JGraph Updating Guide

Table of Contents

I 11 (oo [0 oi Lo o F PP SSPPPPPT 2

2N = o] £ T PSP 2
2.1. Loop routing seperated from general FOULINGuioiieiiiiiiiiee e 2
2.2. Edgeview now keeps manual CONIol POINESuuuiiiiriieiiiii et 2

B JGTAPN 5.6.3 ettt e e 2
3.1. Port and vertex renderers no longer have graph reference.ccooveviieiii i, 2

L 1 =0 1 1 X 50 3
4.1. getSelectionCellAt added 10 JGIapcieiii e 3
4.2. Movesinto group checks for full INterSeCtionccoouuiiiiiiiiiii e 3
4.3. Inserting/Removing extralabelsinedgehandle ... 3
4.4. Bounds cloning bug in JGraph.getCellBoUNdSoiiuiiiiiiiii e 3
4.5. EdgeView.getPerimeterPoint returns @dge CENLEYovvinieiiii e 3

LTI o R T PP 3
5.1. Expand/Collapse FUNCLONEIILYcoeuuiiiiiii e 3
5.2. Adds getPerimeterPoint to CellView iNterfaceoouvuiiiiiiiiiiiiii e 4
5.3. Moves getCenterPoint as static method to AbstractCellViewcoooveviiiiiiiiiiiiiiiieeeen, 4
5.4. Adds getCellsto GraphLayOULtCaCtheiiiuiiiieii e 4
TR 1 g =T 1= 4

LS o R T T 4
6.1. Move INfOut Groups FUNCLIONEIITYiiiiiieiiii e e 4
6.2. Deprecated DefaultGraphM odel.getUserObj eCt(OBJECE)vvvvvenieiiiiiieiee e 5
5.3, OhEr ChaNQES ... ceeitie ettt ettt e e e e et e et e e e nb s 5

T JGTAPN 5.5, et 5
7.1. New HOOKS iN ADSITACICE IVIBW ...coeviiiiie e 5
7.2. Deprecated GraphCell.changeAHHDULESuiiiiiiii e 5
7.3, OthEr ChaNQES ... ettt et e e et e e e et e e e et e e e e nan s 5

8. JGIAPN 5.5 e 5
8.1. GraphModel .valueFOrCellChangedcoouuuiiiiiii e 6
8.2. EAQeVieW.getEAQERENUEIEY ittt 6
8.3. Labelsfor Self-References (8KaLOOPS)uiviieieiiiieiiieiiie e e e e e e e e eaaes 7
S @ 1 G =TT 7

Q. JGIAPN B4 . 7
9.1. BaSICMArQUEEHBNIEYcoeeiiiiii et et e 7
9.2. BasicGraphUIl.MouseHandler.handl€EdItTriggercouvuuiiiiiieiiiiieeee e 7
0.3, NeW HEIPEr MELNOAS ... e et e e e e aaas 7
S @ 1 =T o[8

O =0 R0 8
O o o= = o 1= PP 8

I CT "o T OO 8
12,7 ASKLOCAIATITDULESeveeee et et e et e e e e e e et e e et e e ean e eeees 8
11.2. AHTATIITDULESLOCE]eieeeeiie ettt ettt e e eneas 8
11.3. Performance IMPIrOVEMENLScouuiiiiiiie e e e e e e e e e e e e e e et e e e anaaannas 9
1 01 £ PP 9
T @1 0= O = g o = PP 9

12, JGKAPN B4 oo 9
12.1. Event Notification in GraphLayOUICEChEcoouuuiiiiiiiiciii e 9
12.2. AttributeMap Does NOt Store USer ODJECEuieuniiii e 9
12.3. NEW MELNOUS ...ttt e e e e e e e e e e e 10
I @ 1 = G =TT PP 10

JGraph Updating Guide

12.5. ABDOLE TESES .vvvtiii ettt e e e 11

G -0 R 0 11
13.1. AULOMELIC SEIECHION ...eee e e e e e e e e e e e s e e a e e e e e eaneeeenaees 11
13.2. AUMDUIE IMIADS ...t ettt e e et e et e e e e 11
R RS o= o <31V = To L T USRI 11
134, TranSPOIT IMIAISeeeieeee ettt ettt et et et e e e et et e e e e e e e e e naees 11
L13.5. NEBW MELNOUS ...ttt e e e e e e e 11

