
REST/HTTP-service Framework 1

REST-service Framework (HTTP/REST Services). v1.5.2.

REST-service component is a server-side framework that allows easy creation and working with HTTP
and REST services within any ASP.NET application. Once a REST-service is defined it can be consumed via
regular URL, or using client-side javascript call that resembles the standard C# style function call that is
expected to be used within server-side code calling the same method. The REST-service can return any
type of data, such as string, byte array, reference to a file that should be sent to a client as a call
response, etc. In addition HTML templates functionality can be utilized by building an ascx file template
(like regular web user controls) and data model that REST-service method is supposed to return – the
framework will process ASCX template by applying data model to it and returning its result to the client.
The REST-service framework also provides control over security, and has built-in configuration that is
100% controlled by a developer, including ability to use class alias instead of real class to hide the
internal namespaces and classes’ structure used by the server code backend.

Contents
Part 1: Calling REST-service via URL. .. 2

Part 2: Calling REST-service via Javascript from the client... 2

Part 3: Using javascript callback functionality to provide handling for the REST-service result. 3

Part 4: Using javascript dynamic callback on the client side. .. 3

Part 5: Creating REST-service. .. 5

Part 6: Configuring REST-services framework. .. 6

Part 7: Using REST-service Filters. .. 8

Part 8: Using HTML Templates. .. 10

Part 9: Using HTML Templates with REST-services. .. 11

Part 10: Returning file as a response from REST-service. .. 12

Part 11: Returning JSON data as a response from REST-service. ... 12

Part 12: Returning other data types as a response from REST-service. ... 13

Part 13: Mapping HTTP Message Body to a complex type parameter. .. 14

Part 14: Client side custom error handling. .. 17

Part 15: Client side automatic data parsing from JSON to an object. .. 17

Part 16: Using RestClientManager control. .. 18

Part 17: Using ASP.NET Output Cache with REST-services. ... 18

Part 18: ASP.NET Routing support and CRUD (Create, Read, Update, and Delete) compatibility. 19

Part 19: Adding handler mapping for REST extension to IIS. ... 22

Part 20: REST-service Metadata Explorer. .. 23

Disclaimer: The main purpose of building this framework was to allow the creation of HTTP or REST services in
such a way that is easy to use, easy to setup, to not be limited by returned type of data, and making sure that the
internal application code can be reused for service purposes. Although a number of measures were taken, it was
not the goal to achieve 100% compatibility with the RESTful architecture.

REST/HTTP-service Framework 2

Part 1: Calling REST-service via URL.

The following call demonstrates how to send a request to REST-service
TestWeb25.Components.GetExtraInfo(int infoId, int userId) method:

http(s)://<hostname>/TestWeb25/Components/InfoPreviewHandler.rest?GetExtraInfo&infoId=356&userId=577

OR
http(s)://<hostname>/TestWeb25.Components.InfoPreviewHandler.rest?GetExtraInfo&infoId=356&userId=577

where:

 TestWeb25.Components – namespace where the class is defined;

 InfoPreviewHandler – class name that represents REST-service;

 GetExtraInfo – method name within the class;

 infoId, userId – two parameters that method accepts.

Use this code to build this URL for you:
TestWeb25.Components.InfoPreviewHandler info = new InfoPreviewHandler();
string urlToCall = info.GetUrlFunctionCall("GetExtraInfo", 356, 577);

Part 2: Calling REST-service via Javascript from the client.

The following call demonstrates how to send a request to REST-service:
TestWeb25.Components.InfoPreviewHandler.GetExtraInfo(356, 577);

Before using this call, the calling class javascript proxy has to be pre-registered using the following code:
//register javascript client for specific type
WebRestClient.RegisterJSClient(typeof(InfoPreviewHandler));

OR, alternatively:
//register javascript client for specific type
TestWeb25.Components.InfoPreviewHandler info = new InfoPreviewHandler();
info.RegisterJSClient();

Use this code to build javascript call for you:
TestWeb25.Components.InfoPreviewHandler info = new InfoPreviewHandler();
string jsToCall = info.GetJSClientFunctionCall("GetExtraInfo", 356, 577);

REST-service framework also provides ability to use Aliases instead of real names for namespaces and
classes. In order to use this functionality aliases should be configured in web.config (see configuration
section later in this document) and the call from above will look like:
myInfoProvider.GetExtraInfo(356, 577);
where myInfoProvider is an alias for TestWeb25.Components.InfoPreviewHandler class.

By default REST-service javascript proxy uses HTTP GET method to call the server-side. You may
customize the HTTP method by setting the following property prior calling REST-service:
webRestExplorer.currentHttpMethod = 'POST';
The REST-service proxy will send applicable parameters via form’s data or query string depend on the
method it uses. Please note that only GET, POST, PUT, and DELETE HTTP methods can be used; using
DELETE and PUT HTTP methods may require additional IIS configuration.

REST/HTTP-service Framework 3

 Part 3: Using javascript callback functionality to provide handling for the REST-service
result.

Javascript call to the REST-service uses the same technic as AJAX that is asynchronous call to the server
with processing returned data within callback function. Therefore there is a javascript callback function
will be called upon request completion – the name of the function is the same as original method
function call with “Callback” suffix. One parameter is passed in holding the data received from the
server.

