
Geomajas rasterizing plug-in guide

Geomajas Developers and Geosparc

Geomajas rasterizing plug-in guide
by Geomajas Developers and Geosparc

1.2.0
Copyright © 2010-2012 Geosparc nv

iii

Table of Contents
1. Introduction .. 1

1. Pipeline overview .. 1
2. The image and rendering services ... 2
3. Rasterizing info classes .. 4

3.1. MapRasterizingInfo ... 4
3.2. RasterLayerRasterizingInfo ... 5
3.3. VectorLayerRasterizingInfo .. 5
3.4. ClientGeometryLayerInfo ... 5

4. RenderingService and LayerFactoryService .. 6
2. Configuration ... 9

1. Dependencies .. 9
2. Pipeline configuration ... 10
3. Rasterizing style configuration - SLD (Styled Layer Descriptor) 10
4. Commands ... 11
5. Actions and toolbar configuration ... 13

3. How-to .. 14

iv

List of Figures
1.1. Vector tile pipeline for rasterizing .. 1
1.2. URL handling for rasterization .. 2
1.3. Image service ... 3

v

List of Tables
1.1. MapRasterizingInfo attributes .. 4
1.2. RasterLayerRasterizingInfo ... 5
1.3. VectorLayerRasterizingInfo .. 5
1.4. ClientGeometryLayerInfo ... 6
2.1. RasterizeMapCommand .. 12

vi

List of Examples
1.1. Image service interface definition .. 3
1.2. Rendering service interface definition ... 6
1.3. Layer factory interface definition ... 7
2.1. Applying the rasterized pipeline for getVectorTile() on myLayer 10
2.2. SLD style configuration ... 11
2.3. SLD style sample .. 11
2.4. Image URL service definition .. 12
2.5. Configuration of rasterizing actions .. 13

1

Chapter 1. Introduction
The rasterizing plug-in enables the conversion of vector data (coordinate-based geometry definitions)
to raster data (images). It allows to extend the vector layer rendering pipeline by introducing an extra
rasterizing step. The vector tile response will thereby contain an URL content-type that allows the
client to fetch the tile as a normal image.

From a visualization view point, rasterizing tiles are quite comparable to vector tiles for many use
cases such as panning and zooming. They have significant advantages when the amount of vector data
is high, either in terms of features or in the amount of coordinates for each feature. Especially for
web clients, DOM-based vector rendering (SVG/VML) is quite slow and should not be used beyond
a couple of thousand features (state of the art as of beginning 2011). In this case rasterizing provides a
significant performance boost, especially when combined with server-side caching of the image tiles.

On the other hand, there are some use cases which are evidently difficult to treat without vectorial
information at hand:

• editing of geometries.

• snapping to other layers.

• selection of features.

Geomajas provides the ability to load vector data on demand in such cases, thereby combining the
best of both worlds.

1. Pipeline overview
The rasterizing plug-in adds a rasterizing service and some pipeline steps to the framework, as well
as a controller to serve the tile images.

The normal pipeline for getting the vector tiles is enhanced with an extra rasterizing step which is
indicated in green in the following figure:

Figure 1.1. Vector tile pipeline for rasterizing

The rasterizing takes place in the RasterTile step, right after the point where all the features have
been collected and transformed to the screen coordinate system. It goes in front of the GetTileFill
step because it has to work with the complete set of interacting features of the tile. The GetTileFill
step filters the features to assure they are only drawn in one of the tiles1. For rasterizing this is not
necessary, as drawing cannot span the tile boundary.

The RasterTile step performs the following actions:

• check the rebuild cache and make sure it has the necessary context to rebuild the rasterized tile
image.

• if the rasterizing needs to be done now:

1This is needed for SVG and VML rendering to avoid such features being drawn twice. Features are included in the tile which contains the
first point of the geometry or (if the first point is not inside the layer maximum bounds) to the super-tile.

