
Geomajas pureGWT face

Geomajas Developers and Geosparc

Geomajas pureGWT face
by Geomajas Developers and Geosparc

1.0.0-M5
Copyright © 2011-2012 Geosparc nv

iii

Table of Contents
1. Introduction .. 1

1. Thin client ... 1
2. Mobile vs desktop ... 1

2. Architecture .. 2
1. The central Map API ... 2

1.1. GIN: GWT injection ... 2
1.2. The Geomajas map: MapPresenter ... 2
1.3. Map initialization .. 3
1.4. Adding the map to the GWT layout ... 3
1.5. Map configuration & MapHints ... 4
1.6. Managing the view on the map ... 4
1.7. Layer composition .. 5
1.8. Layer API ... 5

2. Events ... 7
2.1. Geomajas events versus native events ... 7
2.2. EventBus ... 7
2.3. Event overview .. 8

3. User interaction ... 11
3.1. MapController definition .. 11
3.2. Applying your own MapController on the map ... 12
3.3. Working with events .. 12

4. Graphics & Rendering .. 12
4.1. WorldSpace vs ScreenSpace .. 12
4.2. Rendering containers .. 13
4.3. Drawing geometries on the map ... 14

5. Client/Server communication ... 14
5.1. CommandService .. 14
5.2. Custom client/server communication ... 15

6. Widgets ... 15
6.1. Adding widgets on top of the map .. 15

3. Configuration .. 16
1. Dependencies .. 16
2. web.xml ... 16
3. Build steps ... 16

4. GWT widgets ... 17
5. How-to .. 18

1. Adding a map to a classic GWT layout ... 18
2. Adding a map to a GWT 2.0 layout .. 18
3. How to catch the location of mouse events on the map? .. 18

iv

List of Tables
2.1. Map Events ... 8
2.2. ViewPort Events ... 8
2.3. Layer Events .. 9
2.4. Feature Events .. 10
2.5. Other Events .. 11

1

Chapter 1. Introduction
The PureGWT face is an AJAX client for the Geomajas Server, based upon the Google Web Toolkit.
The goal of this client is to provide a clean mapping API for the web.

1. Thin client
Since the Geomajas Server is perfectly capable of safeguarding your domain model or executing
complex tasks, this client can focus more on the map presentation than business logic. This already
makes the PureGWT face a real thin client. Take also the use of the Google Web Toolkit (GWT) into
account and this client becomes even thinner.

The Google Web Toolkit is a Java to JavaScript compiler, that compiles only the code that you're
actually using. So instead of having to download entire JavaScript libraries of which you're only using
a small portion, a GWT application contains only code that is actually used. Secondly, GWT provides
a lot of tools for further optimizing the way your applications are constructed. It provides automatic
obfuscation, resource bundling (combining resources so that less requests are needed to loads them
all), etc.

As a result of all this optimization, the memory consumption within the browser is also kept at a
minimum, while performance is kept at maximum.

2. Mobile vs desktop
Although aimed towards mobile devices, the PureGWT face is perfectly suitable for both desktop and
mobile environments. As mentioned above, the initial footprint is as small as possible (easily a factor
10 smaller than other frameworks). On top of this, the PureGWT face is also designed to keep client-
server bandwidth to a minimum, by providing caching mechanisms, lazy loading, etc.

2

Chapter 2. Architecture
1. The central Map API

This section describes the the interfaces of the most central object definitions within the API: those that
make up the map model. We start by introducing you to the Gin injection framework, which is used
to create a new map instance. From there on, we delve deeper into the most important map concepts,
such as the layer model and viewport.

1.1. GIN: GWT injection
Before we start describing the API, we need to introduce the GIN injection framework. GIN is
based upon Google's Guice framework, but written specifically for GWT. By using GIN, Geomajas
has a clean separation between interfaces and implementations. It also means that any default
implementation that Geomajas provides can be replace by your own implementations.

1.1.1. GeomajasGinModule and GeomajasGinjector

The configuration that ties implementations to their interfaces is defined in the
org.geomajas.puregwt.client.GeomajasGinModule. Next to this configuration,
Geomajas also provides the org.geomajas.puregwt.client.GeomajasGinjector. The
GeomajasGinjector is a service that provides access to singleton services and a way to create Geomajas
maps. The GeomajasGinjector is also tied to the GeomajasGinModule. That is how it knows which
interface implementations to use.