Use this code to build javascript callback function for you (it provides function name only):
TestWeb25.Components.InfoPreviewHandler info = new InfoPreviewHandler();
string jsCallback = info.GetJSClientDefaultCallbackName("GetExtraInfo");

You can also build your own javascript function to use as a callback (this would require pre-registration
within web-page that uses such function):
//get a callback reference that can be used to deal with returned data.
WebRestClient.RegisterJSCallback(typeof(InfoPreviewHandler), "GetExtraInfo",
 "callMyFunction(data);");

where callMyFunction is a custom function call that should be used as a callback, and “data” is the
default parameter name that will contain data returned by the REST-service method to the client.

There are multiple built-in javascript templates that you can use – they provide basic functionality:
 generic alert – provides client alert using REST-service response as its content, it’s useful for client

notifications and debugging purposes:
//get a callback reference that can be used to deal with returned data.
WebRestClient.RegisterJSCallback(typeof(InfoPreviewHandler), "GetExtraInfo",
 Web.Enhancements.Rest.Templates.JavaScriptTemplateType.BasicAlert);

 populating specific HTML element with inner HTML:

//get a callback reference that can be used to deal with returned data.
WebRestClient.RegisterJSCallback(typeof(InfoPreviewHandler), "GetExtraInfo",
Web.Enhancements.Rest.Templates.JavaScriptTemplateType.PopulateDivWithHtml,
"infoBlock");

where “infoBlock” is the name of HTML element where inner HTML content will be set.

Part 4: Using javascript dynamic callback on the client side.

There are many scenarios where the callback function is not known upfront and often has a dynamic
nature. It’s very easy to provide callback dynamically to the call by adding an extra parameter to the
javascript REST-function call.

Consider this example that calls REST-service:
myInfoProvider.GetExtraInfo(356, 577);
Adding an extra parameter would provide a dynamic callback to the service call:
myInfoProvider.GetExtraInfo(356, 577, myDynamicCallbackFunction);
The “myDynamicCallbackFunction” will be called upon REST-service call completion passing single
parameter that holds the data received from the server:
function myDynamicCallbackFunction(serverData) {
 …serverData parameter holds the data received from the server… }
There is no need to register dynamic callbacks on the server-side.

REST/HTTP-service Framework 4

You may pass an unlimited number of parameters into callback function. They will be passed into the
callback function following the default “serverData” parameter that contains the data returned by the
service call. Adding extra parameters would provide a dynamic callback with parameters to the service
call:
var userId = 123; var username = “Alex”;
myInfoProvider.GetExtraInfo(356, 577, myDynamicCallbackFunction, userId, username);
The “myDynamicCallbackFunction” with two parameters will be called upon REST-service call
completion passing single parameter that holds the data received from the server:
function myDynamicCallbackFunction(serverData, userId, username) {
 …serverData parameter holds the data received from the server;

 userId and username holds the past values…
}

You may optionally force REST-service proxy to automatically convert your JSON string data into
JavaScript object should JSON data come from the server (based on Content-Type header value). This
can simply be done by adding the following code on the client side:
 $(document).ready(function () {
 if (typeof (webRestExplorer) != "undefined") {
 webRestExplorer.jsonSettings.autoParse = true;
 }
 });

The proxy uses jQuery to parse the JSON when available; otherwise it uses JavaScript eval function.
Alternatively you may override the conversion function as following:
 $(document).ready(function () {
 if (typeof (webRestExplorer) != "undefined") {
 webRestExplorer.jsonSettings.parseJson = function (data) {
 //...convert it here and return
 };
 }
 });

REST/HTTP-service Framework 5

Part 5: Creating REST-service.

Any server-side class and its methods can be turned into REST-service calls by simply adding
IWebRestService interface to the class and applying WebRestMethodAttribute to the method itself.
The following code provides an example implementing REST-service:
using System;
using Web.Enhancements.Rest;
using Web.Enhancements.Rest.Filters;

namespace TestWeb25.Components
{
 public class InfoPreviewHandler : IWebRestService
 {
 [WebRestMethodAttribute()]
 public string GetExtraInfo(int infoId)
 {
 return string.Format("This is return from InfoPreviewHandler.GetExtraInfo
method.\nLooks like you supplied value of {0}.", infoId.ToString());
 }
 }
}

The IWebRestService requires no methods, properties, etc. to be implemented; it serves as a declaration
of intention to use class as a REST-service that framework uses for security purposes, as well as ability to
provide additional methods, or helpers, within each class to build javascript calls, callback functions, and
register javascript proxy. This, itself, provides greater integration with .NET runtime and development
process. The following snapshot demonstrates javascript helpers appear in the REST-service class:

There is some extra configuration can be provided within WebRestMethodAttribute usage:

[WebRestMethodAttribute(SessionMode=System.Web.SessionState.SessionStateBehavior.Required,
 ContentType = "text/html", ContentDisposition = "")]

 SessionMode – ability to set ASP.NET Session requirement for specific REST-service method;
 ContentType – allows to set ContentType header to the response output; by default the output set

to “text/html”, for everything else correct ContentType must be set;
 ContentDisposition – allows to set ContentDisposition header to the response output; this is useful

when file-like data is being sent as an output, so user client can handle it properly.

REST/HTTP-service Framework 6

The REST-service class requires having a default constructor.
No static methods can be used as REST-methods.
No client-side overloading is supported. If .NET class has multiple overloaded methods, only single
method among them can be used as REST-service method.

