Geomajas GWT face

Geomajas Developers and Geosparc

Geomajas GWT face
by Geomajas Developers and Geosparc

1.10.0
Copyright © 2010-2012 Geosparc nv

Table of Contents

IO | oo [0 (o o I ORI 1
A T I = o L= o (1 = PP 2
1. Client-server COMMUNICALIONiiiiiiiie ittt e et e et e e e e eeean e eenens 2

2. The MaR's MOE]uiiiiiii e e e e e e e 2

2250 R /=01 oo 1= S 2

2 /- o YA = 3

2.3 WOTKFIOW . 3

2.4, SEleCtion Of FEALUMESuuiieee e 4

3. The spatial PACKAGEvuieee e e e e e e e 5

3.1. Geometry definitioNScccuuieiiiei e 5

3.2. Editing QEOMELIIESuuiiiiiiei e e e 6

TG TS 0o o 11 1 o N 6

4, GraphiCs & FENAENING ..uuiee e e e e e e e e e e ea e ean e eaes 7

I] Q1= = o=~ PP 8

4.2, ReNdering MaNUAcc.ueiiiieiiieeie e e e e e e e e e e e e e aanas 12

5. USEN INEEFACION ...eevtiieeeeii e et e et e e et e e e et e e e eaaneeeee 14

5.1. Toolbar: TOOIDaIACHONeiiiii e 14

5.2. Toolbar: ToolbarMOodal ACtiONcceueiiiiiiiie e 15

5.3. LayerTree: LayerTreBACHON ...c.uevie e e e e 16

5.4. LayerTree: LayerTreeModalACtioNnoevuniiiiiiieii e 17

5.5. MenU: MENUACLIONuuuiiiiiiieieiii ettt e e e e eaaens 18

5.6. Controllers 0N the MaPocvvuiiiii e e e e e 18

5.7. Addons 0N the Mapcveeii e 21

5.8. LiSteners ON the MaP .. ccvuuiieiieii e e aanas 23

5.9. Changing the cursor onthe Mapccvviiiiiiiiii e 24

6. Internationalization IN GEOMEJASuevvuieiiiieiee e e e e e e e e e e e e eaae e 24

7. Styling and SKINNINGcvuieiie e e e e e e e et e e e eaas 24

8. Unit testing GWT WIAQELSvvviieii e e e e et e e e e e e e e e eaneeees 24

9. Creating (custom) feature FOrMScc.uiiii e e 25

9.1. Using custom form items within a FeatureFormcccooeviiiiiicen e, 26

9.2. Using custom form items for association attributes...............ccooeeviviiinevnnns 27

9.3. Creating a custom FeatureFOrmcoooveiiiiiiieii e 27

G @) o8 =0 o T 29
O = o= 3o = = 29

2. WEDXMI Lo e e 30

G = 0T o 1= o1 30
VAV IV T o= 32
L. GraphiCOWIAOELeu i e e e 32

2200/ =0 1V T o Y 32

G @Y= V1= 1LV - o 33

R oo | o O SPPPPPP 34

L I < g I = 36

LT = 1= 1 o P 37

A = 10 = I T o P 38

8. FeatUreAttrTDULEWINTOWcoeviiiiiiii et eeees 39

LS Ao Y7117/ o 1 1 (o 40

1O, SCAESEECE ...vvueeiiiii ettt 40

11, FEAUIESEAICI ... 41

I o (01 (o T PP P TP 42
1. How to set the size of feature attribute WindOWScoevvvviiiiiiiinieiiiin e 42

List of Figures

2.1 WOTKFIOW AP <. et e et e et e e eaaans 3
2.2. Selection events and hanNdIErSviiiiiiiiii e 5
2.3. Main context interfaces from the GFX packagec.ovvvviiiiiiiciii e 9
2.4. GraphicSCoNtEXt INTEITACEuiiie i e e e e 10
2.5. General graphiCs INTEITaCESivie e 11
2.6. Default Map adOONScoovniiii e 21
4.1, MapWidget EXamMPIEiieiiei e e 33
4.2, OVErVIEWMED EXAMPIE ...iiii e e e e e e 34
4.3. TOOI Dar EXAMPIE .. i 36
R . Y= = X = o) = N 36
4.5. LayerTree with salected [ayeroovviiii e 37
T I o = o 38
4.7. FeatureListGrid eXampPlecovve i 39
4.8. FeatureAttributeWIndow, editing allowed but not enabledccoiviiiiiiiiiii 40
4.9. ACtiVityMOoNItor @€XamPleiiie e 40
4.10. SCAlESEEC BXAMPIE ...iie e 41
4.11. FeatureSearch EXampPle ciiii e 41

List of Examples

2.1
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
3.1
3.2.
3.3.
3.4.
3.5.
3.6.

GeometryOpPeEration INtEITACEcvvu e e e e e e e ees 6
QI] o= AN o o [P UTPRT 15
TOOIDAMOUAI ACIION ..eiiee e e e 16
(= Y= g (==X 1 o o 17
Y= a7 o i o o PP 18
LT r=To] 1 x= 0 g 11]| = 19
Extract from AbstractGraphicsCoNntrollercccviviiiiiiii e, 20
FeatureFOrmRFactory iNtErfaCeooviu i 25
Include GWT client dependenCyc.uuieiiiieiiieei e e e e e e e e e e 29
L AT I 1= o< g0 = = 29
Including geomajas-dep for MOdUIE VEISIONScveuniviiiciieeei e e e e 29
DependencyManagement with geomajas-dep and a snapshot GWT face.........cccoevvveennnnns 30
GWT servlet defiNitionoo.uniiiiii e e eeeae e eees 30
L€AY I o701 = 1 o 31

Chapter 1. Introduction

The GWT face allows you to use Java code for development of your AJAX based GIS web
applications. It uses Google Web Toolkit and the SmartGWT widget library to have powerful widget
which look nice.

GWT isatoolkit from Google which is used amongst others for the development of Google AdWords
and Google Wave. It compiles your Java code to JavaScript to alow the code to run on the client
side, in the browser. While doing so, it takes care of many browser idiosyncrasiesto aleviate the need
to consider browser compatibility issues. GWT tries to make the user experience as comfortable as
possible, to a large extent by focusing on responsiveness of the user interface. It combines all code
and aggressively compresses that to reduce loading delays and allow caching. When the script file
gets large, you still have the option to split it to reduce load time (the other parts are then loaded
asynchronously. It also contains support for building internationalized applications, for combining
resources etc.

For the developer, there is the ability to run your applications in development mode. Though this
is slower than production mode, it does remove the need for the full compilation before application
startup (a big improvement as GWT produces different code per browser and language pair), and
what's more, it allows debugging your application in Javal

Chapter 2. GWT face architecture

1. Client-server communication

Client-server communication in Geomajas is executed through a series of commands instantiated
on the client and executed by the server. In the GWT face, all such commands are executed
by or g. geonmgj as. gwt . cl i ent. command. Gm ConmandDi spat cher . This class has one
single method for instantiating such commands and handling the result: the execut e method.

The command object, required by the execute method (Gm Conmraind), is in fact a wrapper around
a CommandRequest object (see architecture), wherein the name of the requested command
is found. Each command expects a certain implementation of the CommandRequest and
ConmandResponse objects. Note that these request and response objects must also be known
server-side, and thus will not be packaged within the GWT client packages. As additional parameters
for the execute method, CommandCal | back objects can be passed. These can contain methods
to call after successful or unsuccessful completion of the command. It is recommended to extend
AbstractCommandCallback for your implementation.

The GwtCommandDispatcher isa so the central access point for security inthe GWT face. Y ou should
register a TokenRequestHandler to handle the login procedure if needed. Y ou can read data about the
current user when logged in.

2. The map's model

As with any GIS framework or application, the most crucia of all entities is the Map. A map is
represented by the or g. geormaj as. gwt . cl i ent. wi dget . MapW dget, but is set up using
the standard model-view-controller paradigm. The widget is the actual view of a map, with
Pai nt er objects building the display. The user interaction is handled using controllers, represented
by the Graphi csControl | er interfface. The third aspect, the model, is represented by the
org. geonmj as. gw . cl i ent. map. MapModel .

2.1. MapModel

The definition of the model behind a map (or g. geongj as. gwt . cl i ent. nap. MaphModel).
This object stores all map metadata and layers, and has an extensive arsenal of methods to operate
on the layers and the features.

Another aspect of the MapMbdel isthelist of eventsthat it fires. Handlers for the following events
can be added to the MapModel :

» MapModelEvent: this event is fired when the MapModel has been properly initialized. When a
MapW dget isadded to the HTML page, it automatically triggers an initialization method. This
will ask the server to supply it with the correct metadata, so that the MapModel can actually build
it's layers, etc. Once this initialization process is done, a MapModel Event will be fired. Add a
org. geommj as. gwt . cli ent. map. event . MapMdel Handl er to usethis.

» FeatureSelectedEvent: this event is fired every time a feature
within one of this model's vector layers is selected. Add a
org. geomgj as. gwt . cl i ent. map. event . Feat ur eSel ect i onHandl er to usethis.

 FeatureDeselectedEvent: this event is fired every time a feature
within one of this modd's vector layers is desdected. Add a
org. geommj as. gwt. cli ent. map. event . Feat ur eSel ect i onHandl er to usethis.

» LayerSelectedEvent: this event is fired every time a layer within this model is selected. Add a
org. geomnj as. gwt . cli ent. map. event. Layer Sel ecti onHandl| er to usethis.

GWT face architecture

» LayerDeselectedEvent: this event isfired every time alayer within this model is deselected. Add a
org. geomgj as. gwt . cl i ent. map. event . Layer Sel ecti onHandl er to usethis.

2.2. MapView

Part of a map is thisor g. geonaj as. gwt . cl i ent. map. MapVi ew object, which determines
and influences what areais currently visible. Internally the MapVi ew has a Caner a object that you
can think of aasatellite that floats above the map. This Caner a floats at a certain height, on acertain
position, and thiswill determine what part of the map is shown.

The map contains several coordinate spaces.
 world space : coordinates use the crs of the map.

* screen space : pixel coordinates.

e pan space : objects have already been scaled to the map's current scale, but the trandation
transformation still needsto occur. Thisisspaceisused for rendering thelayersand should normally

not be used for other purposes.

The MapVi ew provides conversions of coordinates between these spaces. Inside the MapView is
atransformer (or g. geomgj as. gwt . cl i ent. spati al . Wor | dVi ewTr ansf or ner) that is
able to transform coordinates, geometries and bounding boxes from screen space to world space and

back.

2.3. Workflow

A work flow in the GWT face determines how editing should be handled. It can consist of several
steps, called activities. When awork flow finishes, changes will typically be persisted. The package

is. or g. geonmmj as. gwt . cl i ent. map. wor kf | ow

Figure 2.1. Workflow API

cd Workflow

xinterfaces
WorkiflowEmorHandier

zinterfacex
Activity

+ handieEmonWorkdiowContext, Throwshle) @ void

+ geiEmrorHsndlen) @ WorddiowEmromHsndler
+ executeWorndlowContext] - WorddlowContext

winterfacex
WorkdflowfFProcessor

supporisfActivity) - boolean

doActivities{Object) © void

dodActivities]) ;- void

setActivities{l izt) : void
zetDefaultErordsndlefWordlowEmorHandlern) - void

+ o+ o+ 4+ 4

xzinterface:s
WortdTowContext

+ stopProcesz{) ; boolean
+ selSeedDais(Object) © void

Activity:

* execute: this method is called by the encompassing processor to execute the activity.

