
Getting started with Geomajas

Geomajas Developers and Geosparc

Getting started with Geomajas
by Geomajas Developers and Geosparc

1.10.0
Copyright © 2010-2012 Geosparc nv

iii

Table of Contents
1. Introduction .. 1

1. About this document .. 1
2. About this project .. 1
3. License information ... 1
4. Author information .. 1

2. Starting a new GWT based Geomajas project ... 3
1. Prerequisites / Command line .. 3

1.1. Creating the template project .. 3
1.2. Testing the template project .. 5

2. Eclipse .. 6
2.1. Running/debugging with the Google Plug-in for Eclipse (embedded Jetty
option) .. 6
2.2. Running/debugging with the Google Plug-in for Eclipse 11

3. IntelliJ IDEA .. 11
4. NetBeans .. 14
5. Using a Hibernate layer .. 14
6. How to continue .. 14

3. Real world example: marine application .. 16
1. Introduction .. 16
2. Preliminary note .. 16
3. Setting up a Geomajas based project ... 16
4. Showing your own shape files in Geomajas .. 17
5. Show your own PostGIS data in Geomajas ... 20
6. Show your own WMS map using Geomajas ... 23
7. Show locations of vessels using SOAP .. 24
8. Show information about a lock using FacililyXML .. 28
9. User management .. 30

iv

List of Figures
2.1. Choose the correct archetype .. 4
2.2. Screenshot when building the Geomajas GWT archetype .. 5
2.3. Import project as Maven project .. 7
2.4. Eclipse project properties dialog, Google Web Toolkit ... 8
2.5. Eclipse project properties dialog, Google Web Application ... 8
2.6. Debug configurations dialog ... 9
2.7. JettyRunner as main class .. 9
2.8. Running Jetty ... 10
2.9. Running the GWT application ... 10
2.10. Classpath of GWT plug-in (no-server mode) ... 11
2.11. Open project using pom .. 12
2.12. IDEA GWT run configuration ... 12
2.13. run gwt:i18 target .. 13
2.14. Project structure for simple GWT project ... 13
3.1. Update your project as a GWT project in eclipse after each mvn eclipse:eclipseA 17
3.2. Add vhaLayer to the list of layers .. 18
3.3. Add vhaLayer to the list of treeNodes ... 18
3.4. Add ClientVectorLayerInfo bean .. 19
3.5. Add a reference to layerVha.xml in your web.xml ... 19
3.6. Create a symbol for MULTIPOINT or POINT layers ... 20
3.7. Add appDataSource to applicationContext.xml ... 21
3.8. Add appSessionFactory to applicationContext.xml ... 21
3.9. Add hibernateEcdisLayer to the list of layers .. 21
3.10. Add hibernateEcdisLayer to the list of treeNodes ... 22
3.11. Add ClientVectorLayerInfo bean .. 22
3.12. Enable PostgisDialect ... 22
3.13. Add a reference to layerEcdis.xml in your web.xml ... 23
3.14. Add ClientVectorLayerInfo bean .. 23
3.15. Show vessels using an Image marker.png ... 25
3.16. Resize the images depending on the zoom level .. 26
3.17. Controller that shows extra information about a clicked vessel 27
3.18. Controller that shows extra information about a clicked vessel 29
3.19. Security pom.xml .. 30
3.20. Security inherit ... 30

v

List of Examples
2.1. Create project using GWT Maven archetype .. 3
2.2. Create project using GWT Maven archetype .. 3
2.3. Creating a build from your project ... 5
2.4. Create a build, then run it .. 5
2.5. Run the template application in development mode ... 6
3.1. Create project using GWT Maven archetype .. 17
3.2. Use ogr2ogr to convert Ecdis files to PostGIS .. 20

1

Chapter 1. Introduction
1. About this document

Documentation for developer who want to use and extend the Geomajas GIS framework.