Introduction

2

• build the rasterized tile image by calling the ImageService (see next chapter).

• put the rasterized tile image in the normal cache so that it can be fetched by the controller.

• set the feature content of the tile to a unique URL that contains the cache key.

After this step, the cache must contain both the rebuild information and the rasterized image. The tile
that is returned must contain the URL to fetch the tile image. Normally, the client will immediately
fetch this URL from the server in a separate client-server interaction.

Our next figure shows how this URL request is handled:

Figure 1.2. URL handling for rasterization

The following series of actions take place:

• the dispatcher servlet dispatches the request to the RasterizingController, based on the URL prefix
/rasterizing/.

• the RasterizingController invokes a separate rasterizing pipeline, which handles the following steps.

• The rasterizing cache is checked so if it contains the requested image. If successful, the pipeline
ends.

• the Rasterize step tries to fetch the rebuild context from the rebuild cache. If successful, the vector
tile pipeline is invoked again and the resulting image is returned. If not, an empty image is returned.

Note that you can configure when the initial rasterizing takes place. This can either be done when
requesting the vector tile or when requesting the tile image. There is a trade-off, handling the rasterizing
at vector tile requests optimizes throughput for the back-end, but seems slower for the client.

2. The image and rendering services
The rasterizing process has an application-level service, called ImageService ,which has methods
for creating a legend and map image. This service internally calls a pipeline with three steps. The most
important step, and the step which is responsible for the actual rendering, is the RenderMapStep,
This step uses itself a RenderingService, which is primarily a wrapper of the GeoTools
StreamRenderer class.

Our rasterizing is based on the GeoTools rasterizing approach. In this approach, a map context is
constructed that contains all the necessary information to rasterize a map. A map context contains the
following components:

• A list of layers: layers can be ordinary vector layers, raster layers or so-called direct layers, which
are responsible for their own rendering.

• A view port: a view port contains an area of interest and a screen area. It provides the transformation
between map an screen coordinates.

The actual rasterizing happens by passing the map context to the RenderingService along with
a Graphics2D object for drawing (usually to an internal buffer).

The following picture shows the services and the interaction with pipeline steps and factories:

Introduction

3

Figure 1.3. Image service

The image service can be used to rasterize single tiles or complete maps, depending on the composition
of the map context. The ImageService does not directly take a map context as an argument, but
expects a ClientMapInfo DTO object instead:

Example 1.1. Image service interface definition

public interface ImageService {

 /**
 * Writes a map to the specified output stream.
 *
 * @param stream output stream
 * @param clientMapInfo metadata of the map
 * @throws GeomajasException thrown when the stream could not be written
 */
 void writeMap(OutputStream stream, ClientMapInfo clientMapInfo) throws GeomajasException;

 /**
 * Writes a map to the specified graphics object.
 *
 * @param graphics graphics object
 * @param clientMapInfo metadata of the map
 * @throws GeomajasException thrown when the stream could not be written
 * @since 1.1.0
 */
 void writeMap(Graphics2D graphics, ClientMapInfo clientMapInfo) throws GeomajasException;

 /**
 * Writes a legend to the specified output stream.
 *
 * @param stream output stream
 * @param clientMapInfo metadata of the map
 * @throws GeomajasException thrown when the stream could not be written
 */
 void writeLegend(OutputStream stream, ClientMapInfo clientMapInfo) throws GeomajasException;

}

The ClientMapInfo DTO object has been extended a bit to include all the rasterizing information
needed (see next chapter).