GWT face architecture

» getErrorHandler: get the error handler that is specifically tuned for the activity.
WorkflowErrorHandler:

* handleError: Executed when an activity throws an exception during execution. The
Wor kf | owPr ocessor must make sure this method is executed.

Wor kflowContext:

* stopProcess: informs the Wor kf | owPr ocessor to stop the processing of activities. It is the
Wor kf | owPr ocessor s responsibility to ask for this, and execute no more activities when
"t rue” isreturned.

» setSeedData: provide some seed information to the context. Thisis usually provided at the time of
work flow kickoff.

W or kflowPr ocessor :

* supports: ensure that each activity configured in this process is supported. This method should be
called by implemented subclasses for each activity that is part of the process.

* doActivities: this method kicks off the processing of work flow activities.

» setActivities: set alist of activities to be executed in the process. This would also be a good time
to check if activities are supported.

 satDefaultErrorHandler: set adefault error handler, which is invoked when the activity throws an
uncaught exception.

2.4. Selection of features

A featurein avector layer hasthe possibility to be selected. Selection usually changesthe colour of the
feature on the map or in atable to make it stand out. The actual selecting handled by the MapModel .
In the map model, the selected features are stored. After all, it is possible that by moving away from
acertain area, the selected features are no longer in sight, and perhaps no longer in the client layer-
cache. Still their contents may be needed for specific tasks.

The MapModel fires events when changes in selection occur. It will fire either
Feat ur eSel ect edEvent or Feat ureDesel ect edEvent. The MapModel implements
the HasFeat ur eSel ect i onHandl er interface so other components can register with the
MapModel asFeat ur eSel ecti onHandl er . For example the MapW dget will register itself
as ahandler to know when afeature is selected or deselected and redraw it accordingly.

GWT face architecture

Figure 2.2. Selection events and handlers

cd Selection [~

zinterfaces

HasFeatureSelectionHandlers

+ addFesiureSelectionHandlenFestureSelectiontHandler) ; HandlerRegiziraiion

cinterfacex
FeatureSelectionHandler

+ opnFestureSelected|FestureSelectedEvent] void
+ pnFestureDezelecied|FesiureDezelectedEvent) © void
Feature SelectedEwvent FeatureleselectedEvent
- feature: Festurs feature: Featurs
+ getFeature() : Featurs getFeature() | Featurs
+ getTypel) : Type<FeatureSelecticnHandler= getTypel) | Type<FeatureSelectionHandler=

When writing code that needs to react upon the selection of features, implement the
Feat ur eSel ecti onHandl er interface, and register yourself with the MapModel .

Note

Individual vector layers can also fire selection events. Actually the MapMbdel propagates
the events from the individual vector layers, so that the user need only install his handlers

in one place.

3. The spatial package

The spatial package (or g. geomgj as. gwt . cl i ent. spati al) contains a collection of math
and geometry related classes and utilities to provide al the client-side calculations one should
need. If really complex calculations need to be performed, it's best to let the server (probably
using JTS) handle it anyway. The root of the package contains the general mathematical definitions
of a Vector, Matrix, LineSegment, and so on. It also provides a general math library and the
org. geonmj as. gw . client.spatial .Wrl dVi ewlransf or ner.

TheWor | dVi ewTr ansf or ner in particular can be avery valuabletool. It allowsyou to transform
coordinates, bounding boxes and geometries between the 3 pre-defined spaces (world, view, pan).

3.1. Geometry definitions

All Geonetry definitions in the GWT face are based on geometries from JTS, the Java
Topology Suite, and the OGC simple feature specification. The classes can be found in the
org. geonmj as. gwt . client.spatial . geonet ry package. Supported geometries are:

» Poi nt : ageometry representation of a single coordinate.

GWT face architecture

e Ml ti Poi nt: ageometry containing multiple Poi nt geometries.
» Li neString: alist of connected coordinates. Sometimes also called a polyline.

» Li near Ri ng: an extension of the Li neSt r i ng geometry that expects the last coordinate to be
equal to thefirst coordinate. In other words, aLi near Ri ng isaclosed Li neStri ng.

e Mul tiLineString:ageometry containing multipleLLi neSt ri ng geometries.

» Pol ygon: aPol ygon isatwo-part geometry, consisting of an exterior Li near Ri ng and alist
of interior Li near Ri ngs. The exterior Li near Ri ng, aso called the shell, is the outer hull of
the geometry, while the interior rings can be seen as holes in the exterior ring's surface area.

* Ml ti Pol ygon: ageometry containing multiple Pol ygon geometries.

3.2. Editing geometries

The Geonetry implementations themselves do not have any setters methods. Instead
the editing of geometries is done through a series of operations, al implementing the
org. geonmj as.gwt.client.spatial.geonetry. operation. GeonetryQperation
interface. This interface consists of only one method, accepting a geometry, and returning the result
as anew geometry.

Geometries have no public constructors, so the creation of new geometries is done using
a factory, org.geonmmjas.gwt.client.spatial.geonetry. GeonetryFactory. A
Geonet ryFact ory can be created using a spatial reference id and a certain precision, but it can
also be retrieved from any geometry instance (where srid and precision are automatically correct).

Geonet ryQper at i on interface;

Example 2.1. GeometryOper ation interface

@\pi (al | Met hods = true)

public interface GeonetryQperation {
/ *

The main edit function. It is passed a geonetry object. If other val ues

constructor, or via setters.

@ar am geonetry
The { @i nk Geonetry} object to be adjusted.
* @eturn Returns the resulting geonetry, |eaving the original unharnmed.
*/
Geonetry execute(Geonetry geonetry);

* % %k X % F

}
3.3. Snapping

Snapping in Geomgas, is handed by a single manager class caled the
org. geonmj as. gw . client.spatial . snappi ng. Snapper. It is the main handler for
snapping to coordinates. It supportsdifferent modes of operation and different algorithmsfor the actual
snapping. The different algorithms to use are defined in the vector layer configuration files, while the
modes are defined by the different implementations of the Snappi ngMbde class. Let usfirst start
with the different modes:

* ALL_GEOMETRIES EQUAL: this snapping mode considers all geometries equal when it comes
to determining where to snap to. Depending on the snapping agorithm used, it will consider all
nearby geometries.

GWT face architecture

* PRIORITY_TO_INTERSECTING_GEOMETRIES this snapping mode tries to snap to intersecting
geometries before trying the general approach. When searching a snapping coordinate for a
given point, this mode will first search for intersecting geometries and try to get a snap
to that. If no snapping point can be found, it will consider al nearby geometries (like
ALL_GEOMETRIES EQUAL).

The snapping rulesthemselves are defined in the server-side configuration. Each vector layer can have
many snapping rules. For each rule, 3 fields must be filled:

* layer: thetarget layer to snap to.

« distance: the distance over which to snap. This distance must be expressed in the map's coordinate
system.

* type: the snapping algorithm to use. At the moment 2 types of snapping algorithms are supported:
to the nearest point (type=1), and to the nearest edge (type=2). For nearest point snapping can
only occur to any coordinate which is a end-point for a geometry, for nearest edge that can be any
coordinate on the edge of the geometry. Needless to say, the nearest edge requires more cal cul ating
power than the nearest point.

Snapping on the map

When a G aphi csControl | er for the map needs to use
snapping (i.e. editing controllers), they should extend the
org. geonmj as.gwt.client.controll er. Abstract Snappi ngController class.
This class extends the Gr aphi csControl | er class (the base class for al Geomaas map
controllers), and overwrites the get Scr eenPosi ti on and get Wor | dPosi t i on methods to
assure the points are snapped. The Abst r act Snappi ngCont r ol | er also supports the on-the-
fly activation and deactivation of snapping.

4. Graphics & rendering

In the GWT face, the main render method can be found in MapW dget. The render
method requires three parameters, a paintable object, a target group to paint in and a
status. The paintable object is the actual object that needs to be painted. The target group
(org. geommj as. gwt . cl i ent. wi dget . MapW dget . Render G oup) specifies where in
the DOM to draw. The usua choices here are the SCREEN or the WORLD groups. The rendering
status (or g. geomaj as. gwt . cl i ent. wi dget . MapW dget . Render St at us) determines
what drawing action to take.

Render Status
The render status can be one of the following:

» ALL: completely render or re-render the paintable object. If the paintable object contains other
paintabl e object, go through them recursively (amap will paint layers, who inturnwill paint tiles,...)

» UPDATE: update the paintable object in question, but do not update recursively.
» DELETE: delete the paintable object from the map.

While rendering, the map usesavisitor to visit the paintabl e objects recursively and search for painters
for each object or sub-object. The"ALL" statuswill paint recursively whilethe"UPDATE" statuswill
not go deeper then the given paintable object. Of course, if a given paintable object has no recursive
paintable objects, then the difference between "ALL" and "UPDATE" isirrelevant.

Render Group

The render group that needs to be specified when calling the map's render method, represents the
logical place on the map to draw the paintable object. There are four choices, each having a huge
impact.

GWT face architecture

* WORLD: drawing should be done in world coordinates. World coordinates means that the map
coordinate system should be used. The advantage of rendering objects in the world group, is that
when the user moves the map around, the objects will move with it.

» SCREEN: drawing should be donein screen coordinates. Screen coordinates are expressed in pixels,
starting from the top left corner of the map. When rendering objects in the screen group they will
always appear at afixed position, even when the user moves the map about.

* RASTER: drawing should be done in pan coordinates. All raster layers are drawn in this group. In
essence this means that the coordinates are expected to have been scaled for the current scale before
drawing, and that only the trandation still needs to occur. For advanced use only.

» VECTOR: drawing should be done in pan coordinates. All vector layers, their selection and their
labelsare drawn in this group. In essence this means that the coordinates are expected to have been
scaled for the current scale before drawing, and that only the trandation still needs to occur. For
advanced use only.

4.1. GFX interfaces

As will be explained in more detail in the "rendering manual", there are 2 ways of drawing on the
map: directly using some rendering context, or indirectly using Pai nt abl e objects, Pai nt er sand
the MapW dget 'sr ender method (as explained above). When using the direct approach, one hasto
call the methods of one of the different rendering contexts. A MapW dget containsaMapCont ext
implementation, which in turn contains 3 different contexts:

» MenuContext: used for keeping details about right mouse clicks. Not used for rendering.
» ImageContext: used for rendering imagesin HTML. All raster layers use this context.

 GraphicsContext: the main vector graphicsrenderer. Can also render images, but usesSVG or VML
to do so. When rendering shapes, circles, rectangle, etc. you will always be using this context.

GWT face architecture

Figure 2.3. Main context interfaces from the GFX package

od GFX - Context /

winterfacex
MWapContext

winterfacex
ImageContext

+ getVectorContext]) ; GraphiceCGontext
geiRasterConiexl]) ;- imageConfext
+ geiidenuContext]] : MenuContext

+

zinterfaces
WenuContext

+ geiRightButionName() : Siring
getRighiButionObject]) : Object
+ geiRighiBultonCoordinate|] : Coordinate

+

RO O O S SO T S SO SO SR SR SR S S

deletetlement|Qbyject, Siring) © void
deleteGroupQbject) © wvoid

drawlDaia/Object, Object, Sinng, Mairx) © void
drawGroupObject, Object) & void
drawGroup|Object, Obyect, Mainix) ; void
drawGroup|Object, Object, Siyle) © void
drawGroup|Object, Object, Matriz, Siyle) ; void
drawimage/Qbyject, Siring, Sinng, Bbhox, PictureSiylel @ void
geiNameByid[Sinng) - Sirng

getGroupEyid|Siring) : Object

hide[Qbject] : void

unhide/Qbject) ; void

seiConirollenQhject, GraphicesConiralier © void
setControllenQbject, Sining, GraphicsConiroller) © void
seiControllenQkject, GraphiceConiroller, int] © void
zetControllenOhject, Sinng, GraphiceController, int] © void
zetCurzon Object, Sirning) ;- void

setCurson Object, Sinng, Sining) © void

The Gr aphi csCont ext isthe main vector drawing context. It has two implementations: one for

SVG and onefor VML.