Although the service method parameters are required to be supplied by the client, default values are
accepted as shown below and would be used in if service call lacks a parameter:
 public class InfoPreviewHandler : IWebRestService
 {
 [WebRestMethodAttribute()]
 public string GetExtraInfo(int infoId = 50)
 {
 return string.Format("This is return with value of {0}.", infoId.ToString());
 }
 }

Part 6: Configuring REST-services framework.

1. The “rest” file extension must be registered in IIS by adding Handler Mapping between “rest” file
extension and ASP.NET runtime (see additional help at http://technet.microsoft.com/en-
us/library/cc771240(WS.10).aspx).

2. The following section in web.config demonstrates REST-services framework configuration:
<configuration>
 <configSections>
 <section name="webRestServices" type="Web.Enhancements.Rest.WebRestConfigHandler,

 Web.Enhancements"/>
 </configSections>
…
…
…
<webRestServices cacheLocation="ApplicationVariable" restFileExtension="rest">
 <serviceDebug includeExceptionDetailInErrors="true" />
 <assureAssemblies>
 <add assembly="TestWeb25, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 </assureAssemblies>
 <typeMapping>
 <add alias="TestWeb25.Components.InfoPreviewHandler"
 type="TestWeb25.Components.InfoPreviewHandler, TestWeb25,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"/>
 <add alias="backendUserExperience" type="TestWeb25.Components.UserExperienceHandler,
 TestWeb25"/>
 <add alias="Calculator" type="TestWeb25.Components.UserGui.Providers.Calculator,
 TestWeb25"/>
 </typeMapping>
</webRestServices>
…

The webRestServices configuration section must be added to the configSections in web.config as shown
above. This will assure REST framework of being able to read its configuration.

The actual REST-services framework configuration section consists of the following nodes:

http://technet.microsoft.com/en-us/library/cc771240(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc771240(WS.10).aspx

REST/HTTP-service Framework 7

 webRestServices – top-level node for REST-services framework configuration;
 cacheLocation – an attribute of webRestServices that controls cache location used by REST-services

framework; the options are:
- ApplicationVariable – application variable that provides application life-time caching, used

as default location;
- ApplicationCache – application cache storage – this location is controlled by application

caching mechanism and tends to be less permanent especially in high memory usage web-
application scenario; although this may degrade the effectiveness of data caching, it might
be required by other application design considerations;

 restFileExtension – an optional attribute allows to change the file extension used by REST-service; if
this set to other than “rest" (default value), then the same value should be used within IIS Handler
mapping and httpHandler section in web.config;

 serviceDebug – an optional node in the config section that allows configure exception handling
within REST-service framework;

 includeExceptionDetailInErrors – an optional attribute (required if serviceDebug section is
configured) that allows to turn off and on the exception details being sent back to a client within
REST-service response; by default (“true”) the service will send full exception details back to the
client; set this to "false" to disable details and issue 500 server error instead;

 assureAssemblies – an optional node that allows to provide list of assemblies where classes used as
REST-services are defined; this information is used by REST-service framework to speed up its
component discovery process; note that this information is not used if aliases are used, and
therefore may be ignored;

- <add assembly="[full assembly name]" /> - allows to add an assembly to assureAssemblies
section;

 typeMapping – an optional node that allows to provide a list of aliases to be used instead of real
namespace and class names;

- <add alias="[class alias]" type="[assembly name]"/> - allows to add an alias to typeMapping
section;

- note that it is not permissible to begin alias name from “base.” prefix as this prefix is
reserved by REST-service framework for internal purposes;

- it is also not recommended to begin alias name from well—known prefixes such “sys.”,
“Sys.”, etc. as they might be used by Microsoft and other component developers.

3. Add the following httpHandler configuration to web.config:

 <system.web>
 <httpHandlers>
 <add verb="*" path="*.rest" type="Web.Enhancements.Rest.WebRestHandlerFactory,
 Web.Enhancements"/>
 </httpHandlers>
 </system.web>

REST/HTTP-service Framework 8

Part 7: Using REST-service Filters.

The REST-services framework allows building an additional common functionality for REST-services
within the application by using Filters. The functional idea of these filters is very similar to Web-services
filters and WCF behaviors. Filters can be declared at the method level (applied to this method only), as
well as to the REST-service class. The latter would apply filters to all REST-service methods within
specified class. There are four built-in filters (see code snapshot below) providing the following
functionality:
 WebMethodFilter – allows to restrict REST-service method being used by specific HTTP method (the

options are: GetOrPost, GetOnly, PostOnly, DeleteOnly, PutOnly); please note that using DELETE and
PUT HTTP methods require additional IIS configuration;

 RequiresSslFilter – allows to restrict REST-service method used by secure requests only (via SSL);
 Authorize – allows to restrict REST-service method being used by authenticated requests only; in

addition to authentication check it allows to set Roles and/or Users who can use the service method;
 ValidateRequest - allows to force request validation before processing REST-service method

(standard ASP.NET request validation procedure will be applied);

using Web.Enhancements.Rest.Filters;
…
[WebMethodFilter(HttpMethod = HttpMethodRequirement.GetOrPost, Priority = 2)]
[RequiresSslFilter(Priority = 1)]
[Authorize(Roles = "Admin", Users = "")]
[ValidateRequest(Priority = 3)]
[WebRestMethodAttribute()]
public string GetExtraInfo(int infoId)
{
 return string.Format("…", infoId.ToString());
}

Providing an optional Priority parameter to filters guarantees the order in which filters would be applied
to incoming request.

