and the tree of layers (as a node,
which can contain alist of nodes etc).

Note that the layers are indicated by referring to the client configuration object.

3.2. Client layer configuration

Layer configuration is split in two (linked) parts. Y ou have to create the actual layer whichisused in
the back-end, and this layer needs to know the configuration information which is also used on the
client side. Secondly, there is a distinction between raster and vector layers as they each needs a lot
of specific information.

3.2.1. Raster layer

65

Chapter 13. Security configuration

To make sure the system can be used, you have to configure the security to allow access. The easiest
configuration isto allow accessto everybody.

Example 13.1. Allow full accessto everybody

<bean nane="security.securitylnfo" class="org.geomjas.security. Securitylnfo">
<property nane="| oopAl | Servi ces" val ue="fal se"/>
<property nane="securityServices">
<list>
<bean cl ass="org. geonnj as.security.allowall.Al |l owAl | SecurityService
</list>
</ property>
</ bean>

Any other configuration would depend on the available security services. For example, when using
the staticsecurity plugin, the following could be defined.

66

Security configuration

Example 13.2. Partial staticsecurity configuration
<bean name="SecurityService" class="org.geonnjas.plugin.staticsecurity.secu

<bean name="security.securitylnfo" class="org.geomsjas.security. Securitylnf
<property nane="| oopAl | Servi ces" val ue="true"/>
<property nane="securityServices">
<list>
<ref bean="SecurityService"/>
<bean cl ass="org. geonnj as. pl ugi n. stati csecurity.security.Logi nA
</list>
</ property>
</ bean>

<bean cl ass="org. geonsj as. pl ugi n. staticsecurity.configuration.SecurityServi
<property nane="users">
<list>

<l-- User elvis has restricted attribute editing perm ssions on
<bean cl ass="org. geonsj as. pl ugi n. staticsecurity.configuration.U

<property nane="userld" val ue="elvis"/>

<property nane="password" val ue="BUOMyQ@5onvc7gM M Ft DQ'/ >

<property nane="user Nane" val ue="Elvis Presley"/>

<property nane="aut hori zati ons">

<list>
<bean cl ass="org. geonsj as. pl ugi n. stati csecurity.con
<property nane="comrandsl ncl ude" >

<list>
<val ue>. *</ val ue>
</list>

</ property>
<property nane="vi si bl eLayer sl ncl ude" >

<list>
<val ue>. *</ val ue>
</list>

</ property>
<property nane="updat eAut hori zedLayer sl ncl ude" >

<list>
<val ue>beans</ val ue>
</list>

</ property>

Most notable in this example is the inclusion of two security services. The first is provided to allow
login and logout (only) for everybody. The second defines users and authori zations (only the beginning
of the configuration is displayed here).

67

Chapter 14. Transaction configuration

Spring has support declarative transaction management, which relieves us from the burden of
writing our own transaction demarcation and exception handling code. Of course, Spring transaction
management has to be hooked up with the transaction definition and life cycle of the underlying
data platform (hibernate, JTA, JDBC) . Each data access technology should provide its own
implementation of the Spring class Pl at f or nTTr ansact i onManager . You should check your
plug-in documentation for details about configuring the transaction manager.

Transaction management is typically only needed for editable database layers (although we support
and encourage it for read-only layers as well). There is currently no support for having multiple
platform transaction managers, although configurations with multiple transaction managers should be
possible. This will be investigated and fixed in the future. In practice this means that you currently
must not mix editable layers which require a different transaction manager.

68

Chapter 15. Dispatcher servlet
configuration

Additional servlet configuration may be needed for any plugin that wants to support its own client-
server communication protocol. Thisistypically the casefor faces, but in general any plugin that needs
aform of communication that does not match the default command structure should be able to add
its own endpoint to the dispatcher servlet. Fortunately, Spring MV C has avery simple architecture to
accomplish this. In general, asingle MV C dispatcher branch consists of three elements:

» A chandler mapping, whose function it is to map servlet requests to handlers (based on the url
pattern)

A handler or controller, whose function it isto handle the actual request and - in most cases - decide
which of the views will handle the response

» A view, whose function it is to prepare the response data and send them to the client

Our default geomajasWebContext.xml configuration in geomajas-common-servlet looks as follows:

<beans ...>
<l-- we use the default BeanNaneUrl| Handl er Mappi ng for nmapping to controller:
<bean i d="def aul t Handl er Mappi ng" cl ass="org. spri ngfranmewor k. web. servl et. han
<l-- need security -->
<property nane="interceptors">
<list>
<ref bean="securitylnterceptor" />
</list>
</ property>
</ bean>

<bean id="securitylnterceptor" class="org.geomnjas.servlet.nvc.Securitylnte

<l-- we need a view resolver -->
<bean cl ass="org. spri ngfranmework. web. servl et. vi ew. BeanNaneVi ewResol ver " ></ b

<cont ext : component - scan base- package="or g. geonmj as. servlet"/>
</ beans>

It contains a default handler mapping which maps urls to controller beans based on the name of the
bean. This means that the controller's name should actually be the part of the url that follows the
dispatcher servlet's base path (including wild cards if more than one url has to be mapped).