7 -0 R 12
14.1. IGraph.SetSEIECINEWCEIIS ... i 12
14.2. DEfAUITCEIIVIBWFECIONYn ittt e e e e e e eees 12
14.3. Extended OBSEIVEr PAtErNuiiiiiiiieiiii ettt e et e e et e e e e eees 12
14.4. Standalone GraphLayoutCache and Cell VIEWSc.uiiiiiiiiiii e 12

1. Introduction

This guide should help you to update existing code to the latest JGraph versions. We try and keep the
impact of new versions as minimal as possible, some bug fixes and extensions still require API changes.
We will use deprecation where possible and explain the motivation of al changes and how to migrate
your codein this guide.

Feel free to contact support@jgraph.com if you feel a change is missing or to request additional inform-
ation for a change. (Please provide your order number when contacting support.)

2.JGraph 5.7

2.1. Loop routing seperated from general routing

The Routing interface still requires the implementation of the route() method. route() returns the result
of one of the routing methods in the router. The basic implementation checks if the edge is a loop and
calls the loop routing method, otherwise it calls the general routing method. routel oop() routes edges
that start and ends at the same vertex and routeEdge() is intended for non self-loop edges. The default
loop implementation is provided by LoopRouting. Extending LoopRouting for your own routers is re-
commended if your router does not currently provide any self-looping. The default router, De-
faultRouter, inherits from LoopRouting and adds routing for general edges.

2.2. Edgeview now keeps manual control points

Edgeviews with manual control points that have routing applied revert to their old manual control points
when the routing is removed.

3.JGraph 5.6.3

3.1. Port and vertex renderers no longer have graph ref-
erence.

Renderers are generally static instances even when you delete a JGraph these renderer stop the JGraph
from being garbage collected. This only happens for one JGraph instance and is more of a static memory
footprint than a memory leak. We've removed the references in the port and vertex in this release and
will do the edge renderer shortly. If you were relying on having the graph instance available the idea is
to create extra variables in the renderer and set the specific variables in getRendererComponent. So if
you were using the graph reference to get the color, for example, in paint(), instead create a variable to
hold the color in the renderer and set it in getRendererComponent using the graph instance available

JGraph Updating Guide

there. In paint then use that local color variable instead.

4.JGraph 5.6.1
4.1. getSelectionCellAt added to JGraph

get Sel ecti onCel | At takes a Poi nt 2D as its parameter and returns the first selected cell whose
bounds the point lies within. This is useful if you have a mouse operation that doesn't perform a selec-
tion and you want the operation to act only on selected cells. A right mouse button press to bring up a
popup menu is such an example.

4.2. Moves into group checks for full intersection

Previously, whether or not a cell that was dragged into a group was made part of that group (assuming
the move into groups option is enabled) was based on the mouse position when released. This has been
corrected to be based on whether the cells bounds is fully within the bounds of the group cell instead.

4.3. Inserting/Removing extra labels in edge handle

When extra labels and selected and dragged with the control key is depressed, a clone of the extra label
is made upon release. Also, if a press occurs on an extra label with the shift key depressed, the extrala-
bel is removed.

4.4. Bounds cloning bug in JGraph.getCellBounds

An intermitent bounds cloning bug was fixed in JG aph. get Cel | Bounds(Qbj ect[]). This
meant occasionally it was possible for a cell to become very high since it was using the bounds value
from a previously processed cell.

4.5. EdgeView.getPerimeterPoint returns edge center

This means that edges connecting to other edges will point to the center of the connected-to edge if the
port attached to the connected-to edge is floating.

5.JGraph 5.6
5.1. Expand/Collapse Functionality

The expand and collapse functionlity has been improved in the GraphLayoutCache. When a group is
collapsed, edges connecting to vertices that have been hidden are shown to attach to the perimeter point
of their first visible parent view. Note that no model changes are made. When the group is expanded
again the edges are shown connected to their original vertices.

There is a new method in GraphLayoutCache, setCollapsedState that accepts arrays of the cells to be
collapsed and those to be expanded, so the two operations can be performed at the sametime.

A new attribute, groupOpaque, was added. This enables transparent groups which are opague when col-
lapsed, i.e. the group cell isnot visible if it is expanded but is visible if it is collapsed.

The showsChangedConnections switch was added to the GraphLayoutCache. This indicates whether
connections should be made visible when reconnected and their source and target ports (or one of their
parents) are visible.