Introduction

4

3. Rasterizing info classes
The ClientMapInfo DTO object has been extended to pass plugin-specific information to the
rasterizing plugin backend. This was done by using the generic ClientWidgetInfo mechanism
for adding per-map and per-layer information. Three extensions have been defined:

• MapRasterizingInfo: this is a ClientWidgetInfo extension that is applied at the map
level and contains such extra information as scale and bounds, extra layers to be visualized,
background transparency and legend information (in case a legend has to be rendered)

• RasterLayerRasterizingInfo: this is a ClientWidgetInfo extension that is applied
at the level of a raster layer and contains client-side dynamic information like visibility and css
styling (opacity)

• VectorLayerRasterizingInfo: this is a ClientWidgetInfo extension that is applied
at the level of a vector layer and contains client-side dynamic information at the layer level like
visibility, selection and style

The appropriate ClientWidgetInfo object should be set on the map and each of its layers
using getWidgetInfo().put(key,info) before calling the ImageService.The following
subsections will explain each of the extension DTO objects.

3.1. MapRasterizingInfo
The MapRasterizingInfo DTO object contains the metadata information that is needed to
rasterize the map. The following attributes are provided:

Table 1.1. MapRasterizingInfo attributes

Name Description

bounds Bounds of the map region that should be
visualized

scale Scale (in pixels per map unit). In combination
with the bounds this determines the dimensions of
the raster image

transparent Determines whether the resulting image should
be transparent. If false, non of the layers can use
transparency !

extraLayers A list of ClientLayerInfo DTO objects that should
be added on top of the configured layers of the
map. This opens up the possibility to render
additonal layers on top of the map that were not
part of the original map configuration. It also
allows to add extra objects on top of the map, such
as calculated buffers or feature geometries (see
ClientGeometryLayerInfo).

legendRasterizingInfo A DTO object that contains specific information
for rendering the legend (in case the
renderLegend() method is used. It
determines the width, height and font properties
of the legend.

ClientGeometryLayerInfo A subclass of the ClientLayerInfo object. This is
used to add a geometry to the map that does not
have a server side equivalent.

Introduction

5

3.2. RasterLayerRasterizingInfo
The RasterLayerRasterizingInfo DTO object contains metadata information that is needed
to rasterize a raster layer. It contains the following attributes:

Table 1.2. RasterLayerRasterizingInfo

Name Description

showing True if the layer should be rasterized.
This property is necessary because, as the
RasterLayerRasterizingInfo is added to the
original layer configuration of the map, skipping
of certain layers should be possible by
allowing showing = false (leaving the original
configuration untouched).

cssStyle The CSS style property to be set on the raster layer
images. This is primarily used to set the opacity.

3.3. VectorLayerRasterizingInfo
The VectorLayerRasterizingInfo DTO object contains metadata information that is needed
to rasterize a vector layer. It contains the following attributes:

Table 1.3. VectorLayerRasterizingInfo

Name Description

showing True if the layer should be rasterized.
This property is necessary because, as the
VectorLayerRasterizingInfo is added to the
original layer configuration of the map, skipping
of certain layers should be possible by
allowing showing = false (leaving the original
configuration untouched).

style The style to be applied for rasterizing the layer.
This may be different from the configured style of
the layer.

selectionRule The style rule to be applied to the selected
features. Selected features will be shown in a
specific selectiion style defined by this rule.

selectedFeatureIds The feature identifiers of the selected features.

filter An extra filter to limit the features that will be
rasterized.

paintLabels Wether labels should be painted.

paintGeometries Wether geometries should be painted.

3.4. ClientGeometryLayerInfo
The ClientGeometryLayerInfo DTO object contains metadata information that is needed to
rasterize geometries that are not part of the map configuration and have no server-side layer equivalent.
This type of layer can be added as an extra layer to the MapRasterizingInfo DTO to add such objects
to the map like user-drawn geometries, calculated buffers, bounds, etcetera. It contains the following
attributes:

Introduction

6

Table 1.4. ClientGeometryLayerInfo

Name Description

showing True if the layer should be rasterized.

style The style to be applied for rasterizing the
geometries.

layerType The type of the geometries. Should be one of the
vector layer types

geometries The list of geometries to be rendered. All
geometries are assumed to be defined in the CRS
of the map.

