Geomajas pureGWT face

Geomajas Developers and Geosparc

Geomajas pureGWT face
by Geomajas Developers and Geosparc

1.0.0-M5
Copyright © 2011-2012 Geosparc nv

Table of Contents

IO | oo [0 (o o I ORI 1
O I o T o T T | PP 1

2. MODIIE VS UESKIOP ..ovuieiii e e e e e e e 1

P N 01 (= o L1 = PP 2
1. Thecentral Map APl ... e e 2

L1 GIN: GWT INJECHON 1.uuieiiciii e e e e e e e e e eaa s 2

1.2. The Geomajas Map: MapPIrESENLErccvuiiii e 2

1.3, Map iNitialiZaHONuiiie e 3

1.4. Adding the map to the GWT layOutcceeeiniiiiieiie e e 3

1.5. Map configuration & MapHINtScccuiiiiiiiiiiieir e 4

1.6. Managing the view onthe Mapcocouiiiiii e 4

1.7, Layer COMPOSITION ...uuuiieieiiieei e e e s e e e e e e e e et e e e e e st e e e e eaneees 5

L8, LaYEr AP oo 5

2 BV IS Lot aaa s 7

2.1. Geomajas events VErsuS NatiVe BVENEScvuueiiiiieiiie e e e e e e eaes 7

2.2 BEVENIBUS ... 7

2.3 EVENE OVEIVIBIW L.ouiiiiiiie ettt e et e et e e e e 8

R UL s] 01 = = ox o] SR UPPPRTPPPIN 11

3.1. MapController definitioncccuiiiiiiiiiii e 11

3.2. Applying your own MapController onthe mapcccovevviiiiiiiviiiiceeeeeen, 12

3.3. WOrking With @VENEScoveiei e e 12

4, Graphics & RENAEING ...ccvuiiiiii e e e 12

4.1, WorldSpace VS SCrEENSPACE ... cvvueiiiieiiiieeee e et e e e e e e e ean s 12

4.2, ReNdEriNg CONLAINEIScvveeeeeeeeieeei e e e e e e e et e e et e e et e e e e e et e e eanaeeaneens 13

4.3. Drawing geometries ONthe MaPccvuvviiiieii e 14

5. Client/Server COMMUNICELIONuuieiiiiiieeeiine e et e et e e e e e e e e eeee e eenenns 14

5.1, COMMANASEIVICE ...uiiiiiiiiee et e e e et e et e e et s e e e bt e e eeriaeeees 14

5.2. Custom client/server COMMUNICALIONuuvereviiieeiiiinee et e e e eeiine 15
LAY o = 15

6.1. Adding widgets on top of theE MaPcovviiii i 15

G @) o8 =0 o T 16
O = o= 3o = = 16

2. WEDXMI Lo e 16

G = 0T o 1= o1 16
VAV IV T o= 17
I o (01 (o T PP P TP 18
1. Adding amap to aclassic GWT layOULc.uveeinieiiiieiii e e e e e e e 18

2. Adding amap t0 @ GWT 2.0 [ayOULevvnieiii e 18

3. How to catch the location of mouse events onthe map?.........cccocveivveiiiviiievineceees 18

List of Tables

2.1. Map Events .

2.2, VIBWPOIT EVENS ..ot e et e e e e e e e e e e e e a s e e e e eneeaeeneeneenennss

2.3. Layer Events

A (U SR YL o] £

2.5. Other Events

Chapter 1. Introduction

The PureGWT faceisan AJAX client for the Geomajas Server, based upon the Google Web Toolkit.
The goal of thisclient isto provide a clean mapping APl for the web.

1. Thin client

Since the Geomajas Server is perfectly capable of safeguarding your domain model or executing
complex tasks, this client can focus more on the map presentation than business logic. This aready
makes the PureGWT face areal thin client. Take also the use of the Google Web Toolkit (GWT) into
account and this client becomes even thinner.

The Google Web Toolkit is a Java to JavaScript compiler, that compiles only the code that you're
actually using. So instead of having to download entire JavaScript libraries of which you're only using
asmall portion, a GWT application contains only code that is actually used. Secondly, GWT provides
alot of tools for further optimizing the way your applications are constructed. It provides automatic
obfuscation, resource bundling (combining resources so that less requests are needed to loads them
al), etc.

As aresult of al this optimization, the memory consumption within the browser is also kept at a
minimum, while performance is kept at maximum.

2. Mobile vs desktop

Although aimed towards mobile devices, the PureGWT faceis perfectly suitable for both desktop and
mobile environments. As mentioned above, the initial footprint is as small as possible (easily afactor
10 smaller than other frameworks). On top of this, the PureGWT face is also designed to keep client-
server bandwidth to aminimum, by providing caching mechanisms, lazy loading, etc.

