
 

 

 

 

 

 

 

 

 

 

Creating a Windows Installer Package for your  

Web Application within 30 Minutes  

  



Changelog 

 

Version: Date: Author: Comments: 

0.1 14.09.2007 Sebastian Glöckner Initial version 
0.2 19.10.2007 Bernhard Frank Some minor updates 
0.3 21.10.2007 Sebastian Glöckner Added Windows Vista / 

Windows Server 2008 IUSR Support 
0.4 22.10.2007 Bernhard Frank Testing – Building Sample App – minor 

Comments 
0.5 23.10.2007 Sebastian Glöckner Some minor fixes 
0.6 25.10.2007 Sebastian Glöckner Added PHP and Perl Support 
0.7 26.10.2007 Sebastian Glöckner Added MySQL Support 
0.8 29.10.2007 Sebastian Glöckner Some minor fixes 
0.9 29.10.2007 Sebastian Glöckner Updated documentation 
1.0 29.10.2007 Bernhard Frank Minor updates 
2.0.5 30.04.2008 Bernhard Frank  Fixed some bugs (e.g. wrong url 

when installing in existing website) 

 Added logging and a few other 
properties 

 Extended scriptparse functionality to 
replace more @@properties@@ 

 PHP/FastCGI support for IIS7 (vista) 

 Built Windows Installer for WAI 

 Aligned doc version with release 
version 

2.0.6 03.06.2008 Bernhard Frank  Fixed scripts (removed CRLF problem 
in createScriptConfig.vbs ) 

 Added new Properties: 
checkIfIUSRisListedOnPHPUploadDir
, WANTinstalllogFile 

 Updated this documentation 
(thanks Oliver) 

2.0.7 10.06.2008 Bernhard Frank Added new properties: checkMYSQL40 
and SETREADONLY 

2.0.8 02.10.2008 Bernhard Frank added support for SQL Server 2008: 

 added more complexity to the 
sql password generation script 
to meet the password policy of 
sql server 

 changed wmi query to search for 
sql server to also find sql 2008 

minor changes to make PERL packages  
work better (needed this for AWSTATS) 
updated this doc (in section “XML 
Example…”) 

2.0.9 08.10.2008 Bernhard Frank minor additions only regarding PERL 



2.0.10 20.10.2008 Bernhard Frank added support for ODBC 5.1 connector 
(implemented better query for detecting 
mysql odbc connector) - odbc driver 
now stored in Property 
“MYSQL_ODBC_DRIVER” 

2.0.11 20.10.2008 Bernhard Frank added additional template for x64 
packages  
(note: to use the 64 template: rename 
“WebApplicationx64.tpl” to 
“WebApplication.tpl” before launching 
the generateconfig.bat ) 

2.0.12 21.10.2008 Johannes Michler/ 
Bernhard Frank 

deleted x64 template - run 
“Buildx64Config.vbs” to automatically 
create a x64 bit package out of your 
*.wxs file 

2.0.13 28.10.2008 Bernhard Frank bugfixes: 
 GenerateSourceConfig.vbs now sets 

only sets folder permissions (no longer 
also on files) - files inherit the folders 
permissions 

 If you grant the Networkservice write 
permissions to a folder the IUSR gets 
also write permissions (required when 
working with php and fastcgi 
impersonation) 

  GenerateSourceConfig.vbs now 
creates valid fileIDs (e.g. typo3 has files 
with special chars WIX would not like) 

added Property IIS7REQUIREDMODULES 
this comma separated list gets checked 
when the your msi is run on IIS7 
updated this documentation 

 

  



Table Of Contents 

 

Changelog ............................................................................................................................................................... 2 

Table Of Contents .................................................................................................................................................... 4 

Introduction ............................................................................................................................................................. 5 

Overview ................................................................................................................................................................. 6 

Step 0: Set up the working environment (Getting Started) ..................................................................................... 7 