The GeomajasGinjector is also the only way to correctly create a new Geomajas map:

public static final GeomajasGinjector GEOMAJASINJECTOR = GWT.create(GeomajasGinjector.class);

Note that the GeomajasInjector itself is a singleton service, so you only need to create it once in your
application. It is therefore recommended to create it in your GWT module's EntryPoint. In the code
example above, we have created it as a public static final.

1.1.2. Overriding the default GIN implementations

One of the most important aspects of an injection framework is that one can provide alternative
implementations to be used for the known interface, effectively overriding the default behaviour.

To have your application use your own implementations instead of the Geomajas defaults, you need
to define your own GIN module. It is best to just copy the GeomajasGinModule and only change the
implementations you need to have changed. It is critical not to leave any of the required interfaces
out. After you have your own GIN module, you will need to extend the GeomajasGinjector and have
it point to your own Gin module:

@GinModules(MyCustomGinModule.class)
public interface MyCustomGinjector extends GeomajasGinjector {
}

Then in your application, make sure to use your own injector:

MyCustomGinjector injector = GWT.create(MyCustomGinjector.class);

1.2. The Geomajas map: MapPresenter
The MapPresenter represents the central map interface and as such it determines the map's
functionalities. It provides support for many of the topics that are discussed in the following sections,
such as MapControllers or an EventBus.

Architecture

3

The MapPresenter has the following responsibilities:

• Managing the view on the map: This is done through the ViewPort definition.

• Managing the layers: This is done through the LayersModel definition.

• Providing user interaction through MapControllers: The map has support for one active
MapController for user interaction, and a set of passive map controllers that are allowed to catch
native events, but may not interrupt default event bubbling.

• Event handling: The MapPresenter provides an EventBus through which all specific Geomajas
events pass. You you can react to changes on the ViewPort, or layer composition changes, or, ... A
full list of events is provided in a later section.

• Rendering and custom drawing: Next to the automatic rendering of the layers, the MapPresenter
also provides API for custom rendering. Custom rendering can occur through HTML, VML, SVG
and Canvas.

Before we continue deeper into the map API, let us first show you how to create a new map. The only
way to correctly create a map, is to have the GIN injection framework do it for you. We expect you
have already created the necessary injector in your application (see GIN).

org.geomajas.puregwt.client.map.MapPresenter map = GEOMAJASINJECTOR.getMapPresenter();

1.3. Map initialization
The first thing you'll want to do after you have created your map, is to initialize it by loading a map
configuration, and setting a size. It is important to realize the Geomajas map configuration is stored in
XML format on the server. So when you initialize the map on the client, it will fetch it's configuration
from the server. This of course takes a bit of time. This means that the map in only initialized when
it's configuration has been received from the server.

So, here is an example of how to initialize the map:

map.initialize("application-id", "map-id");
map.setSize(640, 480);

The 2 parameters refer to an application and map definition as defined in the backend Spring
configuration. Next we have set the size for the map.

At this point the map is requesting a configuration from the server. It does not yet know which layers
will be present, what it's initial view on the map will be, what it's CRS is, etc. Often you need to
know when the map has been initialized because, for example, you need the layer objects for some
functionality. For this occasion, there is the MapInitializationEvent:

mapPresenter.getEventBus().addMapInitializationHandler(new MapInitializationHandler() {

 public void onMapInitialized(MapInitializationEvent event) {
 // Do something interesting ...
 }
});

1.4. Adding the map to the GWT layout
In order for the map to display correctly, it must have a size. You either set a fixed size, like we showed
in the previous section, or you let some parent widget determine the size. In any case, the map must
know how large it should be in pixels.

To this end Geomajas provides a widget to incorporate the map into the GWT 2.0 layout system, call
the MapLayout:

Architecture

4

org.geomajas.puregwt.client.widget.MapLayoutPanel mapLayout = new MapLayoutPanel(mapPresenter);

Now add this mapLayout widget to any GWT layout panel, to get the map to fill up the available area.

1.5. Map configuration & MapHints

Of course the MapPresenter has a configuration. The biggest part of a map configuration comes from
the backend. Usually the first task for a newly created map is to fetch such a configuration from the
backend. But the client-side map configuration has more to it than just this back-end counterpart: it
can also be used to get and set MapHints or adjust generic map options, such as animated zooming.