JGraph Updating Guide

5.2. Adds getPerimeterPoint to CellView interface

This method was previously in VertexView, this change enables edge to edge connections. The method
also now requires an EdgeView parameter of the edge connecting with the perimeter of the vertex. null
will work correctly for this parameter initially. The old method has been deprecated.

5.3. Moves getCenterPoint as static method to Abstract-
CellView

The old method in VertexView is deprecated. vertex.getCenterPoint() needs to be changed to Abstract-
CedlView.getCenterPoint(vertex);

5.4. Adds getCells to GraphLayoutCache

This new helper methods allows to get cells based on their type and current state in the layout cache. For
example, to get al vertices (ie. al cells for which nodel .i sEdge(cell) and nod-
el .isPort(cell) returnsnull and that appear as leafs in the layout cache), the following code may
be used:

graph. get G aphLayout Cache().getCel | s(fal se, true, false, false);

In order to find all selected edges, the following code is used (using the new get Sel ecti on-
Cel I s(Object[]) inJGraph):

graph. get Sel ecti onCel | s(
graph. get G aphLayout Cache().getCel | s(fal se, false, false, true));

5.5. Other Changes

» getSelectionCells(Object[] cells) was added to the JGraph class. This returns an Object array with
cellsthat are selected from the Object array parameter passed in.

» Thetype of extra edge labels in GraphConstants was changed to a Point2D. This was a bug, please
update your types accordingly.

« The moves cdlls out of groups functionality was changed so that the cell is judged to have left the
group with there is no intersection between its bounds and the group bounds. Previoudly, this was
worked out from the mouse position, which was a bug.

» Bean propertiesfor gridColor, (locked)handleColor and handleSize have been added.

6. JGraph 5.5.3
6.1. Move In/Out Groups Functionality

The JGraph class has switches named movelntoGroups and moveOutOfGroups. movel ntoGroups con-
trols whether or not to automatically insert cellsinto group cells if they are dragged and dropped into the
bounds of that group. Likewise, dragging and dropping a cell out of a group cell is possible with move-
OutOf Groups enabled.

JGraph Updating Guide

6.2. Deprecated DefaultGraphMod-
el.getUserObject(Object)

This static method is replaced with the member method getV alue(Object).

6.3. Other Changes

» EdgeHandle checks for the edge being disconnectable in mouseDragged instead of mousePressed.
The processNestedMap has been added for subclassers to modify the nested map that represents the
change.

7.JGraph 5.5.1
7.1. New Hooks in AbstractCellView

In order to avoid creation of unused attribute maps in the cell views, and to avoid or change the retrieval
and cloning of the cell's attributes in the CellView.refresh, the AbstractCellView provides two hooks:
createAttributeMap is called at construction time to create the all Attributes and attributes (same instance
until the first refresh call) and getCellAttributes is called from refresh to retrieve and clone the cell at-
tributes from the model.

These hooks may be used to reduce the memory footprint for large graphs. Please have a look at the
FastGraph example.

7.2. Deprecated GraphCell.changeAttributes

The default values for points and the label position in edges is not required to be ensured in the Defaul-
tEdge (ie on cell-level). Rather, the EdgeView's update method should check whether these values exist,
and create them on the fly if they are missing. (In analogy to the bounds-check in VertexView.) Thanks
to this, it is no longer required to change the attributes of a cell via the cell instance using changeAttrib-
utes, the attributes can be changed directly using the following code (where change is a Map and cell is
an Object):

AttributeMap undo = graph. get Model (). getAttributes(cell). appl yMap(change);

7.3. Other Changes

» Various performance and memory improvementsin edges and edge rendering and -hit detection
o Storesdefault valuesin allAttributesin VertexView.update
» Adds new examples to the commercial distribution

* Removes unnessesary calls to AttributeM ap.createPoint

8. JGraph 5.5

JGraph Updating Guide

8.1. GraphModel.valueForCellChanged

Sometimes it is required that a value for a cell be changed without knowing the actual cell- or graph
model class, and without adding the change to the command history. Therefore, a new method has been
added to the GraphModel interface which allows a client to change the value (aka. user object) of a cell
without making any typecasts or adding the change to the command history.

Without this method a client that didn't want to affect the command history while changing the value of
a cell was forced to either cast to the custom graph model or to the custom cell type in order to change
the value.