4. RenderingService and
LayerFactoryService

As indicated in the image and rendering services section, the actual rendering of the map/legend is
based on the Geotools map context and renderer concepts. The RenderingService interface has the
following methods:

Example 1.2. Rendering service interface definition

public interface RenderingService {

 /**
 * Renders the legend for the specified map context.
 *
 * @param context map context
 * @return the image
 */
 RenderedImage paintLegend(MapContext context);

 /**
 * Renders the map context to the specified Java 2D graphics.
 *
 * @param context map context
 * @param graphics graphics object
 */
 void paintMap(MapContext context, Graphics2D graphics);

 /**
 * Renders the map context to the specified Java 2D graphics using some extra renderer hints.
 *
 * @param context map context
 * @param graphics graphics object
 * @param rendererHints map of renderer hints (see
 * {@link org.geotools.renderer.lite.StreamingRenderer#setRendererHints(Map)}
 * @since 1.1.0
 */
 void paintMap(MapContext context, Graphics2D graphics, Map<Object, Object> rendererHints);
}

Both methods take a Geotools MapContext object as parameter. The MapContext object contains
a list of Geotools Layer objects, The Geomajas layer DTO objects are internally converted to
Geotools layers by using an abstract factory pattern. The abstract factory has a method to check

Introduction

7

whether it can perform the layer creation (based on the passed ClientLayerInfo object) and an
actual factory method:

Example 1.3. Layer factory interface definition

public interface LayerFactory {

 /**
 * user data to record the layer id (up to caller to decide what to do with this info).
 */
 String USERDATA_KEY_LAYER_ID = "geomajas.rasterizing.layer"; // String

 /**
 * user data to record if layer is showing (up to caller to decide what to do with this info).
 */
 String USERDATA_KEY_SHOWING = "geomajas.rasterizing.showing"; // boolean

 /**
 * user data for the layer styles (DTOs, should eventually become unnecessary as all info is in SLD).
 */
 String USERDATA_KEY_STYLE_RULES = "geomajas.rasterizing.style.rules"; // List<RuleInfo>

 /**
 * user data for the map (up to caller to decide what to do with this info).
 */
 String USERDATA_RASTERIZING_INFO = "geomajas.rasterizing.info"; // MapRasterizingInfo

 /**
 * Returns true if this factory is capable of creating layer instances for the specified metadata.
 *
 * @param mapContext the map context
 * @param clientLayerInfo the client layer metadata
 * @return true if we can create layer instances
 */
 boolean canCreateLayer(MapContext mapContext, ClientLayerInfo clientLayerInfo);

 /**
 * Creates a layer for the specified metadata.
 *
 * @param mapContext the map context
 * @param clientLayerInfo the client layer metadata
 * @return layer ready for rendering
 * @throws GeomajasException something went wrong
 */
 Layer createLayer(MapContext mapContext, ClientLayerInfo clientLayerInfo) throws GeomajasException;

 /**
 * Retrieves the userdata for the specified metadata. Especially {@link LayerFactory.USERDATA_KEY_SHOWING} is set.
 *
 * @param mapContext the map context
 * @param clientLayerInfo the client layer metadata
 * @return the user data key values
 * @since 1.1.0
 */
 Map<String, Object> getLayerUserData(MapContext mapContext, ClientLayerInfo clientLayerInfo);
}

Introduction

8

The LayerFactory also defines a number of user data keys that allow Geotools Layer
implementations to access Geomajas DTO objects internally, should that be necessary.