The MapConfiguration can be retrieved as such:

org.geomajas.puregwt.client.map.MapConfiguration mapConfiguration = mapPresenter.getConfiguration();

The configuration has the option to enable or disable animated navigation for each layer individually:

mapConfiguration.setAnimated(myLayer, false);

Next this it's direct getters and setters, the the configuration also has the ability to store and use
MapHints. These MapHints are options used within the map implementation. All MapHints are
defined to only accept a certain type of value through Java's generic types:

mapConfiguration.setMapHintValue(MapHint<T> hint, T value);

By default the following MapHints are defined:

• MapConfiguration.ANIMATION_ENABLED: This setting completely enables or disabled animated
navigation on the map.

• MapConfiguration.ANIMATION_TIME: This setting determines how long animated navigation
should last (expressed in milliseconds).

This is an example of how one would disable animated navigation:

mapConfiguration.setMapHintValue(MapConfiguration.ANIMATION_ENABLED, false);

1.6. Managing the view on the map

1.6.1. The ViewPort

One of the most important concepts within a map is it's position and how to navigate from one place
to another. Most of the time it will be the user that determines navigation through a controller on the
map (mouse or touch). Sometimes though it might be necessary to have the map navigate to some pre-
defined location through code.

The whole navigation and positioning concept is bundled within the ViewPort. The ViewPort can be
accessed directly from the MapPresenter:

org.geomajas.puregwt.client.map.ViewPort viewPort = mapPresenter.getViewPort();

Through the ViewPort one can get the current map position:

org.geomajas.geometry.Coordinate position = viewPort.getPosition();
org.geomajas.geometry.Bbox bounds = viewPort.getBounds();
double scale = viewPort.getScale();
String crs = viewPort.getCrs();

Architecture

5

Next to acquiring current location, you can also force the map to navigate to a certain location:

viewPort.applyPosition(new Coordinate(0,0));
viewPort.applyScale(0.01);
viewPort.applyBounds(new Bbox(0,0,100,100));

1.6.2. Rendering spaces

The ViewPort can be seen as the navigator behind the map. It manages the map's navigation (by
making it zoom or pan) and sends the required events. On top of that, the ViewPort also has a second
responsibility in providing transformations between different rendering spaces.

Visit the WorldSpace vs ScreenSpace section for more information.

1.7. Layer composition
Also part of the central map model, is a separate interface for managing all the layers of the map. As
is typically the case in GIS, people work not just with one type of data, but with many different types
that are all represented by "layers" in a map. These layers always have a certain order in which they
are drawn, as they lie on top of each other.

The LayersModel is directly accessible from the MapPresenter:

org.geomajas.puregwt.client.map.layer.LayersModel layersModel = mapPresenter.getLayersModel();

This model has the following responsibilities:

• Adding and removing layers: These methods will add layers on top, or remove existing layers from
the map.

• Retrieving layers: You can retrieve layer objects through their unique ID, or by index. It's also
possible to get the total layer count.

• Moving layers up and down: Remember that the layers form an ordered list, so these methods will
change the layer order.

• Get the currently selected layer: The layer API provides the possibility to select one single layer.
This option can be used for specific use-cases revolving around a single layer.

Note that almost all changes in the LayersModel will trigger specific events, making it easy to follow
up on changes.

1.8. Layer API
As many different types of layers exist all with their own specific set of functionalities, we have
decided to reflect this diversity in the layer interface, by splitting it up in multiple 'functional' interfaces.
There is still a main org.geomajas.puregwt.client.map.layer.Layer interface, which
must always be implemented, but layer implementations can decide for themselves which of the
'functional' interfaces they support and which they don't.

1.8.1. Client layers and server layers

As was just mentioned, multiple interfaces exists that make up a layers functionality. That said, there
are 2 different layer definitions though:

• org.geomajas.puregwt.client.map.layer.Layer: This is the base layer definition. This definition
provides only the most basic layer functionality, such as a unique ID, a readable title, the possibility
to select it and mark it as visible.

Architecture

6

• org.geomajas.puregwt.client.map.layer.ServerLayer: Extension of the layer interface to indicate the
layer has actually been defined on the server in the Geomajas map configuration.