Chapter 2. Architecture
1. The central Map API

This section describesthe theinterfaces of the most central object definitionswithinthe API: thosethat
make up the map model. We start by introducing you to the Gin injection framework, which is used
to create a new map instance. From there on, we delve deeper into the most important map concepts,
such as the layer model and viewport.

1.1. GIN: GWT injection

Before we start describing the API, we need to introduce the GIN injection framework. GIN is
based upon Google's Guice framework, but written specificaly for GWT. By using GIN, Geomajas
has a clean separation between interfaces and implementations. It also means that any default
implementation that Geomajas provides can be replace by your own implementations.

1.1.1. GeomajasGinModule and GeomajasGinjector

The configuration that ties implementations to their interfaces is defined in the
org. geonmj as. puregw . cl i ent. Geomaj asG nModul e. Next to this configuration,
Geomajas also providestheor g. geonmj as. puregw . cl i ent. Geomaj asG nj ect or. The
GeomajasGinjector isaservicethat provides accessto singleton services and away to create Geomajas
maps. The GeomajasGinjector is also tied to the GeomajasGinModule. That is how it knows which
interface implementations to use.

The GeomajasGinjector is aso the only way to correctly create a new Geomajas map:
public static final GeommjasG njector GEOVAJASI NJECTOR = GWM. creat e(Geomaj as@ n

Note that the Geomajasl njector itself is a singleton service, so you only need to create it oncein your
application. It is therefore recommended to create it in your GWT modul€'s EntryPoint. In the code
example above, we have created it as a public static final.

1.1.2. Overriding the default GIN implementations

One of the most important aspects of an injection framework is that one can provide aternative
implementations to be used for the known interface, effectively overriding the default behaviour.

To have your application use your own implementations instead of the Geomajas defaults, you need
to define your own GIN module. It is best to just copy the GeomajasGinModule and only change the
implementations you need to have changed. It is critical not to leave any of the required interfaces
out. After you have your own GIN module, you will need to extend the GeomajasGinjector and have
it point to your own Gin module;

@5 nModul es(MyCust onfa nModul e. cl ass)
public interface M/Custon(G njector extends Geommj asG njector {

}

Then in your application, make sure to use your own injector:

MyCust onfa nj ector injector = GM. create(MCustom@ nj ector. cl ass);

1.2. The Geomajas map: MapPresenter

The MapPresenter represents the central map interface and as such it determines the map's
functionalities. It provides support for many of the topics that are discussed in the following sections,
such as MapControllers or an EventBus.

Architecture

The MapPresenter has the following responsibilities:
» Managing the view on the map: Thisis done through the ViewPort definition.
» Managing the layers. Thisis done through the LayersModel definition.

* Providing user interaction through MapControllers: The map has support for one active
MapController for user interaction, and a set of passive map controllers that are allowed to catch
native events, but may not interrupt default event bubbling.

» Event handling: The MapPresenter provides an EventBus through which all specific Geomajas
events pass. Y ou you can react to changes on the ViewPort, or layer composition changes, or, ... A
full list of eventsis provided in alater section.

» Rendering and custom drawing: Next to the automatic rendering of the layers, the MapPresenter
aso provides API for custom rendering. Custom rendering can occur through HTML, VML, SVG
and Canvas.

Before we continue deeper into the map API, let usfirst show you how to create a new map. The only
way to correctly create a map, is to have the GIN injection framework do it for you. We expect you
have already created the necessary injector in your application (see @ N).

org. geonmj as. puregwt . cl i ent. map. MapPresenter map = GEOVAJASI NJECTOR. get MapPrese

1.3. Map initialization

The first thing you'll want to do after you have created your map, isto initialize it by loading a map
configuration, and setting asize. It isimportant to realize the Geomajas map configuration isstored in
XML format on the server. So when you initialize the map on the client, it will fetch it's configuration
from the server. This of course takes a bit of time. This means that the map in only initialized when
it's configuration has been received from the server.

So, hereis an example of how to initialize the map:

map.initialize("application-id", "map-id");
map. set Si ze(640, 480);

The 2 parameters refer to an application and map definition as defined in the backend Spring
configuration. Next we have set the size for the map.

At this point the map is requesting a configuration from the server. It does not yet know which layers
will be present, what it's initial view on the map will be, what it's CRS is, etc. Often you need to
know when the map has been initialized because, for example, you need the layer objects for some
functionality. For this occasion, there is the Mapl nitializationEvent:

mapPr esent er. get Event Bus() . addMaplniti al i zati onHandl er (new Maplnitializati onHan

public void onMaplnitialized(MaplnitializationEvent event) {
/1 Do sonething interesting ...
}

1)
1.4. Adding the map to the GWT layout

In order for themap to display correctly, it must haveasize. Y ou either set afixed size, like we showed
in the previous section, or you let some parent widget determine the size. In any case, the map must
know how largeit should be in pixels.