GWT face architecture

Figure 2.4. GraphicsContext interface

cd GraphiEECuntext/

winterfacex
GraphicsContext

O T T T T PO T OO N T S R SO S R T T S TR TR S VR R SR S

hide[Qhject) - void

unfideObject) © void

setCursonObject, Sinng) © void

setCurzonOhject, Sinng, Sthing) © void

=zetSizefint, int] : void

getteight]) - imt

geti¥idif] - int

drawlDaia{Object, Sinng, Map, Mainx) © woid

drawiGroupObject, Object] © void

drawGroupObyect, Object, Mairix) © void

drawGroupObyect, Object, Shde) & void

drawGroupDbject, Object, Mainx, Shie) o void

drawline{Object, Sirng, LineSinng, ShapeSiye) © void
drawPolygon{Object, Sinng, Polygon, ShapeSiyle) © void
drawReciangle{Qbject, Sirnng, Bbox, ShapelSiye] void
drawCircle/Object, Sirng, Coordinate, double, ShapeShde) @ void
drawSymbol{Ohject, Sinng, Coordinate, ShapeSiyle, Sinng) @ void
drawimage|/Object, Sinng, Sinng, Bbox, FictureShyle) © void

draw TexijObject, Sinng, Sinng, GCoordinate, FontSie) ;- void
drawSymbolDefinitionQbject, Sirnng, Symbolinfe, ShapeSiye, Mainx) © void
deleteElement]Okject, Sirng) © void

deleteGroupOhject) © void

getiameEyid|Sinng) : Sinng

getGroupByid[Sinng) ; Object

zetConirollen Object, GraphiceConitralien : void
setConirollenObject, Sining, GraphicsConirollern) © void
zetConirollen Object, GraphiczConiralier, inf) - void
zetControllenOkject, Siring, GraphiczController, inf] © void

Every object that appears on a Geomajas map, has to implement the Pai nt abl e interface. This
interface marks types of objects that can be painted. For each type/class of paintable object, an
accompanying Pai nt er must be defined as well. The painter will ultimately decide exactly how a
paintable object should be rendered. The painter will render objectsusingit'spai nt method, or delete

objects from the map using it'sdel et eShape method.

10

GWT face architecture

Figure 2.5. General graphicsinterfaces

cd GFX

PainterVisitor

graphics: GraphicsContext
painters: Map<String, Painter-

winterfaces
FPaintable

registerPainter|Painter) ; void
unregisterPainter{Fainter) : void
getPaintersForCObject{Paintable) : List
remowve{Paintable) ; void
visit|Paintable) : void

getid() : Sirnng

accepl{FPainteriizilor, Bbox, boolean) : void

xinterfaces
Painter

-_________________E:g:.

getFaintableClazeName()
ir

0a
deleteShape/Faintable, GraphiceContext] © void

String

[Faintahle, GraphiceContext) © void

winterfaces
WorldFaintable

geiOrnginalLocation() : Object

transfom|WordView Transformer) © void

» GraphicsContext: this is the basic drawing interface. Different implementations will draw in
different technologies (i.e. SvgG aphi csCont ext and Vm Gr aphi csCont ext). Thewhole
idea of this Gr aphi csCont ext and the painters, was inspired by the Java AWT library. This
context will draw basic shapes, according to their id. Since we are using web technologies, al
implementations (be they SVG or VML) will use DOM elements to create their drawings.

There are two different kinds of DOM elements we like to distinguish: group elements and non-

group elements.

Group elements are container elements that have no particular representation of themselves but are
used to group other elements and create hierarchical dependency. In SV G, they are represented by
<g> tags, in VML these are <gr oup> tags. Group elements or groups can be drawn by passing an
arbitrary Java object to the dr awGr oup() method. This object can be used for later reference to
the group. To position the group in the hierarchy, a parent group object can be passed as a second

parameter to thedr awGr oup() method.

Non-group elements (all other elements like circle, rectangle, symbol, etc.) can be drawn by
passing a group element - the parent - and a name to the element-specific drawing method
(drawCircl e(), drawRect angl e(), etc.). These elements will be attached to their parent
group in the DOM. Each non-group element in the Gr aphi csCont ext DOM tree will therefore
have a name and a parent group object. This combination of name and parent can later be used to

update or delete the object.

In essence, the drawing methods will result in changes in the visuals of the map, and the painters

that will call these methods.

 Paintable: the basic definition of an object that can be painted onto the map. For each Pai nt abl e
class, an accompanying Pai nt er class must be defined. The Pai nt abl e interface has only two
methods. Theget | d method returnsthe Pai nt abl e objectsid, whichisit'skey inthe DOM tree

11

GWT face architecture

within the parent group. While the accept method will be traversed by the Pai nt er Vi si t or,
and is used to have the object passed to the correct Pai nt er , which will draw the object.

» WorldPaintable: extension of the Pai nt abl e interface for objects that support being rendered
in world space. This means that it should be possible to transform the object's geometry/location/
coordinate/bbox.

e Painter: A Pai nt er knows how to paint a specific kind of Pai nt abl e object. Exactly what
classof Pai nt abl e objectsit can draw, must be made clear by it'sget Pai nt abl eC assNane
method. Furthermore, thePai nt er hastwo methodsto paint or remove Pai nt abl e objectson or
fromthegiven G aphi csCont ext . Basically, thePai nt er trandatesthefieldsand parameters
of the Pai nt abl e object into callstothe Gr aphi csCont ext .

 PainterVisitor: Geomajas uses a visitor algorithm for it's client side rendering process. The
MapW dget usesaPai nt er Vi si t or to recursively traverse the tree of Pai nt abl e objects,
calling theaccept method on each node.

Of course this recursive system of searching for the correct Pai nt er, can only work when the
Pai nt er Vi si t or hasall the necessary painters registered. When registering a Pai nt er with
the MapW dget , it will actually passit along to thisPai nt er Vi si t or instance.

An example of the recursive painting, can be found in the MapMbdel , which calls the accept
methods of it's layers, which call theaccept methods of the visible tiles, which contain features.

4.2. Rendering manual

Therearetwo waysto render objects onto the map. OneusesPai nt abl e objectsand Pai nt er s, the
otherisby usingthe Gr aphi csCont ext directly. Thereare till some general notionsthat one must
know before attempting to draw on the map. Since HTML, SVG and VML are al markup languages
which use aDOM tree as basic model, rendering basically isthe adding and removing of nhodeswithin
this tree. As parent nodes have styling information or other attributes that reflect their child nodes, it
is very important to add nodes to the correct parent when drawing.

The GraphicsContext reflects this, by requiring a parent object as first parameters in al drawing
methods. Associated with every node is an object that represents it. Given this object, the
Gr aphi csCont ext can find the correct node. When using the Gr aphi csCont ext directly, itis
important to be aware of the necessity of using the correct parent group when drawing.

4.2.1. The simple approach - indirect drawing

4.2.1.1. Drawing in screen space

This approach uses MapW dget 's render method, which requires three parameters. a Pai nt abl e
object, atarget Render Gr oup, and a Render St at us. If you are unfamiliar with these, visit the
beginning of this chapter for a detailed description.

Let us start with an example, where we draw a rectangle in screen space (=pixel coordinates). The
code would look something like this:

Rect angl e rectangl e = new Rect angl e("nmyRect angl e");
rect angl e. set Bounds(new Bbox(10, 10, 200, 200));
rectangl e. set Styl e(new ShapeStyl e("#FF0000", .8f, "#0000FF", .6f, 2));

map. render (rect angl e, Render G oup. SCREEN, Render St atus. ALL);

This code snippet would draw a rectangle (which implements Pai nt abl e), caled "myRectangle"
in screen space (10 pixels from the top, 10 pixels from the left, and with a width and height of both
200), using the defined style (red interior with ablue border). To delete the rectangle again, you would
have to do something like this:

12

GWT face architecture

map. render (rectangl e, Render G oup. SCREEN, Render St at us. DELETE) ;
4.2.1.2. Drawing in world space

Remember that there was also an extension of the Pai nt abl e interface, designed for rendering
objectsinworld space. Rendering in world space meansthat objectsare drawn in the coordinate system
of the map. This also means that when the user moves about on the map, the object will move with it
(keeping the same | ocation in map coordinates). Only objectsthat implement theWor | dPai nt abl e
interface can be drawn in world space.

Let us, for the next example, assume that the map has been defined using EPSG:4326 (lonlat) as
coordinate system, and we would apply the following code snippet:

Rect angl e rectangl e = new Rect angl e("myRect angl e");
rect angl e. set Bounds(new Bbox(-60, -60, 120, 120));
rectangl e. set Styl e(new ShapeStyl e("#FF0000", .8f, "#0000FF", .6f, 2));

/1 Register the rectangle to the map, so that it gets redrawn
/] automatically when the user navigates on the map.
map. regi st er Wr | dPai nt abl e(rectangl e);

Starting from -60, -60 and using awidth and height of 120, wewould have arectanglethat encompasses
ahuge part of the world. Note that drawing objects in world space requires you to register them with
the map. This is necessary to have the map automatically update the object's position when the user
navigates. When registering the Wor | dPai nt abl e rectangle, it is automatically drawn on the map.

4.2.2. The advanced approach - using the GraphicsContext
directly

When more flexibility is required from the rendering system, the map's render method might
sometimes not be enough. If for example we want to render more than one object within a specific
parent group. The following code snippet shows how to render a specific parent in screen space and
then render a circle within this parent group:

/1l Create a parent group within screen space:
Conposite parent = new Conposite("nyParent");

map. get Vect or Cont ext () . dr awG oup(map. get G oup(Render Gr oup. SCREEN), parent);

/[l Draw a circle at (20, 20) with radius 10 pixels within parent group:
Coor di nate pos = new Coordi nate(20, 20);

ShapeStyl e style = new ShapeStyl e("#FF0000", .8f, "#0000FF', .6f, 2);
map. get Vect or Context (). drawCircl e(parent, "myCrcle", pos, 10, style);

Since no specia parameters are added to the "myParent” node, the circleis drawn asiif it were in the
screen group itself. But thanks to the extra parent group, we now have the ability for apply specific
styling or transformations on that parent group, and thus altering all children within it. Let us for
example move the circle 100 pixelsto the right:

/1 Translate the parent group 100 pixels to the right:
Matrix m= new Matrix(1, O, 0, 1, 100, 0);

map. get Vect or Cont ext () . dr awG oup(map. get G oup(Render Gr oup. SCREEN), parent,

Warning

Do not try to render objects in world space by directly accessing the Gr aphi csCont ext .
Behind the screens of the MapW dget , the world space objects are actually transformed
and rendered in vector space. This is done to avoid scaling in the DOM tree (as thisis not
possible cross browsers).

