
Geomajas pureGWT face

Geomajas Developers and Geosparc

Geomajas pureGWT face
by Geomajas Developers and Geosparc

1.0.0-M2
Copyright © 2011-2012 Geosparc nv

iii

Table of Contents
1. Introduction .. 1

1. Thin client ... 1
2. Mobile vs desktop ... 1

2. PureGWT face architecture ... 2
1. The central Map API ... 2

1.1. MapPresenter ... 2
1.2. ViewPort ... 2
1.3. LayersModel .. 2
1.4. Layers ... 2

2. Events ... 2
3. Graphics & Rendering .. 4

3.1. WorldSpace vs ScreenSpace ... 4
3.2. VectorObjectContainers & VectorObjects .. 5
3.3. MapGadgets ... 5

4. Geometry manipulation .. 5
4.1. Geometry definitions ... 5
4.2. Spatial services ... 6

5. User Interaction on the Map .. 6
5.1. MapController .. 6
5.2. MapListener ... 6

6. Client/Server communication ... 7
3. Configuration ... 8

1. Dependencies .. 8
2. web.xml ... 8
3. Build steps ... 8

4. GWT widgets ... 9
5. How-to .. 10

iv

List of Tables
2.1. Map Events ... 3
2.2. ViewPort Events ... 3
2.3. Layer Events .. 3
2.4. Feature Events ... 4

1

Chapter 1. Introduction
The PureGWT face is an AJAX client for the Geomajas Server, based upon the Google Web Toolkit.
The goal of this client is to be as light as possible, so it can easily run on mobile devices.

Contrary to the GWT face, this face provides only one widget: the map. It does not come with a widget
library either. It focuses entirely on providing a clean GIS API. In a sense this face is somewhat similar
to the Google Maps API, except that it still relies on the Geomajas server.

1. Thin client
Since the Geomajas Server is perfectly capable of safeguarding your domain model or executing
complex tasks, this client can focus more on the map presentation than business logic. This already
makes the PureGWT face a real thin client. Take also the use of the Google Web Toolkit (GWT) into
account and this client becomes even thinner.

The Google Web Toolkit is a Java to JavaScript compiler, that compiles only the code that you're
actually using. So instead of having to download entire JavaScript libraries of which you're only using
a small portion, a GWT application contains only code that is actually used. Secondly, GWT provides
a lot of tools for further optimizing the way your applications are constructed. It provides automatic
obfuscation, resource bundling (combining resources so that less requests are needed to loads them
all), etc.

As a result of all this optimization, the memory consumption within the browser is also kept at a
minimum, while performance is kept at maximum.

2. Mobile vs desktop
Although aimed towards mobile devices, the PureGWT face is perfectly suitable for both desktop and
mobile environments. As mentioned above, the initial footprint is as small as possible (easily a factor
10 smaller than other frameworks). On top of this, the PureGWT face is also designed to keep client-
server bandwidth to a minimum, by providing caching mechanisms, lazy loading, etc.

2

Chapter 2. PureGWT face architecture
This part of the documentation describes the main architecture and API of the PureGWT face for
Geomajas. For actual code examples or more detail on how to use them, visit the "HowTo" guide.

1. The central Map API
This section describes the interfaces of the most crucial object definitions within the API: those that
make up the central map model. Central in all this, is the MapPresenter. This is the interface that
represents a map in Geomajas. This MapPresenter in turn provides 2 very important interfaces
through getters: the ViewPort and the LayersModel.

Quickly speaking, the ViewPort provides methods and events for changes in the viewing area of
the map. In other words, it determines the map's navigation. The LayersModel on the other hand
is what it's name implies: a model that governs a set of layers.

1.1. MapPresenter
The MapPresenter represents the central map interface and as such it determines the map's
functionalities. It provides support for many of the topics that are discussed in the following sections,
such as MapControllers or an EventBus.

