Geomajas Editing plug-in guide

Geomajas Developers and Geosparc

Geomajas Editing plug-in guide
by Geomajas Developers and Geosparc

1.0.0-M2
Copyright © 2010-2012 Geosparc nv

Table of Contents

IO | oo [0 (o o I ORI
1. MOdEl-VIBW-CONEIOIEY ... e

2. The GeomMELryINAEX COMCEPL ... cevuieiieiiieeei e e e et e e e e e e e e e e e e e st e e e eanneees

3. The CENLral SEIVICES ..oeviieieii et e

2. JAVAIGWT EGItiNG AP ..o
AV o V2= g T wo) 1o U - o o

2. the GeometryEditor object for the GWT faCecoovvviiiiiiiiii e,

3. The GEOMELTYEQItSEIVICE ... cvvieiie e e e e e

3.1. Geometry edit WOrKFIOWcovnniiiiii e

3.2, GEOMETYEQITSIALEvuiieiieei e e e e e e

4, Using snapping Whil€ €ditingoiiiiiriiiiiii e e e e e
VL= o T aTo 0 1= o 1 == P

6. SPIItING JEOMELIIESvvt et e e e e e e e e e e e et e e e eaaeees

3. JavaScript ApPi fOr EQItINGuoveeiiii e
AV o V2= g T wo) 1o U - o o

2. The GEOMELTYEQItSEIVICE .. cvvi i e e e e e e

G U L= T 0o 7= o o 1 oo P

LV = o T aTo e =0 L=t (=<

5. SPIItiNG QEOMELIIESeee et e e e e e e e et e e e e aaeees

4, JAVA HOW-TO .ot
1. HOW tO Create a NEW QEOMELIYuieiiiiiieieie et e e e e e e e e e e e et e anenaanas

2 o (o TV o J="o (o =0 I 10 1= £ 1 o

3. How to delete an interior MiNGcouuiiiiie e e e e e

LI - V7=] oLl [0 (o
1. HOW tO Create a NEW QEOMELIYuieiiiieieiiiie e e e e e e e e e e e e e e e aenaanas

2. HOW to add an iNtErior FiNGovveeeiii e e e e e e e e e e e eanaeees

3. How to delete an interior MiNGcouuiiiiiiii e e e e

4. How to register a geometry handlerc...vviviiiiii i

List of Tables

1.1. GEOMELrY iNAEX SAMPIES ... ivuiiiii e e e e et e e e e e et e e e e e e e et eeeaneaaanaes

List of Examples

2.1. Maven dependency fOor GWT faCeccuuiiiiiiiiii i e e
2.2. Constructing a GEOMELTYEITOrcovveiiiiiei e

Chapter 1. Introduction

This plug-in provides a set of services and utilities for visually editing geometries on the map within
a GWT environment. It uses the Geomajas Geometry Project as the base geometry type, and the
MapCont r ol | er definition from the Geomajas Common GWT face library. On top of the visual
geometry editing, this plug-in aso provides services for snapping, splitting and merging.

1. Model-view-controller

In essence the editing follows the tried and tested M odel-View-Controller principle:

* Model: The central Geonet r yEdi t Ser vi ce. It keeps track of the location and status of all
vertices and edges of the geometry being edited.

* View: The Geonet r yEdi t Ser vi ce will fires events that are being picked up by a specific
renderer. Any change in the shape of the geometry or the status of it's vertices/edges will be caught
and visually displayed on the map.

» Controller: A series of handlers will execute methods in the Geornret r yEdi t Ser vi ce, based
upon user interaction on the map.

Note

As the rendering is face specific, the focus has first gone to the GWT face. An
implementation for the PureGWT face will follow later.

Therenderer isoneexampleof alistener to the many eventsthat the Geonet r yEdi t Ser vi ce fires,
but essentially anyone can listen to those events. If you need to react to any change in a geometry's
shape, just add the correct handler.

2. The Geometrylndex concept

Before trying to figure out how the Geonret r yEdi t Ser vi ce works, it isimportant to understand
the Geonet r yl ndex concept. A Geonet ryl ndex is an index within a geometry that points to
asingle vertex, edge or sub-geometry. All operations within the Geonet r yEdi t Ser vi ce operate
on alist such Geon®et r yl ndi ces.

Take for example the "move" operation. This operation will move the given Geonet r yl ndex to
the specified location. This operation is used when the user drags a vertex around on the map, but
this operation could also be used to let the user drag an interior ring within a polygon, or an entire
LineString within a MultiLineString, or event the whole geometry.

