
© 2003, 2004 Enterprise Distributed Technologies Ltd



Table of Contents
1  Introduction...................................................................................................................................... 3
2  FTP Protocol Overview.................................................................................................................... 4

2.1  Introduction...............................................................................................................................4
2.2  Active and passive modes.........................................................................................................4

2.2.1  Passive mode.....................................................................................................................4
2.2.2  Active mode...................................................................................................................... 4

2.3  FTP Commands........................................................................................................................ 4
2.4  Sample scenarios ......................................................................................................................5

2.4.1  Example 1......................................................................................................................... 5
2.4.2  Example 2......................................................................................................................... 5

2.5  Data types..................................................................................................................................6
2.6  Session commands....................................................................................................................6
2.7  File commands..........................................................................................................................6
2.8  Directory commands.................................................................................................................7

3  edtFTPj API......................................................................................................................................8
3.1  Constructors.............................................................................................................................. 8
3.2  Login......................................................................................................................................... 8
3.3  Directory navigation and control ............................................................................................. 8
3.4  Files and file transfers...............................................................................................................8
3.5  Directory listings.......................................................................................................................9
3.6  Miscellaneous commands......................................................................................................... 9
3.7  Message Logging.................................................................................................................... 10
3.8  Firewalls..................................................................................................................................10

4  Logging API................................................................................................................................... 11
4.1  Overview.................................................................................................................................11
4.2  Logging Levels....................................................................................................................... 11
4.3  Configuration.......................................................................................................................... 11
4.4  Examples.................................................................................................................................12

5  Glossary.......................................................................................................................................... 13
6  References...................................................................................................................................... 14



1  Introduction
The design philosophy behind the edtFTPj API is to closely mirror the standard FTP commands as
defined by  RFC959.  The advantage of this approach is that most Java developers already know
how to use FTP and therefore, by implication, already know the edtFTPj interface.

The  purpose  of  this  guide  is  to  describe  the  usage  of  the  edtFTPj  API  in  embedding  FTP
functionality in Java applications.

Note  that  a  secure  version  of  edtFTPj,  called  edtFTPj/SSL,  is  available.  This  implements  the
edtFTPj API over SSL, a protocol known as FTPS. If you require secure FTP, please consider using
edtFTPj/SSL.  Note  that  edtFTPj/SSL  is  a  commercial  product,  with  source  code  optionally
available.



2  FTP Protocol Overview

2.1  Introduction
FTP (File Transfer Protocol) is a well established Internet protocol designed to transfer files (and
information about files) across networks using TCP (Transmission Control Protocol). 

FTP is defined in the Request For Comments 959 document (RFC 959), which can be obtained
from the Internet Engineering Task Force.

FTP requires a client program (FTP client) and a server program (FTP server). The client can fetch
files and file details from the server, and also upload files to the server. The server is generally
password protected.

FTP  commands  are  initiated  by the  client,  which  opens  a  TCP  connection  called  the  control
connection to the server. This control connection is used for the entire duration of a session between
the client and server. A session typically begins when the client logs in, and ends when the quit
command  is  sent  to  the  server.  The  control  connection  is  used  exclusively  for  sending  FTP
commands and reading server replies - it is never used to transfer files.

Transient  TCP connections  called data  connections  are set  up whenever  data  (normally a  file's
contents) is to be transferred. For example, the client issues a command to retrieve a file from the
server  via  the  control  channel.  A  data  connection  is  then  established,  and  the  file's  contents
transferred to  the client  across  it.  Once the  transfer  is  complete,  the data  connection is  closed.
Meanwhile, the control connection is maintained.

2.2  Active and passive modes
Data connections may be set up in two different ways, active and passive. Note that active and
passive refer to the operation of the FTP server, not the client.

2.2.1  Passive mode
In passive mode, the client sends a PASV command to the server. This tells the server to listen for a
connection attempt  from the client,  hence the server is  passively waiting.  The server replies to
PASV with the host and port address that the server is listening on. The client deciphers this reply
and when a data connection is  required,  attempts to initiate the connection to the server at  this
address.

2.2.2  Active mode
In active mode, the server actively connects to the client. To set up active mode, the client sends a
PORT command to the server, specify the address and port number the client is listening on. When
a data connection is required, the server initiates a connection to the client at this address.

Generally the server is responsible for closing data connections.

