Geomajas pureGWT face

Geomajas Developers and Geosparc

Geomajas pureGWT face
by Geomajas Developers and Geosparc

1.0.0-M1
Copyright © 2011-2012 Geosparc nv

Table of

1. Introduction ..

Contents

O I o T o T T | PP

2. MODIIE VS UESKIOP ..ovuieiii e e e e e e e

2. PUreGWT faCe @rChiteCIUNE i
1. Thecentral Map APl ... e e

R (V= o oS 0 PP PTPRR

L2, VIBWPOIT ..

1.3 LayersMOOE!ciieieii e

R I Y=

2. Events ..

3. Graphics & RENAENNGcvvuiiii e eaes
3.1. WOrldSpace VS SCrEENSPACEuvvuneiiieeeiee et e eee e e e e e e e e et e e e e e e eaenas
3.2. VectorObjectContainers & VectorObjeCtSc.uuvvvvnieiiiieiii i ee e,
TG I V=0 [T (o[P
4, GEOMELTY MAaNIPUIBLION ...eevueei et ee e e e e e e e e e e e et e et e e eaneeeees
4.1, Geometry defiNitioNScuuiiiii i
S o - = o= P
5. User INteraCtion on the Mapuiiiiiiiiii e e e e e
L300 O V=0 @0 L =
LI V= o I == P
6. Client/Server COMMUNICELIONuiieiii et e et e e e et e e e e e e ere e

3. Configuration

T = o= o = = SN

2. web.xml

G = U o 1= o1

4. GWT widgets

5. How-to

List of Tables

A8t |V o T Y= 01
2.2. VIBIWPOIT BEVENTS ...uiiiiiiiiii ettt et e e et e e e et e et e e e e eens
G T I (< g Y |
2.4, FEAIUNE EVENES ...ttt ettt e e e e e e an

Chapter 1. Introduction

The PureGWT faceisan AJAX client for the Geomajas Server, based upon the Google Web Toolkit.
The goal of thisclient isto be as light as possible, so it can easily run on mobile devices.

Contrary to the GWT face, thisface provides only one widget: the map. It does not come with awidget
library either. It focusesentirely on providing aclean GISAPI. In asensethisfaceis somewhat similar
to the Google Maps API, except that it still relies on the Geomajas server.

1. Thin client

Since the Geomajas Server is perfectly capable of safeguarding your domain model or executing
complex tasks, this client can focus more on the map presentation than business logic. This aready
makes the PureGWT face areal thin client. Take also the use of the Google Web Toolkit (GWT) into
account and this client becomes even thinner.

The Google Web Toolkit is a Java to JavaScript compiler, that compiles only the code that you're
actually using. So instead of having to download entire JavaScript libraries of which you're only using
asmall portion, a GWT application contains only code that is actually used. Secondly, GWT provides
alot of tools for further optimizing the way your applications are constructed. It provides automatic
obfuscation, resource bundling (combining resources so that less requests are needed to loads them
al), etc.

As aresult of al this optimization, the memory consumption within the browser is also kept at a
minimum, while performance is kept at maximum.

2. Mobile vs desktop

Although aimed towards mobile devices, the PureGWT faceis perfectly suitable for both desktop and
mobile environments. As mentioned above, the initia footprint is as small as possible (easily afactor
10 smaller than other frameworks). On top of this, the PureGWT face is also designed to keep client-
server bandwidth to aminimum, by providing caching mechanisms, lazy loading, etc.

Chapter 2. PureGWT face architecture

This part of the documentation describes the main architecture and API of the PureGWT face for
Geomajas. For actual code examples or more detail on how to use them, visit the "HowTo" guide.

1. The central Map API

This section describes the interfaces of the most crucia object definitions within the API: those that
make up the central map model. Central in al this, isthe MapPr esent er . Thisisthe interface that
represents a map in Geomajas. This MapPr esent er in turn provides 2 very important interfaces
through getters: the Vi ewPor t and the Layer shbdel .

Quickly speaking, the Vi ewPor t provides methods and events for changes in the viewing area of
the map. In other words, it determines the map's navigation. The Layer sMbdel on the other hand
iswhat it's name implies: amodel that governs a set of layers.