1.8.2. Supporting interfaces

On top of the basic layer interface, the following extensions are available:

• org.geomajas.puregwt.client.map.layer.FeaturesSupported: Extension for layers that contain
features. Features are the base vector-objects a layers can consist of. This interface allows filters to
be set (CQL), and has support for feature selection management.

• org.geomajas.puregwt.client.map.layer.LabelsSupported: Allows labels for a layer to be turned on
or off.

• org.geomajas.puregwt.client.map.layer.OpacitySupported: Allows one to determine a layers
opacity. The opacity determines the transparency on the map.

• org.geomajas.puregwt.client.map.layer.HasLayerRenderer: Allows layer implementations to
specify their own renderers.

1.8.3. Features

In the previous section we briefly mentioned the Feature
(org.geomajas.puregwt.client.map.feature.Feature) concept. Features are the
individual objects that make up vector layers. Examples of vector layers are WFS (Web Feature
Service) layers or Shapefile layers. Geomajas represents such layers for example through the
FeaturesSupported interface.

A Feature itself contains the following information:

• A unique ID: Every feature should have a unique identifier within it's layers.

• A map of attributes: A layer usually has a fixed set of attributes configured. For each such attribute,
the feature may have a value in it's attribute map.

• A geometry: Without a geometry, the feature can not be displayed on a map...

1.8.3.1. Feature Selection

The FeaturesSupported interface allows for feature selection:

FeaturesSupported fs = (FeaturesSupported) layer;
fs.selectFeature(feature);
boolean selected = fs.isFeatureSelected(feature); // returns true
fs.clearSelectedFeatures(); // Deselect all features within this layer.
selected = fs.isFeatureSelected(feature); // returns false

1.8.3.2. Searching features

Vector layers that have been defined on the backend will always implement the FeaturesSupported
interface. Through the FeatureService, it is possible to search for features by location or through CQL
filters.

FeatureService featureService = mapPresenter.getFeatureService();

// Get a FeaturesSupported layer:
Layer layer = mapPresenter.getLayersModel().getLayer("someVectorLayer");
final FeaturesSupported fs = (FeaturesSupported) layer;

Architecture

7

// Get the map bounds as a polygon:
Geometry mapBounds = GeometryService.toPolygon(mapPresenter.getViewPort().getBounds());

// Now search:
featureService.search(fs, mapBounds, 0, new FeatureMapFunction() {

 public void execute(Map<FeaturesSupported, List<Feature>> featureMap) {
 // Now do something with the features
 List<Feature> features = featureMap.get(fs);
 }
});

2. Events
Associated with the functionalities in the central map interfaces, are several events that signal changes
in the model to all registered handlers. Note that the term Handler is used, not listener, as we try
to follow the GWT naming conventions. As of GWT 2.x, the use of a central EventBus has been
promoted to work together with an MVP approach. The PureGWT face has incorporated this train
of thought, and provides a map-centric EventBus. In other words, every MapPresenter governs
it's own EventBus.

This means that for Handlers that are registered on such an EventBus, only events that have
originated within that map will reach it. Here is an example of how one can attach a Handler to an
EventBus:

mapPresenter.getEventBus().addHandler(MapResizedEvent.TYPE, new MapResizedHandler() {

 public void onMapResized(MapResizedEvent event) {
 // The map has resized. Quick, do something meaningful!
 }
});

In the example above a MapResizedHandler was used that listens to MapResizedEvents.
From the moment the MapResizedHandler has been registered, it will receive all events that
indicate the map has been resized.

2.1. Geomajas events versus native events

When developing GWT or Javascript applications, it is important to be aware of the difference between
HTML native events and custom created events.

• Native events: Events that are triggered by the browser. They are typically triggered by input devices
such as the mouse, the keyboard or touch screens. These events are provided in Geomajas through
the MapController, which lets you define user interaction on the map.

• Custom events: These are used for Geomajas specific events, such as the MapInitializationEvent
we have covered earlier. You can catch these events through the Geomajas MapEventBus.

2.2. EventBus

Instead of randomly providing methods to register handlers (a handler is the GWT version of a
Listener) for specific events, Geomajas follows the GWT reasoning in that it's much easier to work
with a central event service: The EventBus. The idea is that all events are passed through this bus, so
that the developer never needs to figure out where to register the handlers. Also, the EventBus can be
a singleton service available everywhere in your code.

Architecture

8

The Geomajas setup goes a bit further though in that it provides an EventBus for every map plus an
application specific EventBus. The application specific event bus is optional, but can be an easy way
to add your own events.