Step 1: Create an application template (Preparations) ........................................................................................... 9 

Step 2: Customize this application template (Customize) ..................................................................................... 10 

A First Look Into WixEdit ................................................................................................................................... 10 

About Dialogs, Options And Performed Checks ................................................................................................ 11 

Options (Properties) Overview .......................................................................................................................... 18 

Configuring Your Web Application  With Collected User Data ......................................................................... 21 

XML Example (e.g.: web.config) .................................................................................................................... 23 

Unstructed File Example (e.g.: config.php) ................................................................................................... 25 

SQL Database Setup ...................................................................................................................................... 26 

Step 3: Generate a MSI package for your web application (Build) ........................................................................ 27 

Creating an Installer for x64 .................................................................................................................................. 28 

Getting Further Information .................................................................................................................................. 28 

 



Introduction 

Goal: 

This document will show you how you can build a Windows Installer package for your Web Application within 

half an hour -  by only utilizing open source software. 

The following technologies are supported: 
Scripting: ASP.NET / PHP / Perl 
Databases: Microsoft SQL Server / MySQL Server 
 

The Idea: 

As you have experienced yourself developing a web application isn’t that easy and quite time consuming. You 

spend a lot of hours thinking about software design, security problems and of course how to improve end user’s 

usability. 

On the other hand a lot of your users or potential customers have only a limited knowledge about software 

development or webserver configuration options. For them it’s rather difficult to e.g. “add the appropriate 

access rights” on a folder or to setup a database. It’s really sad that a lot of people fail or get annoyed by just 

installing a web application and of course that isn’t the best first impression they should get from your software 

either. 

Seeing an ever growing market for dedicated server systems or virtual private servers (VPS, VSERVER: 

http://en.wikipedia.org/wiki/Vps) starting at low prices and running the Windows Server 2003 operating system 

it is time to rethink if there are other installing methods available. 

If your users have access to a (virtual) dedicated server system they can utilize remote desktop connections to 

manage it. They can and are used to install software the way they’ve learned to do it on their desktop PCs by 

just clicking trough a nice little wizard. 

The nice little wizard we’ll create in this document will be capable of: 

- Creating a new website 

- Adding a virtual directory to an existing website 

- Creating an application pool and setting up a website/folder as ASP.NET / PHP / Perl application 

- Creating a new Microsoft SQL or MySQL Database, Logins and Users 

- Configuring your web application (e.g. web.config)  and setting values collected in wizard mode 

- A lot of user guidance, messages and validations 

 

 

Any feedback – good or bad – is highly appreciated… So please drop us a line. Tell us what application you’ve 

created an installer for or if you have experienced any problems with this documentation or the generated 

msi file itself. If you have any questions – we’ll be glad to help (mailto:bfrank@microsoft.com). 

  

mailto:bfrank@microsoft.com


Overview 

The process of building your own installer package consists of 4 steps: 
0. Set up the working environment  
1. Create an application template (*.wxs) for your web application (using GenerateConfig.bat) 
2. Customize this application template (*.wxs) to fit your needs (using the WixEdit tool) 
3. Generate a MSI package for your web application 

 
 

 
 

  



Step 0: Set up the working environment (Getting Started) 

Before we can start you’ll need the following utilities: 
 

1. WixEdit 
Version used: 0.6.1762 
Filename: wixedit-0.6.1762.msi 
Note:Take the MSI package 
Url: http://wixedit.sourceforge.net/ 

2. Windows Installer XML (Wix) 
Version used:  3.0.2925.0 
Filename: wix-3.0.2925.0-binaries.zip 
Note: Take the binary zip 
Url:  http://sourceforge.net/project/showfiles.php?group_id=105970&package_id=168888 

3. Web Application Template – What you have just downloaded 
Version used: 2.0.6 
Filename:  WAI-Installer.msi 
Note: Contains “Web Application Template” folder – which is our working directory 
URL: http://www.codeplex.com/wai 