Developers can build their own filters by creating custom FilterAttribute (requires either implementation
of Web.Enhancements.Rest.Filters.IWebRestFilterAttribute interface or inheritance from
Web.Enhancements.Rest.Filters.WebRestFilterAttribute) and actual filter (requires implementation of
Web.Enhancements.Rest.Filters.IWebRestFilter with three required methods – BeforeHandlerCreated,
BeforeMethodCall and AfterMethodCall as shown below). Custom filters can provide any additional
functionalities that web-application may require and perfectly suitable for generic functionality
applicable to REST-services (such as security, compression, etc.).

namespace Web.Enhancements.Rest.Filters
{
 /// <summary>
 /// Interface that any Web REST filter must implement in order of being processed
 /// through REST service pipeline.
 /// </summary>
 public interface IWebRestFilter
 {
 /// <summary>
 /// Method that is called prior the REST service handler created.

 /// This allows to cancel the call at earlier stages.
 /// The session and list parameters are not available at this time.

REST/HTTP-service Framework 9

 /// This method should be used wisely to consume as low as possible resources,
 /// and especially fast to allow IIS to have overall better performance.

 /// <param name="httpContext">Current HTTP content.</param>
 /// <param name="serviceContext">Current REST service context.</param>
 void BeforeHandlerCreated(System.Web.HttpContext httpContext,
 IWebRestServiceContext serviceContext);
 /// <summary>
 /// Method that is called just prior the REST service method call.
 /// </summary>
 /// <param name="httpContext">Current HTTP content.</param>
 /// <param name="serviceContext">Current REST service context.</param>
 void BeforeMethodCall(System.Web.HttpContext httpContext,
 IWebRestServiceContext serviceContext);
 /// <summary>
 /// Method that is called just after the REST service method is completed.
 /// </summary>
 /// <param name="context">Current HTTP context.</param>
 /// <param name="returnValue">Value is going to be returned by service.</param>
 void AfterMethodCall(System.Web.HttpContext context, ref object returnValue);
 }
}

REST/HTTP-service Framework 10

Part 8: Using HTML Templates.

The same REST-service framework provides “out of the box” HTML templates capability that is built on
top of existing custom Web User Controls (ASCX). The functionality performs loading control dynamically
within HTTP request context and optionally applying dynamic object as its data source.

To create an HTML template an ascx file should be created and control must to be inherited from
Web.Enhancements.Rest.Templates.HtmlTemplate<TDataSource>. The following code snapshot
represents code-behind file:

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Web.Enhancements.Rest.Templates;

namespace TestWeb25
{
 public partial class TestControl : HtmlTemplate<string>
 {
 public TestControl()
 : base()
 {
 }
 }
}

The class above uses type of string objects as its data source type; of cause any object type can be used
as data source and it’s entirely up to developer to decide. Using Generics for data source leads to
development flexibility and comfort within template creation process (IntelliSense). It allows to create a
custom data source as template model providing great flexibility to the template feature. The data
source is accessible via DataSource property and, as expected, has a type of Generic object declared as
TDataSource at control inheritance declaration. It is also possible to pass additional data into template
processing using built-in dictionary available via TempData property.

Based on the class above the following ASCX template is created:
<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="TestControl.ascx.cs"
Inherits="TestWeb25.TestControl" %>

Hello there, <%= this.DataSource %>.

To render the control, the following code should be used:
using Web.Enhancements.Rest.Templates;
…
return HtmlTemplateFactory.RenderTemplate<string>("TestControl.ascx", userName);

OR, if additional data (other than TDataSource model) is required to be passed into template:

Dictionary<string, object> extra = new Dictionary<string, object>();
extra.Add("colorToUse", "Gray");
return HtmlTemplateFactory.RenderTemplate<string>("TestControl.ascx", userName, extra);

REST/HTTP-service Framework 11

The HtmlTemplateFactory has multiple methods suitable for different scenarios within the application.

Of cause, the HTML Templates can be used to build Javascript response and therefore can be served as
Javascript Templates.

Part 9: Using HTML Templates with REST-services.

Although it is not recommended, the straight-forward scenario can be used within REST-service method
to provide response using HTML Templates: build an HTML string from template and return it as a
return value from REST-service method to a client. Unfortunately it creates inefficient code where every
method would have HTML parsing call and such methods are very hard to test as they return HTML
strings values. Luckily, there is another, more flexible alternative. The REST-service framework has the
Web.Enhancements.Rest.Templates.TemplatedResult<TDataSource> object that is designed to be used
as a return parameter from REST-service method if result is intended to be processed using HTML
templates:

using Web.Enhancements.Rest.Templates;
…
[WebRestMethodAttribute()]
public TemplatedResult<string> GetGreeting2(string userName)
{

TemplatedResult<string> result = new TemplatedResult<string>("TestControl.ascx",
 userName);

return result;
}

OR, if additional data (other than TDataSource model) is required to be passed into template:

using Web.Enhancements.Rest.Templates;
…
[WebRestMethodAttribute()]
public TemplatedResult<string> GetGreeting2(string userName)
{

TemplatedResult<string> result = new TemplatedResult<string>("TestControl.ascx",
 userName);
 result.TempData.Add("colorToUse", "Gray");

return result;
}

The REST-service handler will process response accordingly by using the virtual path to the template’s
ASCX file location and data model provided as a method return. In addition, using such solution for
building REST-service provides perfect conditions for unit testing the REST-services components.