2. About this project
Geomajas is a free and open source GIS application framework for building rich internet applications.
It has sophisticated capabilities for displaying and managing geospatial information. The modular
design makes it easily extendable. The stateless client-server architecture guarantees endless
scalability. The focus of Geomajas is to provide a platform for server-side integration of geospatial
data, allowing multiple users to control and manage the data from within their own browsers. In
essence, Geomajas provides a set of powerful building blocks, from which the most complex GIS
applications can easily be built. Key features include:

• Modular architecture

• Clearly defined API

• Integrated client-server architecture

• Built-in security

• Advanced geometry and attribute editing with validation

• Custom attribute definitions including object relations

• Advanced querying capabilities (searching, filters, style, ...)

See http://www.geomajas.org/.

3. License information
Copyright © 2009-2010 Geosparc nv.

Licensed under the GNU Affero General Public License. You may obtain a copy of the License at
http://www.gnu.org/licenses/

This program is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU Affero General
Public License for more details.

The project also depends on various other open source projects which have their respective licenses.

From the Geomajas source (possibly specific module), the dependencies can be displayed using the
"mvn dependency:tree" command.

For the dependencies of the Geomajas back-end, we only allow dependencies which are freely
distributable for commercial purposes (this for example excludes GPL and AGPL licensed
dependencies).

4. Author information
This framework and documentation was written by the Geomajas Developers. If you have questions,
found a bug or have enhancements, please contact us through the user fora at http://www.geomajas.org/
.

http://www.geomajas.org/
http://www.gnu.org/licenses/
http://www.geomajas.org/

Introduction

2

List of contributors for this manual:

• Pieter De Graef

• Jan De Moerloose

• Joachim Van der Auwera

• Frank Wynants

3

Chapter 2. Starting a new GWT based
Geomajas project

Geomajas uses the Apache Maven project management tool for its build and documentation process.
Thanks to Maven , the easiest way to start using Geomajas is by creating a new project using the
Maven archetype. This will create a simple working project that you can use as starting point.

1. Prerequisites / Command line
As the simple project is created using the Maven archetype, you will need to install Maven on
your system, which can be downloaded from http://maven.apache.org/. We recommend using the
latest stable version (2.2.1 at the time of writing). Installing Maven is quite simple: just unzip the
distribution file in the directory of your choice and make some environment changes so you can
access the executable. More information for your specific OS can be found at the bottom of http://
maven.apache.org/download.html.

1.1. Creating the template project

At this point it is assumed that Maven has been successfully installed. Using Maven, you can now
create a template project, called the Geomajas GWT Application Archetype.

1. Step1: Go to the folder you want to create this application in, and execute the following command:

Example 2.1. Create project using GWT Maven archetype

mvn archetype:generate -DarchetypeCatalog=http://files.geomajas.org/archetype-catalog.xml

This will create the template project, using the latest stable release. If you want to use the latest
snapshot, use the following command instead:

Example 2.2. Create project using GWT Maven archetype

mvn archetype:generate -DarchetypeCatalog=http://files.geomajas.org/archetype-latest.xml

Maven will now prompt the user for input.

Note

If anything fails with these maven commands, you need to check the output to check the
problem. One typical problem is the need to define a proxy to allow maven to access sites
in the outside world. See the http://maven.apache.org/guides/mini/guide-proxies.html for
details.

2. Step2: Maven will display the full list of available archetypes. Make sure you select the correct
one: geomajas-gwt-archetype. In the image below, the correct number would be 36:

http://maven.apache.org/
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/guides/mini/guide-proxies.html

Starting a new GWT
based Geomajas project

4

Figure 2.1. Choose the correct archetype

3. Step3: Next maven asks for the groupId. Often the package name is used. (foo.bar)

4. Step4: Next maven asks for the artifactId. This represents the name for your application. (i.e. my-
app)

5. Step5: Next maven asks for the first version for your application. 1.0-SNAPSHOT is a good first
version.

6. Step6: Next maven asks for the base package wherein to place Java files. By default this is the same
as the groupId. Just hit "enter" to continue.

Starting a new GWT
based Geomajas project

5

Figure 2.2. Screenshot when building the Geomajas GWT archetype

Tip

You have now create a Geomajas template project! It is best to continue by testing if
everything went well.

1.2. Testing the template project
From the project root, you can immediately compile, test (using jetty as servlet container), or run the
application in development mode using the following commands.