2.3  FTP Commands
FTP commands sent across the control connection consist of simple text  strings (and follow the
Telnet protocol - see RFC 854). For example, to retrieve a file, the client sends "RETR filename" on
the control connection to the FTP server. To transfer a file, the client sends "STOR filename". 

The FTP server acknowledges each command with an FTP reply, which consists of a three digit
number followed by human-readable text. The first digit indicates if the response is good, bad, or
incomplete.  If  an  error  occurred,  the  second  digit  may be  used  to  indicate  what  type  of  error
occurred. Similarly, the third digit can indicate more details of the error.



The first digit is the most important, and the five possible values are described below:

Reply Description
1yz Positive Preliminary reply. The request action has been initiated, but another reply is to be

expected before the client issues another command.
2yz Positive Completion reply. The requested action has successfully completed, and the client

may issue another command.
3yz Positive  Intermediate reply. The command has been accepted,  but  more information is

required. The client should send another command in reply.
4yz Transient Negative reply. The command failed, but it can be retried
5yz Permanent Negative Completion reply. The command failed, and should not be repeated.

2.4  Sample scenarios 

2.4.1  Example 1
For example, to change directory the client sends:

> CWD dirname
The server responds with:

250 CWD command successful
As the reply begins with a ‘2’, we know the command sequence is completed. 

However if we attempt to change directory to one that does not exist:
> CWD nonexistentdir

The server responds with:
550 nonexistentdir: The system cannot find the file specified.

As the reply begins with a ‘5’ we know that the command failed, and that  it  will  fail  again if
repeated (unless the missing directory is created on the server).

2.4.2  Example 2
To transfer a text file, we issue a ‘RETR’ command to the server.  However to transfer the file we
require a data connection to be set up. This can be done using active or passive mode.

As discussed previously, in  active mode,  the client  sends  a ‘PORT’ command,  indicating what
address and port number the server should connect to:

> PORT 192,168,10,1,4,93
The first four digits are the IP address, and the last two encode the port number (in two 8-bit fields,
the first being the high order bits of the 16-bit port number).

The server responds with:
200 PORT command successful.

This indicates that the data connection has been established.

Next, the ‘RETR’ command is issued:
> RETR abc.txt

The server responds with:



150 Opening ASCII mode data connection for abc.txt(70776 bytes). 
The reply begins with a ‘1’, so we know that the command was successful, but the server will be
sending another reply – the client cannot issue another command until this is received.

Eventually, the server sends:
226 Transfer complete.

The command sequence is complete, the file has been transferred, and the client can issue another
command.

See RFC 959 for details about the second digit, and more extensive examples.

Note that most standard command-line FTP clients support debug mode, which displays the FTP
commands that are being sent to the server, and the reply strings that are received back. Typing
“debug” at the prompt will usually put the client into debug mode.

2.5  Data types
The two most common data types in usage are ASCII and binary. 

ASCII is the default data type, and is intended for the transfer of text files. A line of text is followed
by <CRLF>. Note that different operating systems use different end of line terminators.

Binary type (known as IMAGE in FTP) is used to transfer binary files. A byte-by-byte copy is made
of the source file.  Graphical  images,  video and executable files  are  all  binary files.  If they are
transferred as ASCII, they will be corrupted.

2.6  Session commands
To begin an FTP session, the USER command is sent to the server:

> USER javaftp
The server responds with:

331 Password required for javaftp.
The client must respond with the password:

> PASS mypassword
The server responds with:

230 User javaftp logged in.
The session is now established, and the user can begin issuing various file and directory-related
commands.

To end the session, the client sends:
> QUIT

The server responds with:
221

The session is now closed, and any further attempt to send commands to the server will fail.

2.7  File commands
FTP supports numerous file-related commands. 

Files can be deleted (DELE) and renamed (RNFR,RNTO) as well as stored (STOR) and retrieved
(RETR). When a file is stored, it can be written over or appended to (APPE). 

See the Sample scenarios examples for more details.



2.8  Directory commands
FTP supports a variety of directory-related commands.

Directories can be created (MKD), removed (RMD), or changed into (CWD, CDUP). 

Two types of directory listings can be made with FTP.

The LIST method obtains a list of files (and possibly directories). If a directory is specified, the
server returns a list of files in the directory, together with system specific information about the
files. The file information sent will vary depending on the server system. The data type should be set
to ASCII for this file name list. If no directory is specified, details of the current working directory
listing are sent.

