

HQME Developer Day – SDK Getting Started

1. Retrieve the open source HQME SDK from the github.com repository

1.1. Browse to www.github.com

1.2. Search for “hqme”

1.3. Download as Zipfile

1.4. OR clone the git repository:

2. Review SDK contents

There are several documents to help get your started using the SDK. In the root SDK directory there is the License
document and Release Notes (README.md - can open file with a text editor) document.

In the docs directory, there are two files, a zip file named hqmeapi.zip which contains the javadocs for the various
SDK classes and a getting started document entitled, HQME SDK Quick Start Guide.pdf.

http://www.github.com/

2.1. HQME SDK Javadocs

Extract the hqmeapi.zip file in the docs directory. The index.html file can be opened with any browser and is the
starting point to discovering the details about particular classes, methods and data members of interest.

2.1.1. Integrating HQME SDK Javadocs into Eclipse

Eclipse provides a way to integrate your project’s javadocs into the IDE for contextual information of the documented
classes, methods and members. Integrating the newly extracted javadocs into eclipse is straight forward and easy.

a) Project Properties

Right click your project in the Project
browser or use the Project->Properties
menu to navigate to your properties
dialog.

b) Set Javadoc Location in the
Project Properties dialog

On the left hand side there is a property
named, “Javadoc Location.” When you
select this property, the pane on the right
changes to enable you to enter the
directory location of the javadocs you just
unzipped.

c) Browse to javadoc location

Using the browse button, a dialog appears which allows you to navigate to the directory location where you have
unzipped your HQME SDK javadoc files. Select the appropriate directory and click OK. You can press the validate
button to ensure that the appropriate directory has been selected. Click Apply and OK and you’re done.

d) Eclipse integrated Javadocs in action

Now when hovering over classes, methods and data members, if documentation exists within the referenced
javadocs, contextual information will be displayed to provide some additional information about the object of
interest.

2.2. SDK directory structure

The directory structure is illustrated in the image below and at the root directory consists of three subdirectories,
namely apps, docs and projects.

The apps directory contains pre-compiled binaries compiled for Android SDK
version 2.2.x (minimum SDK 8, Froyo). Both debug and release builds are
available.

As described previously, the docs directory contains the javadocs files (zipped)
and a Quick Start guide to help you on your way to using the SDK.

The projects directory contains four subdirectories:

 HqmeCache – A service which implements an interface for accessing
cached content once retrieved.

 HqmeLibrary – A shared library between all projects, including your
project which defines the interfaces to the HQME services and shared class
definitions.

 HqmeSample – A sample application which utilizes the SDK by including
the HqmeLibrary.

 HqmeService – A service which implements an interface for submitting
requests and managing previously submitted requests.

3. (Optional) Install the pre-built binaries

The Quick Start guide describes how to install the pre-built, so will not be duplicated here, however, it might be a
good step just to make sure that the HQME Services can be started and utilized by the calling application.

The application provides a simple illustration of how QueueRequests are
created and submitted to the HQMEService, the callbacks received upon
various events from both the HQMEService and HQMECache Services,
and how to retrieve the cached content once a QueueRequest has
completed.

To illustrate a simple policy, the user has an option to select under what
network conditions the content should be downloaded, when connected
via Wi-Fi Only or when connected either via Wi-Fi or 3G.

The URI textbox has a sample URI. You should supply a known URI of
where some content resides. Upon completion, the content is
immediately played back (video or audio).

4. Creating a new project to interface with the SDK

4.1. Create HQMELibrary project

The Quick Start guide uses the term import, however, we are not
importing an existing project but rather creating a new Android project
from existing source. This can be done for each of the directories in the
projects directory.

The example given here is for creating the HQMELibrary Android project
within the eclipse development environment.

4.1.1. Create HQMELibrary project

A. File->New Android Project

Select Android Project from the New Project Wizard and select Next.

B. New Android Project

Enter a project name, I used “HqmeLibrary” and select “Create Project From Existing Source.” Then browse to the
directory containing the HqmeLibrary project (sdk root\projects\HqmeLibrary) and select Next.

C. Select Build Target

Choose an SDK target for your project; I used Android 2.2 and select Next.

D. Application Info

Change the Application Name and Package Name as needed and select Finish.

4.2. Create Your Android project

In a similar fashion, create your Android application as needed. In order to utilize the SDK, you will need to add the
HQME SDK Library to your application as illustrated below:

A. Project properties

Right click on your project and select Properties. The Properties dialog for your project should come up which
indicates your selected SDK version. In the lower part of the dialog you can add library dependencies. Select Add and
another dialog opens up which should have the HqmeLibrary project we created previously as an option to select.
Select the HqmeLibrary and click OK. The library should now appear in the textbox of your Properties Dialog
indicating the newly added library as illustrated below.

If everything is successful, your project
explorer should look like this:

5. Using the SDK from your application

5.1. Binding to the HQME Services

Your application can bind to the HQME Services by calling bindService(). When it does, it must provide an
implementation of ServiceConnection, which monitors the connection with the service.