The interceptor property is added to make sure that a secure context is set up when accessing the
Geomajas server. The interceptor assumes that a parameter user Token will be passed as part of
the HTTP request. The value of the parameter should be equal to the user token received from the
authentication service.

The bean name view resolver kicks in when the controller returns a string value or setsthe view name
in the Model AndVi ew object (we will come to thislater). It will invoke the correct view based on
the bean name specified by the controller.

With the current setup all the wiring between urls, controllers and views can be done via annotations.
Assume the base dispatcher url is http://1 ocal host: 8080/ geomaj as/d and we want
to set up a specific end point for al urls with follow the pattern htt p: / /| ocal host : 8080/
geomaj as/ d/ mynmodul e/ **. It isthan sufficient to create a controller component with the name
/ nynmodul e/ ** and return the name of the view bean (which itself can be a component) in the
controller method:

69

Dispatcher servlet configuration

@ontrol ler("/ mynmodul e/ **")
public class MyController {

@Request Mappi ng(val ue = "/ nynodul e/test. htm ", nethod = Request Met hod. GET)

public String doMyStuff(@RequestParan("test") String test, Mdel
return "MyView';
}
}

Noticethat apart from the annotationsthereis nothing special about thisclass. Spring MV C autodetects
the mapping based on the @Request Mapping annotation (which in this case narrows down the url
to a specific one) and will even map request parameters to method arguments if they are annotated
with @Request Par am The model argument is basically just a hashmap to store the result of the
operation as needed by the view. There are actually many more advanced possihilities, for which you
may want to consult the Spring documentation. If the method returns a string like above, this string
will be used to determine the view object, which could be the following bean:

@conponent (" MyVi ew')
public class MyVi ew extends AbstractView {
@verride
protected voi d render Mer gedQut put Model (Map<Stri ng, Object> nodel,
Ht t pSer vl et Response response) throws Exception {
/1 write response using the nodel

}

Views are generaly responsible for encoding the result in a specified format (e.g. JSON, XML,...).
Theresult itself can be retrieved from the model argument, which will have the same contents as the
model argument in the controller.

70

nodel) {

Ht t pSer vl

Chapter 16. Coordinate Reference
Systems

Geomajas uses GeoTools gt-epsg-wkt module to define the coordinate reference systems which are
available.

If you want to add extra coordinate reference systems, this can be done by defining them in the
configuration. For example, Geomajas itself already defines the "EPSG:900913" crs (which one of
the many codes for the Mercator projection used by Google Maps and OpenStreetMap).

Example 16.1. Custom CRS addition

<bean cl ass="org. geongj as. gl obal . Crsl nfo">
<property nane="key" val ue="EPSG 900913" />
<property nane="crsVWkt">
<val ue>
PRQJICS[" Googl e Mercator",
GEOCCS["WGS 84",
DATUM "Worl d Geodetic System 1984",
SPHERO D["WGS 84", 6378137.0, 298.257223563, AUTHORI TY["EPSG', "7030"]],
AUTHORI TY["EPSG', "6326"]],
PRI MEM " G eenwi ch", 0.0, AUTHORI TY["EPSG', "8901"]],
UNI T[" degree", 0.017453292519943295],
AXI S[" Geodetic latitude", NORTH|,
AXI S[" Geodeti c | ongi tude", EAST],
AUTHORI TY["EPSG', "4326"]],
PRQIECTI ON["Mercat or (1SP)", AUTHORI TY["EPSG', "9804"]],
PARAVETER["sem _maj or", 6378137.0],
PARAVETER["sem _m nor", 6378137.0],
PARAVETER["Il ati tude_of _origin", 0.0],
PARAVETER["central _meridian", 0.0],
PARAVETER["scal e_factor", 1.0],
PARAVETER["f al se_easting", 0.0],
PARAVETER["f al se_nort hi ng", 0.0],
UNILT["m', 1.0],
AXI S["Easti ng", EAST],
AXI S[" Nor t hi ng", NORTH],
AUTHORI TY[" EPSG', "900913"]]
</ val ue>
</ property>
</ bean>

Y ou can add as many of these beans as needed. The keys transformation which are added thisway are
tested before the GeoTools library, so you can overwrite definitions if needed.

If you don't like the dependency on the gt-epsg-wkt library, then you could exclude this dependency
in your maven pom and use a different dependency if needed.

The transformations between coordinate reference systems should be done using the GeoService.
When this is used for transformations, it avoids throwing transformation exceptions by limiting
the geometry to the transformable areal. The system tries to determine the transformable area
automatically, but thisisisnot always possible and if it is, it can beinaccurate. Therefor, you can also
configure the transformable area for a pair of CRSs. Y ou can see an example configuration below.