1.2. ViewPort
The ViewPort can be seen of as the navigator behind the map. It manages the map's navigation
(by making it zoom or pan) and sends the required events. On top of that, the ViewPort also has
a second responsibility in providing transformations between "WorldSpace" and "ViewSpace" (visit
the WorldSpace vs ScreenSpace section for more information).

1.3. LayersModel
Also part of the central map model, is a separate interface for managing all the layers of the map. As
is typically the case in GIS, people work not just with one type of data, but with many different types
that are all represented by "layers" in a map. These layers always have a certain order in which they
are drawn, as they lie on top of each other.

This model provides methods to add and remove layers, to change layer order, to retrieve layer
information etc. Most changes in the layer model will trigger some event that can always be captured.

1.4. Layers
As many different types of layers exist all with their own specific set of functionalities, we have
decided to reflect this diversity in the layer interface, by splitting it up in multiple 'functional' interfaces.
There is still a main Layer interface, which must always be implemented, but layer implementation
can decide for themselves which of the 'functional' interfaces they support and which they don't.

2. Events
Associated with the functionalities in the central map interfaces, are several events that signal changes
in the model to all registered handlers. Note that the term Handler is used, not listener, as we try
to follow the GWT naming conventions. As of GWT 2.x, the use of a central EventBus has been
promoted to work together with an MVP approach. The PureGWT face has incorporated this train
of thought, and provides a map-centric EventBus. In other words, every MapPresenter governs
it's own EventBus.

PureGWT face architecture

3

This means that for Handlers that are registered on such an EventBus, only events that have
originated within that map will reach it. Here is an example of how one can attach a Handler to an
EventBus:

mapPresenter.getEventBus().addHandler(MapResizedEvent.TYPE, new MapResizedHandler() {

 public void onMapResized(MapResizedEvent event) {
 // The map has resized. Quick, do something meaningful!
 }
});

In the example above a MapResizedHandler was used that listens to MapResizedEvents.
From the moment the MapResizedHandler has been registered, it will receive all events that
indicate the map has been resized.

Time to go over all supported events and explain their purpose. Note that every event in this list is part
of the PureGWT API within Geomajas. All event and handler classes can be found in the following
package: org.geomajas.puregwt.client.map.event.

Map events:

Table 2.1. Map Events

Event Handler Description

MapInitializationEvent MapInitializationHandler Event that is fired when the
map has been initialized. Only
after this point will layers be
available.

MapResizedEvent MapResizedHandler Event that is fired when the map
widget has changed size.

ViewPort events:

Table 2.2. ViewPort Events

Event Handler Description

ViewPortChangedEvent ViewPortChangedHandler Event that is fired when the map
both zooms and pans at the same
time.

ViewPortDraggedEvent ViewPortChangedHandler Event that is fired when the map
is being panned.

ViewPortScaledEvent ViewPortChangedHandler Event that is fired when the map
zooms is or out keeping the same
center.

ViewPortTranslatedEvent ViewPortChangedHandler Event that is fired when the map
is being translated.

Layer events:

Table 2.3. Layer Events

Event Handler Description

LayerAddedEvent MapCompositionHandler Event that is fired when a new
layer has been added to the map.

LayerRemovedEvent MapCompositionHandler Event that is fired when a layer
has been removed from the map.

PureGWT face architecture

4

Event Handler Description

LayerSelectedEvent LayerSelectionHandler Event that is fired when a layer
is selected. Only one layer can
be selected at any time, so these
events often go together with
layer deselect events.

LayerDeselectedEvent LayerSelectionHandler Event that is fired when a layer
has been deselected.

LayerHideEvent LayerVisibilityHandler Event that is fired when a layer
becomes invisible.

LayerShowEvent LayerVisibilityHandler Event that is fired when a layer
becomes visible.

LayerLabelHideEvent LayerLabeledHandler Event that is fired when the
labels for a layer have been
turned off.

