
Embedded Systems 3

Individual Project Report

Konstantinos Dadamis
1002224d

March 14, 2012

1

Contents

1 Introduction 1

2 User Interface 2
2.1 Personalizalion . 4
2.2 Fight . 7

3 Design features 10
3.1 General . 10
3.2 Personalizalion . 10
3.3 Fight . 11

4 Future Improvements and Extensions 11

5 Conclusions 12

2

1 Introduction

This document is the report of the individual project which was carried out as
part of the Embedded Systems 3 course. This project consisted of developing an
application on a portable device (mobile phone or tablet, iOS or Android). The
application (app) I developed is a fight game (with minimum violence) called
“Photo Fighter” and developed on Android 2.3.5 Gingerbread. Through this
app, the user can create his own fighters by taking photos and recording voices
and afterwards play the fight game with the characters he created.

The full functionality of the game is explained in section 2 where the reader
can also find screenshots of the app. Section 3 contains the design of the system
and explains how the functionality was implemented. Section 4 lists the aims
contained in the project proposal that were achieved, those abandoned and the
future additions that could be made to the game. Finally, the conclusions can
be found in section 5.

2 User Interface

When the app is installed to an Android device, it is listed along with the other
apps at the “All apps” menu. It has an icon named “Photo Fighter” (Figure 1).

When the user taps on the icon, a splash screen appears (Figure 2) with the
logo of the app.

The splash screen lasts 5 seconds but if the user does not want to wait, a
tap to the screen makes the splash screen go away and the main menu appears
(Figure 3).

The main menu has three options which separate the functionality of the
game. The “Fight” option contains all the fight–related functionality and the
“Personalize” option contains the functionality which is relevant to creating new
fighters and arenas. These two functionalities are described at the two following
sub–sections. Finally, the “Help” option contains a list of instuctions the user
must follow in order to benefit from the full functionality of the game.

2.1 Personalizalion

The “Personalize” menu (Figure 4) has three options. The user can personalize
either the characters who will be fighting by pressing “Manage Fighters” or the
arenas where the fight will take place by pressing “Manage Arenas”. The user
can also press “Back” to return to the previous screen.

By pressing “Manage Fighters” the user advances to the respective sub–sub–
menu (Figure 5). There, he can choose either to create a new fighter or edit an
existing one.

If he chooses to create a new fighter, the respective screen (Figure 6) appears
where the user can enter a non–existing fighter name and advance to the “Insert
Media” screen (Figure 7).

3

Figure 1: The Android home screen with the PhotoFighter icon

Figure 2: The splash screen

4

Figure 3: The main menu

Figure 4: The Personalize sub–menu

5

Figure 5: The Manage Fighters sub–sub–menu

Figure 6: The Create Fighter screen

6

At this screen, the user is able to insert his photos and voice recordings to
the game in order to create his character. Initially, 8 cameras and 5 orange
microphone icons appear which act as buttons. The user can press them and
insert his photos and recordings respectively. Upon a successful insertion, the
camera is replaced by the photo taken and the orange microphone is replaced
by a blue one. All insertions can be changed by pressing the same buttons.

The game needs 8 photos of the user1standing in different positions for repro-
ducing the fighter behaviour. The 8 positions are “Walk”, “Stand”, “Punch”,
“Kick”, “Crouch”, “Take hit”, “Winning” and “Losing”. When the user tries
to take a certain photo, a margin is provided by the app so that the right photo
is taken. The user is also notified by text about the position he should take.

Figure 7: The Insert Media screen

The “Voice Record” screen (Figure 8) allows the user to make a recording
and review it before pressing back and continue to the next one. The recording
can be overwritten if the “Voice Record” button is pressed twice. The recordings
that must be made are when hitting, receiving a hit and winning (before the
fight is over) and two more for victory and loss.

After the Personalize sub–menu (Figure 4) the user can also advance to the
“Manage Arenas” screen (Figure 9) where he can add arenas by taking photos
and edit them. Unfortunately, at this version of the app, managing arenas is
not implemented.

2.2 Fight

When the user presses “Fight” at the main menu (Figure 3), he advances to the
“Select Fighters” screen (Figure 10) only if there is at least one fighter inserted
to the app through the personalize process described above. There, he has two

1A screenshot taking a photo could not be provided as the “Dalvik Debug Monitor” cannot
take screenshots while in taking photo mode

7

Figure 8: The Voice Record screen

Figure 9: The Manage Arenas sub–sub–menu

8

same scrollable lists of fighters added to the game and he has to choose his
fighter and his opponent which will be handled by the game. The entries of the
fighters in the lists consist of their name and their “Winning” photo. When
he presses on one fighter of a list, his name and photo appear above the list
which means that this character was selected either as the user fighter or as his
opponent.

Figure 10: The Select Fighters screen

When the user is ready, he presses on “Fight” and the fight begins (Figures 11
and 12). Each user has a life bar and when the fight begins it is full. When a
user receives a hit, his life bar gets reduced by 10 or 15 percent depending on if
he receives a punch or a kick respectively. The life bar color is initially green,
gets orange when it drops to less than 75 percent and gets red when it drops to
less than 25 percent.