Yfan exception does occur, it will belogged as awarning, but the GeoService assures the transform does not fail. Instead, and empty geometry
will be returned.

71

Coordinate Reference Systems

Example 16.2. Custom CRS transfor mation addition

<bean cl ass="org. geonsj as. gl obal . Cr sTransf orm nf 0" >
<property nane="source" val ue="EPSG 4326" />
<property nane="target" val ue="EPSG 900913" />
<property nane="transf or mabl eArea" >
<bean cl ass="org. geonnj as. geonet ry. Bbox" >
<property nane="x" val ue="-180" />
<property nane="y" val ue="-86" />
<property nane="w dt h" val ue="360" />
<property nane="hei ght" val ue="172" />
</ bean>
</ property>
</ bean>

72

Part V. How-to

Table of Contents

17. Writing YOUr OWN COMMANGSuuuiiiieiiieeiieeei e e et seeae e et e e et e e et e e et e eana e e et e e aeneeeanaas 75
R @<= L= W o] 0o o 78
1. Using the plug-in @rChEtYPEcvii e e e e 78
22 o [0 o T g T 1 (1 = 78
3. Plug-in declaration and dependenCiescvuuieiiiiiiiiieeie e 78
19. Create alayer PIUG-IN ...veece e e 79
Y i o Yo 1o VY] N = = PP 79
20. Create @ SECUNLY PIUGFIN oouniii e e e e e e e e e et e eaa e eeaes 80
1. Writing YOUr OWN SECUNTY SEIVICE .iuvuiiieeiii e et e ee e e e e e e e e e e e e aanas 80

74

Chapter 17. Writing your own
commands

A Geomagjas command usually consist of three classes, the actual command (which implements the
Conmand interface), and two data transfer objects, one to pass the request parameters (extending
ConmandRequest, Layer | dCommandRequest or Layer | dsCommandRequest), and one
which carries the response (extending ConmandResponse).

It is important to assure your request object extends from LayerldCommandRequest or
LayerldsRequest when one of the parametersisthe layer id (or alist thereof). This can be used by the
command dispatcher to assure the layer specific (transaction) interceptors are called.

To create a new command we recommend you use a similar package structure as we used in the
geomaj as-extension-command module. That isto create a"command" package with under that a"dto"
package which contains all the request and response objects, and to put the actual commands in sub
packages based on some kind of grouping. This helpsto automatically determine a sensible command
name.

The basic command implementation looks like this:

Example 17.1. Example command template
package com ny. program command. nysuper ;

i mport com ny. program conmand. dt 0. MySuper Dol t Request ;

i mport com ny. program conmand. dt 0. MySuper Dol t Response;
i mport org.geonmmj as. command. Comand;

i mport org.slf4j.LoggerFactory;

i mport org.slf4j.Logger;

i mport org.springfranmework. stereotype. Conponent ;

/**

* Sinple exanpl e command.

*
* @ut hor Joachi m Van der Auwera
*/
@Conponent ()
public class MySuper Dol t Conmand i npl ements Conmmand<MySuper Dol t Request ,

MySuper D

private final Logger |og = LoggerFactory. getlLogger (MySuper Dol t Cormand. cl ass

publ i c MySuper Dol t Response get Enpt yConmandResponse() {
return new MySuper Dol t Response();
}

public void execute(MSuperDoltRequest request, MySuperDoltResponse respons

| og. debug("cal | ed");
I A performthe actual command

}

Note the presence of the "@Component" annotation which assures the command is registered. You
could add the name under which the command needs to be registered in the annotation, but when that
is omitted, the default command name is derived from the fully qualified class name. In the example
given here this results in command name "command.mysuper.Dolt".

75

Writing your own commands

The default way to determine the command name assumes there is a package named "command"
in the fully qualified name of the implementing class. It will remove everything before that. 1t will
then remove a"Command" suffix if any. Lastly, it will remove duplication between the intermediate
package (between "command" and the class name) and the class name itself. Some examples:

Table 17.1. Samples of command name resolution

Fully qualified class name Command name
my.app.command.Dolt command.Dolt
my.app.command.super.Dolt command.super.Dolt
my.app.command.super.DoltCommand command.super.Dolt

my.app.command.super.SuperDoltCommand command.super.Dolt

my.app.command.super.Dol tSuperCommand command.super.Dolt

my.app.command.super.CommandDolt command.super.CommandDol t

my.app.command.super.CommandSuperDolt command.super.CommandSuperDolt

my.app.command.super.CommandDol tSuper command.super.CommandDolt

You have to include a line in your Spring configuration to scan class files for annotation to make
the components available. For the case above, this could be done by including the following XML
fragment in one of your Spring configuration files.

Example 17.2. Scan to assure command is available
<cont ext : conponent - scan base- package="com ny. prograni namne-generator="o0rg. geong

The command will be executed using a singleton. The use of object variables is hot recommended.
Any object variables will be shared amongst all command invocation, which can be coming from
multiple threads at the same time.