The Geometrylndex is based on the internal structure of the geometry, which may contain 4 or more
levels:

1. Geometry collection level: this is the highest structural level for geometry collections:
multipolygon, multilinestring or arbitrary geometry collections. In theory a geometry collection
may contain other geometry collections, but thisis rarely encountered.

2. Geometry level: thisisthe level of abasic geometry like polygon, linestring or point

3. Ring level: for a polygon, this is the level of the linear rings. There is usually an exterior ring
(boundary), but there may also be additional interior rings (holes)

4. Vertex or edge level: thisisthe level of the individual vertices and edges. A single edge connects
2 vertices.

Introduction

The elements at each level have afixed ordering, which makesit possible to uniquely determine such
an element by itsorder at each level of the structural tree. This combination of order numbers, together
with atype to distinguish between edges, vertices or higher level structures (which we generally call
geometries) formsthe Georret r yl ndex.

Lets give some examples to clarify this. The following table shows at the left column a
geometry in WKT format with a highlighted section and the corresponding Georret r yl ndex. The
Geometrylndex is an array of integers combined with a type. For edge, the type is edge, for vertex
itisvert ex andfor all other structuresitisgeonet r y. Thelast row contains a multipolygon with
2 polygons. The highlighted section is a couple of points that determines an edge of the interior ring
of the first polygon. The indices are O (for the first polygon), 1 (for the interior ring) and 2 for being
the 3rd edge of thisring (counting starts with index O in all cases).

Table 1.1. Geometry index samples

WKT Geometry index
POINT(0O 0) [Q], type = vertex
LINESTRING (30 10, 10 30, 40 40) [1], type = vertex
LINESTRING (30 10, 10 30, 40 40) [2], type = edge

POL Y GON ((35 10, 10 20, 15 40, 45 45, 35 10),|[1], type = geometry
(20 30, 35 35, 30 20, 20 30))

POLY GON ((35 10, 10 20, 15 40, 45 45, 35 10),|[1,2], type = vertex
(20 30, 35 35, 30 20, 20 30))

MULTIPOLY GON (((35 10, 10 20, 15 40, 45 45, |[0,1,2], type = edge
35 10), (20 30, 35 35, 30 20, 20 30)),((35 10, 10
20, 15 40, 45 45, 35 10)))

3. The central services

Thereare 3 central servicesthat helpinthe editing process. All three have avery distinct responsibility:

» GeometryEditService: Defines the editing workflow and the basic operations (with undo/redo) that
are supported. Also allows to add handlersto all events.

» GeometrylndexService: This service defines operations for creating and manipulating
Geometrylndices. It also supports retrieving information based upon a certain geometry and index.
For example what are the adjacent vertices to a certain edge within a given geometry?

» GeometrylndexStateService: Keeps track of the state of all indices that make up the geometry
being edited. It allows for selecting/deselecting, enabling/disabling, highlighting, etc any vertices/
edges/sub-geometries during the editing process. This state can then be used by the controllers. For
example, acontroller could allow only selected vertices to be dragged by the user.

There are more services then the 3 mentioned above such as a SnapServi ce,
Ceonet ryMergeServi ce and GeonetrySplitService, but those just add more
functionality to the basic set that the 3 above aready provide.

Chapter 2. Java/GWT Editing API

1. Maven configuration

In order to use this plug-in in combination with the GWT face, the following Maven dependency is
required:

Example 2.1. Maven dependency for GWT face

<dependency>
<gr oupl d>or g. geonmj as. pl ugi n</ gr oupl d>
<artifactld>geonsj as-pl ugin-editing-gw</artifactld>
</ dependency>

2. the GeometryEditor object for the GWT
face

Before going deeper into the inner workings of the different services and how they work together, we
need to explain the GeometryEditor. This is the top level editing object that makes al of the other
services work together. It has a GeometryEditService, a renderer for the map, a SnapService, and a
registry for controller on the map.

Thisiswhereyou start when trying to edit geometries within the GWT. Because the rendering is face
specific, this object too is face specific. A GeometryEditor can simply be constructed using a map:

Example 2.2. Constructing a GeometryEditor

CeonetryEdi tor editor = new GeonetryEditor(napW dget);

3. The GeometryEditService

Central service for all operations concerning the geometry editing process. This process should work
together with aset of controllers on the map that execute methods from this service after which events
are fired for a renderer to act upon. This service makes use of the Geonet r yl ndexSer vi ce to
identify sub-geometries, vertices and edges. All operationswork on a set of such indices. This allows
for great flexibility in the operations that can be performed on geometries.