The user can move his fighter by the up, down, left and right by pressing
the cursors placed at the bottom left part of the screen. The punch and kick
buttons are placed at the bottom right part of the screen. When a fighter moves
left and right a fake sense of walking is produced by the game by interchanging
the fighter’s “Walk” and “Stand” photos. When up is pressed the fighter jumps
and he can dodge kicks and when the user presses down, the fighter crouches
and he can dodge punches. The fighters are limited to move inside the screen
limits and they can change sides which makes their photos mirrored to face each
other again.

The fight can last up to one minute. If some fighter’s life bar does not get
depleted by the end of this minute, then the user with larger life bar wins. If
the two fighters have the same percentage of their initial bar, then we have a
draw and noone wins.

When the game ends, the name of the winner appears at the center of the
screen along with the winner’s bouncing “Winner” photo and the loser’s bounc-
ing “Loser” photo (Figure 13). The relevant recordings of each fighter are also

9

Figure 11: Fight screenshot

Figure 12: Fight screenshot

10

played.

Figure 13: End of fight screenshot

3 Design features

This section lists the special design features used during the implementation of
the functionality described at section 2. The code submitted along with this
report is needed by the reader in order to understand the following paragraphs.

3.1 General

This subsection lists the special design features implemented at the initial
screens and are part of the uk.ac.gla.photofight package:

• SplashScreenActivity is the activity behind the initial splash screen. It
is implemented by creating a thread which waits five seconds and starts
the “Main Menu” activity. This thread can also be interrupted when
the user touches the screen which throws an InterruptedException and
starts the activity without waiting.

• Storage is a special class with static functions is used which takes care
of all the accesses to the SD card of the Android device.

• Fighter is a class which takes care of loading all the Bitmaps of a fighter
and provides functions for mirroring the Bitmaps and loading the sound
recordings. Its instance variables are all public as Google advises when
using an object in animations where the accesses need to be fast without
intermediate accessors.

11

• FighterArrayAdapter is an ArrayAdapter which takes care of listing
the fighters with their name and photo. It is used at the ListViews in
EditFighterActivity and SelectFightersActivity.

3.2 Personalizalion

This subsection lists the special design features implemented for the Personaliza-
tion part of the app and are located inside the uk.ac.gla.photofight.personalize
package:

• CreateFighterActivity is using SharedPreferences for passing the new
fighter name to InsertMediaToCharacterActivity, TakePhotoActivity
and RecordVoiceActivity.

• TakePhotoActivity was created by following the instructions for using
the Camera provided by Google and modified where necessary. Photos
are stored with a substantially lower quality (10 percent of the original
quality) because of the limitations of memory in an Android device. For
the same reason, each time the photos are loaded to Bitmaps, their size is
reduced 8 times.

Special .png images were used for filtering the photo which are located in
the res/drawable folder with bg and border prefixes. These images act
as masks for the photos. The border–prefixed ones are used for taking
the photo and have their interior transparent. The bg– prefixed ones are
used for removing the background of a photo and they contain the same
images as the border ones but with the backgound transparent and the
interior opaque. Xfermode objects are used for removing the background.

3.3 Fight

This subsection lists the special design features implemented for the Fight part of
the app and are located inside the uk.ac.gla.photofight.personalize.fight
package:

• FightActivity is a simple activity which uses the custom View, FightView.
It also takes care of placing the buttons on top of the view and sending the
touch events to the FightView object which also handles the animations.

• ControlFighterThread is the Thread which controls the fighter handled
by the app and provides the Artificial Intelligence needed. The AI im-
plemented is not high level (which was not needed for this project) and
it contains a simple state machine which switches between four different
states (Plans). There is a DEFENSIVE, an OFFENSIVE, a NEUTRAL and a
CRAZY plan. Each plan has its own random set of moves and every five
seconds, the thread changes Plan randomly. Only when the fighter con-
trolled by the thread has less than 25 percent of his health, the Plan

followed is switched permanently to the defensive one in order not to lose
more health.

12

• FightView is a custom View which receives the user’s moves from the
FightActivity and runs the FightThread (which is an inner class). The
FightThread uses the SurfaceHolder of the view which has the Canvas

where the animation is drawn and draws every frame of the animation.
It is also responsible for creating the AI thread and receiving movements
from both the user and the AI thread. After receiving their movements,
appropriate changes are made to the respective Fighter objects and the
physics (gravity, movement speed) are updated in each frame. Again,
almost no accessors and mutators were used in order to achieve more
Frames Per Second.

4 Future Improvements and Extensions

Most of the requirements set at the proposal were implemented and the goals
that were set were realistic. Nevertheless, some improvements and extensions
to the functionality could also be introduced:

• “Manage Arenas” feature should be implemented which would allow the
user to create his own arenas and edit them, This would fit very well to
the game since its main feature is personalizing.

• Playing and recording sounds is sometimes buggy in Android Gingerbread,
so the app could be updated to use a more recent Android release such as
Android 4.0 Ice Cream Sandwich which could resolve these problems.

• A major feature that the app could have is multiplayer capabilities. This
can be implemented either throught direct Wi-Fi in Android ICS or through
an XMPP server.

• Score tables of players could be kept inside the game and possibly social
networks like Facebook or Google+ could be used for posting these tables
and advertising the app.

5 Conclusions

The development of this game has been a wondeful experience because it is
developed on Android and Java and also because it is a project that I came
up with. Its first stage of development is complete and I will probably spend
more time in polishing it, checking how it behaves in other Android devices and
adding more features during the summer. At that point, I might be able to
publish it to “Google play” and hopefully get some downloads.

13