The NAME LIST (NLST) method is similar to LIST, but only file names are returned. No other
information about the files is sent. Again, the data type should be set to ASCII.



3  edtFTPj API
This section will provide an overview of the major features of the library directly related to FTP,
which are encapsulated in the edtFTPj API.  Developers are referred to edtFTPj's JavaDoc for a
detailed API description. 

The edtFTPj API is a relatively thin veneer over the FTP protocol described earlier. 

Almost all methods can throw an IOException or an FTPException. The FTPException
provides a method for obtaining the reply code (getReplyCode()).

3.1  Constructors
FTPClient is the main interface to the edtFTPj library, and in many cases, it is the only class
which the developer needs to use. 

All constructors other than the default constructor are now deprecated, and setter methods should be
used to set  the remote host  and other parameters such as timeout  (for socket  reads and writes,
specified in milliseconds), and the control port, which allows a different control port to the standard
FTP port 21 to be specified.

3.2  Login
The  login() method permits logging in to a remote FTP account, supplying a user name and
password. The  user() and  password() methods perform the equivalent operations,  and are
supplied separately in the event that a server might be configured to require no password.

The quit() method quits the current FTP session.

3.3  Directory navigation and control 
A number of methods are provided for remote directory navigation. Locally, the current directory of
the calling application is used, and no methods are provided for local directory navigation.

The  chdir() method changes  the  current  remote  directory to  the  one  specified,  while  pwd()
returns the current directory.

The  mkdir() method creates a new directory, while the  rmdir() method deletes a directory
(which for most FTP servers must be empty).

Directories (and files) can be renamed using the rename() method.

3.4  Files and file transfers
The edtFTPj supports a varied API for file operations.

Files can be deleted with delete(), and renamed via rename(). 

If supported by the FTP server, the size() command can be used to determine the size (in bytes)
of a remote file. Similarly, the modtime() can determine the modification time of a remote file, if
supported. The returned java.lang.Date is in GMT.

The various  put() and  get() methods are supplied to put files onto the remote server, and to
retrieve them. 

In their  simplest  form, the local and remote file names are supplied as parameters, and the file
contents transferred. If putting, files are placed in the remote current directory. If getting, files are
fetched from the remote current directory.

The transfer mode is important – both ASCII and binary modes are supported as discussed in the



FTP protocol section. Binary mode is simply a byte by byte exact copy of the file to be transferred.
Typically, this would be used for binary files such as images, executables and documents in binary
form (e.g. Microsoft Word or Adobe Acrobat files).

ASCII mode attempts to translate end of line characters in text files, which vary between operating
systems. For example, Windows uses a CRLF to indicate the end of a line, while Unix uses just LF.
Consequently, ASCII transfers can result in the local and remote files being different sizes. Also,
transferring  a  binary file  in  ASCII  mode  will  corrupt  the  file  (by inserting  spurious  CRs,  for
example).

The  transfer  modes  are  encapsulated  in  the  FTPTransferType class,  which  has  ASCII and
BINARY as final static variables.

The initial transfer type is always ASCII, and the current transfer type can be found using getType
(). Similarly, setType() sets the current transfer type.

Other get() and put() methods are also supplied. One form permits an OutputStream (for
get()s), or an InputStream (for put()s) to be supplied in lieu of a local file name.

Bytes buffers can be supplied as destinations (for get()s) and sources (for put()s) – convenient
if you  don't wish to write a file out to disk.

All put() commands also offer a variation that can direct that the contents being transferred are to
be appended to any existing remote file. Normally, remote files are overwritten. Not all FTP servers
support or permit append operations – they may need to be configured for this option. Obviously,
there are potential security risks associated with appending, as a rogue client could continually do so
until disk space on the server was exhausted.

All  transfer  commands  can  be  canceled  during  their  operation  by  the  cancelTransfer()
method.

Also, the setProgressMonitor() method can be used to set up a progress monitor that reports
regularly during transfers. Typically, the  FTPProgressMonitor interface is implemented, and
the bytesTransferred() method is called every n bytes that are transferred. 

3.5  Directory listings
Obtaining remote directory listings is an important part of the API.

The dir() method is used to retrieve simple listings as an array of strings. If no directory name is
supplied, the current directory is listed. A directory name (that is visible from the remote current
directory) can also be supplied.

If the 'full' parameter is used and set to true, a detailed listing is returned. Each string contains a
variety of server-dependent details about the file or directory. 