2.2.1. Geomajas MapEventBus

We start out be explaining the map centric event bus. For every map you create, there is one such
event bus. This EventBus will provide all Geomajas specific events, it is not meant to add extra event
types to it. Note that if you create multiple maps, you will also have multiple such event busses.

The next piece of code shows you how to get access to it:

MapEventBus mapEventBus = mapPresenter.getEventBus();

This bus only provides Geomajas specific events. For a list, see event overview.

2.2.2. GIN EventBus

Next to the map specific event bus, Geomajas also provides an EventBus singleton through the GIN
injection framework:

EventBus eventBus = GEOMAJASINJECTOR.getEventBus();

This is a default GWT EventBus that is not actually used by Geomajas to provides map specific events,
but is here as a singleton for application designers to add application specific events to.

2.3. Event overview
Time to go over all supported events and explain their purpose. Note that every event in this list is part
of the PureGWT API within Geomajas. All event and handler classes can be found in the following
package: org.geomajas.puregwt.client.map.event.

Map events:

Table 2.1. Map Events

Event Handler Description

MapInitializationEvent MapInitializationHandler Event that is fired when the
map has been initialized. Only
after this point will layers be
available.

MapResizedEvent MapResizedHandler Event that is fired when the map
widget has changed size.

ViewPort events:

Table 2.2. ViewPort Events

Event Handler Description

ViewPortChangedEvent ViewPortChangedHandler Event that is fired when the
view on the ViewPort has been
changed so that both scaling and
translation have occurred.

ViewPortScaledEvent ViewPortChangedHandler Event that is fired when the map
zooms in or out while keeping
the same center.

Architecture

9

Event Handler Description

ViewPortTranslatedEvent ViewPortChangedHandler Event that is fired when the map
is being translated, keeping the
same scale level.

Layer events:

Table 2.3. Layer Events

Event Handler Description

LayerAddedEvent MapCompositionHandler Event that is fired when a new
layer has been added to the map.

LayerRemovedEvent MapCompositionHandler Event that is fired when a layer
has been removed from the map.

LayerSelectedEvent LayerSelectionHandler Event that is fired when a layer
is selected. Only one layer can
be selected at any time, so these
events often go together with
layer deselect events.

LayerDeselectedEvent LayerSelectionHandler Event that is fired when a layer
has been deselected. Only one
layer can be selected at any one
time.

LayerHideEvent LayerVisibilityHandler Event that is fired when a layer
disappears from view. This can
be caused because some layer
are only visible between certain
scale levels, or because the
user turned a layer off. This
event is often triggered by a
LayerVisibilityMarkedEvent.

LayerShowEvent LayerVisibilityHandler Event that is fired when a
layer becomes visible. This can
be caused because some layer
are only visible between certain
scale levels, or because the
user turned a layer on. This
event is often triggered by a
LayerVisibilityMarkedEvent.

LayerLabelHideEvent LayerLabeledHandler Event that is fired when the
labels of a layer have become
invisible.

LayerLabelShowEvent LayerLabeledHandler Event that is fired when the
labels of a layer have become
visible.

LayerLabelMarkedEvent LayerLabeledHandler Event that is fired when the
labels of a layer have been
marked as visible or invisible.
Note that when labels have been
marked as invisible at a moment
when they where actually
visible, than you can expect
a LayerLabelHideEvent
shortly. On the other hand

Architecture

10

Event Handler Description

marking labels as visible does
not necessarily mean that they
will become visible. For labels
to becomes visible, they must
be invisible and their layer
must be visible as well. Only
if those requirements are met
will the labels truly become
visible and can you expect a
LayerLabelShowEvent to
follow this event.

LayerOrderChangedEvent LayerOrderChangedHandler Event that is fired when the order
of a layer is changed within
the LayersModel. This event
contains indices pointing to the
original index and the target
index for the layer. Of course,
changing the index of a single
layer, also changes the indices of
other layers.

LayerRefreshedEvent LayerRefreshedHandler Event that reports a layer has
been refreshed. This means it's
rendering is completely cleared
and redrawn.

LayerStyleChangedEvent LayerStyleChangedHandler Event that reports changes in
layer style.