The following concrete LayerFactory implementations are available:

• VectorLayerFactory: accepts a ClientVectorLayerInfo DTO and creates a Geotools
FeatureLayer

• RasterLayerFactory: accepts a ClientRasterLayerInfo DTO and creates a
RasterDirectLayer, which is our own implementation of a Geotools DirectLayer for
rendering raster layers

• GeometryLayerFactory:accepts a GeometryLayerInfo DTO and creates a
GeometryDirectLayer, which is our own implementation of a Geotools DirectLayer for
rendering geometries

Concrete layer factories are instantiated as singleton components in the application context. A separate
LayerFactoryService takes care of iterating over the configured layer factories and is the entry
point for creating the layers for the map context in the AddLayersStep of the rasterizing pipeline.
The current system can be extended by creating an additional ClientLayerInfo class and a
complimentary LayerFactory. The custom LayerFactory should create a Geotools Layer
implementation based on DirectLayer.

9

Chapter 2. Configuration
The configuration of the rasterization involves the following elements:

• configure the vector tile pipeline to use rasterization.

• configure the rasterizing service.

• configure the Style2DFactoryService.

1. Dependencies
Make sure you include the correct version of the plug-in in your project. Use the following excerpt
(with the correct version) in the dependencyManagement section of your project:

 <dependency>
 <groupId>org.geomajas.plugin</groupId>
 <artifactId>geomajas-plugin-rasterizing-all</artifactId>
 <version>1.0.0</version>
 <type>pom</type>
 <scope>import</scope>
</dependency>

If you are using geomajas-dep, this includes the latest released version of the rasterizing plug-in (at
the time of publishing of that version). If you want to overwrite the rasterizing plug-in version, make
sure to include this excerpt before the geomajas-dep dependency.

You can now include the actual dependency without explicit version.

<dependency>
 <groupId>org.geomajas.plugin</groupId>
 <artifactId>geomajas-plugin-rasterizing</artifactId>
</dependency>

If you want to make use of the toolbar actions for exporting map and legend images, you must add
the GWT face dependency as well:

<dependency>
 <groupId>org.geomajas.plugin</groupId>
 <artifactId>geomajas-plugin-rasterizing-gwt</artifactId>
</dependency>

In this case you should also add the module inheritance to your GWT module descriptor:

<module>
 <inherits name="org.geomajas.plugin.rasterizing.Rasterizing"/>
</module>

There is also a dependency for the pure GWT face. For the pure GWT face, the toolbar actions have
not yet been implemented, though. The dependency just contains a module definition that includes
the DTO objects. This dependency is useful for pure GWT plugins that need to communicate with
rasterizing backend, like the Simple Printing Plugin:

<dependency>
 <groupId>org.geomajas.plugin</groupId>
 <artifactId>geomajas-plugin-rasterizing-puregwt</artifactId>
</dependency>

In this case you should add the same module inheritance to your GWT module descriptor:

Configuration

10

<module>
 <inherits name="org.geomajas.plugin.rasterizing.Rasterizing"/>
</module>

2. Pipeline configuration
The only pipeline that can optionally use rasterization is the GetVectorTile pipeline used by the
VectorLayerService. If you want to use rasterization without caching of the rasterized image, you can
add the following configuration location to your web.xml file:

classpath:org/geomajas/plugin/rasterizing/DefaultRasterizedPipelines.xml

If you want to maximize caching (including enabling caching for all layers), add the following location
instead:

classpath:org/geomajas/plugin/rasterizing/DefaultCachedAndRasterizedPipelines.xml

Alternatively you can configure for each layer individually which pipeline should be used.

The following rasterized pipelines exist (bean name):

• PIPELINE_GET_VECTOR_TILE_RASTERIZE_BUILD_URL: pipeline to get a tile for a vector
layer. This will just generate the raster image URL, the rasterization will take place when the URL
is requested.

• PIPELINE_GET_VECTOR_TILE_RASTERIZE: pipeline to rasterize a tile for a vector layer. This
image is built but not cached.

• PIPELINE_GET_VECTOR_TILE_RASTERIZE_WITH_CACHING: pipeline to rasterize a tile
for a vector layer and cache the image.