To this end Geomgjas provides awidget to incorporate the map into the GWT 2.0 layout system, call
the MapLayoult:

Architecture

org. geonmj as. puregwt . cl i ent.w dget. MapLayout Panel maplLayout = new MaplLayout Pane

Now add this mapL ayout widget to any GWT layout panel, to get the map to fill up the available area.

1.5. Map configuration & MapHints

Of course the MapPresenter has a configuration. The biggest part of amap configuration comes from
the backend. Usually the first task for a newly created map is to fetch such a configuration from the
backend. But the client-side map configuration has more to it than just this back-end counterpart: it
can also be used to get and set MapHints or adjust generic map options, such as animated zooming.
The MapConfiguration can be retrieved as such:

or g. geonmj as. puregwt . cl i ent. map. MapConfi gurati on mapConfi gurati on = mapPresente
The configuration has the option to enable or disable animated navigation for each layer individually:
mapConfi gurati on. set Ani nat ed(myLayer, false);

Next this it's direct getters and setters, the the configuration also has the ability to store and use
MapHints. These MapHints are options used within the map implementation. All MapHints are
defined to only accept a certain type of value through Java's generic types:

mapConfi gurati on. set MapHi nt Val ue(MapHi nt <T> hint, T val ue);

By default the following MapHints are defined:

» MapConfiguration.ANIMATION_ENABLED: This setting completely enables or disabled animated
navigation on the map.

» MapConfiguration. ANIMATION_TIME: This setting determines how long animated navigation
should last (expressed in milliseconds).

Thisis an example of how one would disable animated navigation:

mapConfi gurati on. set MapHi nt Val ue(MapConf i gur ati on. ANl MATI ON_ENABLED, fal se);
1.6. Managing the view on the map

1.6.1. The ViewPort

One of the most important concepts within amap isit's position and how to navigate from one place
to another. Most of the time it will be the user that determines navigation through a controller on the
map (mouse or touch). Sometimes though it might be necessary to have the map navigate to some pre-
defined location through code.

The whole navigation and positioning concept is bundled within the ViewPort. The ViewPort can be
accessed directly from the MapPresenter:

org. geonmj as. puregwt . client.nap. ViewPort viewPort = mapPresenter.getViewPort();
Through the ViewPort one can get the current map position:

or g. geonmj as. geonetry. Coordi nate position = viewPort. getPosition();

or g. geonmj as. geonetry. Bbox bounds = vi ewPort. get Bounds();

doubl e scale = viewPort.getScal e();
String crs = viewPort.getCrs();

Architecture

Next to acquiring current location, you can also force the map to navigate to a certain location:

vi ewPor t . appl yPosi ti on(new Coordi nate(0,0));
vi ewPor t . appl yScal e(0.01);
vi ewPor t . appl yBounds(new Bbox(0, 0, 100, 100));

1.6.2. Rendering spaces

The Vi ewPor t can be seen as the navigator behind the map. It manages the map's navigation (by
making it zoom or pan) and sendsthe required events. On top of that, theVi ewPor t also hasasecond
responsibility in providing transformations between different rendering spaces.

Visit the WorldSpace vs ScreenSpace section for more information.

1.7. Layer composition

Also part of the central map model, is a separate interface for managing all the layers of the map. As
istypically the case in GIS, people work not just with one type of data, but with many different types
that are all represented by "layers' in amap. These layers always have a certain order in which they
are drawn, asthey lie on top of each other.

The LayersModel is directly accessible from the MapPresenter:
org. geonmmj as. puregwt . cl i ent. map. | ayer. Layershvbdel |ayershbdel = mapPresenter.ge
Thismodel has the following responsibilities:

» Adding and removing layers: These methodswill add layers on top, or remove existing layersfrom
the map.

» Retrieving layers. You can retrieve layer objects through their unique ID, or by index. It's aso
possible to get the total layer count.

» Moving layers up and down: Remember that the layers form an ordered list, so these methods will
change the layer order.

» Get the currently selected layer: The layer API provides the possibility to select one single layer.
This option can be used for specific use-cases revolving around a single layer.

Note that almost all changesin the LayersModel will trigger specific events, making it easy to follow
up on changes.

1.8. Layer API

As many different types of layers exist all with their own specific set of functionalities, we have
decided to reflect thisdiversity inthelayer interface, by splitting it upin multiple ‘functional' interfaces.
Thereisdtill amainor g. geomaj as. puregwt . cl i ent. map. | ayer. Layer interface, which
must aways be implemented, but layer implementations can decide for themselves which of the
'functional’ interfaces they support and which they don't.

