# calculate the discrete uniform distribution : Distribution « Development Class « Java

calculate the discrete uniform distribution

```
import java.util.Random;

/**
* BeehiveZ is a business process model and instance management system.
* Copyright (C) 2011
* Institute of Information System and Engineering, School of Software, Tsinghua University,
* Beijing, China
*
* Contact: jintao05@gmail.com
*
* This program is a free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation with the version of 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
*/

/**
* @author Tao Jin
*
*/

public class Util{

// calculate the discrete uniform distribution
// ret[0] stores the number user given
// ret[1] stores the count of the corresponding number in ret[0] with the
// same index
// for some number, the count maybe 0.
// the parameter validation must be finished in advance.
public static long[][] getDiscreteUniformDistribution(int min, int max,
long total) {
Random rand = new Random(System.currentTimeMillis());
int span = max - min + 1;
long avg = total / span;
long[][] ret = new long[2][span];

if (avg >= 1) {
long count = 0;
for (int i = 0; i < span; i++) {
ret[0][i] = min + i;
ret[1][i] = avg;
count += avg;
}

if (count < total) {
avg = span / (total - count);
int a = (int) avg;
int k = 0;
while (count < total) {
int i = rand.nextInt(span);
ret[1][a * k]++;
k++;
count++;
}
}
} else {
for (int i = 0; i < span; i++) {
ret[0][i] = min + i;
}
long count = 0;
avg = span / total;
while (count < total) {
long k = count * avg;
int kk = (int) k;
ret[1][kk] = 1;
count++;
// int i = rand.nextInt(span);
// if (ret[1][i] == 0) {
// ret[1][i] = 1;
// count++;
// }
}
}
return ret;
}

}

```

### Related examples in the same category

 1 Return a sample from the Gamma/Poission/Gaussian distribution, with parameter IA 2 calculate the binomial distribution