 

 
Putting it all together - steps: 

1. Install WixEdit with the provided installer package (e.g. “wixedit-0.6.1762.msi”) 

2. Extract “wix-3.0.2925.0-binaries.zip” into the WixEdit Folder like e.g.: 
C:\Program Files\WixEdit\wix-3.0.2925.0 

3. Start WixEdit  (Program Files -> WixEdit -> Binaries -> WixEdit.exe) 

4. Tell WixEdit to use the new binaries because otherwise you’ll encounter an bug with the ones shipped 
with the installation and the IIS configuration won’t work: 
 

Tools -> Options -> WiX Binary Directory -> […] 

 
Choose the new Folder you’ve extracted the binaries into, e.g.:  
 

C:\Program Files\WixEdit\wix-3.0.2925.0  

See the screenshot of Wix Edit: 

http://wixedit.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=105970&package_id=168888
http://www.codeplex.com/wai


Picture 1. The modified settings in Wix Edit pointing to the wix-3.0.2925.0 folder 

Optional: Change the ‘External Xml Editor’ to an editor of your choice which can provide xml 
highlighting - for example notepad++ (See: http://notepad-plus.sourceforge.net/uk/site.htm ) 
 

5. Run the WAI-Installer.msi – this installer extracts the web application template folder. Navigate to this 
folder as this is our working directory. After this you have successfully setup the working environment. 

  

http://notepad-plus.sourceforge.net/uk/site.htm


Step 1: Create an application template (Preparations) 

Now it’s time to prepare your web application and to create an application template to work with: 

1. Go to the directory where the source files of the web application reside that you want to package into 
a MSI and copy all files into the web application template’s “Sources” folder. 
 

2. Execute GenerateConfig.bat  
(It will just open a command shell and run the GenerateConfigSource.vbs file). 
 

3. This VBScript file will now ask you a few questions: 

a. What name should the installer file have. (e.g. MyWebApplication) 

 

b. Which folders should be writeable for the web server or to be more precise for the “network 

service” user and the IUSR account. You should enter folder names relative to the Sources 

directory. If you have – for example - the following structure 

 

…\Web Application Template\Sources\App_Data 

…\Web Application Template\Sources\App_Data\posts 

…\Web Application Template\App_Data\images 

you would type in App_Data or App_Data\posts to get these Folder and all files and subfolders 

beneath writeable for the end users web server. 

2. When the VBScript is finished you’ll find file a new .WXS File in the folder with the name you provided 

for the installer file 

 

3. Open this file in WixEdit 

 

 

Please note that if you have a large web project the generated xml file is pretty big and 

it’ll take some time until WixEdit has loaded and validated it 

 

 

  



Step 2: Customize this application template (Customize) 

A First Look Into WixEdit 

 

Picture 2. WixEdit’s view on the *.wxs file generated in the previous steps 

WixEdit has 6 main categories to configure a Windows Installer Package: 

1. Global 

This section defines the basic attributes of your web application: like it’s and your name for example, 

product version and description. You should take a look into the ‘Product’ and ‘Package’ Element and 

change the values. 

 

2. Files 

In this section all files, features and configuration settings are stored. Although WixEdit has it’s own 

File/ Folder import function we’ve done it with the VBScript because the current WixEdit version has a 

small bug in this function adding a xml tag to the definition file which isn’t supported anymore and you 

can get into serious trouble if you have some files with the same name in different folders.  Another 

reason was that we wouldn’t have gotten our installer package ready to go within 30 minutes. Web 

Applications normally have a lot more files and folders than desktop applications and you would have 

had to add permissions to every single file and folder and to map them to the corresponding feature. 

We’ll come back to this section when we configure your web application after copying the files. 

 

3. Properties 

Here you have some configuration switches we’ll discuss in the coming chapter.  

 

4. Dialogs 

This section lets you change the dialogs used by the installer so that you can add more fields or 

complete new dialogs. 