1.2.1. Creating a full build

You now have several options to actually test your application. First of all, you could compile it, and
create a build. This can be done using the following command:

Example 2.3. Creating a build from your project

mvn install

The "install" target will create a .war file for the project in the target directory. This web archive
can be dropped into a Java application container such as Tomcat.

1.2.2. Running the compiled template application (full speed)

Secondly, if you don't have a Java application container ready or want a quick test, then you can use
mvn to run the application for you, using the following commands:

Example 2.4. Create a build, then run it

mvn jetty:run

Starting a new GWT
based Geomajas project

6

The "jetty:run" variant will immediately start a jetty server and start the application. This way, you
can test your application at full speed (as when deployed). The application can be accessed at http://
localhost:8080/.

1.2.3. Running the template application in development mode

Another option is to start up the application in GWT development mode, using the following command
lines:

Example 2.5. Run the template application in development mode

mvn gwt:run

The "gwt:run" option allows you to start the application in GWT development mode. A console will
appear which allows starting your application (from the browser). Amongst other things, this allows
you to see the messages GWT generates and see the output of the "GWT.log" commands.

2. Eclipse
The combination of Eclipse, maven and GWT is not quite trivial, especially for complex multi-module
projects like Geomajas. There are 2 approaches possible for integrating eclipse with maven:

• Eclipse plug-in for maven, avoiding the use of the maven command-line interface: m2eclipse (http://
m2eclipse.sonatype.org/) is the most mature project here

• Maven plug-in to generate eclipse project configurations: maven-eclipse-plugin (http://
maven.apache.org/plugins/maven-eclipse-plugin/)

It is clear that an IDE integrated solution like m2eclipse offers considerable advantages over manually
generating Eclipse project configurations:

• direct import of maven projects

• support for maven properties and filtering

• In-place editing of poms

• full dependency support

For a functional Geomajas setup, the following Eclipse plug-ins should be installed on a fresh Galileo
download (http://www.eclipse.org/downloads/):

• m2eclipse: update site http://m2eclipse.sonatype.org/sites/m2e

• m2eclipse extras (especially WTP extension): http://m2eclipse.sonatype.org/sites/m2e-extras

• checkstyle: update site http://eclipse-cs.sf.net/update/

• SVN team provider: update site http://download.eclipse.org/releases/helios, choose Collaboration
->Subversive SVN Team Provider (Incubation)

• Google's GWT Eclipse plug-in: http://dl.google.com/eclipse/plugin/3.6 (Plugin and SDK)

2.1. Running/debugging with the Google Plug-in for
Eclipse (embedded Jetty option)

There is a classpath issue with the Google Plug-in for Eclipse (GPE) that prevents us from
using it in a reliable way when there are multiple versions of artifacts in the maven dependency
tree: http://code.google.com/p/google-web-toolkit/issues/detail?id=5033 [http://code.google.com/p/
google-web-toolkit/issues/detail?id=5033]

http://localhost:8080/
http://localhost:8080/
http://m2eclipse.sonatype.org/
http://m2eclipse.sonatype.org/
http://maven.apache.org/plugins/maven-eclipse-plugin/
http://maven.apache.org/plugins/maven-eclipse-plugin/
http://www.eclipse.org/downloads/
http://code.google.com/p/google-web-toolkit/issues/detail?id=5033
http://code.google.com/p/google-web-toolkit/issues/detail?id=5033
http://code.google.com/p/google-web-toolkit/issues/detail?id=5033

Starting a new GWT
based Geomajas project

7

On top of that, GPE forces the use of the built-in jetty launcher, which has problems with loading
libraries from the maven repository. Recent development by Google points in the direction of better
maven support, but a as far as we know a stable solution which does not require explicit user interaction
is not available. (see http://googlewebtoolkit.blogspot.com/2010/08/how-to-use-google-plugin-for-
eclipse.html).

In view of these problems, the following workaround seems to be the most reliable way of using the
GWT plugin for us:

• Run the GWT plug-in with the no-server option (this can be done straight from the project since
GWT 2.1

• Run an embedded Jetty server to replace the GWT server

The following series of steps have to be performed to achieve a working project.