The advantage of this change is that it is now possible to change the value of a cell (eg. prior to inser-
tion) without knowing the custom model or custom types it contains. This is useful for functionalities
that create new cells (such as group actions, mouse tools and import routines), because these are typic-
ally unaware of the concrete graph model or cell types, or there may be more than one model or cell type
throughout the lifecycle of these objects.

In such a setup, the cell passed to the functionality is refered to as a "prototype” and is prepared (cloned
and updated) for use in a new model with the following lines of code:

GraphModel model = graph. get Model () ;
nj ect newCel | = Defaul t GaphMdel . cl oneCel | (nmodel, prototype);
nodel . val ueFor Cel | Changed(cell, "Hello, world!");

Note that in this example, the prototype is an Object and no typecast is required to change the cell value.
The value does not need to be a String, it can be any object.

8.1.1. How to migrate?

Developers of custom models and custom graph cells do only need to change the modifier of the exist-
ing valueForCellChanged method. This method has been there before, but was not part of the graph
model interface. Instead it was used internally by the handleAttributes method to encapsul ate the actual
changing of the value, so that it could be overridden by subclassers to handle custom user objects. This
is still the same, but with the new interface the method can be called by external parties as well, which
means the visiblity must be changed from protected to public.

8.2. EdgeView.getEdgeRenderer

This method does a cast to EdgeRenderer on the value returned by getRenderer, and may therefore cause
exceptions for subclassers that do not inherit from EdgeRenderer to implement their edge rendering. We
have fixed this so that the invocations of this method are limited to the EdgeView class, so that a sub-
classer can safely assume that no other invocations to this method will be made. It is therefore required
to override all methods which rely on this method within the EdgeView class, namely:

* getShape

» getLabelBounds

» getExtral abelBounds
* intersects

* getBounds

JGraph Updating Guide

The reason for closely coupling the EdgeView and EdgeRenderer is due to caching and separation of
concerns between the EdgeRenderer and the EdgeView. For example: The EdgeRenderer isin charge of
finding the actual bounds of the edge, whereas the EdgeView isin charge of caching these bounds until
they need to be updated.

When implementing a custom edge renderer that does not inherit from EdgeRenderer then you need to
make sure that these collaborations are clearly defined and then override the above methods with your
custom code.

Note that there was one additional call to this method from within the BasicGraphUI (which was used to
position the in-place editor). This call was fixed to use getRenderer and perform a typecast, using the
top-left corner of the edge's bounding box as a default. Y ou may want to override that getEditorLocation
method to change this for a custom edge renderer.

8.3. Labels for Self-References (aka Loops)

The labels for self-references with no additional control points have been made moveable. The underly-
ing functionality interprets the label position as an absolute vector in pixel coordinates in this specia
case, because one cannot use the normalized vector between to the end points of such loops (as they are
at the same location and thus the resulting vector is 0).

The advantage of this change is that it is now possible to move labels on loops that have no control

points. On the downside the labels will "jump" (because of the special coordinate system) once the loop
is changed to become alink between two different ports.

8.4. Other Changes

» Avoids cropping of edge label (and in-place editing) in EdgeRenderer

9.JGraph 5.4.4

9.1. BasicMarqueeHandler

The paint and overlay methods have been changed to include the current graph. Since these methods are
always called in the context of a specific event, the graph is part of the caller's state, not the callee. To
migrate your code, simply change the subclassers method signature to match that of the parent class,
namely by inserting an argument in paint and overlay asin:

public void paint(JG aph graph, G aphics g);
public void overlay(JG aph graph, G aphics g, bool ean clear);

9.2. BasicGraphUl.MouseHandler.handleEditTrigger

The handleEditTrigger returns a boolean value to indicate whether the editing has actually started. This
isafix for events that are outside the cell editor's hit region, in which case the cell is not selected when
the edit click count is set to 1. This bug still exists in various Swing components. (Thanks to Timothy
Wall from the Abbott project for thisfix!)