13

GWT face architecture

5. User interaction

This section covers the many interfaces regarding buttons, menu items and such that make up the user
interface. The specific Geomajas widgets (i.e. Layer Tr ee) require a specific way of doing things.
We will cover the interfaces for the Tool bar, Layer Tr ee, map controllers and context menus.

» Toolbar: the tool bar has two types of default actions one can add to it (there is always the
addChi | d method, which can add any widget, but we are now talking about Geomajas specific
possibilities): the Tool bar Act i on and the Tool bar Modal Acti on. The Tool bar Acti on
isused for actionsthat need immediate response upon clicking, whiletheTool bar Modal Acti on
isused for enabling or disabling a certain state.

» LayerTree: the Layer Tr ee has the possibility to add buttons to it's tool bar that usually act
upon the selected layer within the Layer Tr ee. Again two types of actions can be added: the
Layer Tr eeAct i on andtheLayer Tr eeModal Act i on. The same difference aswith the tool
bar applies: the Layer Tr eeAct i on isabase abstract class for actions that execute immediately
upon clicking, while the Layer Tr eeMbdal Act i on is used for enabling or disabling a certain
state (for example: toggle the layer's visibility).

* Menu: each item in a context menu should extend the MenuAct i on base class. Thisisyour basic
starting point for easily creating new menu items or context menu items.

e Controllers on the map: for controllers listening to mouse events on a map,
there is the GraphicsController interface, or an abstraction under the name of
Abstract G aphi csControl |l er.

Note

For buttons in the Tool bar or LayerTree it is possible to add them
to the org.geommjas.gwt.client.action.tool bar. Tool barRegistry
or org.geonmjas.gwt.client.action.|layertree. Layer TreeRegi stry
upon application startup (before MapW dget initialisation!). This allows you to add new
buttons which can be included in the map configuration.

5.1. Toolbar: ToolbarAction

The Tool bar Acti on is your basic abstract class for building tool bar buttons that are executed
immediately when clicked. The classimplementsthe Cl i ckHandl er interface and requiresyour to
specify anicon and atool tip on creation.

Tool bar Act i on classes need to be registered inthe Tool bar Regi stry class. Thisalows
you to get an instance of the widget to put in the tool bar. The tools which are part of the GWT face
are statically defined in the class. Other tools can be added (or overwritten) at runtime before the map
isinitialised.

When a Tool bar Acti on is configurable (XML configuration), it should implement the
Confi gur abl eAct i on interface. Thiscontainsa"conf i gur e() " method which will be called
for each of the parameters which are defined in the tool configuration.

14

GWT face architecture

Example 2.2. ToolbarAction

*

/
Abstract class that serves as a tenplate for building tool bar actions. A to
executed i mmedi ately when the tool bar button is clicked. If you want a sele
the {@i nk Tool bar Modal Acti on} cl ass.

* % F X X X

@ut hor Pieter De G aef
@ince 1.6.0

*

*/
@\pi (al | Met hods = true)
publ i c abstract class Tool barAction extends Tool bar BaseActi on inplenents CickH

public Tool barAction(String icon, String tooltip) {
this(icon, tooltip, tooltip);
}

/**

* Create a new Tool bar Acti on.
* @aramicon
* @aramtitle
* @aramtooltip
* @ince 1.10.0
*/
public Tool barAction(String icon, String title, String tooltip) {
super(icon, title, tooltip);
}

}
5.2. Toolbar: ToolbarModalAction

The Tool bar Modal Act i on isthe basic template for creating selectable tool bar buttons. Usually
they enable and disable a certain state on the map when selected or deselected. Many of the
implementations that come with Geomajas set a new controller on the map when they are selected.

Note that only one of these Tool bar Mbdal Act i ons can be selected at any given time. In that
sense they act as radio buttons.

Tool bar Modal Act i on classes need to be registered inthe Tool bar Regi stry class. This
allows you to get an instance of the widget to put in the tool bar. The tools which are always part of
the GWT face are statically defined in the class. Other tools can be added (or overwritten) at runtime
before the map isinitialised.

When a Tool bar Acti on is configurable, it should implement the Confi gur abl eActi on
interface. This contains a confi gur e() method which will be called for each of the parameters
which are defined in the tool configuration.

15

GWT face architecture

Example 2.3. Toolbar M odalAction

*

/
Abstract class which serves as a tenplate for selectable buttons in a tool b
sel ected and desel ected. Wth each of these actions a different nmethod is ex
button is used to set a new controller onto the {@ink org.geomajas.gwm.clie
for an action that should be executed i mediately when clicking on it, have .
{@ink org.geonnjas.gw.client.action. Tool barAction} cl ass.

* 0% %k X 3k X X F

@ut hor Pieter De G aef
@ince 1.6.0

*

*/
@\pi (al | Met hods = true)
public abstract class Tool bar Modal Acti on extends Tool bar BaseActi on {

public Tool bar Modal Action(String icon, String tooltip) {
super(icon, tooltip, tooltip);
}

/**

* Create a new Tool bar Modal Acti on.

* @aramicon

* @aramtitle

* @aramtooltip

* @ince 1.10.0

*/

public Tool bar Modal Action(String icon, String title, String tooltip) {
super(icon, title, tooltip);

}

/1 Class specific actions:

/**

* \Wen the tool bar button is selected, this nethod will be called.
*/

public abstract void onSel ect(CickEvent event);

/**

* When the tool bar button is deselected, this nmethod will be called.
*/

public abstract void onDesel ect(C ickEvent event);

}
5.3. LayerTree: LayerTreeAction

TheLayer Tr eeAct i on isyour basic abstract classfor building layer tree buttons that are executed
immediately when clicked. The onCl i ck() method needs to be implemented and it also requires
you to specify anicon, atool tip and adisabled icon. Notethat theonCl i ck() hasthe selected layer
withinthe Layer Tr ee as aparameter.

Layer Tr eeAct i on classes need to be registered in the Layer Tr eeRegi st ry class. The tools
which are always part of the GWT face are statically defined in the class. Other tools can be added
(or overwritten) at runtime before the map isinitialised.

16

GWT face architecture

Example 2.4. Layer TreeAction
public abstract class LayerTreeAction extends Tool bar BaseAction {

private String disabl edl con;

/**
* Constructor setting all val ues.
* @aramicon The default icon for the button.
* @aramtooltip The default tooltip for the button.
* @aram di sabl edl con The icon used when the button is disabled.
*/
public LayerTreeAction(String icon, String tooltip, String disabledlcon) {
super (i con, tooltip);
t hi s. di sabl edl con = di sabl edl con;

}

/**

* This method will be called when the user clicks on the button.
*

* @aram |l ayer The currently selected | ayer.

*/

public abstract void onCick(Layer<?> |ayer);

/**

* |s the this action enabled for the |ayer?

*

* @aram |l ayer |layer to test

* @eturn enabled status of action for |ayer

*/

publ i c abstract bool ean isEnabl ed(Layer<?> | ayer);

/**
* Set icon to display when button is disabled.
* @eturn icon shown when the button is disabled
*/
public String getDi sabl edl con() {
return di sabl edl con;

}

/**
* Set icon for disabled state.
* @aram di sabl edl con icon for disabled state
*/

public void setDisabl edl con(String disabl edlcon) {

t hi s. di sabl edl con = di sabl edl con;
}
}

5.4. LayerTree: LayerTreeModalAction

The Layer Tr eeMbdal Act i on is the basic template for creating selectable layer tree buttons.
Usually they enable and disable a certain state for the selected layer within the layer tree (for example
that layer's visibility).

17

GWT face architecture

Layer Tr eeModal Act i on classesneedto beregisteredintheLayer Tr eeRegi st ry class. The
tools which are always part of the GWT face are statically defined in the class. Other tools can be
added (or overwritten) at runtime before the map is initialised.

5.5. Menu: MenuAction

To create menu items or context menu items, Geomajas provides a base which extends from
SmartGWT's Menul t em class. It requires you to set a title and icon. It also implements the
C i ckHandl er interface for defining theond i ck() execution function.

Example 2.5. MenuAction

/**

* CGeneral definition of a <code>MenuAction</code>. All Geonmjas actions in too
* this class.
*
* @ut hor Pieter De G aef
* @ince 1.6.0
*/
@\pi (al | Met hods = true)
public abstract class MenuAction extends Menulteminplements dickHandl er {

/**

* Constructor that expects you to inmediately fill in the title and the ic

*

* @aramtitle

* The textual title of the nenu item

* @aramicon

* A picture to be used as icon for the nenu item

*/

protected MenuAction(String title, String icon) {
super(title, icon);
addd i ckHandl er (t hi s);

}
5.6. Controllers on the map

5.6.1. GraphicsController

For interactive mouse controllers on the map there is ageneral interface, & aphi csControl | er.
To write a custom controller, you should always extend Abst r act Gr aphi csControl | er.

Caution

The Gr aphi csControl | er interface does NOT use SmartGWT events as they provide
no way of getting the target DOM element from the mouse events. So thelist of handlersthat
the Gr aphi csCont r ol | er extends, areall basic GWT event handlers. A separate widget
(Graphi csW dget) has been created to catch the events, while the norma MapW dget
(which encapsulates the Gr aphi csW dget) can still handle SmartGWT events.

Ontop of al the event handling methods that come from the different handlers, the interface also has
onAct i vat e() and an onDeact i vat e() methods. The onActi vat e() is caled before the
controller is actually applied on the G- aphi csW dget . Thisisusually used to apply a new context
menu on the map and such. TheonDeact i vat e() method is called when the controller isremoved
fromthe G aphi csW dget . Thisisusually used for cleaning up.

18

/**

* Function executed when the controller instance is applied on the map
* [GWT face architecture

voi d onActivate();

Exampte 2.6. GraphicsController

* Function executed when the controller instance is renoved fromthe map

*/

voi d onDeactivate();

/**

* An offset along the X-axis expressed in pixels for event coordinates. Us
* gspecific elenents that have such an offset as conpared to the origin of |
* X, Y coordinates relative fromtheir own position, but need this extra of:
* correct screen and world position.

*

* @ince 1.8.0

* @leprecated Since 1.10, due to http://jira.geonsjas.org/browse/ GM-354. |
*/

@epr ecat ed

int getOfsetX();

/**

* An offset along the X-axis expressed in pixels for event coordinates. Us
* gspecific elenents that have such an offset as conpared to the origin of |
* X, Y coordinates relative fromtheir own position, but need this extra of:
* correct screen and world position.

*

* @ar am of f set X

* Set the actual offset value in pixels.

*

* @ince 1.8.0

* @leprecated Since 1.10, due to http://jira.geonsjas. org/browse/ GM-354. |
*/

@epr ecat ed

void setOFfset X(int offsetX);

/**

* An offset along the Y-axis expressed in pixels for event coordinates. Us
* gspecific elenents that have such an offset as conpared to the origin of
* X, Y coordinates relative fromtheir own position, but need this extra of:
* correct screen and world position.

*

*

@ince 1.8.0

* @leprecated Since 1.10, due to http://jira.geonsjas.org/browse/ GM-354. |

*/

@epr ecat ed

int getOfsetY();

/**

* An offset along the Y-axis expressed in pixels for event coordinates. Us
* gpecific elenents that have such an offset as conpared to the origin of |
* X, Y coordinates relative fromtheir own position, but need this extra of:
* correct screen and world position.

*

* @aram of fsetY

* Set the actual offset value in pixels.