1.8.1. Client layers and server layers

Aswas just mentioned, multiple interfaces exists that make up alayers functionality. That said, there
are 2 different layer definitions though:

» org.geomajas.puregwt.client.map.layer.Layer: This is the base layer definition. This definition
provides only the most basic layer functionality, such asaunique ID, areadabletitle, the possibility
to select it and mark it asvisible.

Architecture

* org.geomajas.puregwt.client.map.layer.ServerLayer: Extension of thelayer interfacetoindicatethe
layer has actually been defined on the server in the Geomajas map configuration.

1.8.2. Supporting interfaces

On top of the basic layer interface, the following extensions are available:

* org.geomajas.puregwt.client.map.layer.FeaturesSupported: Extension for layers that contain
features. Features are the base vector-objects alayers can consist of. Thisinterface allowsfiltersto
be set (CQL), and has support for feature selection management.

 org.geomajas.puregwt.client.map.layer.LabelsSupported: Allows labelsfor alayer to be turned on
or off.

* org.geomajas.puregwt.client.map.layer.OpacitySupported: Allows one to determine a layers
opacity. The opacity determines the transparency on the map.

 org.geomajas.puregwt.client.map.layer.HasLayerRenderer: Allows layer implementations to
specify their own renderers.

1.8.3. Features

In the previous section we briefly mentioned the Feature
(org. geomnj as. puregwt. cli ent. map. f eat ur e. Feat ur e) concept. Features are the
individual objects that make up vector layers. Examples of vector layers are WFS (Web Feature
Service) layers or Shapefile layers. Geomajas represents such layers for example through the
FeaturesSupported interface.

A Featureitself contains the following information:
» Aunique ID: Every feature should have a unique identifier within it's layers.

» Amap of attributes: A layer usually has afixed set of attributes configured. For each such attribute,
the feature may have avalue in it's attribute map.

» A geometry: Without a geometry, the feature can not be displayed on amap...
1.8.3.1. Feature Selection
The FeaturesSupported interface allows for feature selection:

Feat uresSupported fs = (FeaturesSupported) |ayer;

fs.sel ect Feature(feature);

bool ean selected = fs.isFeatureSel ected(feature); // returns true

fs.cl earSel ectedFeatures(); // Deselect all features within this |ayer.
sel ected = fs.isFeatureSel ected(feature); // returns fal se

1.8.3.2. Searching features
Vector layers that have been defined on the backend will always implement the FeaturesSupported
interface. Through the FeatureService, it is possible to search for features by location or through CQL
filters.
Feat ureServi ce featureService = mapPresenter. get Feat ureService();
/1 Get a FeaturesSupported | ayer:

Layer layer = mapPresenter.getlLayershdel (). getLayer("soneVectorLayer");
final FeaturesSupported fs = (FeaturesSupported) |ayer;

Architecture

/1 CGet the map bounds as a pol ygon:
Ceonetry mapBounds = GeonetryService.toPol ygon(mapPresent er. get Vi ewPort (). get Bo

/1 Now search:
featureServi ce. search(fs, mapBounds, 0, new FeatureMapFunction() {

public void execute(Map<Feat uresSupported, List<Feature>> featureMap) {
/1 Now do sonmething with the features
Li st <Feature> features = featureMap. get(fs);
}
1)

2. Events

Associated with the functionalitiesin the central map interfaces, are several eventsthat signal changes
in the model to all registered handlers. Note that the term Handl er is used, not listener, as we try
to follow the GWT naming conventions. As of GWT 2.x, the use of a central Event Bus has been
promoted to work together with an MV P approach. The PureGWT face has incorporated this train
of thought, and provides a map-centric Event Bus. In other words, every MapPr esent er governs
itsown Event Bus.

This means that for Handl er s that are registered on such an Event Bus, only events that have
originated within that map will reach it. Here is an example of how one can attach a Handler to an
EventBus:

mapPr esent er. get Event Bus() . addHandl er (MapResi zedEvent . TYPE, new MapResi zedHandl

public void onMapResi zed(MapResi zedEvent event) {
/1 The map has resized. Quick, do sonething neaningful!
}
1)

In the example above a MapResi zedHand| er was used that listens to MapResi zedEvent s.
From the moment the MapResi zedHandl er has been registered, it will receive al events that
indicate the map has been resized.

2.1. Geomajas events versus native events

When developing GWT or Javascript applications, it isimportant to be aware of the difference between
HTML native events and custom created events.

* Nativeevents: Eventsthat aretriggered by the browser. They aretypically triggered by input devices
such as the mouse, the keyboard or touch screens. These events are provided in Geomajas through
the MapCont r ol | er, which lets you define user interaction on the map.