Note that it is not mandatory to create your own request and response object classes. If you don't
require any parameters you can use Enpt yCommandRequest asreguest class. If you only require
alayer id, then use Layer | dCommandRequest . If you only return a success code, you could use
the SuccessCommandResponse class.

Y ou have to take care that all objects which are referenced by your request and response objects are
actually seriaizable for the faces in which the commands need to be used. For the dojo face this may
require the use of the "@son" annotation to exclude fields. For GWT you have to assure the no-
arguments constructor exists and that the class can be compiled by GWT (no Hibernate enhanced
classes, no use of "super . cl one()",...).

When the commands are included in a separate module, you should assure the sources are available
as these are needed for GWT compilation. This can easily be done using the Maven source plugin.

76

Writing your own commands

Example 17.3. Maven sour ce plugin

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-source-plugin</artifactld>
<versi on>2. 1. 2</versi on>
<executions>
<executi on>
<goal s>
<goal >j ar </ goal >
</ goal s>
<confi guration>
<i ncl udePon®t rue</i ncl udePon®
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>

Actualy including the sources can then be done using a dependency like the following (this includes
the staticsecurity module, both the actual code and the sources). You could set "provided" scope
on the source dependency to exclude it from the war file. However, this may prevent use of GWT
development mode.

Example 17.4. staticsecurity sour ce plugin - including sour ce

<dependency>
<gr oupl d>or g. geomgj as. pl ugi n</ gr oupl d>
<artifactld>geonsj as-pl ugi n-staticsecurity</artifactld>
<ver si on>${ geomnj as- pl ugi n-stati csecurity-version}</version>

</ dependency>

<dependency>
<gr oupl d>or g. geomgj as. pl ugi n</ gr oupl d>
<artifactld>geonsj as-pl ugi n-staticsecurity</artifactld>
<ver si on>${ geomnj as- pl ugi n-stati csecurity-version}</version>
<cl assi fi er>sources</cl assifier>

</ dependency>

<dependency>
<gr oupl d>or g. geomgj as. pl ugi n</ gr oupl d>
<artifactld>geonsj as-pl ugi n-staticsecurity-gw</artifactld>
<ver si on>${ geomnj as- pl ugi n-stati csecurity-version}</version>

</ dependency>

<dependency>
<gr oupl d>or g. geomgj as. pl ugi n</ gr oupl d>
<artifactld>geonsj as-pl ugi n-staticsecurity-gw</artifactld>
<ver si on>${ geomnj as- pl ugi n-stati csecurity-version}</version>
<cl assi fi er>sources</cl assifier>

</ dependency>

77

Chapter 18. Create a plug-in

Thegeneral procedurefor creating anew plug-inisdescribed here. Additional information for specific
types of plug-insis described in subsequent chapters.

1. Using the plug-in archetype

78

Chapter 19. Create a layer plug-in

Layers alow access to data which needsto be displayed in a map.

For the existing layers, the details about configuring you map to include that layer are included in the
configuration section above.

1. Writing your own layer

79

Chapter 20. Create a security plug-in

1. Writing your own security service

80

Part VI. Appendices

Table of Contents

A. Migrating between GEOMGas VErSIONScvuueiunieriieeeieeeiieeaee st seeateeanneestnaerenaaennaes 83
1. Migrating between Geomajas 1.7.1 and Geomajas (back-end core) 1.8.0..................... 83
2. Migrating between Geomajas 1.6.0 and Geomajas (back-end core) 1.7.1...........ccevnnees 84
3. Migrating from Geomajas 1.5.4 t0 Geomajas 1.6.0cc.cvevevieiiiiiiiiieeii e eeiees 84
4. Migrating from Geomajas 1.5.3t0 GeomMaasS 1.5.4ccccuuveiiiieiiiieiiiieeiiieeee e 85
5. Migrating from Geomajas 1.5.2 t0 Geomajas 1.5.3ccuoiiviiiiiiiiieii e 86

5.1. General APl ChangeS ... ccuvuiii e 87
5.2. Configuration ChaNGEScvuuiiiiieii e e e e e e e eens 87
6. Migrating from Geomajas 1.5.1 t0 GeomMaas 1.5.2ccvvveviieiiiiieii e eeee e 89
7. Migrating from Geomajas 1.5.0 t0 Geomajas 1.5.1cccvveviiiiiiiiiiiiieiiiece e 89
8. Migrating from Geomagas 1.4.X 10 1.5.0vvvuniiiiiiiiii e 90

82

Appendix A. Migrating between
Geomajas versions

1. Migrating between Geomajas 1.7.1 and
Geomajas (back-end core) 1.8.0

» Geomgias now automatically limits geometries to the transformable area when doind CRS
transformations. This can have the effect that geometries are simplified. For example, a
MultiPolygon which contains only one polygon may be converted to a Polygon geometry.