 



5. Resources 

Here you have all Resources used by the installer itself – for example the icons or images in the dialog 

boxes. All elements listed here come from the ‘Scripts’ and ‘Binary’ folders in the web application 

template folder. You should take a look into Binary\License.rtf (Has to be an RTF-File) or 

Binary\bannrbmp.bmp to have your own logo displayed during the installation and to 

Binary\myAppSQL.sql for SQL-Statements to create an initial database. 

 

 

6. Actions 

Nearly all elements listed in this section point to the scripts folder. These scripts are responsible for 

listing existing websites or checking provided database access data for example. All custom actions in 

this template are written with VBScript so that you can alter and review them with a simple editor. 

 

About Dialogs, Options And Performed Checks 

Dialogs during setup are for gathering required information from the user. What information you need and 

which dialogs you want to show to the user depends on your web application.  

This Web Application Template comes with a set of predefined dialogs. You may want to influence the behavior 

of the dialogs like e.g. which dialogs should be displayed to the user and what system checks need to be done  

when installing your web application. This can be done by setting properties in the Properties category in 

WixEdit. Below is a list of the contained dialogs and the relevant properties.  

Welcome dialog 

The first dialog. 
 
Options: 

- None 
 

Checks: 
- None 

 

  



Requirements dialog 

Gives the user feedback if the requirements 
for installing this web application are 
fulfilled. Which requirements are checked 
(and displayed) can be set by various 
properties. 
 
Options (Properties): 

- SCRIPTLANGUAGE: ASP / PHP /PERL 
- SCRIPTVERSIONMIN / 

SCRIPTVERSIONMAX 
- PHPMODULES (e.g. odbc, mssql) 
- CheckForAJAX = 0/1 
- DATABASEENGINE: MSSQL / MySQL 
- CheckForSQLSERVER = 0/1 
- IIS7REQUIREDMODULES (e.g. 

WMICompatibility,FastCgi) 
 
Checks: 

- Privileged account 
- IIS installed 
- ASP.NET installed 

 

 
License dialog 

The license displayed here is taken from 
..\Web Application 
Template\Binary\License.rtf file (needs to 
be RTF). Exchange with your license file. 
 
Options (Properties): 

- License text changeable by altering 
Binary\License.rtf (You have to keep 
the RTF-File Format) 

 
Checks: 

- The user has to accept the license in 
order to proceed 
 

 

 
  



Setup type dialog 

Useful if you want to give the user options 
of what parts to install. 
Options (Properties): 

- To enable this option use the 
ShowSetupTypeDlg = 0/1 property 

 
Checks: 

- None 

 

Custom setup 

Options (Properties): 
- This dialog can only be reached 

through the setup type dialog -> 
‘Custom’ so that this property has to 
be set to 1 

 
 

Target dialog 

Options (Properties): 
- If your application needs or should 

use a dedicated website for some 
reasons use the 
RequireNewWebsite = 1 property 
for this purpose 

 
Checks: 

- None 

 



New website dialog 

Options (Properties): 
- No Options (Properties) 

 
Checks: 

- Valid port 
- Valid description 
- Valid hostheader 
- Checking for conflicts (IP/Port 

/Hostheader) with existing websites 
- Path 

o Questions if a new folder 
should be created 

o Warning if the chosen 
folder isn’t empty 

o Warning if the chosen 
folder isn’t beneath the IIS 
default website folder (e.g. 
C:\Inetpub) 

 

 

Existing website dialog 

Options (Properties): 
- Set the VIRTUALDIRECTORYNAME 

property for the proposed virtual 
directory name 

 
Checks: 

- Valid port 
- Path 

o Questions if a new folder 
should be created 

o Warning if the chosen 
folder isn’t empty 

o Warning if the chosen 
folder isn’t beneath the 
chosen website 

 