9.3. New Helper Methods

JGraph Updating Guide

* GraphLayoutCache.getEdges: Returns all visible, conntected edges for a cell (with various switches)
» GraphLayoutCache.edit(Map): Shortcut method to avoid passing null parameters

» GraphLayoutCache.editCell(Object, Map): Changes a single cell (no nested map required)

» GraphLayoutCache.getNeighbours: Returns the neighbours of a cell (with various switches)

» GraphConstants.merge(Map, Map): Merges two nested maps

9.4. Other Changes

» Changes GraphL ayoutCache.setAll Attributelocal to setAllAttributesL ocal

* Replaced certain setViews cals in EdgeRenderer with assignment of view where setView is called
directly afterwards for performance reasons

e Adds createGraph method, graph accessors, static inner classes in GraphEd

» Fixes GraphEd.connect to check against acceptsSource and acceptsSource

10. JGraph 5.4.3
10.1. Edge Labels

We use a new positioning for edge labels, and fixed moving of them with the mouse.

» X-coordinate: the percentual position on the length of the edge in direction of the edge

» Y-coordinate: the absolute offset, orthogonally to the edge

Note that this requires to change the position of the default 1abel from (u/2,u/2) to (u/2,0), meaning 50%
(in the center of the edge) with 0 px offset. For a label at the end of an edge with some 20 px offset you
would use (u, 20), and for alabel at the start of the edge at the other side of it you would use (0, -20) -
eg. for multiplicities, where u = GraphConstants.PERMILLE.

11. JGraph 5.4.1
11.1. AskLocalAttributes

The isAskLocalAttributes field has been removed from GraphLayoutCache. The switch was used to
control if the local attributes should be ignored. This switch was never used since the existence of local
attributes normally also implies that they should be used.

11.2. AllAttributesLocal

As a "replacement” of the above, a allAttributesLocal switch was added to GraphLayoutCache. The
switch controlsif all attributes should be considered local. Thisis allowsto control attributes without ac-
tually knowing them, and is useful in the context of "view-local" geometries.

JGraph Updating Guide

11.3. Performance Improvements

The performance improvements are technically simple but quite considerable in wrt time consumption
(eg. 5 times faster for inserting 10'000 nodes). They consist of removing model.contains calls in Graph-
LayoutCache and DefaultGraphModel.

11.4. Insets

The inset attribute is used in BasicGraphUI.getPreferredSize to add an inset to the default size returned
by the respective renderer. The inset attribute now has a non-final default value in GraphCon-
stants. DEFAULTINSET. Note that changing this value affects all graph instances.

11.5. Other Changes

* A method to snap a Rectangle2D to the grid (if it is active) has been added to JGraph.

* The GraphLayoutCache constructor adds a hiddenSet parameter.

e The AttributeMap does no longer contain default bounds.

* A HugeGraphTest example has been added.

* New hooks have been added to GraphEd (example): createEdgeAttributes, createGroupCell, cre-

ateDefaultGraphEdge. In addition, the createDefaultGraphCell adds the port to the cell, not the call-
ing method.

12. JGraph 5.4
12.1. Event Notification in GraphLayoutCache

The GraphLayoutCache does no longer implement the Observable interface, it now has a full-featured
event notification mechanism. The listener should implement the GraphLayoutCachelL istener interface
and add the instance using the addGraphL ayoutCacheListener method on the layout cache. The layout
cache delivers GraphLayoutCacheEvents from which you can retrieve the new and the previous attrib-
utes. (Note: This will be required to optimize repaint upon changes.) The getinserted and getRemoved
methods return the cells that have been shown or hidden.

12.1.1. How to migrate?

For code migration all existing observers should now implement the above interface with the respective
method and remove the observer's update method:

cl ass ACachelLi stener inplenments G aphLayout CachelLi stener {
public void graphLayout CacheChanged(G aphLayout CacheEvent e) {

12.2. AttributeMap Does Not Store User Object

This fundamental change has the following advantages:

JGraph Updating Guide

12.2.1.

» No custom storage map injection at cell creation time, i.e. so no setAttributeMap() call required
» Graphcells must no longer keep the user object and the attribute map in sync
* No double-referencing of the same user object from graphcell and attribute map

On the downside this adds another control attribute, in other words: Y ou can not use attributes with the
name value in a storage map.

How to migrate?

If you are using custom user objects then you should have implemented a custom attribute map with at
least a valueChanged and clone method to take care of your custom user objects. If the attribute map
only contains these two methods it is no longer required. Instead, you should create or use the custom
graph model and override the following two methods:

public class GPG aphMbdel extends Defaul t GaphMdel {
protected Cbject cloneUserCbject(hject userbject) {

}
protected Object val ueFor Cel | Changed(oj ect cell, nject newval ue) {

}
}

If the attribute map is no longer required then all calls to cell.setAttributes that were used to inject the
map may also be removed. (See GPGraphModel in the JGraphpad project for an example.)