1.1. MapPresenter

The MapPresenter represents the central map interface and as such it determines the map's
functionalities. It provides support for many of the topics that are discussed in the following sections,
such as MapControllers or an EventBus.

1.2. ViewPort

The Vi ewPor t can be seen of as the navigator behind the map. It manages the map's navigation
(by making it zoom or pan) and sends the required events. On top of that, the Vi ewPor t aso has
a second responsibility in providing transformations between "WorldSpace" and "ViewSpace" (visit
the WorldSpace vs ScreenSpace section for more information).

1.3. LayersModel

Also part of the central map model, is a separate interface for managing all the layers of the map. As
istypically the case in GIS, people work not just with one type of data, but with many different types
that are all represented by "layers' in amap. These layers always have a certain order in which they
are drawn, asthey lie on top of each other.

This model provides methods to add and remove layers, to change layer order, to retrieve layer
information etc. Most changesin the layer model will trigger some event that can always be captured.

1.4. Layers

As many different types of layers exist all with their own specific set of functionalities, we have
decided to reflect thisdiversity inthelayer interface, by splitting it upin multiple ‘functional interfaces.
Thereis gtill amain Layer interface, which must always be implemented, but layer implementation
can decide for themselves which of the 'functional’ interfaces they support and which they don't.

2. Events

Associated with the functionalitiesin the central map interfaces, are several eventsthat signal changes
in the model to all registered handlers. Note that the term Handl er is used, not listener, as we try
to follow the GWT naming conventions. As of GWT 2., the use of a central Event Bus has been
promoted to work together with an MV P approach. The PureGWT face has incorporated this train
of thought, and provides a map-centric Event Bus. In other words, every MapPr esent er governs
itsown Event Bus.

PureGWT face architecture

This means that for Handl er s that are registered on such an Event Bus, only events that have
originated within that map will reach it. Here is an example of how one can attach a Handler to an
EventBus:

mapPr esent er . get Event Bus() . addHandl er (MapResi zedEvent . TYPE, new MapResi zedHandl

public void onMapResi zed(MapResi zedEvent event) {
/1 The map has resized. Qick, do somrething meani ngful!
}

1),

In the example above a MapResi zedHandl er was used that listens to MapResi zedEvent s.
From the moment the MapResi zedHandl er has been registered, it will receive al events that
indicate the map has been resized.

Timeto go over al supported events and explain their purpose. Note that every event inthislistis part
of the PureGWT API within Geomajas. All event and handler classes can be found in the following
package: or g. geomgj as. puregwt . cl i ent. map. event.

Map events:

Table2.1. Map Events

Event Handler Description

Mapl nitializationEvent MaplnitializationHandler Event that is fired when the
map has been initialized. Only
after this point will layers be

available.
MapResizedEvent MapResizedHandler Event that is fired when the map
widget has changed size.
ViewPort events:
Table2.2. ViewPort Events
Event Handler Description
ViewPortChangedEvent ViewPortChangedHandler Event that is fired when the map
both zooms and pans at the same
time.
ViewPortDraggedEvent ViewPortChangedHandler Event that is fired when the map
is being panned.
ViewPortScaledEvent ViewPortChangedHandler Event that is fired when the map
zoomsisor out keeping the same
center.
ViewPortTrans atedEvent ViewPortChangedHandler Event that is fired when the map
is being trandlated.
Layer events:
Table2.3. Layer Events
Event Handler Description
LayerAddedEvent MapCompositionHandler Event that is fired when a new
layer has been added to the map.
LayerRemovedEvent MapCompositionHandler Event that is fired when a layer
has been removed from the map.

PureGWT face architecture

Event

Handler

Description

LayerSelectedEvent

LayerSelectionHandler

Event that is fired when a layer
is selected. Only one layer can
be selected at any time, so these
events often go together with
layer deselect events.

LayerDeselectedEvent

LayerSelectionHandler

Event that is fired when a layer
has been desel ected.

LayerHideEvent

LayerVisibilityHandler

Event that is fired when a layer
becomesinvisible.