» Custom events: These are used for Geomajas specific events, such as the MaplnitializationEvent
we have covered earlier. Y ou can catch these events through the Geomajas MapEvent Bus.

2.2. EventBus

Instead of randomly providing methods to register handlers (a handler is the GWT version of a
Listener) for specific events, Geomajas follows the GWT reasoning in that it's much easier to work
with a central event service: The EventBus. The ideaisthat all events are passed through this bus, so
that the devel oper never needsto figure out where to register the handlers. Also, the EventBus can be
asingleton service available everywhere in your code.

Architecture

The Geomajas setup goes a bit further though in that it provides an EventBus for every map plus an
application specific EventBus. The application specific event busis optional, but can be an easy way
to add your own events.

2.2.1. Geomajas MapEventBus
We start out be explaining the map centric event bus. For every map you create, there is one such
event bus. This EventBus will provide all Geomajas specific events, it is not meant to add extra event
typestoit. Note that if you create multiple maps, you will also have multiple such event busses.
The next piece of code shows you how to get accessto it:

MapEvent Bus mapEvent Bus = nmapPresenter. get Event Bus();

This bus only provides Geomajas specific events. For alist, see event overview.

2.2.2. GIN EventBus

Next to the map specific event bus, Geomajas also provides an EventBus singleton through the GIN
injection framework:

Event Bus event Bus = GEOVAJASI NJECTOR. get Event Bus() ;

Thisisadefault GWT EventBusthat isnot actually used by Geomajasto provides map specific events,
but is here as a singleton for application designers to add application specific events to.

2.3. Event overview

Timeto go over all supported events and explain their purpose. Note that every event inthislistis part
of the PureGWT API within Geomajas. All event and handler classes can be found in the following
package: or g. geonmj as. puregwt . cl i ent. map. event.

Map events:

Table2.1. Map Events

Event Handler Description

Mapl nitializationEvent Mapl nitializationHandler Event that is fired when the
map has been initialized. Only
after this point will layers be

available.
MapResizedEvent MapResizedHandler Event that is fired when the map
widget has changed size.
ViewPort events:
Table2.2. ViewPort Events
Event Handler Description
ViewPortChangedEvent ViewPortChangedHandler Event that is fired when the

view on the ViewPort has been
changed so that both scaling and
translation have occurred.

ViewPortScaledEvent ViewPortChangedHandler Event that is fired when the map
zooms in or out while keeping
the same center.

Architecture

Event

Handler

Description

ViewPortTrans atedEvent

ViewPortChangedHandler

Event that is fired when the map
is being transated, keeping the

same scale level.

Layer events:

Table2.3. Layer Events

Event Handler Description
LayerAddedEvent MapCompositionHandler Event that is fired when a new
layer has been added to the map.
LayerRemovedEvent MapCompositionHandler Event that is fired when a layer
has been removed from the map.
LayerSelectedEvent LayerSelectionHandler Event that is fired when a layer
is selected. Only one layer can
be selected at any time, so these
events often go together with
layer deselect events.
LayerDeselectedEvent LayerSelectionHandler Event that is fired when a layer

has been deselected. Only one
layer can be selected at any one
time.

LayerHideEvent

LayerVisibilityHandler

Event that is fired when a layer
disappears from view. This can
be caused because some layer
are only visible between certain
scale levels, or because the
user turned a layer off. This
event is often triggered by a
Layer Vi si bi | i t yMar kedE

vent .

LayerShowEvent

LayerVisibilityHandler

Event that is fired when a
layer becomes visible. This can
be caused because some layer
are only visible between certain
scale levels, or because the
user turned a layer on. This
event is often triggered by a
Layer Vi si bi |l ityMar kedE

vent .

LayerL abelHideEvent

LayerLabeledHandler

Event that is fired when the
labels of a layer have become
invisible.

LayerL abel ShowEvent

LayerLabeledHandler

Event that is fired when the
labels of a layer have become
visible.

LayerlL abelMarkedEvent

LayerL abeledHandler

Event that is fired when the
labels of a layer have been
marked as visible or invisible.
Note that when labels have been
marked as invisible at a moment
when they where actually
visible, than you can expect
a LayerlLabel H deEvent

shortly. On the other hand

Architecture

Event

Handler

Description

marking labels as visible does
not necessarily mean that they
will become visible. For labels
to becomes visible, they must
be invisible and their layer
must be visible as well. Only
if those requirements are met
will the labels truly become
visible and can you expect a
Layer Label ShowEvent to
follow this event.