12.3. New Methods

3 useful static helper methods have been added to the DefaultGraphMode!:

» DefaultGraphModel.setSource/ Target: Sets the source or target of an edge

» DefaultGraphModel.getUserObject: Gets the user object from a graph cell

In the GraphM odel Change the getConnectionSet and getParentMap methods have been added.

12.4. Other Changes

3 new attributes are available to control cell behaviour, 1 attribute has been renamed:

» selectable/childrenSel ectable: Enable/disable selection of cells and children

» constrained: Forces constrained sizing on a cell

* groupBorder attribute is now called inset

The JGraph.convertVaueToString method has been changed to no longer map the cell. Instead, it uses

the cell's toString method to determine the value. The method still handles view-local values though. See
source code and javadocs for more details on the implementation.

10

JGraph Updating Guide

12.5. Abbott Tests

Timothy Wall has contributed test code for the Abbot testing framework. Please see the test directory.
Y ou must download the latest version of Abbot to compile and run the tests.

13. JGraph 5.3

13.1. Automatic Selection

The graph layout cache offers the setSelectslL ocallnsertedCells and setSelectsAlllnsertedCells methods
for automatic selection. The first method will select all cells which are inserted through the local cache,
while the latter will select all inserted cells that are visible. (Therefore it is not possible to select cellsin
all but the local layout cache.)

13.2. Attribute Maps

The AttributeMap had quite some changes over time. For migration it is important to understand that we
have split the use of such maps into transport and storage. The transport objects are norma maps, as
they do not need to override certain methods. The storage maps are AttributeMaps, which are no longer
created with a static or non-static hook. The storage maps are only used when replacing the cell's or
cellview's attributes field, otherwise one should use a transport map, such as a Hashtable.

13.3. Storage Maps

Hereis how to set a storage map for acell:

Def aul t GraphCel | cell = new Default GaphCell();
cell.setAttributes(new M/Attri buteMap());

13.4. Transport Maps

This changes the vertex background color to blue:
Hasht abl e map = new Hasht abl e();

G aphConst ant s. set Backgr ound(map, Col or. BLUE);
graph. get G aphLayout Cache() . edit(new Cbject[]{vertex}, map);

Note that by using the edit(Object[], Map) method we do no longer require a nested map.

13.5. New Methods

Many of the methods found in JGraphUTtilities (JGraphAddons) have been moved to the DefaultGraph-
Model and GraphL ayoutCache including:

* GraphLayoutCache.insertEdge: Inserts an edge

e GraphLayoutCache.insertVertex: Inserts a vertex

» GraphLayoutCache.insertGroup: Inserts a group

11

JGraph Updating Guide

14. JGraph 5.2
14.1. JGraph.setSelectNewCells

This method was replaced by setSelectClonedCells, which uses the following pattern when cloning
cells. The actua functionality of selecting newly inserted cells was removed from the core. Use the fol-
lowing pattern instead:

gr aph. get GraphLayout Cache().insert(cells, ...);
gr aph. set Sel ectionCel | s(cel I s);

14.2. DefaultCellViewFactory

JGraph is no longer a cell view factory. Instead, the cell view factory is a standalone object that is refer-
enced from the layout cache. Also, the cell view factory is no longer in charge of updating the auto size,
thisis done in the basic graph ui. Use the following code to create custom cell views:

graph. get GraphLayout Cache() . set Fact ory(new Def aul t Cel | Vi ewFactory() {
public Cell View createVi ewm(GraphMddel nodel, oject cell) {

}
}

14.3. Extended Observer Pattern

The layout cache does now provide a getChanged method to indicate the changed cell views to its ob-
servers. The changed cell views are collected using addChanged before the call to notifyObservers. You
must still call setChanged to notify the observers. The changed cell views are cleared when
clearChanged is called.

14.4. Standalone GraphLayoutCache and Cell Views

For the cell views, the constructor now only takes the cell. The refresh method is used to refresh on a
model-level change, and adds the graph model as a parameter. The layout cache is no longer in charge of
auto-sizing and selection of new cells. Constructors have been changed to take a model and a factory.
This change allows to use GraphLayoutCache and contained cell views in more than one JGraph in-
stance.

12