LayerShowEvent

LayerVisibilityHandler

Event that is fired when a layer
becomes visible.

LayerL abelHideEvent LayerL abeledHandler Event that is fired when the
labels for a layer have been
turned off.

LayerL abel ShowEvent LayerL abeledHandler Event that is fired when the
labels for a layer have been
turned on.

LayerOrderChangedEvent LayerOrderChangedHandler Event that isfired when the layer
order has changed.

LayerStyleChangedEvent LayerStyleChangedHandler Event that is fired when a layer
hasanew style.

Feature events:

Table 2.4. Feature Events

Event Handler Description

FeatureSel ectedEvent FeatureSel ectionHandl er Event that isfired when afeature
has been selected.

FeatureDesel ectedEvent FeatureSel ectionHandl er Event that is fired when
a selected feature has been
deselected again.

3. Graphics & Rendering

This section will handle all rendering related topics, explaining the different render spaces
(WorldSpace versus ScreenSpace), and how to make full advantage of them when trying to render
objects on the map. Finally, the MapGadget will beintroduced, which isan experimental interface for
defining functional gadgets at a fixed location on the map.

3.1. WorldSpace vs ScreenSpace

Before trying to render anything on a map, it is crucia you understand the difference between
WorldSpace and ScreenSpace. Both represent render spaces wherein the user can render his objects.

» WorldSpace: World space describes a rendering space where al objects are expressed in the
coordinate reference system of the map they are drawnin. Asaresult, al objectswithin world space
move about with the view on the map.

Let's say for example that a rectangle is rendered on a map with CRS lon-lat. The rectangle has
origin (118,34) and width and height both equal to 1. Than this rectangle will cover the city of Los

Angeles.

PureGWT face architecture

» ScreenSpace: Screen space describes a rendering space where al objects are expressed in pixels
with the origin in the top left corner of the map. Objects rendered in screen will always occupy a
fixed position on the map. They areimmobile and are not affected by changesin the map view.

Caution

Beware that drawing a great many objects in WorldSpace can slow down an application, as
their positions need to be recalculated every time the map navgates.

3.2. VectorObjectContainers & VectorObjects

For vector object rendering, the PureGWT face makes use of the Vaadin GwtGraphics library. This
library providesall the necessary methodsfor standard SVG and VML rendering. The main interfaces
to note arethe Vect or Gbj ect Cont ai ner and the Vect or Qbj ect .

The VectorObjectContainer is a container object as the name implies and provides methods for
storing and managing VectorObjects. These VectorObjectsin turn are the individual objects (such as
Rectangle, Circle, Path, ...) that can be drawn on the map.

The PureGWT face has extended the VectorObjectContainer to provide a ScreenContainer and a
WorldContainer. As you might have guessed, the ScreenContainer allows you to render objects in
ScreenSpace while the WorldContainer allows you to render objects in WorldSpace.

In order to acquire a ScreenContainer or WorldContainer, all one hasto do is request such a container
with the MapPresenter. This can be done by calling one of the following lines:

/1l Getting a Wirl dContai ner:
Wor | dCont ai ner wor | dCont ai ner = napPresent er. get Wr | dCont ai ner (" myWorl d");

/1l Getting a ScreenCont ai ner:
ScreenCont ai ner screenCont ai ner = mapPresent er. get Scr eenCont ai ner ("nyScreen");

When acquiring such a container, you have to specify a name (see above 'myWorld' or 'myScreen’).
If a container with such aname does not yet exist a new container is created and returned.
TODO: How about removing these containers again? Also add architectural images here.

3.3. MapGadgets

The MapGadget is a standalone functional gadget that can be placed at a fixed position on the map.
Examples are the navigation buttons and the scalebar. MapGadgets are notified of map navigation
events, because they often require updating on those events.

The position of a MapGadget is maintained by the face, but you have to make sure that the container
has a"position: absolute" style.

4. Geometry manipulation

The spatial package (or g. geongj as. puregw . cl i ent. spati al) contains a collection of
math and geometry related classes and utilities to provide all the client-side calculations one should
need. If really complex calculations need to be performed, it's best to let the server handle it anyway.