LayerVisibilityMarkedEvent LayerVisibilityHandler Called when a layer has
been marked as visible or
invisible. When a layer has been
marked as invisible, expect a
LayerHideEvent very soon.
But, when a layer has been
marked as visible, that does
not necessarily mean it will
become visible. There are more
requirements that have to be
met in order for a layer to
become visible: the map's scale
must be between the minimum
and maximum allowed scales for
the layer. If that requirement
has been met as well, expect a
LayerShowEvent shortly.

Feature events:

Table 2.4. Feature Events

Event Handler Description

FeatureSelectedEvent FeatureSelectionHandler Event that is fired when a feature
has been selected.

FeatureDeselectedEvent FeatureSelectionHandler Event that is fired when
a selected feature has been
deselected again.

Architecture

11

Other events:

Table 2.5. Other Events

Event Handler Description

ScaleLevelRenderedEvent ScaleLevelRenderedHandler Event that is fired when a scale
level has been rendered. This
is used by scale-based layer
renderers, and it is up to them to
determine when that is.

3. User interaction
This section will handle the basics of interacting with the map, by listening and responding to native
browser events (mouse, touch, keyboard) generated from the map. The notion of native events versus
custom Geomajas events was mentioned earlier in the "Events" section.

Note

If you want fine tuned control and attach custom mouse event handlers to custom objects on
the map, have a look at the Graphics & Rendering section.

This section here handles the interface that help shield you from such fine tuned but
cumbersome mouse event handling.

3.1. MapController definition
The basic definition for map interaction is called the MapController, which is the combination of a
set of mouse and touch handlers, with some added utility methods. At least the following handlers
must be implemented:

• MouseDownHandler

• MouseUpHandler

• MouseMoveHandler

• MouseOutHandler

• MouseOverHandler

• MouseWheelHandler

• DoubleClickHandler

• TouchStartHandler

• TouchEndHandler

• TouchMoveHandler

• TouchCancelHandler

• GestureStartHandler

• GestureEndHandler

• GestureChangeHandler

Architecture

12

On top of handling mouse and touch events, the MapController definition also provides methods that
are executed when a MapController becomes active on the map, or when it is deactivated.

3.2. Applying your own MapController on the map
The MapController definition can be used in 2 different ways: as a manipulative event controller, or
as a passive listener. The main difference is that the listener is not allowed to manipulate the events,
while the controller is free to do as it chooses. A controller could for example stop event propagation,
something a listener is not allowed to do. As a result only one controller is allowed on the map, while
multiple listeners are allowed.

We have used the terms 'controller' and 'listener', but in reality both are defined by the same interface:
org.geomajas.puregwt.client.controller.MapController.

The following code sample shows how to apply both on the map:

// Applying a new MapController on the map:
mapPresenter.setMapController(new MyCustomController());

// Adding an additional listener:
mapPresenter.addMapListener(new MyCustomController());

A typical example of an active controller is the NavigationController, which determines map
navigation through mouse handling.

A typical example of a passive listener could be a widget that reads in the location of the mouse on
the map, and prints out the X,Y coordinates. Such a MapController implementation does not interfere
with the normal event flow or the main controller.

3.3. Working with events
Often, MapControllers need to interpret the events in some way to determine their course of action.
Let us take the above example again of a MapController that wants to read the mouse position
on the map in order to print it out on the GUI. For this case, the MapController also extends
the org.geomajas.gwt.client.controller.MapEventParser interface. This interface
provides methods for extracting useful information from events:

// Get the event location in map CRS:
Coordinate worldPosition = mapController.getLocation(event, RenderSpace.WORLD);

This method extracts the location of the event, expressed in one of the rendering spaces.

// Get the DOM elements that was the target of the event:
Element target = mapController.getTarget(event);

This method extracts the target DOM element of the event.

4. Graphics & Rendering
This section will handle all rendering related topics, explaining the different render spaces
(WorldSpace versus ScreenSpace), and how to make full advantage of them when trying to render
objects on the map.

4.1. WorldSpace vs ScreenSpace
Before trying to render anything on a map, it is crucial you understand the difference between
WorldSpace and ScreenSpace. Both represent render spaces wherein the user can render his objects.

Architecture

13

• WorldSpace: World space describes a rendering space where all objects are expressed in the
coordinate reference system of the map. As a result, all objects within world space move about with
the view on the map.