* The use of the GeomajasContextListener in web.xml is no longer recommended. We recommend
you use the normal spring listeners. This does mean that you should add "classpath:" in front of the
locations in contextConfigL ocation (the default location is the web application context).

Note that you should add both the ContextLoaderListener and RequestContextListener (this
last one is not included in the GeomajasContextListener but is needed for some services like
AutomaticDispatcherUrl Service to function).

Example A.1. Defining spring configur ation locationsin web.xml

<cont ext - par anp
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
cl asspat h: or g/ geonsj as/ spri ng/ geomaj asCont ext . xm
VEB- | NF/ appl i cati onCont ext . xmi
</ param val ue>
</ cont ext - par an»

<listener>

<l i stener-class>org. springfranmewor k. web. cont ext. Cont ext Loader Li st ener</1i ¢
</listener>
<listener>

<l i stener-class>org. springfranmewor k. web. cont ext. request. Request Cont ext Li st
</listener>

root context for geomajas

additional context for your application
assures the application context is available
assures the request can be accessed

» The use of the CacheFilter servlet was introduced in 1.8.0. It is strongly recommended that you
includeit in your web.xml file to assure correct caching and compression on server-side responses.
Thiswill greatly decrease loading times.

<filter>
<filter-name>CacheFilter</filter-nane>
<filter-class>org. geomgj as. servlet. CacheFilter</filter-class>
</filter>
<filter-mappi ng>
<filter-name>CacheFilter</filter-nane>
<servl et - name>Ceonmj asSer vi ceSer vl et </ servl et - nane>
</filter-mppi ng>

83

Migrating between
Geomajas versions

» The GWT version has also been updated from 2.0.3 to 2.1.1. Thisin turn requires that the maven-
gwt-plugin used in the pom.xml is aso updated from 1.2-CPFIX to 2.1.0-1.

2. Migrating between Geomajas 1.6.0 and
Geomajas (back-end core) 1.7.1

* ApplicationContext Uil s has been renamed to Appl i cati onContextUtil andis
now included in the api (this was done to adhere to the coding style).

» When building the dojo face and the dojo-example application, the maven "-Pnoshrink” has been
replaced by "-DskipSkhrink".

» The use of the dispatcher servlet was introduced in 1.7.1. It is strongly recommended that you
include it in your web.xml file to assure al plug-ins which expect this can function.

<servl et>
<servl et - nane>di spat cher </ servl et - nane>
<servl et -cl ass>org. spri ngf ranewor k. web. servl et. Di spat cher Servl et </ servl et -
<init-paranr
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>cl asspat h*: META- | NF/ geomaj as\WebCont ext . xm </ par am val ue>
<description>Spri ng Web- MWC specific (additional) context files. </ desc
</init-paranp
<l oad- on- st artup>3</| oad-on-startup>
</servlet>

<servl et - mappi ng>
<servl et - nane>di spat cher </ servl et - nane>
<url-pattern>/d/*</url-pattern>

</ servl et - mappi ng>

« the"springsecurity" module has be renamed " staticsecurity" to more correctly address the nature of
the plug-in and and to avoid possible confusion with Spring's security stuff. Additionally the old
module has been split in two, one part being the back-end/configuration module, and another the
gwt module.

* Many of the layers contain a bug in the 1.6.0 version assuming that injected services are fully
initialised (and thus usable) while building the application context. Because of changes in the
implementation of some services, these bugs become visible when using the 1.7 backe-end. You
have to update your layers as well to 1.7+ to avoid these problems.

3. Migrating from Geomajas 1.5.4to
Geomajas 1.6.0

» The gwt-client module no longer automatically adds the "nl" locale to the application. This should
now be done by the application. Y ou can do this by adding the line

<ext end- property name="I| ocal e" val ues="nl"/>
to your gwt.xml file.

e In the GWT face, you should now use MapContext instead of directly accessing
G aphi csCont ext .

* RasterlLayer. paint() now throws Ceomaj asExcepti on instead of
Render Except i on. The Render Except i on class has been moved to api-experimental.

Migrating between
Geomajas versions

Local eSel ect now needs a parameter in the constructor. This parameter is the name of the
default language.

The OpenStreetMap layer changes changed groupld from "geomajas-layer-opentreetmaps’ to
""geomaj as-layer-opentreetmap".

Geomaj asSecuri tyException has moved from "org.geonsjas.global" to
"or g. geomnmj as. security".

Al'l owAl | Securi tyServi ce hasmovedfrom"”or g. geongj as. i nternal . security"”
to"org. geomyj as. security.all owal | ".

Vect or Layer Servi ce and Rast er Layer Ser vi ce have moved from
"or g. geomnmj as. servi ce"to"or g. geomgj as. | ayer".

InLabel Styl el nf o the style for the font is now of type Font St yl el nf o.
Layer | dsCommandRequest has been introduced and this is now extended by

Sear chByLocat i onRequest (no change) and User Maxi munExt ent Request (changing
i ncl udeLayerstol ayer | ds).