The dirDetails() method works in the same way as when a full listing is requested via dir(),
but attempts to interpret the detailed listing and construct an FTPFile object for each remote file
or directory. The FTPFile object indicates the file name, size, whether or not it is a directory and
other useful attributes.

Some FTP servers permit file masks to be used in dir(), however many do not. It is best not to
assume this is possible. Similarly, some FTP servers do not even permit a directory to be supplied,
but simply list the current directory.

3.6  Miscellaneous commands
There are a number of useful additional commands that fall into no particular category.

The system() command returns a string representing the remote operating system. This is server
dependent.



The help() command returns the remote server's help text for the supplied command. 

The current version of the library can be obtained via getVersion(), which returns an array of
three integers, representing {major,middle,minor} version numbers. For example, version 1.4.0 of
the library would return {1,4,0}. The getBuildTimestamp() method returns the timestamp
of the library's build, in d-MMM-yyyy HH:mm:ss z format.

3.7  Message Logging
Sometimes it is useful to obtain a log of the FTP commands and replies that are sent back and forth.
These are available via the logging API, but occasionally it is useful to get a separate record of
messages that is not mixed in with the logging (which can be extensive depending on what level is
set).

The  FTPMessageListener is  for  precisely this  purpose.  It  defines  an  interface  which  has
methods  for  logging  commands  and  their  replies  (logCommand() and  logReply()).
Developers can implement this interface and set the listener for an instance of  FTPClient via
setMessageListener().  Then  all  FTP  messages  can  be  collected,  for  example,  in  a
StringBuffer or perhaps a List. 

For convenience,  FTPMessageCollector is an implementation of  FTPMessageListener
provided  in  the  com.enterprisedt.net.ftp package.  It  simply  collects  messages  in  a
StringBuffer, which can be obtained by calling getLog().

3.8  Firewalls
Often, a firewall and/or proxy separates FTP clients from FTP servers. Sometimes, it is necessary to
perform some configuration (perhaps even in the firewall) so that the server can be reached.

SOCKS proxy servers are relatively easy to connect through. The  initSOCKS() method on the
FTPClient class  can  be  used  to  set  the  hostname  and  port  of  the  SOCKS  server.  If
username/password authentication is required, initSOCKSAuthentication() can be used to
set the username and password for the SOCKS server. Note however that these static methods set
the SOCKS properties for the entire Java Virtual Machine – it is not possible to set them for a
specific FTPClient instance.

There is also a standard protocol for using a firewall/proxy server to connect to a remote host. When
constructing an instance of FTPClient, instead of supplying the remote hostname, the name of the
firewall is supplied instead. Instead of supplying the remote user as the user, a string is supplied in
the form of remoteuser@remotehost.com. The remote password is supplied as normal.

So  instead  of  supplying  ftp.remotehost.com to  the  FTPClient  constructor  (amongst  other
parameters),  firewallhostname  is  supplied.  Similarly,  instead  of  supplying  (remoteuser,
remotepassword)  to  the  login() method,  (remoteuser@remotehost.com,  remotepassword)  is
supplied. Many firewalls support this syntax. Firewalls we have confirmed support this syntax at the
time of writing include Check Point Firewall-1 and WinProxy.



4  Logging API

4.1  Overview
edtFTPj has a powerful logging API modelled on the popular log4j library – in fact full integration
with log4j is supported.

The Java package is  com.enterprisedt.util.debug,and the key class is the Logger class. See
the JavaDoc for the full API.

The logging API allows developers to  embed log statements  in  their  code that  can disabled or
enabled at runtime, and can be directed to standard output, or to file or both. Stack traces from
caught  exceptions  are  an  optional  parameter  to  logging  calls.  Judicious  use  of  logging  in
applications can be a powerful aid to debugging, as well as a useful tool for diagnosing production
problems. Also, all log statements are prefixed with a timestamp accurate to milliseconds, and can
thus be extremely valuable in performance tuning.

4.2  Logging Levels
A number of logging levels are supported - FATAL,ERROR,WARN,INFO,DEBUG (as well  as
ALL and OFF, which are not really levels as such). Logging statements are made at a certain level,
such as INFO, and the level for the library as a whole is set. DEBUG is considered to be the highest
level of logging (as it generally produces the most output).  A message is logged if its level is less
than or equal to the overall logging level. For example, if a logging call is made at the DEBUG level
and the overall level is set to INFO, it would not appear in the logs. If a logging call is made at
WARN, and the overall level is set to INFO, it would appear in the logs.