3.1. Geometry edit workflow

Editing a geometry comes down to starting the editing process, applying some operations and then
stopping the process again. Starting and stopping happens through the st art and st op methods.
Know also that operations onto the geometry really do apply on the same geometry that was passed
with the st art method. In other words, this service changes the original geometry. If you want to
support some roll-back functionality within your code, make sure to create a clone of the geometry
before starting this edit service.

3.2. GeometryEditState

At any time during the editing process, the Georret r yEdi t Ser vi ce has ageneral state that tells
you what's going on. This state is defined in the Geonet r yEdi t St at e. Currently there are 3
possible states for the editing process to bein:

* |IDLE: The default state.

JavalGWT Editing API

* INSERTING: The wuser is currently inserting new points into the geometry. The
Geonret r yEdi t Ser vi ce has an "insertindex" (of the type Geornret r yl ndex), that points to
the next suggested insert location. The controllers pick up on thisindex to insert points (or edges,
or geometries).

* DRAGGING: The wuser is currently dragging a pat of the geometry. The
Geonet ryl ndex St at eSer vi ce can select vertices/edges/sub-geometries, which can then be
dragged around.

As you may have noticed from the descriptions, the GeometryEditState is used mainly within the
controllers that operate on the map. An insert controller will only be active when the edit state is
"INSERTING". Likewise adrag controller will only be active when the edit stateis"DRAGGING".

4. Using snapping while editing

The editing plug-in has support for snapping whileinserting or dragging. The controllers are equipped
with a SnapSer vi ce which can convert the mouse event locations into snapped locations, before
they are passed to the Geonet r yEdi t Ser vi ce for operation execution.

The SnapService works through a series of rules that need to be active. Without any snapping rules,
the SnapService will no snap. Adding snapping rules, goes through the "addSnappingRule" method,
and requires the following parameters:

« algorithm: The snapping algorithm to be used. For example, snap to end-points only, or also to
edges, or...

 sourceProvider: The provider of target geometries where to snap. For example, snap to features
of alayer.

* distance: The maximum distance to bridge during snapping. Expressed in the unit of the map CRS.

 highPriority: High priority meansthat this rule will always be executed. Low priority meansthat if
aprevious* snapping algorithm hasfound a snapping candidate, this algorithm will not be executed
anymore.

5. Merging geometries

6. Splitting geometries

Chapter 3. JavaScript Api for Editing

The editing plug-in also provides a JavaScript API for client-side integration with other technologies.
The API resembles the JavalGWT API as closely as possible (package names are different).

1. Maven configuration

2. The GeometryEditService

The JavaScript counterpart of the GeometryEditService is basically a wrapper around the GWT
version. It therefore has the same methods, and works the same way.

3. Using snapping

The snapping options in JavaScript are not as rich as they are in GWT. No separate SnappingService
is available. What can be done, is configuring snapping options in the XML configuration of the
vector layers, and using that configuration directly. The JavaScript "GeometryEditor" has methodsfor
activating those snapping rules during editing.

On top of that, the GeometryEditor also has the ability to turn snapping on and off while inserting

vertices or while dragging vertices. As with the GWT snapping you need at least one snapping rule
for snapping to occur.

4. Merging geometries

The JavaScript counterpart of the GeometryMergeService is basically a wrapper around the GWT
version. It therefore has the same methods, and works the same way.

5. Splitting geometries

The JavaScript counterpart of the GeometrySplitService is basically a wrapper around the GWT
version. It therefore has the same methods, and works the same way.

Chapter 4. Java How-to

This chapter shows how to perform some of the most common editing operations.

1. How to create a new geometry

This section describes how to let the user draw a new geometry of some pre-defined type. Theideais
that the user can click on the map to insert vertices into the geometry. This requires three steps:

1. SetupaCGeonet r yEdi t or for themap. Theeditor isresponsiblefor drawing the edited geometry
and setting the correct event handler for capturing user events

2. Prepareaninitial (empty) geometry for the editor. The editor always operates on asingle geometry,
which has to be set programmatically.