4. Migrating from Geomajas 1.5.3to
Geomajas 1.5.4

SuccessCommandResponse class contained typos. The methods isSucces() and
get Succes() havebeenrenamedtoi sSuccess() andget Success() respectively.

Changes in pipeline and promotion to stable API.
The method get Rast er Layer () hasbeen addedin Conf i gur ati onSer vi ce.

Thefi ndMat hTr ansf or m() method in GeoSer vi ce now throws Geomaj asExcepti on
instead of Fact or yExcepti on.

Internal Tile changes (should not affect anybody as these are used internally in the back-end).
Many Dt oConvert er Ser vi ce methods now throw Geomaj asExcepti on.

The method get | d() has been added to Layer . All server layers should have a unique id. The
id is automatically assigned based on the Spring bean name.

Configuration changes: maxTi | eLevel has been removed as this was not used.
Configuration changes: the server-side layers are no longer connected to the client-side layer
configurations via the layerinfo objects. Instead, client-side layers refer directly to the server

layer's id via a serverLayerld property. The references to the layerinfo objects are injected by a
configuration postprocessor, so the layerlnfo should no longer be set manually.

Table A.1. Back end configuration changes

Name Property Description
Layerinfo id Removed, use id property of
Layer instead
SnappingRulelnfo layerInfo Replaced with serverLayerld
serverLayerld String ,should refer to id of
Layer bean

85

Migrating between
Geomajas versions

Table A.2. Client configuration changes

Name Property Description
ClientLayerInfo serverLayerld String, should refer to id of
Layer bean
layerInfo Should no longer be set
manually, will be set by Spring

5. Migrating from Geomajas 1.5.2 to
Geomajas 1.5.3

» TheLayer Mbdel class has beenintegrated in Vect or Layer . This modifies the configuration.
Where before you would have written

<bean nane="countriesMddel " cl ass="org. geongj as. | ayer nodel . shapei nmem Shapel nl
<property nane="url" val ue="cl asspat h: shapes/ africal/country. shp"/>

</ bean>

<bean nanme="countries" class="org.geongjas.internal.layer.|ayertree. Defaul t Vec
<property nane="layerlnfo" ref="countrieslnfo" />
<property nane="|ayer Model " ref="countri eshMdel" />

</ bean>

into

<bean name="countries" class="or(g.geongj as. | ayer. shapei nnem Shapel nMeniLayer" >
<property nane="l|ayerl nfo" ref="countrieslnfo" />
<property nane="url" val ue="cl asspat h: shapes/ africa/country. shp"/>

</ bean>

Note that thisincludes changing "layermodel” to "layer" in all module and package names.

» Feat ur ePai nt er interface and related stuff has been removed. These are obsolete with the
introduction of the Vect or Layer Ser vi ce.

e Geot ool sLayer hasheenrenamed GeoTool sLayer .

* With the change in directory structure, the commands have moved from the
or g. geomyj as. ext ensi on. conmmand package to org. geomsj as. command. The
LogConmand has also been moved into the gener al sub-package.

» Security constraints are now applied in Geomajas. By default, nothing is authorized, so you aways
have to configure at least one security service. To go back to the old (allow-all) behaviour, include
the following excerpt in your configuration file.

<bean nanme="security.securitylnfo" class="org.geonsjas.security.Securitylnfo":
<property nanme="| oopAl | Servi ces" val ue="fal se"/>
<property nanme="securityServices">
<list>
<bean cl ass="org. geonnj as. security.allowall.AllowAl | SecurityServic
</[list>
</ property>
</ bean>

» Layers are now more sensitive to the attributes which are defined for the layer. Attributes which
have not been defined in the feature info are not accessible thisisthe result of the refactoring where
thel nt er nal Feat ur e store attributesas At t r i but e objects).

86

Migrating between
Geomajas versions

5.1. General APl changes

The geomajas-API has been split up in aformal (geomajas-API) and experimental APl (geomajas-
api-experimental). All interfaces/classes from the cache and rendering packages have been moved to
experimental. This means that the rendering pipeline is at the moment not a part of the officia API,
but instead more of a preview of what's to come. Furthermore, some major changes have been made
in many other packages:

» Theor g. geonmj as. rendering. til e hasbeenmovedtoor g. geomgj as. | ayer.tile

* Introduction of a DtoConverterService that is able to convert DTO objects from and to back-end
internal representations.

 All the different feature definitions have been cut down. Only 2 versions remain at the moment:
aDTO feature (or g. geomsj as. | ayer. f eat ur e. Feat ur e) and a feature definition used
internally in the backed (or g. geomj as. | ayer . f eat ure. I nt er nal Feat ur e).

o All the different tile definitions have been cut down. Only 3 remain. 2 DTO
tiless org.geomjas.layer.tile.VectorTile - wused in vector layers and
org.geomgj as. layer.tile. RasterTile - used in raster layers. The third is the
org.geomgj as.tile.lnternal Til e. Thistileisused internaly on the back-end.

e GeonetricAttri butel nf o hasbeenrenamedto Geonet ryAttri but el nf o.