Logging levels are encapsulated in the Level class. For example, the WARN level is represented by
Level.WARN.

By default, all logging output is directed to the standard output stream (if it is equal to or less than
the level set for the library). Appenders are supported, whereby output can be directed elsewhere.
Currently, FileAppenders are the only implemented Appenders, which permit logging output to be
directed to named files. 

4.3  Configuration
By default, the log level is switched to OFF, so that no logging will appear. 

The log level  can be changed in  two ways. Firstly, it  can be changed explicitly by calling the
setLevel() method on the Logger class. For example,

Logger.setLevel(Level.DEBUG);

will set the global logging level to DEBUG.

A System property,  edtftp.log.level, can also be used to set the logging level. For example,
using the -D option to set an application's System property, you could use 

java -Dedtftp.log.level=INFO com.mypackage.myclass
to set the global logging level to INFO.

Full integration with log4j is possible. A System property, edtftp.log.log4j, is used to indicate
that log4j integration should be attempted. It must be set to “true”. Also, the log4j jar file must be
available  in the CLASSPATH. Once this  is  done all  logging calls  are directed via  log4j,  using
reflection, and the standard log4j settings are used. More details on log4j can be found at the log4j
site listed in the references.



System Property Description Values
edtftp.log.level Controls the global

logging level 
FATAL,ERROR,
WARN,INFO,DEBUG,
ALL,OFF

edtftp.log.log4j Controls log4j
integration.

true or false

4.4  Examples
To add logging to a particular class, a Logger object is required. Typically, an instance of a Logger
is created for every class that logs – a static class member, as below:

 private static Logger log = Logger.getLogger(MyClass.class);
Logging can then be performed by calling the logging methods on the log object, e.g.

log.info("Connecting to server " + host);

log.debug("User name: " + user);

Note that exceptions can be passed to the logging methods as a second parameter, and the stack
trace is written to the log stream, e.g.

try {
    ... do something ...
}
catch (Exception ex) {
    log.error("Failed to do something", ex);
}

Although the overall logging level can be set to, say INFO, so that log.debug() calls are not sent to
the log stream, sometimes constructing calls can be expensive if they involve a number of string
concatenations. In these cases, it is best to test the logging level before making the call, so that the
expensive construction is never performed, e.g.

if (log.isDebugEnabled()) 
log.debug(“Transferred “ + n + “ bytes for file “ + filename);

As noted, all logging by default goes to standard out. A FileAppender must be added if logging is to
go to a file (and this will disable logging to standard out). An example is shown below:

Logger.addAppender(new FileAppender(myLogFileName));

Now all logging output will go to the FileAppender's file, and no logging will go to standard output.
Multiple FileAppenders can be added. If the StandardOutputAppender is added to the Logger as
well, logging will be directed to the file and to standard output.



5  Glossary
API – Application Programmer's Interface

Base-64  Encoding –  An  encoding  use  for  transmitting  binary  data  through  a  text  only
communication channel – only readable characters are used.

Control  Channel –  TCP  connection  used  by  an  FTP  session  to  transmit  commands  and  the
responses to those commands.  There is only one of these per session.

CRLF – Carriage return/Line Feed.

Data Channel – TCP connection used by an FTP session to transmit data such as a directory listing
or a file.  There are multiple data channels per session; one for each data transfer.

EDT – Enterprise Distributed Technologies

IETF – Internet Engineering Task Force.

FTP – File Transfer Protocol

FTPS – FTP over SSL/TLS.  It comes in 2 variants: explicit  FTPS and implicit FTPS (see the
definitions for those terms in this glossary).

Internet Draft – Working document of the IETF.  An Internet Draft may eventually be approved as
an RFC.  Internet Drafts often become defacto standards before they are approved as RFCs
due to the length of the process of RFC approval.

RFC – Request For Comment.  A formal Internet specification approved by the IETF.

RFC959 – The specification for FTP.

SSL – Secure Sockets Layer.

TLS – Transport Layer Security (effectively the latest version of SSL).



6  References
Document Location

IETF http://www.ietf.org
RFC959 http://www.faqs.org/rfcs/rfc959.html
Log4j documentation http://logging.apache.org/log4j/docs/