LayerOrderChangedEvent

LayerOrderChangedHandler

Event that isfired when the order
of a layer is changed within
the Layer shModel . This event
contains indices pointing to the
origina index and the target
index for the layer. Of course,
changing the index of a single
layer, also changes the indices of
other layers.

LayerRefreshedEvent

LayerRefreshedHandler

Event that reports a layer has
been refreshed. This means it's
rendering is completely cleared
and redrawn.

LayerStyleChangedEvent

LayerStyleChangedHandler

Event that reports changes in
layer style.

LayerVisibilityMarkedEvent

LayerVisibilityHandler

Called when a layer has
been marked as visible or
invisible. When alayer has been
marked as invisible, expect a
Layer H deEvent very soon.
But, when a layer has been
marked as visible, that does
not necessarily mean it will
become visible. There are more
requirements that have to be
met in order for a layer to
become visible: the map's scale
must be between the minimum
and maximum allowed scalesfor
the layer. If that requirement
has been met as well, expect a
Layer ShowEvent shortly.

Feature events:

Table 2.4. Feature Events

Event Handler Description
FeatureSel ectedEvent FeatureSel ectionHandler Event that isfired when afeature
has been selected.
FeatureDesel ectedEvent FeatureSel ectionHandl er Event that is fired when

a selected feature has been
deselected again.

10

Architecture

Other events:

Table 2.5. Other Events

Event Handler Description

Scalelevel RenderedEvent Scalel_evel RenderedHandler Event that is fired when a scale
level has been rendered. This
is used by scale-based layer
renderers, and it is up to them to
determine when that is.

3. User interaction

This section will handle the basics of interacting with the map, by listening and responding to native
browser events (mouse, touch, keyboard) generated from the map. The notion of native events versus
custom Geomajas events was mentioned earlier in the "Events' section.

Note

If you want fine tuned control and attach custom mouse event handlers to custom objects on
the map, have alook at the Graphics & Rendering section.

This section here handles the interface that help shield you from such fine tuned but
cumbersome mouse event handling.

3.1. MapController definition

The basic definition for map interaction is called the MapController, which is the combination of a
set of mouse and touch handlers, with some added utility methods. At least the following handlers
must be implemented:

* MouseDownHandler
* MouseUpHandler

* MouseMoveHandler
* MouseOutHandler

* MouseOverHandler
* MouseWheelHandler
» DoubleClickHandler
* TouchStartHandler
» TouchEndHandler

» TouchMoveHandler
» TouchCancelHandler
* GestureStartHandler
» GestureEndHandler

» GestureChangeHandler

11

Architecture

On top of handling mouse and touch events, the MapController definition also provides methods that
are executed when a MapController becomes active on the map, or when it is deactivated.

3.2. Applying your own MapController on the map

The MapController definition can be used in 2 different ways. as a manipulative event controller, or
as apassive listener. The main difference is that the listener is not allowed to manipulate the events,
while the controller isfreeto do asit chooses. A controller could for example stop event propagation,
something alistener is not allowed to do. Asaresult only one controller is allowed on the map, while
multiple listeners are allowed.

We have used the terms ‘controller' and 'listener’, but in reality both are defined by the sameinterface:
org. geonmj as. puregwt . cli ent.controller. MapControll er.

The following code sample shows how to apply both on the map:

/1 Applying a new MapController on the nmap:
mapPr esent er. set MapControl | er (new MyCust onControl ler());

/1 Adding an additional listener:
mapPr esent er . addMaplLi st ener (new MyCust onControl ler());

A typical example of an active controller is the NavigationController, which determines map
navigation through mouse handling.

A typical example of a passive listener could be a widget that reads in the location of the mouse on
the map, and prints out the X,Y coordinates. Such a MapController implementation does not interfere
with the normal event flow or the main controller.

3.3. Working with events

Often, MapControllers need to interpret the events in some way to determine their course of action.
Let us take the above example again of a MapController that wants to read the mouse position
on the map in order to print it out on the GUI. For this case, the MapController also extends
theor g. geonmj as. gwt . cl i ent.control |l er. MapEvent Par ser interface. Thisinterface
provides methods for extracting useful information from events:

/1 CGet the event location in nmap CRS:
Coordi nate worl dPosition = napController.getlLocation(event, Render Space. WORLD) ;

This method extracts the location of the event, expressed in one of the rendering spaces.

/1 Get the DOM el enents that was the target of the event:
El ement target = mapController.getTarget(event);

This method extracts the target DOM element of the event.

4. Graphics & Rendering

This section will handle all rendering related topics, explaining the different render spaces
(WorldSpace versus ScreenSpace), and how to make full advantage of them when trying to render
objects on the map.

4.1. WorldSpace vs ScreenSpace

Before trying to render anything on a map, it is crucia you understand the difference between
WorldSpace and ScreenSpace. Both represent render spaces wherein the user can render his objects.