* @ince 1.8.0

* @leprecated Since 1.10, due to http://jira.geonsjas.org/browse/ GM-354. |
*/

@epr ecat ed

void setOFfsetY(int offsetY);

19

GWT face architecture

You should never directly implement G aphicsController (not that it does
not have the "@Jserlnplenmented" annotation), you should aways extend
Abst ract Graphi csCont r ol | er . Thisabstract classimplements all methods as empty methods
so you don't have to clutter your code with empty methods (often only a few of the mouse event
methods are actually used). It also has some extramethods for return useful information for the mouse
events, such as the position (expressed in screen coordinates) or the target DOM element.

Small extract from the Abst r act G- aphi csControl | er class:
Example 2.7. Extract from AbstractGraphicsController

/**

* Use the <code>get Locati on</code> net hod i nst ead.
*

* @leprecated Since 1.10, due to http://jira.geonsjas. org/ browse/ GM-354.

*/
@Depr ecat ed
prot ect ed Coordi nate get ScreenPosition(MuseEvent<?> event) ({
return getLocation(event, Render Space. SCREEN);

}

protected Coordinate getC ientPosition(MuseEvent<?> event) ({
return new Coordi nate(event.getdientX(), event.getCientY());

}

prot ect ed Coordi nate get PanPositi on(MuseEvent <?> event) {
El ement el ement = napW dget. get DOV) ;
doubl e of fset X = ((MouseEvent <?>) event).get Rel ativeX(el enent);
doubl e of fsetY = ((MuseEvent <?>) event).getRel ativeY(el enent);

return get Transformer (). vi ewlToPan(new Coordi nat e(of fset X, offsetY));

}

/**

* Use the <code>get Locati on</code> net hod i nst ead.
*

* @leprecated Since 1.10, due to http://jira.geonsjas. org/ browse/ GM-354.

*/
@Depr ecat ed
prot ect ed Coordinate getWrl dPosition(MuseEvent <?> event) {

return getlLocation(event, Render Space. WORLD) ;

}

protected El enent get Target (MuseEvent <?> event) {
return GMm Event Uil . get Target (event);

}

protected String get Targetld(MuseEvent <?> event) ({
return GMm EventUtil . get Targetld(event);

}

Now that you have your controller you can set it;

mapW dget . set Control | er (new Measur eDi st anceControl | er (mapW dget));

Note

There are more abstractions than just the Abst r act Gr aphi csControl | er:

20

GWT face architecture

* Abstract Rectangl eControl | er : abstract controller that handles drawing a
rectangle by dragging the mouse on the map.

» Abstract Snappi ngControl | er : abstract controller that allows snapping to be
enabled and disabled. When enabled, the returned pointswhen asking get Posi ti on(),
are snapped (depending on the configured snapping rules).

In order to disable the active controller, set a"null" value as controller:

mapW dget . set Control l er(null);

5.6.2. Active and fallback controllers

Only oneGr aphi csCont r ol | er canbeactiveat any onetime on amap. Thisisdone deliberately
in order for controllers not to interfere with each other. By default the MapWidget uses a "fallback
controller” that is activated when no explicit controller is set (a navigation controller by default). So
when no explicit controller is set, or mapW dget . set Control | er (nul |) isused, the map will
turn to it's fallback controller.

It is possible to replace this fallback controller by another than the default, by caling:
mapW dget . set Fal | backControl | er(<the new controller>);

In order to completely disable the use of afallback controller, set "null" asthe new fallback controller.

5.7. Addons on the map

A way to let auser set controllers on the map is by providing addons for him/her on the map. Default
addons are provided to pan and zoom in and out:

Code-wise an addon is basically an (SmartGWT) widget composed out of background image, a
foreground image (or icon) and aGr aphi csControl | er.

Figure 2.6. Default map addons

N

4 b

[E=
bt

Beside these default addons you can create your own addons by combining a background image, with
aniconandaGraphi csControl | er oraTool bar Acti on.

Before you can add your own addons however, your first need to disable the creation of the default
addons by setting the property "panButtonsEnabled” of your Cl i ent Mapl nf o bean to false.

<bean name="nmapNoNav" cl ass="org. geomsj as.configuration.client.dientMplnfo">
<property nane="panButtonsEnabl ed" val ue="fal se" />
</ bean>

Note

Thenameof theCl i ent Mapl nf o beanistheid used inthe constructor of theMapW dget .

21

GWT face architecture

Now you can create an addon by constructing aSi ngl eMapAddon. Depending on your desiresyou
can construct aSi ngl eMapAddon in different ways:

* With just aicon or with abackground image as well.

* WithaG aphi csControl | er oraTool bar Acti on.

» With aexplicit size or automatically based on the size of the given image(s).
The creation of azoom-in Si ngl eMapAddon can be achieved like this:

| mage background = I mageUtil.createSquarel nage("background", Geomngjas. getl sonor
0, 0, 36);

int internal Margin = 6;
I mage icon = Imageltil . creat eSquar el mage("zoonl nl con", Geonsj as. get | sonor phi cDi |
i nternal Margi n, internal Margin, 24);

Si ngl eMapAddon zoom n = new Si ngl eMapAddon("zoom n", icon, background, mapW dge
zoom n. set Hori zont al Mar gi n(25) ;

zooml n. set Verti cal Mar gi n(25);

mapW dget . r egi st er MapAddon(zoomnl n) ;

A more complex zoom dlider is created like this:

/*
* Slider handler icon
*/
I mage sliderUnit = ImageUtil.createRectangl el mage(Zoonslider.SLIDER UNIT + "ico

Ceommj as. get | sonorphicDir() + EXAWPLE | MAGE FOLDER + "sliderUnit.png", 0, 0, SL
/*
* Part of the background on which the zoonslider handl er can nove.
* One zoomlevel is represented by one inmage.
*/
| mage backgroundPart = InageUtil.createRectangl el mage(Zoontl i der. SLI DER + "Bg",
Ceonmj as. get | sonorphicDir() + EXAVPLE | MAGE FOLDER + "sliderbg. png", 0, 0, SLID
/*
* Zoomin; the top of ZoonSlider
*/
Image in = ImageUtil . creat eSquarel mage(ZOOM I N + | CON,
Ceommj as. get | sonorphicDir() + "geomsj as/ mapaddon/ zoonPl us. png",
0, 0, SLIDER WDTH);
I mage sliderTop = Imageltil . creat eSquar el mage(
Zoon®l i der. SLI DER + "Top", Ceomsjas. get! somnorphichir()
+ EXAMPLE | MAGE_FOLDER + "sli derbgtop. png", 0, O,
SLI DER_W DTH) ;
Si ngl eMapAddon zoom n = new Si ngl eMapAddon(ZOOM I N, in, sliderTop,
mapW dget, new Zoom nAndQut Control | er (mapW dget, 1.01));

/*
* Zoom out; the bottom of Zoonflider
*/
I mage out = Imageltil. createRectangl el mage(ZOOM OUT + | CON,
Ceommj as. get | sonorphicDir() + "geommj as/ mapaddon/ zoonM nus. png",
0, 0, SLIDER WDTH, SLIDER W DTH);
| mage sliderBottom = Imageltil.createRectangl el mage(Zoontl i der. SLI DER
+ "Bottont', Geonmjas.getlsonmorphichDir() + EXAMPLE | MAGE FOLDER
+ "sliderbgbottom png", 0, O, SLIDER WDTH, SLIDER W DTH);
Si ngl eMapAddon zoonmut = new Si ngl eMapAddon(ZOOM QUT, out,

22

GWT face architecture

sliderBottom napWdget, new Zoonm nAndQut Control | er (mapW dget,
0.99));

/*
* Zoom slider itself
*/
ZoonSl i der slider = new ZoonSfl i der(ZoonSlider. SLI DER, mapW dget);
sl i der. set Zoom n(zoomnl n);
sl i der. set Backgr oundPart (backgroundPart);
slider.setSliderUnit(sliderUnit);
slider. set ZoomOut (zoomQut) ;
slider.setHorizontal Margi n(HORI ZONTAL_M DDLE - SLIDER WDTH / 2);
slider.setVertical Margi n(pan. getVertical Margin() + PANDIA + 2 * MARGA N);
mapW dget . r egi st er MapAddon(sl i der);
/* And finally add the slider as a MapVi ewChangedHandl er to let it's handl e be
* in case the zoonl evel is changed outside the slider.
*/
mapW dget . get MapModel () . get MapVi ew() . addMapVi ewChangedHandl er (sl i der);

Note

For thefull snippet in the Geomajas showcase, open the Map and rendering section, click the
Zoom dlider example and view the attached sources.

5.8. Listeners on the map

As an dlternative to the interactive controllers on a map, there are passive Li st ener s as well.
These listener have an interface very much like the Gr aphi csCont rol | er interface, but they
never receive the real mouse events. As such they are meant to be passive observers, which receive
notifications of mouse events. AsopposedtotheGr aphi csCont r ol | er s, theselistenersare never
allowed to interfere.

Asaresult, multiple listeners can be registered on the map, whileonly one Gr aphi csControl | er
can be active at any given time. Instead of the real mouse events, listeners receive placeholder events
of thetypelLi st ener Event . TheseLi st ener Event objectsresemblethe GWT mouse eventsa
bit, and contain most of the information of the real mouse events.

In order to add alistener to the map, or remove alistener from the map, your code should be something
like this:

/1 Define a new Listener, starting fromthe AbstractListener:
Li stener myListener = new AbstractlListener() ({
public void onMouseMove(Li stener Event event) ({
/1 Do sonething...
}

}s

/1 Add the Listener to the map:
mapW dget . addLi st ener (nmyLi st ener);

/1 Renove the Listener fromthe map:
mapW dget . renovelLi st ener (myLi st ener);

Note

When creating a new Listener, often it is easiest to start from the Abst r act Li st ener
class, which has all empty methods for catching the mouse events. In this case you override
the methods for the events you are interested in.

23

GWT face architecture

5.9. Changing the cursor on the map

The MapWidget in the GWT face provides the possibility to apply different cursors when hovering
the map. In previous versions this was done through the set Cur sor method, which only supported
default cursors. Since version 1.10 of the GWT face however, the MapW dget also provides the
set Cur sor St r i ng method, which support custom imagesto be used as cursorson top of thedefault
CUrsors.

6. Internationalization in Geomajas

For internationalization, Geomajas uses the default GWT i18n implementation. For Geomajas
specifically, theil8nisused in several places, each havingit'sown list of messages. Basically all i18n
message definitions are located in the package or g. geonaj as. gwt . cl i ent. i 18n, asarethe
properties files containing the trandations.

Several separate definitions have been created:

» MenuMessages: the MenuMessages defines parameterized string valuesthat are used in thetitles
of MenuAct i on classes. Examples are the editing context menus.

» ToolbarConstants: this defines strings that are used as tool tips when hovering over the buttonsin
the tool bar. Thislist of valuesisused by the Tool bar Act i on and Tool bar Sel ect Acti on
classes. Note that for tool tipsthe " " character is used instead of the default space.

 AttributeMessages.
* GlobalMessages.
* LayerTreeMessages.
» SearchMessages.

To avoid multipleinstantiations of the constants and messages classes and have a central access point
for all internationalization concerns, thel 18nPr ovi der classhasbeen created. Thisclasshas static
methods for accessing the constants and messages classes. Usage is as follows:

String dist = |18nProvider. get Menu() . get MeasureDi stanceString(total Di stance, ra
set Contents("<di v>" + | 18nProvider.get Menu().distance() + "</ b>: </div><div :

7. Styling and skinning

The GWT face uses SmartGWT for the widgets, styling and skinning. The skin for the application is
defined in your gwt.xml file. This can for example be done using something like:

<inherits nane="comsnartclient.thene.sinplicity.Sinplicity" />
Extra tuning can be done in CSS.