Next to the expected Geometry definitions (Point, LineString, Polygon, ...) this package also provides
afew mathematical concepts such as aVector, Matrix or LineSegment.

4.1. Geometry definitions

The geometry definitions on the client have been written to resemble the JTS (Java Topology
Suite) geometry definitions. This definition in turn has been based upon the OGC Simple Feture

PureGWT face architecture

Specification. Y ouwill find the same classeswith each roughly the same methods. Themain difference
(beside the package name) is that the methods for complex geometry manipulation are left out.

Supported geometries are:

» Point: ageometry representation of a single coordinate.

» MultiPoint: ageometry containing multiple Point geometries.

e LineString: alist of connected coordinates. Sometimes also called a polyline.

 LinearRing: an extension of the LineString geometry that expects the last coordinate to be equal to
the first coordinate. In other words, a LinearRing is a closed LineString.

» MultiLineString: a geometry containing multiple LineString geometries.

» Polygon: aPolygon isatwo-part geometry, consisting of an exterior LinearRing and alist of interior
LinearRings. The exterior LinearRing, also called the shell, is the outer hull of the geometry, while
the interior rings can be seen as holes in the exterior ring's surface area.

» MultiPolygon: a geometry containing multiple Polygon geometries.

4.2. Spatial services

5. User Interaction on the Map

This section will handle the basics of interacting with the map, by listening and responding to the
mouse events that are generated from the map. Instead of dealing with those mouse events directly,
2 interfaces have been created to shield you from having to attach the correct handlers to the correct
DOM elementsinthe HTML tree.

Note

If you want fine tuned control and attach custom mouse event handlers to custom objects on
the map, have alook at the Graphics & Rendering section.

This section here handles the interface that help shield you from such fine tuned but
cumbersome mouse event handling.

Thenext 2 sectionswill cover thefollowing 2 basicinterfaces: the MapController and the MapL istener.

5.1. MapController

The MapController is an interface which listensto all mouse events that comes from the map (mouse
up, mouse down, mouse move, ...) and has the possibility to react directly onto receiving such events.
The MapController basically has al the freedom in the world to manipulate and manage the state of
the map as events are being received.

For example, it could prevent the default mouse event behaviour or even prevent event bubbling. But
because the MapController has such freedom only one can be active at atime.

An example of a MapController is the NavigationController which allows the user to navigate all
around the map.

5.2. MapListener

The other way of interacting with the map, is through MapListeners. A MapListener resembles a
MapController quite alot, except that it does not receive the real mouse events, but imitations of it. It
therefore can not interfere with the normal browser event flow, but takes on a more passive form.

PureGWT face architecture

Asaresult, multiple MapL isteners can be active on amap at any onetime. The MapListener iswould
therefore be the perfect tool for reporting or reacting without interfering, while a MapController is
all about the interference.

6. Client/Server communication

Chapter 3. Configuration

In order to usethe PureGWT facein your web application, there are afew stepsyou need to take. These
include adding the correct libraries to your project, configuring the web.xml to set up the Geomajas
Communication Service, and setting up the GWT module configuration.

1. Dependencies
2. web.xml

3. Build steps

Chapter 4. GWT widgets

Chapter 5. How-to

10

	Geomajas pureGWT face
	Table of Contents
	Chapter 1. Introduction
	1. Thin client
	2. Mobile vs desktop

	Chapter 2. PureGWT face architecture
	1. The central Map API
	1.1. MapPresenter
	1.2. ViewPort
	1.3. LayersModel
	1.4. Layers

	2. Events
	3. Graphics & Rendering
	3.1. WorldSpace vs ScreenSpace
	3.2. VectorObjectContainers & VectorObjects
	3.3. MapGadgets

	4. Geometry manipulation
	4.1. Geometry definitions
	4.2. Spatial services

	5. User Interaction on the Map
	5.1. MapController
	5.2. MapListener

	6. Client/Server communication

	Chapter 3. Configuration
	1. Dependencies
	2. web.xml
	3. Build steps

	Chapter 4. GWT widgets
	Chapter 5. How-to