A pipeline needs to be defined for generating the raster image itself. You can set the specific pipelines
to use for a layer using a configuration like this:

Example 2.1. Applying the rasterized pipeline for getVectorTile() on myLayer

<bean class="org.geomajas.service.pipeline.PipelineInfo">
 <property name="pipelineName">
 <util:constant static-field="org.geomajas.service.pipeline.PipelineCode.PIPELINE_GET_VECTOR_TILE"/>
 </property>
 <property name="layerId" value="myLayer" />
 <property name="delegatePipeline" ref="PIPELINE_GET_VECTOR_TILE_RASTERIZE_BUILD_URL" />
</bean>

<bean class="org.geomajas.service.pipeline.PipelineInfo">
 <property name="pipelineName">
 <util:constant static-field="org.geomajas.plugin.rasterizing.api.RasterizingPipelineCode.PIPELINE_GET_VECTOR_TILE_RASTERIZING" />
 </property>
 <property name="layerId" value="myLayer" />
 <property name="delegatePipeline" ref="PIPELINE_GET_VECTOR_TILE_RASTERIZE" />
</bean>

3. Rasterizing style configuration - SLD
(Styled Layer Descriptor)

The rendering service is based on the Geotools Rendere and makes use of the SLD standard for
style configuration. This means that styles are completely defined through SLD. The Geomajas style

Configuration

11

configuration has been extended to support SLD 1.0.0, and more specifically the schema defined
in GeoTools (which is also used by Udig and GeoServer). The support of SLD opens up many
possibilities for styling that were previously not available. A selection of SLD styles that can be
used as a source of inspiration - in addition to the standard [http://www.opengeospatial.org/standards/
sld] itself, of course, which is the ultimate reference - can be found in the SLD cookbook [http://
docs.geoserver.org/stable/en/user/styling/sld-cookbook/index.html] of GeoServer. The rasterizing
showcase demonstrates most cookbook examples.

An example of how to configure the SLD file for a layer style in Geomajas is shown below:

Example 2.2. SLD style configuration

<bean class="org.geomajas.configuration.NamedStyleInfo" name="layerPolygonsRasterizingAttributeBasedStyleInfo">
 <property name="sldLocation" value="classpath:org/geomajas/plugin/rasterizing/gwt/example/context/sld/polygon_attributebasedpolygon.sld"/>
 </bean>

It is sufficient to let the sldLocation property point to the (relative) location of the SLD file.

An example of an SLD style is shown below:

Example 2.3. SLD style sample

<StyledLayerDescriptor version="1.0.0"
 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
 xmlns="http://www.opengis.net/sld"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <NamedLayer>
 <Name>Simple Line</Name>
 <UserStyle>
 <Title>SLD Cook Book: Simple Line</Title>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>
 <CssParameter name="stroke-width">3</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 </UserStyle>
 </NamedLayer>
</StyledLayerDescriptor>

The following limitations hold for the SLD file: .

• the configuration should contain a NamedLayer that holds a UserStyle

• the user style should contain a single FeatureStyle with at least one rule.

4. Commands
Apart from the usage within the map - which is based on the generic GetVectorTileCommand
- the RasterizeMapCommand can be used to separately fetch an image URL to a rasterized map
and/or legend:

http://www.opengeospatial.org/standards/sld
http://www.opengeospatial.org/standards/sld
http://www.opengeospatial.org/standards/sld
http://docs.geoserver.org/stable/en/user/styling/sld-cookbook/index.html
http://docs.geoserver.org/stable/en/user/styling/sld-cookbook/index.html
http://docs.geoserver.org/stable/en/user/styling/sld-cookbook/index.html