In some casesthisisnot sufficient. SmartGWT handles the flowing of widgetsitself based on CSSand
sizeand position information whichisincluded in code. To alleviate this, thereisaspecial classnames
WidgetLayout which contains many of the fixed values which are used for the sizing and styling used
in the widgets. The fields in the class can be set on the onLoad() method in your GWT entry point
classto influence the style of the widgets.

8. Unit testing GWT widgets

A GWT unit test should inherit from the GMTest case base class and should be named
OGm Test Xxx. j ava. GWT unit tests are run inside a devel opment mode environment and can refer

24

GWT face architecture

to most of the GWT API. To run a GWT test case, run the Maven command gwt:test or execute the
integration test phase.

9. Creating (custom) feature forms

This functionality has been added to the GWT client API in version 1.9.0.

When working with vector layers, one often has a need for editing not only the vector component of
the features, but also the alpha-numerical attributes. To this end, special factories have been created
that can be passed to the editing widgets (FeatureAttirbuteEditor and FeatureAttributeWindow) to
create such forms.

All interffaces and classes in this section can be found in the following package:
org. geonmj as.gwt.client.w dget.attribute

Centrd in adl this, is the FeatureForm and the FeatureFornfFactory. The
Feat ur eFor nfFact ory is an interface that defines a single method for the creation of a
Feat ur eFor minstance.

Example 2.8. Featur eFormFactory interface

public interface FeatureFornfFactory {

/**

* Creates a formusing the specified attribute information.

*

* @aram i nfos

* List of attribute definitions. Nornally taken froma {@ink Vec
* @eturn An attribute formthat allows for editing of it's val ues.
*/

Feat ur eFor m cr eat eFeat ur eFor n{ Vect or Layer | ayer);

}

The default implementation of this factory has been implemented as
Def aul t Feat ur eFor nfFact or y. This factory returns a default implementation for the feature
formfor eachlayer: Def aul t Feat ur eFor m When the default layout of afeatureformissufficient
usethe Def aul t Feat ur eFor nfFact or y asis, otherwise feel freeto implement your own factory
that returns custom instances of aFeat ur eFor m

The Feat ur eForm is a form definition that has been tuned towards the Geomajas GWT
feature definition, and is used in the central editing widgets (Feat ur eAttri but eEdi t or and
Feat ureAttri but eW ndow). Note that those editing widgets have constructors to accept a
Feat ur eFor nfact or y, so you have to pass them a custom factory that returnsyour custom form.

Of course implementing your own Feat ur eFor mmight be a bit overwhelming and fortunately is
usually not necessary as you can easily extend the Def aul t Feat ur eFor mto suit your needs. The
Def aul t Feat ur eFor mhas several hooksto allow you to influence its layout:

 ThecreateFiel d(Attributel nfo) andlor createlten(Attri butel nfo) methods
can be overridden to customize form items or create your own.

e Thei sl ncl uded(Attri but el nf o) method can be overridden to omit certain attributes.

* The prepar eForn{Form tenLi st, DataSource) method can be overridden to set the
layout properties of the form and add additional items such as spacers or headers.

Adding new form item types can aso be done in a more global way. Therefore, an extra utility class
has been added to create the individual form items that represent the feature's attributes. This utility
classisthe At t ri but eFor nFi el dRegi st ry. Thisregistry keeps a pre-defined set of form item
definitions and data source fields (both are necessary to successfully create forms in SmartGWT)

25

GWT face architecture

that map onto attribute types. For example, it will map a Dateltem and DataSourceDateField onto all
attributes of type "DATE". This registry can now be used to create the individual items within the
form, or to register custom form items typesto usein the forms.

Note

Internally, the
org. geonmmj as. gwt . cli ent.w dget. attri bute. Def aul t Feat ur eForm
makes use of the AttributeFormFieldRegistry. This means that if you register custom form
items for certain attribute types, these custom items will also appear in the default feature
forms, without you having to implement a custom FeatureForm.

In the following sections, the details of registering custom form items and creating custom forms will
be explained.

9.1. Using custom form items within a FeatureForm

In order to use custom form items within a FeatureForm, there are 2 ways. override one the default
for a certain attribute type, or define a completely new type.

In any case, you will need to register a custom type with the AttributeFormFieldRegistry. Let us start
with a coding example:

/1 W define the customtype "nyType" in the AttributeFormtenfactory:
AttributeFornFi el dRegi stry. regi sterCustonfForm tenm("nmyType", new Dat aSou

publ i c DataSourceField create() {
return new Dat aSour cel nt eger Fi el d();

}
}, new FormtenfFactory() {

public Formtemcreate() {
return new Sliderltem);
}

}, null);

This short piece of codewill register a"Sliderltem" for all attributes of thetype"myType". Let usfirst
go over the code in more detail. In order to register a new type, 4 arguments are required:

» The key associated with the given For ml t enfact ory and Dat aSour ceFi el dFact ory.
This key is either the name of an attribute type (i.e. PrinitiveType. DATE. nane()) to
overwrite the default definitions, or acompletely new type which can be configured in the attribute
definitions with the f or m nput Type field (see further in this section). This key is a unique
identifier. In the example above: "myType".

e A DataSourceFi el dFactory definition. This factory will create a SmartGWT
Dat aSour ceFi el d that represents the underlying data-source in the form.

» AFornltenfact ory definition. Thisfactory will create a SmartGWT Formltem that represents
the actual widget by which the attribute is presented in the form. In the case above, the attribute
will berepresented by aSl i derltem

» Alist of validators that can be attached to the underlying Dat aSour ceFi el d. Any timethe user
changes values within a FeatureForm, the associated validators will be executed. In the example
above no extravalidators are attached to the Dat aSour cel nt eger Fiel d (val ue null).

So the parameter explanation already told ushow to overwrite the default attribute types: by registering
a new type for an attribute type (i.e. Pri miti veType. DATE. name()). The other option, to

26

GWT face architecture

register completely new types, is done by using a new key (i.e"myType"). The only thing left to
do than is to associate attributes with this key. This can be done within the vector layer XML
configuration, where a field by the name of "f or m nput Type" can be added to an attribute
configuration. For more information on attribute configuration, visit the configuration part in the
Geomajas developer guide [http://files.geomajas.org/maven/trunk/geomajas/docbook-devuserguide/
html/master.html#conf-vectorInfo].

9.2. Using custom form items for association
attributes

Association attributes (one-to-many and many-to-one) require a specific treatment because they are
too complex to be mapped to a single-valued form item. For these attributes, specia interfaces have
been constructed that provide full control over the way association value data travels between the
feature and it's form representation:

e TheManyToOnel t eminterfacedefinesthe contract for acustom formitem that representsamany-
to-one assocation

* heOneToManyl t eminterface defines the contract for a custom form item that represents a one-
to-many assocation

Both interfaces contain the following methods:

e get | tem(): this methods returns the actual form item to be used in the form. This can either be
an item that holds the actual value or a button or link that opens a more complex editor.

« fromtem(), toltem() :these methods govern the actua transfer of data between the form
and the association value. This may include transfer from and to a more complex editor.

e init(AssociationAttributelnfo attributelnfo, Attri but eProvider
attri but eProvi der) : this method provides a way to initialize the custom form item and/or
editor. It passesinformation on the nested attributes of the association val ue and an attribute provider
interface. The provider interface allows to query alist of possible attribute values in case the user
has to select the value from a predefined list.

» cl ear Val ue() :thismethod allows custom clearance of the form item and editor.
The default implementation of Many ToOnel t emis a simple combobox.

The default implementation of OneToManyl t emisa"Mor e. . . " link that pops up a master-detail
editor configuration for editing alist of association values.

These are in line with our default interpretation of a many-to-one attribute as being an association by
reference to an externally managed list and a one-to-many item as being a parent-child relationship.
Custom behavior can of course be implemented by registering a different implementation of the
interfaces.

9.3. Creating a custom FeatureForm
The next step isto create a custom Feat ur eFor m Let us again start with a short code example:
public class AttributeCustonform extends Defaul t Feat ureForm {

public AttributeCustonform VectorlLayer vectorlLayer) ({
super (vect or Layer);

}
@verride

27

http://files.geomajas.org/maven/trunk/geomajas/docbook-devuserguide/html/master.html#conf-vectorInfo
http://files.geomajas.org/maven/trunk/geomajas/docbook-devuserguide/html/master.html#conf-vectorInfo
http://files.geomajas.org/maven/trunk/geomajas/docbook-devuserguide/html/master.html#conf-vectorInfo

GWT face architecture

}

protected Formtemcreatelten(Attributelnfo info) {
Formtem formtem = super.createltem(info); // call super to create the defau
formtemsetWdth("*");
if ("dateAttr".equal s(info.getNanme())) {
/1 The date attribute will span all 4 col umms:
form tem set Col Span(4);

}

return formtem
}

@verride

protected void prepareForm(Formteniist formtens, DataSource source) {

/1 Quickly insert a row spacer before the 'stringAttr' item (which is the tex
formtens.insertBefore("stringAttr", new RowSpacerlten()); // inserting an it
get Wdget (). set NunCol s(4);

get Wdget (). set Wdt h(450);

get W dget () . set Col Wdt hs(100, 180, 20, 150);

get Wdget ().setGoupTitle("Custom Attribute Fornt);

get Wdget (). setlsG oup(true);

}

Thecreateltenm(Attri butelnfo info) method is overridden to set the item width and
make the date attribute span 4 columns. The pr epar eFor m(Form tenLi st formtens,
Dat aSour ce source) method is overridden to insert an extra spacer item before the string
attribute and set the general column layout. The form that results from thiswill not differ all too much
from the default implementation, but it should get you on your way.

28

Chapter 3. Configuration

To use the GWT face, you have to include the relevant dependencies, the required build steps, and
make sure the GWT dispatcher servlet isincluded in your web.xml.

1. Dependencies

Y ou have to include the GWT face (client) module. Asthisisa GWT specific jar, it aready includes
the source (in many other cases, you would need to explicitly add the sources as well).

Example 3.1. Include GWT client dependency

<dependency>
<gr oupl d>or g. geonmj as</ gr oupl d>
<artifactld>geonnjas-gw-client</artifactld>
</ dependency>

You aso include the GWT dependencies themselves. Even though these dependencies are already
used by the geomajas-gwt-client module, they need to be redefined because of the scopes.

Example 3.2. GWT dependencies

<dependency>
<gr oupl d>com googl e. gwt </ gr oupl d>
<artifactld>gw-user</artifactld>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>com googl e. gwt </ gr oupl d>
<artifactld>gw-servlet</artifactld>
<scope>runti ne</ scope>

</ dependency>

These snippets don't include any version info. It is assumed that you use the geomajas-dep module in
arecent incarnation to assure these versions are set.

Example 3.3. Including geomajas-dep for module versions

<dependencyManagenent >
<dependency>
<gr oupl d>or g. geonmaj as</ gr oupl d>
<artifactld>geonsj as-dep</artifactld>
<versi on>1. 10. 32</ver si on>
<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

If you want to use a snapshot version of the GWT face, you should also included a dependency on the
specific snapshot in the dependencyManagement section of your pom.