12

Architecture

» WorldSpace: World space describes a rendering space where al objects are expressed in the
coordinate reference system of the map. Asaresult, all objects within world space move about with
the view on the map.

Let's say for example that a rectangle is rendered on a map with CRS lon-lat. The rectangle has
origin (118,34) and width and height both equal to 1. Than this rectangle will cover the city of
Los Angeles. No matter where the user may navigate, the rectangle will always remain above Los
Angeles.

» ScreenSpace: Screen space describes a rendering space where al objects are expressed in pixels
with the origin in the top left corner of the map. Objects rendered in screen will always occupy a
fixed position on the map. They areimmobile and are not affected by map navigation.

Caution

Beware that drawing a great many objects in WorldSpace can slow down an application, as
their positions need to be recal culated every time the map navigates.

4.2. Rendering containers

Before actually rendering custom objects on the map, you must choose atype of container wherein to
draw. Thistype of container will determine the the format used in HTML.:

* org.geomajas.puregwt.client.gfx.Vector Container: Depending on the browser used, this container
will render in either SVG or VML.

* org.geomajas.puregwt.client.gfx.CanvasContainer: This container will make use of the HTML5
canvas construct for drawing.

4.2.1. VectorContainers & VectorObjects

For vector object rendering, the PureGWT face makes use of the Vaadin GwtGraphics library. This
library providesall the necessary methodsfor standard SVG and VML rendering. The main interfaces
to note arethe Vect or Cont ai ner and the Vect or Obj ect .

The VectorContainer is a container object as the name implies and provides methods for storing and
managing VectorObjects. These VectorObjects in turn are the individual objects (such as Rectangle,
Circle, Path, ...) that can be drawn on the map.

In order to acquire a VectorContainer, all one has to do is request such a container with the
MapPresenter. This can be done by calling one of the following methods:

/1 Getting a VectorContainer for rendering in Wrl dSpace:
Vect or Cont ai ner wor | dCont ai ner = mapPresent er. addWr| dCont ai ner () ;

/1 Getting a VectorContainer for rendering in ScreenSpace:
Vect or Cont ai ner screenCont ai ner = mapPresent er. addScr eenCont ai ner () ;

After acquiring such a container it is possible to add multiple VectorObjects to it.
Note
Be careful to make sure you use the correct coordinate system when adding V ectorObjectsto

your VectorContainer. A container that was added in ScreenSpace, expectsit's V ectorObjects
to be expressed in pixel coordinates.

4.2.2. CanvasContainers

13

Architecture

4.3. Drawing geometries on the map

Often one needs to draw geometries on the map. Say we have a Feature who's geometry we want to
render in aspecific style. AsaFeatureisapart of aFeaturesSupported layer, it's geometry is expressed
in the map CRS. Hence we will want to render it's geometry in WorldSpace. So we start by creating
a VectorContainer:

/1 Getting a VectorContainer for rendering in Wrl dSpace:
Vect or Cont ai ner wor | dCont ai ner = mapPresent er. addWr| dCont ai ner () ;

Next we want to add the geometry as a Path to the VectorContainer. First we need to transform the
geometry into a Path object:

/1 Get the graphics utility fromthe G N injector:
GxUil gfxUil = GEOMAJASI NJECTOR get G xUtil ();

/1 Now transformthe geonetry into a Shape object:
Path path = gfxUtil.toPath(feature.getCGeonetry()); // Does not work for point g

Before adding the path to the VectorContainer, we may want to styleit first:

pat h. set Fi | | Col or ("#0066AA") ;
pat h. set Fi | | Opacity(0.4);
pat h. set St r okeCol or ("#004499") ;

Now it'stime to add the path to the VVectorContainer:

wor | dCont ai ner. add(pat h) ;

5. Client/Server communication

Although this chapter of the documentation is about the PureGwt client APl, Geomajasis at it's heart
a client/server based framework. The client needs the server to operate correctly. The client/server
communication mechanism used is a command pattern based upon the GWT RPC services.

An example of this communication is the map that fetches it's configuration from the server when it
initializes.

5.1. CommandService

The commands available are always defined on the backend, but can be called from the client. Most
commands are used internally by Geomajas, but often, backend plugins provide additional commands
for the client to use. For this, a CommandService singleton is provided. This service can be accessed
through the Gin injection framework:

ConmandSer vi ce conmmandSer vi ce = GEOVAJASI NJECTOR. get ConmandSer vi ce() ;
Next you can use this service to execute a command:

/1 Prepare a comand:

Enpt yCommandRequest request = new Enpt yCommandRequest () ;

Gum Command command = new Gm Command() ;

conmand. set CommandNane(" command. Get Si nmpl eExcept i onComand") ;
command. set ConmandRequest (r equest) ;

/1 Now execute the conmand:
conmandSer vi ce. execut e(conmand, new Abst ract ConmandCal | back<ConmandResponse>()

14

Architecture

@verride
public void execute(ComandResponse response) {
/1 don't do anything. An Exception will been thrown at server-side
}
1)

This example is taken from the showcase, where a command is created that throws an exception.
Perhaps not the most useful command, but it's a clear example.