• Import the project as a maven project

Figure 2.3. Import project as Maven project

• After the project has been imported and the workspace has been built, you should now manually
mark the project as a GWT project in the project properties dialog. Open the Google -> Web Toolkit
section and mark the checkbox. If the eclipse GWT version differs from the project version, the
"Use specific SDK" checkbox will be enabled:

http://googlewebtoolkit.blogspot.com/2010/08/how-to-use-google-plugin-for-eclipse.html
http://googlewebtoolkit.blogspot.com/2010/08/how-to-use-google-plugin-for-eclipse.html

Starting a new GWT
based Geomajas project

8

Figure 2.4. Eclipse project properties dialog, Google Web Toolkit

• In the Google -> Web Application section, the WAR directory should be changed to the default
maven war sources directory (src/main/webapp)

Figure 2.5. Eclipse project properties dialog, Google Web Application

• Open the debug configurations dialog and create a new Java application:

Starting a new GWT
based Geomajas project

9

Figure 2.6. Debug configurations dialog

• Search for JettyRunner as the main class. JettyRunner is a specially prepared main class that starts
up Jetty with the correct parameters (port 8888 and src/main/webapp as webapp directory)

Figure 2.7. JettyRunner as main class

• Run the new Jetty server configuration (in debug mode):

Starting a new GWT
based Geomajas project

10

Figure 2.8. Running Jetty

• Now, run the GWT plug-in in no-server mode by by right-clicking on the project and selecting
Debug As -> Web Application (running on an external server):

Figure 2.9. Running the GWT application

• Click ok on the dialog screen

• You can now add breakpoints and debug your application as if it was a normal Java application.

• If you have multiple versions of GWT in your project workspace, make sure that the gwt-dev jar is
in front of the default classpath (reported GWT issue):

Starting a new GWT
based Geomajas project

11

Figure 2.10. Classpath of GWT plug-in (no-server mode)

2.2. Running/debugging with the Google Plug-in for
Eclipse

If you want to run your application directly with GPE, some extra actions are needed to avoid classpath
problems. You will have to change your web.xml by adding a special context listener that allows
Spring component scanning and circumvents a GeoTools problem with the builtin Jetty classloader:

<listener>
 <listener-class>org.geomajas.servlet.PrepareScanningContextListener</listener-class>
</listener>

This solves most of the classpath problems but does not cure the problem of having multiple artifact
versions in the classpath! This is usually only a problem when you have several Geomajas projects
opened in your workspace. If this is the case, run the GWT plug-in with an embedded Jetty server as
explained in the previous chapter and you should be fine. Note that this should be the first listener in
your web.xm files, before the spring listeners.

The following steps are needed to run GPE directly:

• Follow the configuration steps of the indirect mode, right up to the Jetty part

• Run the project as a GWT Web application by right-clicking on the project and selecting Run as
-> Web Application.

• For debugging, debug the project as a GWT Web application by right-clicking on the project and
selecting Debug as -> Web Application.

3. IntelliJ IDEA
The setup in IntelliJ IDEA is quite straightforward and does not require running a separate Maven
command. Just open the project from IDEA by selecting the pom in the root directory.

Starting a new GWT
based Geomajas project

12

Figure 2.11. Open project using pom

IDEA will recognize this as a GWT project and assign the correct facet but as always you will have
to make your own run configuration (which is fortunately trivial). You will need version 9.0 or later
for the GWT 2.0 support.

Figure 2.12. IDEA GWT run configuration

Before being able to use this configuration, you need to invoke the gwt:i18n Maven target to assure the
files which are used for internationalisation are available (otherwise, you will get compilation errors).
You can do this from the "Maven projects" tab.

Starting a new GWT
based Geomajas project

13

Figure 2.13. run gwt:i18 target

Some additional settings have to be done in the "project structure" dialog. Apart from specifying the
GWT installation directory, there is a specific project setting which has to be done manually, which
is setting the target Web facet to "Web". The project structure for the simple GWT project should
look as follows:

Figure 2.14. Project structure for simple GWT project

After this, you should be able to run the project. Any changes in the source code will be automatically
detected, and debugging is possible.

Note

When creating GWT run configurations, it is recommended to increase the amount of
memory given to the process. You can do this by entering a higher -Xmx value in the VM
parameters field, for example "-Xmx768m".