Configuration

12

Table 2.1. RasterizeMapCommand

Id command.rasterizing.RasterizeMap

request object class org.geomajas.plugin.rasterizing.command.dto.RasterizeMapRequest

request parameters • clientMapInfo: the map info with the
rasterizing extensions

Description Command that creates an image of the map and
the legend, adds it to the cache and returns an URL
for both images

response object class org.geomajas.plugin.rasterizing.command.dto.RasterizeMapResponse

response parameters • mapKey: cache key for the map image

• legendKey: cache key for the legend image

• mapUrl: URL of the map image

• legendUrl: URL of the legend image

To call the command, an extended ClientMapInfo object should be created client-side and passed
as a parameter to the request. To facilitate this, an ImageUrlService is provided that perfoms this
preparation stage in the common use case where the user wants to generate an image of the current
screen. The following methods are provided by this service:

Example 2.4. Image URL service definition

public interface ImageUrlService {

 /**
 * Create map and legend images for the specified map.
 *
 * @param map the map
 * @param imageCallBack call back function
 * @param makeRasterizable should the service make the map rasterizable ?
 */
 void createImageUrl(MapWidget map, ImageUrlCallback imageCallBack, boolean makeRasterizable);

 /**
 * Create map and legend images for the specified map. Preparing for rasterization is done by the service.
 *
 * @param map the map
 * @param imageCallBack call back function
 */
 void createImageUrl(MapWidget map, ImageUrlCallback imageCallBack);

 /**
 * Prepare the specified map for server-side rasterization.
 *
 * @param map the map
 */
 void makeRasterizable(MapWidget map);
}

The basic method to call is the createImageUrl(MapWidget map, ImageUrlCallback
imageCallBack) method, which fetches the current map and legend image. The result is
received asynchronously by passing a special callback interface ImageUrlCallback. The map
preparation part can be called separately through the makeRasterizable() method, which
is useful in the case where the user wants to make some additional changes to the rasterizing

Configuration

13

extension data. When using this method, the preparation stage can be consequently skipped by
calling the createImageUrl(MapWidget map, ImageUrlCallback imageCallBack,
boolean makeRasterizable)method with makeRasterizable = false.

5. Actions and toolbar configuration
For the common use case of making a print of the current map or legend, 2 toolbar actions have been
registered:

• GetMapImageAction: this action exports an image of the current map screen in a separate
browser window

• GetLegendImageAction: this action exports an image of the current legend in a separate
browser window

The following configuration snippet shows how to configure these actions in the toolbar:

Example 2.5. Configuration of rasterizing actions

 <bean name="GetMapImage" class="org.geomajas.configuration.client.ClientToolInfo">
 <property name="toolId" value="GetMapImage"/>
 </bean>

 <bean name="GetLegendImage" class="org.geomajas.configuration.client.ClientToolInfo">
 <property name="toolId" value="GetLegendImage"/>
 </bean>

 <bean name="GetLegendImageAll" class="org.geomajas.configuration.client.ClientToolInfo">
 <property name="toolId" value="GetLegendImage"/>
 <property name="parameters">
 <list>
 <bean class="org.geomajas.configuration.Parameter">
 <property name="name" value="showAllLayers" />
 <property name="value" value="true" />
 </bean>
 </list>
 </property>
 </bean>

GetLegendImageAction has a single configuration parameter showAllLayers. If set to true,
the generated legend image contains all layers of the layer tree. Otherwise, only the visible layers are
displayed.

14

Chapter 3. How-to
This chapter shows some common use cases that apply to the rasterizing plugin.

	Geomajas rasterizing plug-in guide
	Table of Contents
	Chapter 1. Introduction
	1. Pipeline overview
	2. The image and rendering services
	3. Rasterizing info classes
	3.1. MapRasterizingInfo
	3.2. RasterLayerRasterizingInfo
	3.3. VectorLayerRasterizingInfo
	3.4. ClientGeometryLayerInfo

	4. RenderingService and LayerFactoryService

	Chapter 2. Configuration
	1. Dependencies
	2. Pipeline configuration
	3. Rasterizing style configuration - SLD (Styled Layer Descriptor)
	4. Commands
	5. Actions and toolbar configuration

	Chapter 3. How-to