Every command is defined by arequest and a response object. We create a client-side GwtCommand
object that refers to the backend command implementation through a string identifier, in this case
"command.GetSimpleExceptionCommand"”. Normally this string is defined as a public static string
in the request object.

5.2. Custom client/server communication

Although Geomajas uses acommand pattern for it's own client/server communication, itisnot limited
by it. After all, Geomagjas uses the GWT framework which has native support for Ajax calls (Json,
XML, ...). When creating your own WebServices, you are not bound to extend Geomajas commands.
Itis perfectly possible to write your own RESTful service or a custom GWT RPC service instead.

6. Widgets

Next to the map, Geomajas provides additional widgets to be placed on top of the map.

6.1. Adding widgets on top of the map

By default Geomajas will add a few widgets on top of the map that provide navigation buttons. Of
courseit is possible to replace any such widget with your own implementation. Actualy it is perfectly
possible to add any widget you want on top of the map.

15

Chapter 3. Configuration

In order to usethe PureGWT facein your web application, there are afew stepsyou need to take. These
include adding the correct libraries to your project, configuring the web.xml to set up the Geomajas
Communication Service, and setting up the GWT module configuration.

1. Dependencies
2. web.xml

3. Build steps

16

Chapter 4. GWT widgets

17

Chapter 5. How-to

1. Adding a map to a classic GWT layout

The MapPresenter class not only acts asthe Presenter in the MV P (M odel-View-Presenter) model but
also gives access to the View by implementing the IsWidget interface. As a widget, it can be added
to any of the GWT layout classes with some precautions, however:

» The parent widget should implement ProvidesResize
» Thesize of the map hasto be set explicitly

Resi zeLayout Panel panel = new Resi zeLayout Panel ();
mapPresent er. set Si ze(100, 100) ;
panel . set W dget (mapPresenter);

If the panel isresizable, acustom resize handler should be registered to set the size whenever aresizing
event occurs.

2. Adding a map to a GWT 2.0 layout

A special MapLayout class is provided for adding a map to a GWT 2.0 layout class (class that have
Layout in their name and follow asizing hierarchy). No special resize handling is needed for this case:

MapLayout Panel mapLayout = new MapLayout Panel () ;
maplLayout . set Present er (mapPresenter);
Root Layout Panel . get (). add(layout); // fills the conplete browser view

3. How to catch the location of mouse events
on the map?

18

	Geomajas pureGWT face
	Table of Contents
	Chapter 1. Introduction
	1. Thin client
	2. Mobile vs desktop

	Chapter 2. Architecture
	1. The central Map API
	1.1. GIN: GWT injection
	1.1.1. GeomajasGinModule and GeomajasGinjector
	1.1.2. Overriding the default GIN implementations

	1.2. The Geomajas map: MapPresenter
	1.3. Map initialization
	1.4. Adding the map to the GWT layout
	1.5. Map configuration & MapHints
	1.6. Managing the view on the map
	1.6.1. The ViewPort
	1.6.2. Rendering spaces

	1.7. Layer composition
	1.8. Layer API
	1.8.1. Client layers and server layers
	1.8.2. Supporting interfaces
	1.8.3. Features
	1.8.3.1. Feature Selection
	1.8.3.2. Searching features

	2. Events
	2.1. Geomajas events versus native events
	2.2. EventBus
	2.2.1. Geomajas MapEventBus
	2.2.2. GIN EventBus

	2.3. Event overview

	3. User interaction
	3.1. MapController definition
	3.2. Applying your own MapController on the map
	3.3. Working with events

	4. Graphics & Rendering
	4.1. WorldSpace vs ScreenSpace
	4.2. Rendering containers
	4.2.1. VectorContainers & VectorObjects
	4.2.2. CanvasContainers

	4.3. Drawing geometries on the map

	5. Client/Server communication
	5.1. CommandService
	5.2. Custom client/server communication

	6. Widgets
	6.1. Adding widgets on top of the map

	Chapter 3. Configuration
	1. Dependencies
	2. web.xml
	3. Build steps

	Chapter 4. GWT widgets
	Chapter 5. How-to
	1. Adding a map to a classic GWT layout
	2. Adding a map to a GWT 2.0 layout
	3. How to catch the location of mouse events on the map?