LayerLabelShowEvent LayerLabeledHandler Event that is fired when the
labels for a layer have been
turned on.

LayerOrderChangedEvent LayerOrderChangedHandler Event that is fired when the layer
order has changed.

LayerStyleChangedEvent LayerStyleChangedHandler Event that is fired when a layer
has a new style.

Feature events:

Table 2.4. Feature Events

Event Handler Description

FeatureSelectedEvent FeatureSelectionHandler Event that is fired when a feature
has been selected.

FeatureDeselectedEvent FeatureSelectionHandler Event that is fired when
a selected feature has been
deselected again.

3. Graphics & Rendering
This section will handle all rendering related topics, explaining the different render spaces
(WorldSpace versus ScreenSpace), and how to make full advantage of them when trying to render
objects on the map. Finally, the MapGadget will be introduced, which is an experimental interface for
defining functional gadgets at a fixed location on the map.

3.1. WorldSpace vs ScreenSpace
Before trying to render anything on a map, it is crucial you understand the difference between
WorldSpace and ScreenSpace. Both represent render spaces wherein the user can render his objects.

• WorldSpace: World space describes a rendering space where all objects are expressed in the
coordinate reference system of the map they are drawn in. As a result, all objects within world space
move about with the view on the map.

Let's say for example that a rectangle is rendered on a map with CRS lon-lat. The rectangle has
origin (118,34) and width and height both equal to 1. Than this rectangle will cover the city of Los
Angeles.

PureGWT face architecture

5

• ScreenSpace: Screen space describes a rendering space where all objects are expressed in pixels
with the origin in the top left corner of the map. Objects rendered in screen will always occupy a
fixed position on the map. They are immobile and are not affected by changes in the map view.

Caution

Beware that drawing a great many objects in WorldSpace can slow down an application, as
their positions need to be recalculated every time the map navgates.

3.2. VectorObjectContainers & VectorObjects
For vector object rendering, the PureGWT face makes use of the Vaadin GwtGraphics library. This
library provides all the necessary methods for standard SVG and VML rendering. The main interfaces
to note are the VectorObjectContainer and the VectorObject.

The VectorObjectContainer is a container object as the name implies and provides methods for
storing and managing VectorObjects. These VectorObjects in turn are the individual objects (such as
Rectangle, Circle, Path, ...) that can be drawn on the map.

The PureGWT face has extended the VectorObjectContainer to provide a ScreenContainer and a
WorldContainer. As you might have guessed, the ScreenContainer allows you to render objects in
ScreenSpace while the WorldContainer allows you to render objects in WorldSpace.

In order to acquire a ScreenContainer or WorldContainer, all one has to do is request such a container
with the MapPresenter. This can be done by calling one of the following lines:

// Getting a WorldContainer:
WorldContainer worldContainer = mapPresenter.getWorldContainer("myWorld");

// Getting a ScreenContainer:
ScreenContainer screenContainer = mapPresenter.getScreenContainer("myScreen");

When acquiring such a container, you have to specify a name (see above 'myWorld' or 'myScreen').
If a container with such a name does not yet exist a new container is created and returned.
TODO: How about removing these containers again? Also add architectural images here.

3.3. MapGadgets
The MapGadget is a standalone functional gadget that can be placed at a fixed position on the map.
Examples are the navigation buttons and the scalebar. MapGadgets are notified of map navigation
events, because they often require updating on those events.

The position of a MapGadget is maintained by the face, but you have to make sure that the container
has a "position: absolute" style.

4. Geometry manipulation
The spatial package (org.geomajas.puregwt.client.spatial) contains a collection of
math and geometry related classes and utilities to provide all the client-side calculations one should
need. If really complex calculations need to be performed, it's best to let the server handle it anyway.

Next to the expected Geometry definitions (Point, LineString, Polygon, ...) this package also provides
a few mathematical concepts such as a Vector, Matrix or LineSegment.