3. Preparetheintial state of editing. During the editing phase, the editor isin one of the 3 main states:
idle (waiting for the user to select), inserting (inserting vertices) or dragging (dragging a part of the
geometry). To start drawing on an empty geometry, the inserting state has to be activated and the
insert index (index of the vertex that will be inserted) should be set.

The following code has to be executed:

GeonetryEditor editor = new GeonetryEditorlnmpl (map); // (1)
Ceonetry pol ygon = new Geonetry(CGeonetry. POLYGON, 0, 0); [/ (2)
editor. get Edi t Service().start(polygon); // (2)

try {

CGeonetryl ndex index = editor.getEditService().addEmptyChild(); // (3)
editor.get EditService().setlnsertlndex(editor.getEditService().getlndexServ
editor.getEditService().setEditingState(CGeonetryEditState. | NSERTI NG ;

} catch (GeonetryQperationFail edException e) {

edi tor.getEditService().stop();

W ndow. al ert ("Exception during editing: " + e.getMessage());
}

From there on, the user can take over. Depending on the use case, the editing service could be stopped
by letting the user click outside the finished geometry

edi tor.getBaseController().setCickToStop(true);
or by explicitly stopping the service:
edi tor.get EditService().stop();

The editing happens on the same object that was originally passed to the service.

2. How to add an interior ring

The following steps have to be taken:
1. Add an extraempty ring to the polygon
2. Prepare the editing state to start inserting at the first child index of the ring

The following code assumes that the polygon being edited already has an exterior ring:

try {
GeonetryEdi t Servi ce service = editor.getEditService();
CGeonet ryl ndex ringlndex = service.addEnmptyChild(); // (1)

Java How-to

/1 Free drawi ng neans inserting node. First create a new enpty child, t
/1 index to the child s first vertex:
servi ce. setl nsertlndex(service. getlndexService().addChildren(ringlndex,
service.setEditingState(CGeonmetryEditState. | NSERTING ;// (2)

} catch (GeonetryQperationFail edException e) {
Wndow. al ert ("Error during editing: " + e.getMessage());

}

3. How to delete an interior ring

The following steps have to be taken:
1. Find the correct index for the ring
2. Call the serviceto remove thering
The following code deletes the first interior ring if the polygon has one:

Ceonet ryEdi t Service service = editor.getEditService();

Ceonetry geonetry = service. get Geonetry();

i f(geonmetry. get Geonetries().length > 1) {
Ceonetryl ndex ringlndex = service. create(Geonetryl ndexType. TYPE_GEOVETRY, 1
servi ce.renmove(Col |l ections. singletonList(ringlndex)); // (2)

Chapter 5. JavaScript How-to

This chapter shows how to perform some of the most common editing operations.

1. How to create a new geometry

This section describes how to let the user draw a new geometry of some pre-defined type. Theideais
that the user can click on the map to insert vertices into the geometry. This requires three steps:

1. SetupaCeonet r yEdi t or for themap. Theeditor isresponsiblefor drawing the edited geometry
and setting the correct event handler for capturing user events

2. Prepareaninitial (empty) geometry for the editor. The editor always operates on asingle geometry,
which has to be set programmatically.

3. Preparetheintial state of editing. During the editing phase, the editor isin one of the 3 main states:
idle (waiting for the user to select), inserting (inserting vertices) or dragging (dragging a part of the
geometry). To start drawing on an empty geometry, the inserting state has to be activated and the
insert index (index of the vertex that will be inserted) should be set.

Thefollowing code hasto be executed (onGeonaj asLoad() iscalled automatically on pageload):

var map; // The nap object.
var editor; // Ceonetry editor. Holds the central editing service, the renderer
var service; // The central editing service.

function onGeonsj asLoad() {
map = Ceommj as().createMap("app", "mapMiin", "js-nmap-elenment");
edi tor = new org. geonsj as. plugin.editing.GeonetryEditor(); // (1)
editor.setMap(nmap); // (1)
service = editor.getService();

}

function drawPol ygon() {
var geonmetry = new org. geonsj as.jsapi.spatial.CGeonetry("Polygon", 0, 0); // (
service.start(geonetry);// (2)
servi ce. addEnptyChi I d(); // (3)
var index = service.getlndexService().create("vertex", [0, 0]); // (3)
service. setlnsertlndex(index); // (3)
service.setEditingState("inserting"); // (3)

}

From there on, the user can take over. Depending on the use case, the editing service could be stopped
by letting the user click outside the finished geometry

edi tor.getBaseController().setdickToStop(true);
or by explicitly stopping the service:
editor.getEditService().stop();

The editing happens on the same object that was originally passed to the service.