It is not required to declare the return type as TemplatedResult<TDataSource>. It is acceptable to
declare return type as an object and decide what to return at the runtime. The REST-service handler will
interpret what is actually returned dynamically upon receiving return value and process result
accordingly.

REST/HTTP-service Framework 12

Part 10: Returning file as a response from REST-service.

Although the REST-service method can return an array of bytes that will be sent to a client, there is an
alternative, and much more efficient way to provide a static file type response. This is to use specially
built Template called StaticFileResult. Use the sample code below:

using Web.Enhancements.Rest.Templates;
…
[WebRestMethodAttribute(ContentType="application/pdf")]
public StaticFileResult GetHelpFile(int roleId)
{

StaticFileResult result = new StaticFileResult()
 {

 FilePath = if ((roleId == 1) ? "files/Admin.pdf" : "files/User.pdf"),
 ContentDisposition = "filename=HelpFile.pdf"
};

 return result;
}

The service will automatically write file’s content into the output stream that saves resources and
speeds up the response.

It is not required to declare the return type as StaticFileResult. It is acceptable to declare return type as
an object and decide what to return at the runtime. The REST-service handler will interpret what is
actually returned dynamically upon receiving return value and process result accordingly. For this
purpose the StaticFileResult class allows to pass ContentType and ContentDisposition along with FilePath
to avoid conflicts with other data that might be returned. The ContentType and ContentDisposition
settings in the StaticFileResult will override the same settings in WebRestMethodAttribute.

Part 11: Returning JSON data as a response from REST-service.

Returning JSON formatted data from REST-service is an easy as it possibly can be. The REST-service
framework will automatically convert an object of any type returned by REST-service method and return
JSON-formatted data within its response as long as the ContentType contains “json” as part of its value.
Consider the following code as it demonstrates the REST-service method returning JSON as a response:

[WebRestMethodAttribute(ContentType = "application/json")]
public Employee RetrieveEmployeeInfo(int userId)
{

Employee emp = new Employee()
 {
 FirstName = "Mark",
 LastName = "Jason",
 UserName = "Jasonman",
 UserId = userId
 };
 return emp;
}

You may use any ContentType within your application for returning JSON-formatted data, but the word
“json” must be present. Be aware that failing to provide ContentType will cause object.ToString()

REST/HTTP-service Framework 13

method call result appear in the response, therefore the following sample result’s response would
produce “TestWeb25.Components.Employee”. There is also an assumption that if System.String data
returned by the REST-service method then, even ContentType set to a “json”-like string, the result
already contains JSON data created within the method itself, therefore the JSON serialization would not
be performed by REST-service framework.
It is possible to control the serializer used by framework to convert object to JSON data. There are 2
types can be used: System.Web.Script.Serialization.JavaScriptSerializer (used by default) and
System.Runtime.Serialization.Json.DataContractJsonSerializer. The DataContractJsonSerializer can be set
as shown below:
[WebRestMethodAttribute(ContentType = "application/json,

 JsonSerializer = JsonSerializerType.DataContractJsonSerializer")]

NOTE: for non-JSON REST-method returns the JsonSeriallizer parameter in WebRestMethodAttribute
constructor is ignored.

Part 12: Returning other data types as a response from REST-service.

This the full set of rules that REST-service framework uses to process the output data returned from
method:

 If data type of System.String is returned by the method, it’s written directly into the output

response;
 If data type System.Byte[] (array only) is returned by the method, it’s written directly into the output

stream regardless of the ContentType setting;
 If data type returned by the method implements ITemplatedResult interface, the framework

processes data through template and writes result into the response stream;
 If data type returned by the method implements IStaticFileResult interface, the framework writes

static file content directly into the response stream;
 If any other data type is retuned by the method, the following rules are applied:

- If ContentType contains “json” word, the framework serializes data into JSON and writes
result into the output stream;

- For every other scenario method Object.ToString() is used to gather result and it’s written
into the output stream.

REST/HTTP-service Framework 14

Part 13: Mapping HTTP Message Body to a complex type parameter.

The RESTful services require ability to read and map data of the entire HTTP Message Body to a single

service method parameter. This is especially useful when REST-style service URLs with POST or PUT HTTP

method is used. The HttpBodyParameter attribute provides necessary information to the framework on

reading, mapping, and converting data to a parameter specified type. The ParameterName is required

and links the HTTP Message Body to the parameter. The ConversionHint is an option, but desired

parameter that helps the framework to properly identify and convert received data to a parameter

declared type. If complex type is used, such type must be serializable in order being properly converted.

Below are two examples of using this feature:

[WebRestMethodAttribute()]
[HttpBodyParameter(ParameterName= "user", ConversionHint = ParameterConversionHint.Json)]
public string RetrieveData(int userId, Employee user, string extraData)
{
 string outData = "";
 //Get data
 return outData;
}

[WebRestMethodAttribute()]
[HttpBodyParameter(ParameterName = "incomingData")]
public string ResendData(string incomingData)
{
 return incomingData;
}

The ConversionHint can take the following values:

 Text - the data is treated as plain text; in this case the parameter type should be string.