Starting a new GWT
based Geomajas project

14

4. NetBeans
You can both create the project from the archetype or open directly the Maven project in NetBeans.
See http://wiki.netbeans.org/MavenBestPractices for more details.

5. Using a Hibernate layer
The template project can easily be modified to use a layer stored in PostGIS. You should do the
following;

• In the pom.xml, uncomment block marked with "uncomment if you want to use Hibernate with
postgis, for another db you will need similar dependencies".

• In the web.xml file (src/main/webapp/WEB-INF/web.xml) uncomment the block marked with "To
use Roads layer stored in PostGIS through hibernate layer, uncomment the following".

To create the database, you can use the following command which will create the database (named
"app") with some sample data (just a couple of roads):

psql -d app <src/main/webapp/WEB-INF/example/road.sql

6. How to continue
The archetype generates a dependency on the geomajas-dep project to manage the version of the
Geomajas dependencies. This project exists for the sole purpose of keeping track of the latest released
versions. It is quite likely that a new version of geomajas-dep has been released since the latest
release of the archetype. Therefore, we recommend you update this dependency to the latest version.
You can check the latest version using this URL: http://apps.geomajas.org/nexus/index.html#nexus-
search;quick~geomajas-dep.

The most important configuration files in the project are the following:

• main configuration : src/main/webapp/WEB-INF/applicationContext.xml

• map configuration : src/main/webapp/WEB-INF/mapMain.xml

• overview map configuration: src/main/webapp/WEB-INF/mapOverview.xml

• countries layer configuration : src/main/webapp/WEB-INF/
clientLayerCountries.xml and src/main/webapp/WEB-INF/
layerCountries.xml

• OpenStreetMap layer configuration : src/main/webapp/WEB-INF/
clientLayerOsm.xml and src/main/webapp/WEB-INF/layerOsm.xml

• GWT configuration file : src/main/java/Application.gwt.xml

• web.xml: src/main/webapp/WEB-INF/WEB-INF/web.xml

More details about the Geomajas configuration are found in the
developer's guide [http://files.geomajas.org/maven/trunk/geomajas/docbook-devuserguide/html/
master.html#part-configuration].

Reference which may be interesting to read:

• GWT project page: http://code.google.com/webtoolkit/.

• SmartGWT showcase: http://www.smartclient.com/smartgwt/showcase/.

http://wiki.netbeans.org/MavenBestPractices
http://apps.geomajas.org/nexus/index.html#nexus-search;quick~geomajas-dep
http://apps.geomajas.org/nexus/index.html#nexus-search;quick~geomajas-dep
http://files.geomajas.org/maven/trunk/geomajas/docbook-devuserguide/html/master.html#part-configuration
http://files.geomajas.org/maven/trunk/geomajas/docbook-devuserguide/html/master.html#part-configuration
http://files.geomajas.org/maven/trunk/geomajas/docbook-devuserguide/html/master.html#part-configuration
http://code.google.com/webtoolkit/
http://www.smartclient.com/smartgwt/showcase/

Starting a new GWT
based Geomajas project

15

• DZone's GWT refcardz: http://refcardz.dzone.com/refcardz/gwt-style-configuration-and-js.

• spring documentation: http://www.springsource.org/documentation.

• DZone's spring configuration refcardz: http://refcardz.dzone.com/refcardz/spring-configuration.

• maven project: http://maven.apache.org/.

• Maven by example book: http://www.sonatype.com/books/mvnex-book/reference/public-
book.html.

• maven reference book: http://www.sonatype.com/books/mvnref-book/reference/public-book.html.

• DZone's maven 2 refcardz: http://refcardz.dzone.com/refcardz/apache-maven-2.

http://refcardz.dzone.com/refcardz/gwt-style-configuration-and-js
http://www.springsource.org/documentation
http://refcardz.dzone.com/refcardz/spring-configuration
http://maven.apache.org/
http://www.sonatype.com/books/mvnex-book/reference/public-book.html
http://www.sonatype.com/books/mvnex-book/reference/public-book.html
http://www.sonatype.com/books/mvnref-book/reference/public-book.html
http://refcardz.dzone.com/refcardz/apache-maven-2

16

Chapter 3. Real world example:
marine application

Warning

This chapter is out of date. It was originally written for an older, no longer supported version
of Geomajas. It was mostly updated to comply with current conventions but is likely to be
inaccurate or even wrong in some places.