» ApplicationServi ce hasbeenrenamedto Confi gurati onServi ce.

5.2. Configuration changes

The configuration API has been split up in a back-end part and a client (or faces) part. The following
genera rules have been kept in mind:

» Back-end configuration should be restricted to those properties that are functionally needed on the
back-end. We essentially regard the back-end as a container of layers or, in WFS terms, feature
types. Higher level conceptslike map or application should be dealt with at the client (or faces) level.

 Client configuration should not impact the back-end state. In the near future, this will make it
possible to reconfigure clients without restarting the server.

The configuration APl has profoundly changed. Where possible, the back-end classes have
retained their original (before the split) names, after pruning them to remove al client related
information. The client classes have been mostly created from scratch and have been named
d i ent XxxI nf 0. j ava for consistency. They have been located in a separate package, called
or g. geommj as. confi gurati on. cli ent. Thefollowing table gives atop-down overview of
the back-end configuration classes (new classes and properties have been marked in bold):

Table A.3. Back end configuration changes

Name Property Action or description

Applicationinfo * removed

LayerInfo |abel moved to ClientLayerInfo
visible moved to ClientLayerInfo

viewScaleMin, viewScaleMax | moved to ClientLayerInfo
VectorLayerInfo |abel Attribute moved to Label Stylelnfo

snappingRules moved to
ClientVectorLayerInfo

styleDefinitions replaced by namedStylelnfos

87

Migrating between
Geomajas versions

Name

Property

Action or description

creatable, updatable, deletable

moved to
ClientVectorLayerInfo

(automatically assigned)

namedStylel nfos

list of NamedStylelnfo. Liststhe
predefined styles available for
this layer. Multiple styles are
possible so clients can choose a
style

RasterLayerInfo

style

moved to ClientRasterLayerInfo

NamedStylel nfo

featureStyles

list of FeatureStylelnfo. Ordered
list of style definitions with
applicable filters. Together with
the label style they define a
single named layer style.

label Stylel nfo

label attribute name and style

FeatureStylelnfo

*

replaces Stylelnfo
properties except for index

same

index

replaces id

assigned)

(automatically

L abelStylelnfo

replaces LabelAttribute, same
properties

ValidatorInfo
XxxConstraintInfo

and

moved to package
org. geomsj as. confi gura

tion.validat

The most important changes are:

» Theremova of client-side properties like visible, label, viewScaleMin, viewScaleMax, style and
snapping rules. These are moved to the client configuration (see hereafter).

» Thereplacement of the single style definition list by a set of named styles. These are stylesthat are

preconfigured in the back end.

* Inclusion of the label attribute name and style as part of the named style. Thisis more logical and
in line with the SLD (Styled Layer Descriptor) specification.

The client or

face classes are

largely

new and have been

relocated to

the

org. geonsj as. confi guration. client package. The following table gives a top-down
overview of the back-end configuration classes (new classesand properties have been marked in bold):

Table A.4. Client configuration

Name Property Action or description

ClientApplicationinfo name removed

ClientMaplnfo maxBounds replaces Maplnfo, optional
maximum extent of the map, if
present it will be used instead
of the union of the layers
maximum extent

ClientLayerInfo label moved from LayerInfo

visible moved from Layerinfo

viewScaleMin, viewScaeMax

moved from Layerinfo

layerlnfo

reference to back-end Layerinfo

88

Migrating between

Geomajas versions
Name Property Action or description
maxExtent transformed extent from back-
end
ClientVectorLayerinfo snappingRules moved from VectorLayerInfo
namedStylel nfo The style to apply on the layer.

Should be a reference to one of
the back-end layer's predefined
styles (see VectorLayerInfo).

creatable, updatable, deletable | moved from VectorLayerinfo

featurelnfo optional replacement of the
back-end layer's Featurelnfo. If
present, it is used instead.

ClientRaster LayerInfo style moved from
ClientRasterLayerInfo

ClientLayer Treelnfo * rename of LayerTreelnfo, same
properties
ClientLayer TreeNodel nfo * rename of LayerTreeNodelnfo
layers list of ClientLayerInfo objects,
replaces previouslist of layer ids
expanded changed from string to boolean
ClientToolbarInfo * rename of Toolbarlnfo
ClientToollnfo * rename of Toollnfo

Apart from these changes in content, some general technical improvements have been made as well:

e The Spring bean name (or id) is used to set the id property of the
class if there is one. This makes it unnecessary to define the id separately.
The way this is done is by wusing a Spring BeanPostProcessor. (see
org. geomgj as. i nternal . configuration. Confi gurati onBeanPost Processor)

» Somecalculationsthat were previously doneinthe Get Conf i gur at i onConmand are now done
inthe Conf i gur ati onBeanPost Pr ocessor.