 Json - the JSON deserialization is enforced; assure the parameter type is JSON compatible.

 JsonContract - the JSON deserialization using data contract is enforced; assure the parameter
type implements DataContract.

 Xml - the XML deserialization is enforced; assure the parameter type is XML compatible.

 Binary - the data is treated as binary. In this case the parameter type should be a byte array.

 Default – an internal logic is used for conversion; framework uses this value when
ConversionHint is omitted from the declaration:

o When parameter type is string or byte[], the framework simply reads the data from the
InputStream and passes it as parameter value;

o For other basic types (int, byte, etc.) framework uses the same conversion mechanism
as for ContentType parameters mapped to Form or QueryString parameter;

o If for InputStream indicates the JSON data (like “application/json”), then Json
deserialization is used;

o If ContentType for InputStream indicates the XML data (like “text/xml”), then Xml
deserialization is used;

o Failure to find the data parser will resolve into an InvalidOperationException.

 XmlOrJson - the JSON or XML deserialization is enforced based on ContentType value; the XML
takes precedence if content type has no explicit information.

 JsonOrXml - the JSON or XML deserialization is enforced based on ContentType value; the JSON
takes precedence if content type has no explicit information.

REST/HTTP-service Framework 15

 XmlOrJsonContract - the XML or JSON using data contract deserialization is enforced based on
content type setting; the XML takes precedence if content type has no explicit information.

 JsonContractOrXml - the XML or JSON using data contract deserialization is enforced based on
content type setting; the JSON takes precedence if content type has no explicit information.

 FormOrQueryVars - the Form or Query String variables will be used to set properties within
complex data types. The PropertyWebBindingAttribute can be used to set the mapping between
form variable names and properties.
Please compare two code snippets below demonstrating the advantages that can be achieved
using the FormOrQueryVars hint:

[WebRestMethodAttribute()]
[HttpBodyParameter(ParameterName = "incomingData")]
public string ResendData(int userId, string incomingData, string extraData)
{
 if (userId <= 0)
 throw new Exception("UserId is incorrect");
 if (extraData.Length == 0)
 throw new Exception("extraData is incorrect");

 return incomingData;
}

[WebRestMethodAttribute()]
[HttpBodyParameter(ParameterName = "data",

 ConversionHint = ParameterConversionHint.FormOrQueryVars)]
public string ResendData2(DataExchangeInfo data)
{
 if (data.UserId <= 0)
 throw new Exception("UserId is incorrect");
 if (data.ExtraData.Length == 0)
 throw new Exception("extraData is incorrect");

 return data.DataToSendOut;
}

Where:
public class DataExchangeInfo
{
 public int UserId { get; set; }
 [PropertyWebBinding(MappingName = "incomingData")]
 public string DataToSendOut { get; set; }
 [PropertyWebBinding(MappingName = "extraData")]
 public string ExtraData { get; set; }

 public DataExchangeInfo()
 {
 }
}

REST/HTTP-service Framework 16

Below is an example of HTTP Message and code that is designed to handle it. The most important parts
of message are emphasized in red. This code also includes the REST call mapped to specific method via
ASP.NET Routing as:
“Users” = “www.test.com/Users” with default method CreateNewUser for PUT HTTP method.

The request:
PUT http://www.somesite.com/Users HTTP/1.1
Accept: */*
Content-Type: application/json
Referer: http://www.somesite.com/Default.aspx
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)
Host: www.somesite.com
Content-Length: 77
Connection: Keep-Alive
Pragma: no-cache

{
 "UserId":0,
 "LastName":"Jason",
 "FirstName":"Mark",
 "UserName":"Jasonman"
}

The code:
[WebRestMethodAttribute()]

[WebMethodFilter(HttpMethodRequirement.PutOnly)]

[DefaultHttpPut()]

[HttpBodyParameter(ParameterName="empData",ConversionHint= ParameterConversionHint.Json)]

public int CreateNewUser(Employee empData)

{

 //...saves data

 return empData.UserId;

}

REST/HTTP-service Framework 17

Part 14: Client side custom error handling.

The client-side REST-services proxy supports custom error handling. By default this functionality is

turned off. Since the REST-services are intended to operate with any type of data returned, the error

handling is based on parsing the data coming from the server assuming the string data type. Providing

the keyword that error message starts with automatically turns on the error handling. The keyword

should match what your custom error message generated by exception handling procedure on the

server side; this assures independent error messaging between web-site and user when REST services

are used. The default error handling uses javascript “alert” to notify user about the error. If custom

client side handling is desired, then custom javascript method delegate must be assigned to the

javascript REST-service error handler. Both options are shown below.

REST-service proxy accepts two settings via javascript:

 <script type="text/javascript">
 if (typeof (webRestExplorer) != "undefined") {
 webRestExplorer.errorMessageStartsWith = "ErrorInfo:";
 webRestExplorer.errorHandler = myHandler;
 }
 </script>

 The “errorMessageStartsWith” – a keyword that error message would start with; REST-service proxy
will handle an error if incoming message from the server begins with given keyword (string);

 The “errorHandler” – you can assign a custom function that should handle the error; this overrides
the default error message handler.

It is important to note that this javascript must follow the REST-service proxy declaration; therefore it
should follow any request for proxy registration (see Part 2 for details).