4.1. Geometry definitions
The geometry definitions on the client have been written to resemble the JTS (Java Topology
Suite) geometry definitions. This definition in turn has been based upon the OGC Simple Feture

PureGWT face architecture

6

Specification. You will find the same classes with each roughly the same methods. The main difference
(beside the package name) is that the methods for complex geometry manipulation are left out.

Supported geometries are:

• Point: a geometry representation of a single coordinate.

• MultiPoint: a geometry containing multiple Point geometries.

• LineString: a list of connected coordinates. Sometimes also called a polyline.

• LinearRing: an extension of the LineString geometry that expects the last coordinate to be equal to
the first coordinate. In other words, a LinearRing is a closed LineString.

• MultiLineString: a geometry containing multiple LineString geometries.

• Polygon: a Polygon is a two-part geometry, consisting of an exterior LinearRing and a list of interior
LinearRings. The exterior LinearRing, also called the shell, is the outer hull of the geometry, while
the interior rings can be seen as holes in the exterior ring's surface area.

• MultiPolygon: a geometry containing multiple Polygon geometries.

4.2. Spatial services

5. User Interaction on the Map
This section will handle the basics of interacting with the map, by listening and responding to the
mouse events that are generated from the map. Instead of dealing with those mouse events directly,
2 interfaces have been created to shield you from having to attach the correct handlers to the correct
DOM elements in the HTML tree.

Note

If you want fine tuned control and attach custom mouse event handlers to custom objects on
the map, have a look at the Graphics & Rendering section.

This section here handles the interface that help shield you from such fine tuned but
cumbersome mouse event handling.

The next 2 sections will cover the following 2 basic interfaces: the MapController and the MapListener.

5.1. MapController
The MapController is an interface which listens to all mouse events that comes from the map (mouse
up, mouse down, mouse move, ...) and has the possibility to react directly onto receiving such events.
The MapController basically has all the freedom in the world to manipulate and manage the state of
the map as events are being received.

For example, it could prevent the default mouse event behaviour or even prevent event bubbling. But
because the MapController has such freedom only one can be active at a time.

An example of a MapController is the NavigationController which allows the user to navigate all
around the map.

5.2. MapListener
The other way of interacting with the map, is through MapListeners. A MapListener resembles a
MapController quite a lot, except that it does not receive the real mouse events, but imitations of it. It
therefore can not interfere with the normal browser event flow, but takes on a more passive form.

PureGWT face architecture

7

As a result, multiple MapListeners can be active on a map at any one time. The MapListener is would
therefore be the perfect tool for reporting or reacting without interfering, while a MapController is
all about the interference.

6. Client/Server communication

8

Chapter 3. Configuration
In order to use the PureGWT face in your web application, there are a few steps you need to take. These
include adding the correct libraries to your project, configuring the web.xml to set up the Geomajas
Communication Service, and setting up the GWT module configuration.

1. Dependencies

2. web.xml

3. Build steps

9

Chapter 4. GWT widgets
...

10

Chapter 5. How-to

	Geomajas pureGWT face
	Table of Contents
	Chapter 1. Introduction
	1. Thin client
	2. Mobile vs desktop

	Chapter 2. PureGWT face architecture
	1. The central Map API
	1.1. MapPresenter
	1.2. ViewPort
	1.3. LayersModel
	1.4. Layers

	2. Events
	3. Graphics & Rendering
	3.1. WorldSpace vs ScreenSpace
	3.2. VectorObjectContainers & VectorObjects
	3.3. MapGadgets

	4. Geometry manipulation
	4.1. Geometry definitions
	4.2. Spatial services

	5. User Interaction on the Map
	5.1. MapController
	5.2. MapListener

	6. Client/Server communication

	Chapter 3. Configuration
	1. Dependencies
	2. web.xml
	3. Build steps

	Chapter 4. GWT widgets
	Chapter 5. How-to