Let's say for example that a rectangle is rendered on a map with CRS lon-lat. The rectangle has
origin (118,34) and width and height both equal to 1. Than this rectangle will cover the city of
Los Angeles. No matter where the user may navigate, the rectangle will always remain above Los
Angeles.

• ScreenSpace: Screen space describes a rendering space where all objects are expressed in pixels
with the origin in the top left corner of the map. Objects rendered in screen will always occupy a
fixed position on the map. They are immobile and are not affected by map navigation.

Caution

Beware that drawing a great many objects in WorldSpace can slow down an application, as
their positions need to be recalculated every time the map navigates.

4.2. Rendering containers
Before actually rendering custom objects on the map, you must choose a type of container wherein to
draw. This type of container will determine the the format used in HTML:

• org.geomajas.puregwt.client.gfx.VectorContainer: Depending on the browser used, this container
will render in either SVG or VML.

• org.geomajas.puregwt.client.gfx.CanvasContainer: This container will make use of the HTML5
canvas construct for drawing.

4.2.1. VectorContainers & VectorObjects

For vector object rendering, the PureGWT face makes use of the Vaadin GwtGraphics library. This
library provides all the necessary methods for standard SVG and VML rendering. The main interfaces
to note are the VectorContainer and the VectorObject.

The VectorContainer is a container object as the name implies and provides methods for storing and
managing VectorObjects. These VectorObjects in turn are the individual objects (such as Rectangle,
Circle, Path, ...) that can be drawn on the map.

In order to acquire a VectorContainer, all one has to do is request such a container with the
MapPresenter. This can be done by calling one of the following methods:

// Getting a VectorContainer for rendering in WorldSpace:
VectorContainer worldContainer = mapPresenter.addWorldContainer();

// Getting a VectorContainer for rendering in ScreenSpace:
VectorContainer screenContainer = mapPresenter.addScreenContainer();

After acquiring such a container it is possible to add multiple VectorObjects to it.

Note

Be careful to make sure you use the correct coordinate system when adding VectorObjects to
your VectorContainer. A container that was added in ScreenSpace, expects it's VectorObjects
to be expressed in pixel coordinates.

4.2.2. CanvasContainers

Jan???

Architecture

14

4.3. Drawing geometries on the map
Often one needs to draw geometries on the map. Say we have a Feature who's geometry we want to
render in a specific style. As a Feature is a part of a FeaturesSupported layer, it's geometry is expressed
in the map CRS. Hence we will want to render it's geometry in WorldSpace. So we start by creating
a VectorContainer:

// Getting a VectorContainer for rendering in WorldSpace:
VectorContainer worldContainer = mapPresenter.addWorldContainer();

Next we want to add the geometry as a Path to the VectorContainer. First we need to transform the
geometry into a Path object:

// Get the graphics utility from the GIN injector:
GfxUtil gfxUtil = GEOMAJASINJECTOR.getGfxUtil();

// Now transform the geometry into a Shape object:
Path path = gfxUtil.toPath(feature.getGeometry()); // Does not work for point geometries!

Before adding the path to the VectorContainer, we may want to style it first:

path.setFillColor("#0066AA");
path.setFillOpacity(0.4);
path.setStrokeColor("#004499");

Now it's time to add the path to the VectorContainer:

worldContainer.add(path);

5. Client/Server communication
Although this chapter of the documentation is about the PureGwt client API, Geomajas is at it's heart
a client/server based framework. The client needs the server to operate correctly. The client/server
communication mechanism used is a command pattern based upon the GWT RPC services.

An example of this communication is the map that fetches it's configuration from the server when it
initializes.

5.1. CommandService
The commands available are always defined on the backend, but can be called from the client. Most
commands are used internally by Geomajas, but often, backend plugins provide additional commands
for the client to use. For this, a CommandService singleton is provided. This service can be accessed
through the Gin injection framework:

CommandService commandService = GEOMAJASINJECTOR.getCommandService();

Next you can use this service to execute a command:

// Prepare a command:
EmptyCommandRequest request = new EmptyCommandRequest();
GwtCommand command = new GwtCommand();
command.setCommandName("command.GetSimpleExceptionCommand");
command.setCommandRequest(request);

// Now execute the command:
commandService.execute(command, new AbstractCommandCallback<CommandResponse>() {

Architecture

15

 @Override
 public void execute(CommandResponse response) {
 // don't do anything. An Exception will been thrown at server-side
 }
});

This example is taken from the showcase, where a command is created that throws an exception.
Perhaps not the most useful command, but it's a clear example.