Part 15: Client side automatic data parsing from JSON to an object.

In some scenarios it is useful to enforce automatic parsing for JSON-formatted data into a javascript
object that would be passed into callback function. The conversion requires response ContentType
indicates json-type data coming to the client. The following code would turn on conversion:

webRestExplorer.jsonSettings.autoParse = true;

The default value is “false”. By default browser native or jQuery, if available, JSON parser is used to

convert the data. You may also provide custom JSON parser as shown below:

webRestExplorer.jsonSettings.parseJson = customParserFunctionCall;

REST/HTTP-service Framework 18

Part 16: Using RestClientManager control.

The RestClientManager control is included as part of REST-services solution. It allows registering
javascript client proxy classes generated for REST-service enabled .NET classes, custom script files
references, and configuring custom error handling. It provides an alternative to a code-driven
registration process.

Consider this sample for functionality evaluation:
<rest:RestClientManager ID="ScriptManager1" runat="server">
 <Classes>
 <rest:ClassReference FullClassName="TestWeb25.Components.InfoPreviewHandler"

 Assembly="TestWeb25" />
 </Classes>
 <Scripts>
 <rest:ScriptReference Path="../Includes/CustomHandlers.js" />
 <rest:ScriptReference Path="../Includes/MainJavaScriptFunction.js" />
 </Scripts>
 <ErrorHandling ErrorMessageStartsWith="ErrorInfo:" ClientDelegateName="myHandler" />
</rest:RestClientManager>

This is very convenient way to make sure availability of all REST-service components and javascript
functions that used by the page. The manager itself assures that all javascript functions that might be
used by REST-service callbacks are declared at the right moment and have correct scope.

Part 17: Using ASP.NET Output Cache with REST-services.

REST-service supports ASP.NET Output Cache. An appropriate attribute WebRestCache should be added
to the REST-service method:
[WebRestMethodAttribute(ContentDisposition = "filename=HelpFile.pdf")]
[WebRestCache(Duration = 20, VaryByParam = "All", Location = OutputCacheLocation.Server)]
public string GetInfo(string documentName)

 The “Duration” – a cache duration (in seconds);
 The “VaryByParam” – comma or semi-colon delimited list of parameter names that cache should be

differentiated by; this parameter also supports “None” and “All”;
 The “Location” – location of the cache (Server is default choice).

IMPORTANT NOTE: The REST-service mapper module should be integrated with application pipeline in
order for REST-services being compatible with ASP.NET Output Cache key-generation component. This
can be easily achieved by setting the following declaration in application web.config:
<httpModules>
 <add name="WebRestMapperModule" type="Web.Enhancements.Rest.WebRestMapperModule,
 Web.Enhancements" />
</httpModules>

REST/HTTP-service Framework 19

Part 18: ASP.NET Routing support and CRUD (Create, Read, Update, and Delete) compatibility.

Beginning from v1.1 REST-services Framework is compatible with ASP.NET Routing model as well with

CRUD (Create, Read, Update, and Delete) principle. These two are often important when building REST

API functionality within your application.

Below is the example of configuring ASP.NET Routing table for REST-services, where:

 The “ns0”, “ns1” – the namespace placeholders where the REST-service class is located, required

unless an ALIAS for specific service class is used (see Part 6: Configuring REST-services framework):

o (up to 50 namespace parts supported);
o example: the namespace Application.Standards.Services represented by 3 parts would be

described in the route as /{ns0}/{ns1}/{ns2};
 The “class” – the name of the REST-service class, required as Class Name or ALIAS if used;
 The “method” – the name of the service method, not required if default mapping to HTTP Method is

intended;
 The “infoId” – developer-defined parameter for the method (no limit on number of parameters).
protected void Application_Start(object sender, EventArgs e)
{
 RouteTable.Routes.Add("Test1", new Route("api/{ns0}/{ns1}/{class}/{method}/{infoId}",

 new WebRestRouteHandler()));

 RouteTable.Routes.Add("Test2", new Route("api/{ns0}/{ns1}/{class}/{infoId}",

 new WebRestRouteHandler()));
}

The first route “Test1” would handle requests explicitly declaring the REST method name. The second

route “Test2” would be able to handle requests without specifying the REST method; in this case the

method would be chosen based on HTTP Method used to send a request. Both routes can work side-by-

side within the application.

IMPORTANT: it is beneficial to build more code-specific routes to avoid too wide match across different

parts of the application, and its components. The above route “Test1”, although the actual URL request

being the same (<rooturl>/api/TestWeb25/Components/InfoHandler/2), can be build specifying the

actual namespace parts and setting them as default values for corresponded placeholders, would work

better because another class with the same name structure and parameter names can be used within

the same application allowing more flexibility. Consider this sample:
RouteValueDictionary routeDict = new RouteValueDictionary();
routeDict.Add("ns0", "TestWeb25");
routeDict.Add("ns1", "Components");
RouteTable.Routes.Add("Test2", new Route("api/TestWeb25/Components/{class}/{infoId}",

 routeDict, new WebRestRouteHandler()));

or, even stricter:
RouteValueDictionary routeDict = new RouteValueDictionary();
routeDict.Add("ns0", "TestWeb25");
routeDict.Add("ns1", "Components");
routeDict.Add("class", "InfoHandler");
RouteTable.Routes.Add("Test2", new Route("api/TestWeb25/Components/InfoHandler/{infoId}",

 routeDict, new WebRestRouteHandler()));