1. Introduction
In this chapter a step-by-step guide is given of how to create a web-application based on Geomajas
from scratch. The application is based on marine information and has the following features :

• Maps

The following maps will be used in the web-application

• OpenStreetMaps as a background

• Shape files

• ECDIS map. The source of these maps are simple feature data files. These will be converted
using OGR2OGR to a postGIS database.

• AGIV maps. This is a WMS server (http://gditestbed.agiv.be/blog/2010/01/default.aspx)

• SOAP

• Using SOAP we will request the current positions of vessels in Belgium and Holland. Each vessel
will be shown on a the map with a marker. When such a marker is clicked extra information about
the selected vessel is shown.

• Facility XML

• The facility XML contains information about locks. When a lock is clicked (in one of the shape
file layers) the corresponding XML is requested from the server and translated to HTML using
XSL. After this the resulting HTML will be displayed to the user.

• User management

• Two different users will be available. One user has complete access to everything. The second
user only can view some layers.

2. Preliminary note
When using Eclipse and the GWT plug-in we removed the "generateAsync" feature from the pom.xml.
Our code already contained manually generated async files, and this caused weird problems/conflicts.

Note that when you are in need of help you can always post questions on the Geomajas mailing list
(check this page [http://geomajas.org/gis-development] for instructions on how to join the mailing list)
or on the Geomajas forum [http://geomajas.org/forum].

3. Setting up a Geomajas based project
To create a new project based on Geomajas you must execute the following steps:

http://geomajas.org/gis-development
http://geomajas.org/gis-development
http://geomajas.org/forum
http://geomajas.org/forum

Real world example:
marine application

17

Example 3.1. Create project using GWT Maven archetype

mvn archetype:generate -DarchetypeCatalog=http://files.geomajas.org/archetype-catalog.xml

Once this is executed you can , among others, use the following commands :

• mvn install

• mvn jetty:run

• mvn gwt:run

• mvn eclipse:eclipse

If you are using eclipse you want to start by using the mvn eclipse:eclipse command. This
will make your project eclipse compliant. Once this command is finished go to eclipse, right-click on
the project, properties, google and check that the project is using GWT. Note that every time you do
an mvn eclipse:eclipse you will have to retake the steps. Most times you have to switch off/
switch on the GWT marker in eclipse.

Figure 3.1. Update your project as a GWT project in eclipse after each mvn
eclipse:eclipseA

Now you can already try and run the project. Either from within eclipse or from the command line
using maven: mvn gwt:run. You will see that you now have a basic Geomajas project already
showing an OpenStreetMaps layer and a vector layer based on shape files.

4. Showing your own shape files in Geomajas
In this section we are going to explain how to add a layer to your Geomajas showing some of your
own shape files. The layer we will be creating has the name VhaLayer.

To show your own shape files in Geomajas follow these steps :

1. Place your shape files in src/main/resources/be/fks/shapes (note that you can
configure the exact location of these).

2. Now modify src/main/webapps/WEB-INF/applicationContext.xml Note that you
can use the existing road shape file layer as a reference to help you out.

Real world example:
marine application

18

a. Add Layer

Figure 3.2. Add vhaLayer to the list of layers

b. Add treeNode

Figure 3.3. Add vhaLayer to the list of treeNodes

c. Add org.geomajas.configuration.client.ClientVectorLayerInfo bean

Real world example:
marine application

19

Figure 3.4. Add ClientVectorLayerInfo bean

3. Modify src/main/webapp/WEB-INF/web.xml (please remove the "be/fks/
shapeinmem/" from the displayed text).

Figure 3.5. Add a reference to layerVha.xml in your web.xml

4. Create src/main/webapp/WEB-INF/layerVha.xml. Note that you can use the existing
layerRoads.xml as a reference to help you out.

Use a tool like uDig [http://udig.refractions.net/] to help you. With uDig you can view shape files,
PostGIS data,... and you can view the available fields.

If you get really stuck you can download an example layerVha.xml right here [files/
realworldexample/layerVha.xml].