 Cloning of the client configuration classes can be done with general deep cloning techniques like
serialization, bypassing the need for custom cloneable implementations.

Asusual, example configurations can be found in the application projects.

6. Migrating from Geomajas 1.5.1to
Geomajas 1.5.2

» "layerRef" isrenamed to "layerlds’ in Layer Tr eeNodel nf o.

7. Migrating from Geomajas 1.5.0 to
Geomajas 1.5.1

 Configuration has changed from the proprietary format to using Spring configuration.

» Thereisnow aCommandDi spat cher service and official command names and defined request
and response objects. Deprecated commands have been removed.

89

Migrating between
Geomajas versions

8. Migrating from Geomajas 1.4.x to 1.5.0

* Inyour application.xml, you should change "OSM L ayerFactory" to "OsmL ayerFactory"
* Inyour application.xml, you should change "WM SL ayerFactory" to "WmsL ayerFactory"
* replace package "layermodels" with "layermodel”

 replace "org.geomajas.core.application.DefaultL ayerFactory” with
"org.geomajas.internal .application.DefaultL ayerFactory"

» mapWidget.addController() and mapWidget.removeController() have been removed. They are
replaced by mapWidget.setController(). Y ou could only add one controller anyway.

90

	Geomajas user guide for developers
	Table of Contents
	Part I. Introduction
	Chapter 1. Preface
	1. About this document
	2. About this project
	3. License information
	4. Author information

	Part II. Architecture
	Chapter 2. Architecture
	1. Command
	2. Pipelines
	2.1. Pipeline architecture
	2.2. Application in the back-end

	3. Layer
	4. Security
	4.1. Security architecture
	4.2. Interaction between client and back-end
	4.3. How is this applied ?
	4.4. Server configuration

	Chapter 3. Plug-ins
	Chapter 4. Project structure
	1. Face and plug-in registration
	2. Module Overview

	Part III. API
	Chapter 5. API contract
	1. API annotation
	2. Back-end API
	3. Command and plug-in API
	4. GWT face API
	5. API compatibility and Geomajas versions

	Chapter 6. Commands
	1. CommandDispatcher service
	2. Provided commands

	Chapter 7. Layers
	1. RasterLayerService
	2. VectorLayerService

	Chapter 8. Security
	1. Authentication versus authorization
	2. What can be authorized
	3. SecurityManager service
	4. SecurityContext service

	Chapter 9. Pipelines
	1. PipelineService
	2. Configuration
	3. Default pipelines
	3.1. RasterLayerService
	3.1.1. getTiles()

	3.2. VectorLayerService
	3.2.1. saveOrUpdate()
	3.2.2. saveOrUpdate each feature
	3.2.3. getFeatures()
	3.2.4. getBounds()
	3.2.5. getAttributes()
	3.2.6. getTile()

	Chapter 10. Utility Services
	1. ConfigurationService
	2. GeoService
	3. DtoConverterService
	4. FilterService
	5. TextService

	Part IV. Configuration
	Chapter 11. Configuration basics
	1. web.xml
	2. General principles
	3. Geomajas configuration
	4. Recommended application context structure

	Chapter 12. Map configuration
	1. Raster layer configuration
	1.1. Raster layer info

	2. Vector layer configuration
	2.1. Vector layer info
	2.1.1. Validation

	2.2. Bean layer configuration

	3. Client configuration
	3.1. Map configuration
	3.2. Client layer configuration
	3.2.1. Raster layer
	3.2.2. Vector layer

	Chapter 13. Security configuration
	Chapter 14. Transaction configuration
	Chapter 15. Dispatcher servlet configuration
	Chapter 16. Coordinate Reference Systems

	Part V. How-to
	Chapter 17. Writing your own commands
	Chapter 18. Create a plug-in
	1. Using the plug-in archetype
	2. Plug-in structure
	3. Plug-in declaration and dependencies

	Chapter 19. Create a layer plug-in
	1. Writing your own layer

	Chapter 20. Create a security plug-in
	1. Writing your own security service

	Part VI. Appendices
	Appendix A. Migrating between Geomajas versions
	1. Migrating between Geomajas 1.7.1 and Geomajas (back-end core) 1.8.0
	2. Migrating between Geomajas 1.6.0 and Geomajas (back-end core) 1.7.1
	3. Migrating from Geomajas 1.5.4 to Geomajas 1.6.0
	4. Migrating from Geomajas 1.5.3 to Geomajas 1.5.4
	5. Migrating from Geomajas 1.5.2 to Geomajas 1.5.3
	5.1. General API changes
	5.2. Configuration changes

	6. Migrating from Geomajas 1.5.1 to Geomajas 1.5.2
	7. Migrating from Geomajas 1.5.0 to Geomajas 1.5.1
	8. Migrating from Geomajas 1.4.x to 1.5.0