Every command is defined by a request and a response object. We create a client-side GwtCommand
object that refers to the backend command implementation through a string identifier, in this case
"command.GetSimpleExceptionCommand". Normally this string is defined as a public static string
in the request object.

5.2. Custom client/server communication
Although Geomajas uses a command pattern for it's own client/server communication, it is not limited
by it. After all, Geomajas uses the GWT framework which has native support for Ajax calls (Json,
XML, ...). When creating your own WebServices, you are not bound to extend Geomajas' commands.
It is perfectly possible to write your own RESTful service or a custom GWT RPC service instead.

6. Widgets
Next to the map, Geomajas provides additional widgets to be placed on top of the map.

6.1. Adding widgets on top of the map
By default Geomajas will add a few widgets on top of the map that provide navigation buttons. Of
course it is possible to replace any such widget with your own implementation. Actually it is perfectly
possible to add any widget you want on top of the map.

16

Chapter 3. Configuration
In order to use the PureGWT face in your web application, there are a few steps you need to take. These
include adding the correct libraries to your project, configuring the web.xml to set up the Geomajas
Communication Service, and setting up the GWT module configuration.

1. Dependencies

2. web.xml

3. Build steps

17

Chapter 4. GWT widgets
...

18

Chapter 5. How-to

1. Adding a map to a classic GWT layout
The MapPresenter class not only acts as the Presenter in the MVP (Model-View-Presenter) model but
also gives access to the View by implementing the IsWidget interface. As a widget, it can be added
to any of the GWT layout classes with some precautions, however:

• The parent widget should implement ProvidesResize

• The size of the map has to be set explicitly

ResizeLayoutPanel panel = new ResizeLayoutPanel();
mapPresenter.setSize(100,100);
panel.setWidget(mapPresenter);

If the panel is resizable, a custom resize handler should be registered to set the size whenever a resizing
event occurs.

2. Adding a map to a GWT 2.0 layout
A special MapLayout class is provided for adding a map to a GWT 2.0 layout class (class that have
Layout in their name and follow a sizing hierarchy). No special resize handling is needed for this case:

MapLayoutPanel mapLayout = new MapLayoutPanel();
mapLayout.setPresenter(mapPresenter);
RootLayoutPanel.get().add(layout); // fills the complete browser view

3. How to catch the location of mouse events
on the map?

	Geomajas pureGWT face
	Table of Contents
	Chapter 1. Introduction
	1. Thin client
	2. Mobile vs desktop

	Chapter 2. Architecture
	1. The central Map API
	1.1. GIN: GWT injection
	1.1.1. GeomajasGinModule and GeomajasGinjector
	1.1.2. Overriding the default GIN implementations

	1.2. The Geomajas map: MapPresenter
	1.3. Map initialization
	1.4. Adding the map to the GWT layout
	1.5. Map configuration & MapHints
	1.6. Managing the view on the map
	1.6.1. The ViewPort
	1.6.2. Rendering spaces

	1.7. Layer composition
	1.8. Layer API
	1.8.1. Client layers and server layers
	1.8.2. Supporting interfaces
	1.8.3. Features
	1.8.3.1. Feature Selection
	1.8.3.2. Searching features

	2. Events
	2.1. Geomajas events versus native events
	2.2. EventBus
	2.2.1. Geomajas MapEventBus
	2.2.2. GIN EventBus

	2.3. Event overview

	3. User interaction
	3.1. MapController definition
	3.2. Applying your own MapController on the map
	3.3. Working with events

	4. Graphics & Rendering
	4.1. WorldSpace vs ScreenSpace
	4.2. Rendering containers
	4.2.1. VectorContainers & VectorObjects
	4.2.2. CanvasContainers

	4.3. Drawing geometries on the map

	5. Client/Server communication
	5.1. CommandService
	5.2. Custom client/server communication

	6. Widgets
	6.1. Adding widgets on top of the map

	Chapter 3. Configuration
	1. Dependencies
	2. web.xml
	3. Build steps

	Chapter 4. GWT widgets
	Chapter 5. How-to
	1. Adding a map to a classic GWT layout
	2. Adding a map to a GWT 2.0 layout
	3. How to catch the location of mouse events on the map?