5. Note that if your layer is a MULTIPOINT or a POINT layer you must define a symbol.

http://udig.refractions.net/
http://udig.refractions.net/
files/realworldexample/layerVha.xml
files/realworldexample/layerVha.xml
files/realworldexample/layerVha.xml

Real world example:
marine application

20

Figure 3.6. Create a symbol for MULTIPOINT or POINT layers

5. Show your own PostGIS data in Geomajas
In this section we are going to explain how to add a layer to your Geomajas showing some of your
own shape files. The layer we will be creating has the name EcdisLayer.

Ecdis files are provided as simple feature files. The first step we are going to do is convert these files to
PostGIS. After this we will configure Geomajas to display our created PostGIS data using hibernate.

1. Download Ecdis files (not available here).

2. Be sure you have a PostgGIS database available.

3. Install the ogr2ogr tool (this is included in FWTools). You can find this tool using Google.

4. Use ogr2ogr in the following manner. Note that the csv files included in the zip must be visible
to ogr2ogr.

Example 3.2. Use ogr2ogr to convert Ecdis files to PostGIS

ogr2ogr.exe -f "PostgreSQL" "PG:dbname=ecdis user=postgres password=postgres host=localhost
port=5432" Y:\1R5EK012.000 -append

5. Check your PostGIS database (remember that you can use a tool like uDig [http://
udig.refractions.net/] for this).

6. Now modify src/main/webapp/WEB-INF/applicationContext.xml

a. Add appDataSource

http://udig.refractions.net/
http://udig.refractions.net/
http://udig.refractions.net/

Real world example:
marine application

21

Figure 3.7. Add appDataSource to applicationContext.xml

b. Add appSessionFactory

Figure 3.8. Add appSessionFactory to applicationContext.xml

c. Add layer

Figure 3.9. Add hibernateEcdisLayer to the list of layers

d. Add treeNode

Real world example:
marine application

22

Figure 3.10. Add hibernateEcdisLayer to the list of treeNodes

e. Add org.geomajas.configuration.client.ClientVectorLayerInfo bean

Figure 3.11. Add ClientVectorLayerInfo bean

7. Modify src/main/webapp/WEB-INF/web.xml (please remove the "be/fks/
shapeinmem/" from the displayed text)

Figure 3.12. Enable PostgisDialect

Real world example:
marine application

23

Figure 3.13. Add a reference to layerEcdis.xml in your web.xml

8. Create src/main/webapp/WEB-INF/layerEcdis.xml. Base yourself on an example
layer file using Hibernate.

Use a tool like uDig [http://udig.refractions.net/] to help you. With uDig you can view shape files,
PostGIS data,... and you can view all available fields.

If you get really stuck you can download an example layerEcdis.xml right here [files/
realworldexample/layerEcdis.xml].

6. Show your own WMS map using Geomajas
Note that the WMS used in this example is a password protected WMS. Due to privacy reasons the
login details are excluded from this example. Please use your own or a public WMS server to test out
this part of the guide.

1. Modify src/main/webapp/WEB-INF/applicationContext.xml

a. Add layer wmsAgivLayer just as you did in the previous 2 examples.

b. Add treeNode just as you did in the previous 2 examples.

c. Add org.geomajas.configuration.client.ClientRasterLayerInfo bean

Figure 3.14. Add ClientVectorLayerInfo bean

2. Modify src/main/webapp/WEB-INF/web.xml.

Add a reference to layerWmsAgiv.xml in your web.xml just like you did in the previous 2 examples.

3. Create src/main/resources/be/fks/shapeinmem/layerWmsAgiv.xml

http://udig.refractions.net/
http://udig.refractions.net/
files/realworldexample/layerEcdis.xml
files/realworldexample/layerEcdis.xml
files/realworldexample/layerEcdis.xml

Real world example:
marine application

24

a. baseWmsUrl : The link to the capabilities file but without all the extra parameters

b. dataSourceName : This must contain a name of the layer (names of the layers can be found in
the capabilities file of the WMS server)

c. org.geomajas.geometry.Bbox : This can be derived from the capabilities file of the WMS server

d. Now you can also add extra parameters. In our example we set transparent to true and do
some other things. Note that the WMS must understand the parameters you try to use (possible
parameters can be derived from the capabilities file).