29

Configuration

Example 3.4. DependencyM anagement with geomaj as-dep and a snapshot GWT
face

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. geonaj as</ gr oupl d>
<artifactld>geomsj as-face-gwt </artifactld>
<versi on>1. 9. 0- SNAPS</ ver si on>
<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
<dependency>
<gr oupl d>or g. geonaj as</ gr oupl d>
<artifactld>geonsj as-dep</artifactld>
<version>1.11. 36</versi on>
<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

.web.xml

Y ou need to include the Geomajas GWT service to assure the GWT files can be found. The servlet
mapping has to be edited to match your module class's fully qualified name (example here from the
geomaj as-gwt-simple module).

Example 3.5. GWT servlet definition

<servl et >
<servl et - nane>Ceonaj asSer vi ceSer vl et </ ser vl et - name>

<servl et -cl ass>org. geomnj as. gwm . server. Geomgj asSer vi cel mpl </ servl et -cl ass>

</servlet>

<servl et - mappi ng>
<servl et - nane>Ceonaj asSer vi ceSer vl et </ ser vl et - name>

<url - pattern>/ nypackage. Geomaj asSi npl e/ geomaj asSer vi ce</ url - pattern>

</ servl et - mappi ng>

Build steps

The GWT compilation needsto be added as one of the build steps. Y ou will need to update the module
class and the i18nConstantsWithL ookupBundle to match your application.

30

Configuration

Example 3.6. GWT compilation

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>gw - maven-pl ugi n</artifactld>
<ver si on>1. 2</ ver si on>
<confi guration>
<i npl ace>true</i npl ace>
<nmodul e>mypackage. Geomgj asSi npl e</ nodul e>
<runTar get >i ndex. ht Ml </runTar get >
<war Sour ceDi r ect or y>war </ war Sour ceDi r ect ory>
<di sabl eCast Checki ng>t r ue</ di sabl eCast Checki ng>
<di sabl eCl assMet adat a>t r ue</ di sabl eCl assMet adat a>
<extraJvmAr gs>- Xnk512M - Xss1024k</ ext r aJvimAr gs>
<i 18nConst ant sWt hLookupBundl e>
nmypackage. client.i 18n. Si mpl e
</i 18nConst ant sW t hLookupBundl e>
</ configuration>
<executions>
<executi on>
<id>test</id>
<goal s>
<goal >cl ean</ goal >
<goal >conpi | e</ goal >
<goal >gener at eAsync</ goal >
<goal >t est </ goal >
</ goal s>
</ executi on>
<executi on>
<i d>i 18n</i d>
<phase>gener at e- r esour ces</ phase>
<goal s>
<goal >i 18n</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

31

Chapter 4. GWT widgets

This second chapter of the GWT face describes all the widgets that Geomajas has added on top of the
SmartGWT widget list. Each widget will be handled in detail so that developers might get a better
understanding of what they are here for, and how to use them. Know that many of these widgets are
closely connected, either through configuration or coding.

1. GraphicsWidget

The Gr aphi csW dget isthe basic widget that allows drawing onto a G- aphi csCont ext , and
catches mouse events at the same time. It implements the MapCont ext interface and providesit's
ownMenuCont ext implementation. Asfor theVect or Cont ext , it delegatesto abrowser specific
implementation (Vm Gr aphi csCont ext or SvgG aphi csCont ext). It isalso responsible for
handling Gr aphi csCont r ol | er s (only one global controller at atime!). The reason to place the
controller handling here, is because we needed a default GWT widget to handle the events, not a
SmartGWT widget. The SmartGWT events do not contain the actual DOM elementsfor MouseEvents,
while the default GWT events do - for some functionality it is absolutely vital that it is well-known
which DOM node was the target of an event.

Using the MenuContext, thiswidget always has the coordinates of the latest right mouse click. Usually
the right mouse button is used for drawing context menus. But sometimes it is hecessary to have the
DOM element onto which the context menu was clicked, to influence this menu. That is why this
widget always stores this latest event (or at least it's DOM element id, and screen location).

This widget is the bridge between the internal Svg or Vml rendering in GWT and the SmartGWT
widget library. It is used internally in the MapWidget, but is not meant to be used directly by
developers.

2. MapWidget

The main map for any Geomgjas application using the GWT face. This widget controls the
MapModel , the MapVi ewobjects, hasan internal G- aphi csW dget for the actua rendering, and
much more. Being the most central of al widget, the MapWidget has quite afew responsibilities and
options.

Map - initialization

A first responsibility of the map is the correct initialization of it's model and al layers from the
configuration. When the MapWidget is added to the HTML (onDraw), it will automatically fetch the
configuration from the server, and than initialize itself (more precisely, build the MapModel). When
thisisdone, the MapModel will fireaMapModel Event . Many other widgets wait for this moment
to initialize themselves, as they often require the MapMbdel 's contents.

View - rendering

A second responsibility lies in the ability to render shapes. The render () method uses a
Pai nt er Vi si tor to recursively go through Pai nt abl e objects and look for the correct
Pai nter. All Pai nter definitions must be registered in the MapW dget, by means of
the regi sterPainter() and unregisterPainter() methods. Also the full list of
Wor | dPai nt abl es is stored within the MapW dget . For more information regarding the
rendering, using the render method, visit the rendering manual.

As an addition of the Pai nt abl e objectsin screen-space, the definition of a MapAddon has been
created aswell. MapAddons are self regulating pieces of softwarethat arevisible at acertain location
on the map (in screen space!), and optionally have attached behaviour. Examples are the Navigation
buttons and the scale bar.

Controller

32

GWT widgets

To add interactivity to a map, you can add two types of controllers: the G- aphi csControl | er
and the GWT MouseWheel Handl er . For both it is possible to apply a single instance using the
set Control I er () andset MouseWeel Control | er () methods.

Options

On top of the previous list of responsibilities, the map also has a few options that alow certain
functionality to be present or not. The following options are standard:

* navigationAddonEnabled: this option can be configured from within the configuration, and
determines whether or not the navigation MapAddon isvisible. This MapAddon is placed in the
upper left corner of the map and allows the user to pan, zoom in and out, and zoom to maximum
extent.

 scaleBarEnabled: this option can be configured from within the configuration, and determines
whether or not the scale bar is visible. This shows you the scale of the map by means of a bar of
certain length, expressed in the preferred unit type (metric versus English).

» zoomOn<ScrollEnabled: this option determines whether or not the ZoonOnScr ol | Control | er
is active by default. This allows zooming in and out on the map using the mouse wheel.

Figure4.1. MapWidget example

AN

4 b

e

I r]
ey

| 5,000 km | powered by geomajas
3. OverviewMap

The overview map is an extension of the MapW dget, which keeps the overview of a target
MapW dget . It keeps track of the target map's view, and reacts whenever that target map changes
it'sview. TheOver Vi ewivap implementsthe MapVi ewChangedHand! er to track the changes of
it's target map. Asit is an extension of anormal MapW dget , it hasall the functionality of a normal
map. So you can configure layers for an overview map, just as you would for a normal map.

33

GWT widgets

Figure4.2. OverviewM ap example

1§+

| 10,000 km

povvered by geomajas povvered by geormaja:

What can be tricky isto properly configure the bounds of the overview map. In the image above, this
is slightly bigger than the world (which in this case is probably not what you want). The bounds for
the overview map normally usestheinitial bounds as defined on the map. However, when you set the
useTargetM apMaxExtent parameter to true when creating the overview map, following locations are
checked, using the first which was configured:

1. targetMap.maxBounds
2. union of layer extents

The bounds are automatically extended by a percentage. The default is 5%, but this can be configured
when creating the overview map.

4. Toolbar

The Geomgjas tool bar is an extension of the SmartGWT Tool St ri p widget, and alows for
many different widgets to be added to it. A tool bar must be initiaized with an instance of
the MapW dget it is related to. When the MapW dget has successfully initialized itself, it's
MapModel will firethe MapModel Event saying so. Thetool bar reacts on this event by searching
in the map configuration for the correct list of tool bar buttons. The map configuration can
contain tool ids to indicate the tools which need to be added, together with optional parameters.
Using the Tool bar Regi st ry, which contains the mappings between these ids and the relevant
Tool bar Acti on or Tool bar Modal Act i on classes, the tool bar will initialize itself (for more
info; see User Interaction).

Existing tools which can be defined include:

 EditMode: a ToolbarModalAction for editing on the map. Allows the user to create new objectsin
the selected layer, and allows updating and deleting of selected objects.

» MeasureDistanceMode: a ToolbarM odal Action which allows the user to measure distances on the
map.

» SdlectionMode: alow selecting features either by clicking on them, or by dragging a rectangle,
thus selecting the features which are inside the rectangle. Y ou need an active (vector) layer for the
selection to work. Theright click menu allows clearing the selected features and toggling selection
at the current position. Press shift or control while selecting to add the selection to the previously
selected features. Possible parameters:

GWT widgets

« clickTimeout: when the button it released in less than the number of milliseconds specified here,
then the selection is treated as a click. When it takes longer, it is treated as dragging. Default
is"500" (ms).

« coverageRatio: ratio of the feature which needs to be inside the selected area for the feature to
be selected. When thisis "1.0" then the entire feature needs to be inside the selection rectangle.
Default is"0.7".

 priorityToSelectedLayer: when thisis "true" selection will first check the selected layer, and use
default behaviour only if nothing is found in that layer. Default behaviour is to try al visible
layers, from front to back.

* pixelTolerance: number of pixels of tolerance allowed when trying to select features. The default
pixel toleranceis 5.

Zoomin: zoom in to the map at the location clicked (will be centered), using the zoom factor which
is configured.

* delta: zoom in factor, should be >1 to effectively zoom in.

ZoomOut: zoom out of the map at the location clicked (will be centered), using the zoom factor
which is configured.

 delta: zoom in factor, should be in the]0,1] range to effectively zoom out

PanMode: this action allows you to pan the screen by dragging. When keeping either the shift or
control key down, it isalso possible to indicate an areato zoom into (like ZoomToRectangleMaode).

ZoomToRectangleMode: you can indicate a rectangle (by dragging) and it will zoom to make the
selected area as big as possible while still entirely inside the map widget.

ZoomToSelection: first select some items on the map. After clicking on the the zoomToSelection
button the map will be zoomed so that all selected itemswill fit nicely on the screen.

panToSelection: first select someitems on the map. After clicking on the panToSel ection button the
map will be panned in such away that the center of the selected itemsisin the center of the screen.

ZoomPrevious: go back to the previous zoom level (and location).
ZoomNext: go forward again, cancelling a click on ZoomPrevious.
ScaleSelect: scale select drop-down box.

 precision: precision of the scale. For example using 1000 as precision ensurethevalue"1:12,345"
isdisplayed as "1:12,000".

« significantDigits: maximum number of significant digits to display in the scale. For example
using 3 as value ensures that "1:1,234,567" is displayed as "1:1,230,000".

35

GWT widgets

Figure 4.3. Tool bar example

2|LP)€) 4 52
R

F N
<] [} Zoom to previous map extent.

\¥

16+

[10,000 km povvered by geomajas

5. LayerTree

This widget represents a view on the map model which isfocused on layers. Y ou see the map layers
inatree, just asthey are configured. Accompanied with thisview, there are buttons that define certain
actions on these layers. Originally there are no buttons in this widget, so they have to be added
manually or through configuration. These buttons can either be single actions or selectable buttons
(similar to the Tool bar widget - see User Interaction).