In the sample application, several data members are created in the Activity to indicate if the connection to the HQME
Services is active, these are sIsActive_RequestManager and sIsActive_ContentManager. These are set in the
implementation of the ServiceConnections (mRequestManagerConnection and mStorageManagerConnection) when
the connections are created or disconnected.

For more information on services, you can refer to the Google Android documentation at:
http://developer.android.com/guide/topics/fundamentals/bound-services.html

5.2. ServiceConnection implementations

private ServiceConnection mRequestManagerConnection = new ServiceConnection() {

 public void onServiceConnected(ComponentName className, IBinder service) {

 // This is called when the connection with the service has been established,

 // giving us the service object we can use to interact with the service. We

 // are communicating with our service through an IDL interface, so get a

 // client-side representation of that from the raw service object.

 sRequestManagerProxy = IRequestManager.Stub.asInterface(service);

 sIsActive_RequestManager = true;

 try {

 sRequestManagerProxy.registerCallback(requestManagerCallbackProxy);

 } catch (RemoteException fault) {

 Log.d(sTag, "onServiceConnected", fault);

 }

 getHandler().sendMessage(getHandler().obtainMessage(

 QUEUE_REQUEST_MGR_CONNECTED, 0, 0));

 }…

protected void onStart() {

 super.onStart();

 // Bind to the RequestManager service.

 if (sIsActive_RequestManager == false)

 bindService(new Intent(IRequestManager.class.getName()),

 mRequestManagerConnection, Context.BIND_AUTO_CREATE);

 // Bind to the ContentManager service

 if (sIsActive_ContentManager == false)

 bindService(new Intent(IStorageManager.class.getName()),

 mStorageManagerConnection, Context.BIND_AUTO_CREATE);

 …

 }

http://developer.android.com/guide/topics/fundamentals/bound-services.html

The call to getHandler is part of the sample application implementation such that the event handler is notified when
the connection to the HQMEService is established.
ServiceConnection implementation continued…

5.3. CallBack implementations (optional)

Your application will most likely want to listen to the various callback events from the HQME Services. In the sample
application, the callbacks simply collect the information and then send a message to the consolidated event handler.

5.4. Submit QueueRequest
There are two ways to build a QueueRequest, programmatically or passing in an XML document to the
createQueueRequestXML method:
 IQueueRequest createQueueRequestXml(in String queueRequestXml);

 The sample application uses the XML method, so the following illustrates an alternative method.

/**

 * This implementation can be used to receive callbacks from the RequestManager

 * service.

 */

private IRequestManagerCallback requestManagerCallbackProxy = new

 IRequestManagerCallback.Stub() {

 public void handleEvent(ReqEvents reqEvent) throws RemoteException {

 Message msg = getHandler().obtainMessage(REQ_CALLBACK_MSG);

 Bundle statusBundle = new Bundle();

 statusBundle.putParcelable("reqEvent", reqEvent);

 msg.setData(statusBundle);

 getHandler().sendMessage(msg);

 }

 };

public void onServiceDisconnected(ComponentName className) {

 sRequestManagerProxy = null;

 sIsActive_RequestManager = false;

 };

}

Accessing Cached Content

If your application registered for callbacks from the HqmeCache Service, a callback is issued when the when content
on the VSD has changed. Once the cached content is available, your application can retrieve the content for playback.
In this example, the content is
streamed:

try {

 if (getProxy() != null) {

 IQueueRequest qr = getProxy().getRequest(queueRequestId);

 if (qr != null) {

 String path = qr.getProperty("REQPROP_STORE_NAME");

 // New content is available. Find it using the VSD APIs

 int[] storageIds = getPluginProxy().getStorageIds(null);

 if (storageIds != null) {

 for (int i = 0; i < storageIds.length; i++) {

 IVSD store = getPluginProxy().getStorage(storageIds[i]);

 if (store != null) {

 // Get a ContentObject reference to the newly available object.

 IContentObject targetObject = store.getObject(path);

 if (targetObject != null)

 {

 //Get the straming URI and playback using embedded player.

 String streamingUri = targetObject.getStreamingUri();

 sVideoView.setVideoPath(streamingUri);

 sVideoView.start();

 break;

 }

 }

 }

 }

 }

 } catch (Exception e1) {

 Log.d(sTag, "handleMessage, NEW_CONTENT", e1);

}

public void issueRequest()

 {

 try {

 IQueueRequest qr = getProxy().createQueueRequest();

 qr.setProperty("REQPROP_SOURCE_URI", "http://www.numbis.com/warPeace.txt");

 qr.setProperty("REQPROP_STORE_NAME", "WarAndPeace.txt");

 qr.setProperty("REQPROP_TYPE", "text/plain");

 qr.setProperty("REQPROP_TOTAL_LENGTH","3223627");

 qr.setProperty("VENDOR_TEST","Hello, Joe!");

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