REST/HTTP-service Framework 20

It is not required to set each namespace part as separate default parameter. You may ignore part of

namespace in URL, or entire namespace, or use the names that appropriate to your application. In this

case you should use a reserved keyword “namespace” to describe the full “namespace” parameter for

the REST-service runtime being translated to the calling target. These are 2 examples of such:
RouteValueDictionary routeDict = new RouteValueDictionary();
routeDict.Add("namespace", "TestWeb25.Components");
RouteTable.Routes.Add("Test2", new Route("api/TestWeb25/Components/{class}/{infoId}",

 routeDict, new WebRestRouteHandler()));

RouteValueDictionary routeDict = new RouteValueDictionary();
routeDict.Add("namespace", "TestWeb25.Components");
RouteTable.Routes.Add("Test2", new Route("api/Test/Favorites/{class}/{infoId}",
 routeDict, new WebRestRouteHandler()));

Since the REST-service Framework does not place any restrictions on method names, a special attribute

is used to map a REST-service method name to a specific HTTP Method (VERB), and let REST-service

runtime ability to resolve those correctly. The following is the sample code showing how the

GetExtraInfo method is mapped to the GET HTTP Method using DefaultHttpGet attribute:

[WebRestMethodAttribute()]
[DefaultHttpGet()]
public string GetExtraInfo(int infoId)
{
 return string.Format("This is return from GetExtraInfo method.");
}

REST-Service Framework has predefined attributes for the following HTTP Methods: GET, POST, DELETE,
PUT, SEARCH, COPY, MOVE, LOCK, UNLOCK, OPTIONS. You may use the DefaultHttpMethodAttribute to
set another HTTP Method that you need to use.
Although any number of methods in the REST-service class can be mapped to HTTP Methods, single
HTTP Method (VERB) should be mapped to a single method only. This would avoid ambiguous resolution
of request by REST Runtime. The runtime would not produce an exception, but rather would use the
first method with desired mapping attribute.

The route registration via attribute declaration is also supported (since v1.5.2). Route can be declared
via special attribute at class or method level. There is no limitation on the number of routes declared at
any level.
[WebRestMethodAttribute()]
[RegisterRoute(Route = "api/messages/{id}", BindToMethod = "Delete", LimitByHttpMethods =
"DELETE")]
[RegisterRoute(Route = "api/messages/{id}", BindToMethod = "Update", LimitByHttpMethods =
"POST,PUT")]
public class MyDataService : IWebRestService
{
 …
}

Where:
 The “Route” – the route string declaration;
 The “BindToMethod” – this optional parameters allows to bind the route to a class method when

attribute declared at class level;

REST/HTTP-service Framework 21

 The “LimitByHttpMethods” – an optional comma-delimited list of HTTP methods that route should be
limited to;

It is important to note when class is inherited from another class, the route attributes at class level are
not inheritable; the route attributes at a method level are inheritable unless method is overridden. This
rule avoids routing conflicts that can be introduced by inheritance.

In order to prevent undesired route registration that might have an adverse effect on the application,
especially in scenarios whether code is reused between the applications, the REST-service Framework
uses explicit registration technique. Use the RegisterTypeRoutes method at the WebRestClient class to
register all routes declared within particular class. Method should be called once for every class within
an application lifetime. Below is an example that registers all routes declared within scope of
MyDataService class:

Web.Enhancements.Rest.WebRestClient.RegisterTypeRoutes(typeof(MyDataService));

It is recommended to use this method within Application’s Start event.

REST/HTTP-service Framework 22

Part 19: Adding handler mapping for REST extension to IIS.

Using service requires additional configuration to the IIS - the Handler Mapping should be added for

“*.rest” extension and ASP.NET 4 runtime. Depending on server, either 32 bit or 64 bit, or both should

be added.

To setup the handler mapping, the steps are:

 Open IIS Manager

 Select IIS ROOT level

 Select “Handler Mappings”

 On the right menu panel click “Add Script Map”

 Add script map as:

32 bit runtime:

64 bit runtime:

 Executable: c:\Windows\Microsoft.NET\Framework64\v4.0.30319\aspnet_isapi.dll

 Name: RestHandlerFactory-ISAPI-4.0_64bit

REST/HTTP-service Framework 23

Part 20: REST-service Metadata Explorer.

As the number of services growing over time, it becomes essential ability exploring the existing services.
REST-services Framework allows performing this task via Metadata Explorer. By default the feature is
turned off for security considerations. You can quickly enable it by setting the configuration parameter
in web.config as shown below:

<webRestServices cacheLocation="ApplicationVariable" restFileExtension="rest"

allowExploreMetadata="true">

 allowExploreMetadata – turns on and off Metadata Explorer; optional parameter, by default is
“false”;

The following URL will invoke the Metadata Explorer for specified assembly:
<root>/base.metadata.rest?assemblyName=TestWeb25

Once invoked, the Metadata Explorer would analyze the assembly and find all REST services within the
assembly creating the linked list:

Clicking on specific service (class) would invoke another call to the Metadata Explorer that provides the
details for each service methods:

Metadata Explorer supports System.ComponentModel.Description attribute to provide description to
the service or its methods.