You can download an example layerWmsAgiv.xml file right here [realworldexample/
layerWmsAgiv.xml]. Note that as said before the login details are excluded from this example due
to privacy reasons. This renders this example file useless. Please use your own, or a public WMS
server to test out this part of the guide.

7. Show locations of vessels using SOAP
Geomajas doesn't have any native SOAP support implemented. So what you need to is create a normal
GWT servlet which does the SOAP handling and sends information back to the client about the
locations of the vessels. Finally at the Geomajas client side you can display these vessels.

The following steps should be taken :

1. Create a servlet requesting the needed information using SOAP. Note that if you are using any
special external jars you need to add those to the class path in eclipse, and to the maven class path.

2. At the client side display the location of the vessels using an image.

First we load the positions of the vessels and put all the requested information inside a List
imgVesselPos. Initially we give the images a size of 0,0. This is because in Geomajas images resize
when the user zooms. In the next step we will create size the images depending on the zoom level

realworldexample/layerWmsAgiv.xml
realworldexample/layerWmsAgiv.xml
realworldexample/layerWmsAgiv.xml

Real world example:
marine application

25

Figure 3.15. Show vessels using an Image marker.png

3. In OnMapModelChange() (called every time a user zooms) we resize the images to the correct
size depending on the current zoom level.

Real world example:
marine application

26

Figure 3.16. Resize the images depending on the zoom level

4. Finally we create a controller. This controller shows some extra information to the user when the
user clicks on a vessel.

In reality the controller is on the map (because you can't add a controller to an image). When clicked
a check is performed to see if a vessel is at the location of the click.

Real world example:
marine application

27

Figure 3.17. Controller that shows extra information about a clicked vessel

Real world example:
marine application

28

8. Show information about a lock using
FacililyXML

FacilityXML documents are XML documents containing information about locks in Belgium. The
goal was that when the user clicked on a lock in a certain layer the correct FacilityXML document
was requested from the server and shown to the user in a nicely formatted way. The formatting is done
using an XSL transformation.

Since the requesting of the XML and the XSL transformations isn't part of Geomajas this will not
be discussed here. What will be show however is how you can add a listener to a layer and use data
from the selected feature.

Real world example:
marine application

29

Figure 3.18. Controller that shows extra information about a clicked vessel

Real world example:
marine application

30

9. User management
1. Create src\main\resources\be\fks\shapeinmem\security.xml (download an example right here

[files/realworldexample/security.xml]). This is the file inside which you configure the users and
what they are allowed to access.

2. Add a reference to security.xml to the web.xml just like you would do for a normal layer.

3. Add dependencies in pom.xml

Figure 3.19. Security pom.xml

4. Inherit security in the gwt.xml of the project.

Figure 3.20. Security inherit

5. To assure that a security token is obtained when needed, you should register a token
request handler in the GwtCommandDispatcher. A good candidate is using the
StaticSecurityTokenRequestHandler.

files/realworldexample/security.xml
files/realworldexample/security.xml

	Getting started with Geomajas
	Table of Contents
	Chapter 1. Introduction
	1. About this document
	2. About this project
	3. License information
	4. Author information

	Chapter 2. Starting a new GWT based Geomajas project
	1. Prerequisites / Command line
	1.1. Creating the template project
	1.2. Testing the template project
	1.2.1. Creating a full build
	1.2.2. Running the compiled template application (full speed)
	1.2.3. Running the template application in development mode

	2. Eclipse
	2.1. Running/debugging with the Google Plug-in for Eclipse (embedded Jetty option)
	2.2. Running/debugging with the Google Plug-in for Eclipse

	3. IntelliJ IDEA
	4. NetBeans
	5. Using a Hibernate layer
	6. How to continue

	Chapter 3. Real world example: marine application
	1. Introduction
	2. Preliminary note
	3. Setting up a Geomajas based project
	4. Showing your own shape files in Geomajas
	5. Show your own PostGIS data in Geomajas
	6. Show your own WMS map using Geomajas
	7. Show locations of vessels using SOAP
	8. Show information about a lock using FacililyXML
	9. User management