2. How to add an interior ring

The following steps have to be taken:

1. Add an extraempty ring to the polygon

JavaScript How-to

2. Prepare the editing state to start inserting at the first child index of the ring
The following code assumes that the polygon being edited already has an exterior ring:

function insertHol e() {
var geometry = service. get Geonetry();
var ringlndex = service.addEnptyChild(); // (1)
var indexVal ue = ringl ndex. get Val ue();
var index = service.getlndexService().create("vertex", [indexValue, 0]); // (
service. setlnsertlndex(index); // (2)
service.setEditingState("inserting"); // (2)

}
3. How to delete an interior ring

The following steps have to be taken:
1. Find the correct index for the ring
2. Cadll the service to remove the ring
The following code deletes the first interior ring if the polygon has one:

function deletefirstHole() {
var geometry = service. get Geonetry();
i f(geonetry. getGeonetries().length > 1) {
var index = service.getlndexService().create("geonetry", [1]); // (1)
service.remove([index]): // (2)

}
4. How to register a geometry handler

Geometry handlers are necessary to apply custom editing actions when certain mouse events occur.
The concept is similar to norma map controllers, but geometry handlers add information about the
geometry index of the part of the geometry on which the mouse event occurs. To register a geometry
handler, the following steps have to be taken:

1. Create an instance of
or g. geonmmj as. pl ugi n. edi ti ng. handl er. Geonet r yHandl| er Fact ory

2. Set mouse event functions for each of the mouse events that have to be captured
3. Register the factory.

4. Redraw the edited geometry by caling editor. get Renderer().redraw).This is
necessary to activate the handler.

5. Deregister the factory and call redraw when finished

Thefollowing codeillustrates such registration in the case of a custom handler for deletion of interior
rings.

function registerDel eteHol e() {
factory = new org. geomsj as. pl ugi n. edi ti ng. handl er. Geonet r yHandl er Fact ory() ;
factory. set UpHandl er (function(event) { 11 (2)
var index = factory.getlndex();
if (service.getlndexStateService().isMrkedForDel etion(index)) {

try {

JavaScript How-to

}

servi ce.renmove([index]);
} catch (e) {

alert("Error occurred while deleting the inner ring: " + e.getM
}

}
1)
factory. set MouseOver Handl er (function(event) { [/ (2)
var index = factory.getlndex();
var geonetryType = service. getlndexService().getCeonetryType(service. ge
if (geonetryType == "LinearRing") {
if (service.getlndexService().getValue(index) > 0) {
/1 Only inner rings nmust be marked. The outer shell can renain
servi ce. get | ndexSt at eServi ce() . mar kFor Del eti onBegi n([i ndex]);

}
1)
factory. set MouseCQut Handl er (function(event) { [/ (2)
var index = factory.getlndex();
if (service.getlndexStateService().isMrkedForDel etion(index)) {
servi ce. get | ndexSt at eServi ce() . mar kFor Del et i onEnd([i ndex]);
}
1)

Edi ti ngHandl er Regi stry().addGeonet ryHandl er Factory(factory); // (3)
editor.getRenderer().redraw(); // (4)

function unRegi sterDel eteHol e() {

if(factory) {
Edi ti ngHandl er Regi stry() . renoveGeonet ryHandl er Factory(factory); // (5)
editor.get Renderer().redraw(); // (5)

10

	Geomajas Editing plug-in guide
	Table of Contents
	Chapter 1. Introduction
	1. Model-view-controller
	2. The GeometryIndex concept
	3. The central services

	Chapter 2. Java/GWT Editing API
	1. Maven configuration
	2. the GeometryEditor object for the GWT face
	3. The GeometryEditService
	3.1. Geometry edit workflow
	3.2. GeometryEditState

	4. Using snapping while editing
	5. Merging geometries
	6. Splitting geometries

	Chapter 3. JavaScript Api for Editing
	1. Maven configuration
	2. The GeometryEditService
	3. Using snapping
	4. Merging geometries
	5. Splitting geometries

	Chapter 4. Java How-to
	1. How to create a new geometry
	2. How to add an interior ring
	3. How to delete an interior ring

	Chapter 5. JavaScript How-to
	1. How to create a new geometry
	2. How to add an interior ring
	3. How to delete an interior ring
	4. How to register a geometry handler