Just like the tool bar, the Layer Tr ee waits for the MapModel to be initialized, and also reacts to
the MapModel Event . Thelayer tree configuration is contained in the map configuration. When the
MapModel Event isfired, theLayer Tr ee will read configuration to know the layer tree structure,
which buttons to include,...

Below you see a screen shot of asimple Layer Tr ee where no layer has been selected (and thus all
the buttons are disabled):

Figure4.4. Layer Treeexample

v || PlE

lactive layer: none

= '.J__j Layers
#- OpenstreetMap (raster)
¥- Rivers (linestring)
#- Lakez (polygon)

- Citiez (point}

Once a layer is selected, the LayerTree will ask al buttons
whether they should be enabled for that layer. For example, the

36

GWT widgets

org. geonmj as.gwt . client.action.layertree. Label Action, which toggles a
layer's labels, is only applicable on vector layers, so if the selected layer is araster layer, that button
will remain disabled. The same Layer Tr ee with a selected layer looks like this:

Figure4.5. Layer Treewith selected layer

-[al%]
& ctive layer: Rivers
=] Layers
=. OpenStrestiap (raster)
- Rivers (linestring)
#- | akes (polygan) %

- Citiez (point)

The Layer Tr ee has few public methods, but it does quite a lot behind the screen. The tree
is a SmartGWT TreeG i d, where the Layer Tr ee adds handlers to the nodes and leaves
(using Leaf O i ckHandl er and Fol der C i ckHandl er), which trigger layer selection in the
MapModel . TheLayer Tr ee alsolistensto layer selection events, to adjust it's own appearance. For
example, when alayer is selected, the proper node has to be selected and al the buttons updated.

The Layer TreeAct i on and Layer Tr eeModal Act i on are aso specificaly designed to cope
with the different stages that they should be able to display. TheLayer Tr eeMbdal Act i on canbe
disabled, enabled and selected or enabled and deselected. For each it isimperative that clear markings
are given. This means that different icons are usually used for the different stages. These different
icons should be given to the actions at construction time.

Currently the following actions are defined:

* org.geomajas.gwt.client.action.layertree.VisibleAction: a Layer Tr eeMbdal Acti on that
switches the visible flag on the selected layer.

» org.geomajas.gwt.client.action.layertree.LabelAction: a Layer TreeModal Action that
switches the display of labels for the selected layer.

* org.geomajas.gwt.client.action.layertree.LayerRefreshAction: a Layer TreeAction that
refreshes the selected layer on click.

6. Legend

The Legend isagraphical widget that shows all stylesfor the currently visible vector layers. In that
sense it is another view on the map model that only shows the style definitions that are currently
relevant. Just like the map widget, the legend is built on G aphi csW dget . It reads the available
layers from the map model and draws alegend to match the style of these layers.

37

GWT widgets

Figure 4.6. Legend

& DpenStrestiap (raster)

"2‘,_ Rivers
. Lakes

B Citie=: population = 1000000
B Citiez: population = 500000
B Citiez: population = 100000
B Citiez: population <= 100000

7. FeatureListGrid

TheFeat ur eLi st G i d isatablelisting the attributes of features within asingle vector layer. Each
feature is represented by arow in the grid, with at the top a header that shows the attribute label, as
configured in the configuration. As only vector layers can contain features, the grid will be empty
for raster layers.

TheFeat ur eLi st G i d hasafew options that determine it's behaviour and appearance:

selectionEnabled: enables or disables selection of features when selecting arow in the table. When
thisisenabled, thetable will keep feature sel ection consistent with the map model. If the user selects
arow, the feature will also be selected on the map.

allAttributesDisplayed: show all attributes (true) or only the ‘identifying' attributes (false)?
Attributes can be configured as"identifying" in the configuration. Thisdifference allowsfor aselect
list of attributes to be visible in the grid, keeping overview. The user can always ask more details
by double clicking the line.

editingEnabled: determines whether or not editing the attributes is allowed. When double clicking
arow in the table, a Feat ur eAt t ri but eW ndow will appear, containing the feature of the
selected row. This setting determines if that window allows editing or not.

idinTable: show the feature's id in the table. This is false by default, and should not really be
necessary.

This table is an extension of the SmartGWT Li st Gi d widget. It automatically has grouping,
filtering and sorting abilities (and muchmore...). TheFeat ur eLi st G i d makesit possibleto easily
display features. Y ou have to set the layer from which to display features. Then you can add features
one by one. If no layer is set, then then "addFeat ur e" method will not add any rows to the table.
Setting the layer will automatically create the grid header, using the layer's attribute definitions.

38

GWT widgets

Figure4.7. FeatureListGrid example

MName
Gabon
Libwa
Algeria
Migeria
Botzwana
Burkina Faso
Ivory Coast
Mozambigue
Angola
Zambia
Cameroon

Congo

Label
=B
LY

Region

Middle Africa
MNorthern Africa
Worthern Africa
Western Africa
Southern Africa
Western Africa
Western Africa
Eastern Africa
Middle Africa
Eastern Africa
Middle Africa

Middle Africa

OPEC

UNESCO

[»]

8. FeatureAttributeWindow

TheFeat ur eAtt ri but eW ndowisafloating window to display and enable editing of afeature's
attributes and persist these changes. ThiswidgetisaFeat ur eAt t ri but eEdi t or with someextra
buttons like "save". When setting a feature, it first makes a clone so you are not editing the feature
directly and changes are only applied when the save is clicked. This widget also checks whether or

not all fields are valid, and will not allow saving when at least one of the fieldsis not valid.

TheFeat ur eAt t ri but eW ndow has the following options:

« editingAllowed: is editing allowed? This must be set before the widget is actually drawn.

* editingEnabled: is editing currently enabled or not? This widget can toggle this value on the fly.
When editing isenabled, it will display an editable attribute form with save, cancel and reset buttons.
When editing is not enabled, these buttons will disappear, and asimple attribute form is shown that
displaystheattribute values, but does not allow editing. Thiseffect only workswhen editingAllowed

istrue.

Below is a screen shot of a Feat ur eAtt ri but eW ndow with editing allowed but not enabled.
Without the editing allowed, therewould be now "edit" button. The button itself triggers setting editing

enabled.

39

GWT widgets

Figure 4.8. Featur eAttributeWIndow, editing allowed but not enabled

Feature Detail - beant x

|0 Zoomto object || Edit |

String
attribute : beant

Boolean attribute

Currency

7
attribute : 100,23

Date -
attributs : Feb 2 2010 '—'I

Float
attribute :

456739001 46484375

ﬂ geomajas

Integer

78
attributs :

o

Short
attribute :

URL
attributs :

123

hitp.diw ww. geomajas.orgl

9. ActivityMonitor

This widget monitors client-server communication traffic, and displays that activity to the end-user.
It's purpose is inform the user that a server request is in progress. For example, when the user zooms
in, it can sometimes take afew seconds before everything is redrawn. Thiswidget displaysthat traffic
by listening to the Gm CommrandDi spat cher events. On the screen shot below, you can see the
difference between it being passive and active:

Figure4.9. ActivityMonitor example
L e _abiODUSY e . Contacting server
10. ScaleSelect

Combo box for changing the scale on the map which can be added to a tool bar. It displays a list
of possible scales to choose from, but also alows the user to type a specific scale. The scale select
is constructed with a MapVi ew as parameter. If this MapVi ew contains pre-configured resolutions
(zoom-steps - these can be set in the configuration), than the scale select will allow selection from
these scales. If no resolutions are present, the scale select will automatically choose relevant scales
to choose from.

Using theset Scal es() method, one can always override the list of scalesin the widget.

The setPrecision() and setSignificantDigits() methods allow you to configure the rounding which is
applied on the displayed scale values.

40

GWT widgets

Figure 4.10. ScaleSelect example

73,857,339 ||
. 2,500,000

- 50,000,000 [

: 100,000,000

Eahama
Mexico ksand Eaicos Is

| 2,000 km | S p-cuwered .by geomajas

11. FeatureSearch

Widget that supports searching for features on the attributes. Requires a value for
manual Layer Sel ecti on at construction time. If true, a select box will be shown so the user can
select what layer to searchin. The possiblelist of layers consists of all thevector layersthat are present
in the map model. If false, thiswidget will search in the currently selected layer.

When the "search" button is indicated, the search will be performed server-side. When the result
returns, a Sear chEvent isfired. This event holds a reference to the Vect or Layer in which the
search took place, and a list of al the features that were found. In order to do something with the
results (such as displaying in a Feat ur eLi st Gri d), add a Sear chHandl er . For the specific
case of displaying thefeatureinaFeat ur eLi st G'i d, thereisaDef aul t Sear chHandl er that
already doesthis.

Note that thereisalimit to the number of features that are returned. By default thislimit is set to 100.

Modify maxi munResul t Si ze to change this. Note that a high limit can have a serious impact on
performance and memory consumption!

Figure 4.11. FeatureSear ch example

Search in layer : [Countries of Africa w | &8 Search
{" Matches one {* Matches all o

Aftribute Operator Value

Name w | | contains v| 7 |i =]

41

Chapter 5. How-to

1. How to set the size of feature attribute
windows

By default, the size of the feature attribute windows are determined automatically.

If your features have alot of attributes this may not be ideal. You can force the size of the feature
attribute windows using the WidgetLayout class. Add something like the following in your GWT
entrypoint class:

public void onModul eLoad() {
/1l force a fixed height to feature attribute w ndows,
/1 preventing them from becom ng too big
W dget Layout . f eat ureAttri but eW ndowHei ght =
W ndow. get C i ent Hei ght () - W dget Layout.w ndowCf f set * 4;
W dget Layout . f eat ureAttri but eW ndowW dth = 470;

42

	Geomajas GWT face
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. GWT face architecture
	1. Client-server communication
	2. The map's model
	2.1. MapModel
	2.2. MapView
	2.3. Workflow
	2.4. Selection of features

	3. The spatial package
	3.1. Geometry definitions
	3.2. Editing geometries
	3.3. Snapping

	4. Graphics & rendering
	4.1. GFX interfaces
	4.2. Rendering manual
	4.2.1. The simple approach - indirect drawing
	4.2.1.1. Drawing in screen space
	4.2.1.2. Drawing in world space

	4.2.2. The advanced approach - using the GraphicsContext directly

	5. User interaction
	5.1. Toolbar: ToolbarAction
	5.2. Toolbar: ToolbarModalAction
	5.3. LayerTree: LayerTreeAction
	5.4. LayerTree: LayerTreeModalAction
	5.5. Menu: MenuAction
	5.6. Controllers on the map
	5.6.1. GraphicsController
	5.6.2. Active and fallback controllers

	5.7. Addons on the map
	5.8. Listeners on the map
	5.9. Changing the cursor on the map

	6. Internationalization in Geomajas
	7. Styling and skinning
	8. Unit testing GWT widgets
	9. Creating (custom) feature forms
	9.1. Using custom form items within a FeatureForm
	9.2. Using custom form items for association attributes
	9.3. Creating a custom FeatureForm

	Chapter 3. Configuration
	1. Dependencies
	2. web.xml
	3. Build steps

	Chapter 4. GWT widgets
	1. GraphicsWidget
	2. MapWidget
	3. OverviewMap
	4. Toolbar
	5. LayerTree
	6. Legend
	7. FeatureListGrid
	8. FeatureAttributeWindow
	9. ActivityMonitor
	10. ScaleSelect
	11. FeatureSearch

	Chapter 5. How-to
	1. How to set the size of feature attribute windows