Storage Options (Properties) dialog 

Options (Properties): 
- To show this dialog set the 

ShowStorageOptions (Properties)Dlg 
= 0/1 property 

- It won’t show up if the 
RequireSQLDatabase property has 
been set to 1 

 
Checks: 

- None 
 
 
 
 
 
  



 

Database setup I/II dialog 

The user that is allowed to make changes to 
the database. (e.g. root for MySql) 
 
Options (Properties): 

- If your application needs an SQL 
database set RequireSQLDatabase 
property to 1 

- If you have forced this dialog to 
show up the storage dialog won’t be 
shown 

 
Checks: 

- Working connection 
- User rights for creating a database, 

for creating a login and user 
- Checking if the server is able to 

handle SQL user connects 
 

 
(MSSQL Dialog – MySQL Dialog is similar) 

 
Database setup II/II dialog 

Used to create the user with which the web 
application connects to the database. (we 
do a prefill here.) 
 
Options (Properties): 

- Set the USRPrefix property to alter 
proposed username 

- Set the DBPrefix property to alter 
proposed database name 

 
Checks: 

- for existing databases and proposes 
a database name 

- for existing users and proposes a 
username 

- propose and validates password 
- validates if the chosen database or 

username are already used 
 

 

  



Create first user dialog 

Used to create the (first) admin user of the 
web application (e.g. a CMS Web 
administrator)  
 
Options (Properties): 

- To show this dialog set the 
ShowCreateFirstUserDlg property to 
1 

- If whitespaces are allowed for the 
username set the 
FirstUsernameWhitespaces property 
to 1 

 
Checks: 

- For valid username 
- For valid password 
- For valid email address 

 
 

 

Verify ready dialog 

Verify ready dialog. After this the 
installation starts. 
 
Options (Properties): 

- None 
 
Checks: 

- None 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 
 
 

 

  



Progress dialog 

Options (Properties): 
- None 

 
Checks: 

- None 
 

 

Exit dialog 

On the last dialog you have the possibility to 
navigate the user automatically to the just 
installed web application using the standard 
browser. 
Options (Properties): 

- To show the web launch option set 
the ShowWebsiteLaunchOption  
property to 1 

- If the checkbox should be checked 
by default set the openurl property 
to yes 

- If you want to route the user into a 
specific post setup directory change 
the STARTUPDIR property 

 
Checks: 

- None 
 

 

 



Options (Properties) Overview 

Properties change the way the installer behaves during install, e.g. what is being checked before your web 

application installs, which dialogs to show to the user. Here is the list of all the properties you can set. Use 

WixEdit -> click on properties (left) to modify the properties. 

Property Name: Purpose: Values: 

CheckForAJAX (ASP.NET) checks if ASP.net AJAX extensions (V1) are 

installed. 

1 : check is done 

0: no check 

Note: if check is done and fails – user will be informed 

and cannot continue with installation. 

0/1 

CheckForSQLSERVER 1 : search for SQL Server 

0: no check 

0/1 

checkMYSQL40 (MySQL only) 

1 :makes sure that sql-mode="MYSQL40" (my.ini) is 

present 

0: no check (default) 

Note: does a “select @@sql_mode” to verify that 

version 4 is used – few web apps require this (e.g. 

Typo3). 

0/1 

checkForFullTextSearch (MSSQL Server only) 

1 : checks if MSSQL Server instance running is capable 

to do full text search 

0: no check 

0/1 

ShowSetupTypeDlg 1 : show this dialog 

0: omit dialog 

0/1 

VIRTUALDIRECTORYNAME Name of the virtual mapping directory String (W3C url 

naming 

constraints) 

RequireNewWebsite If set to 1 – the web application can be installed only 

into a new website. 

1 : shows only this dialog 

0: shows also this dialog 

 

0/1 

WEBAPPLICATIONNAME Used in IIS as web application name. 

(e.g. MyWebApplication) 

String (MS IIS 

application naming 

constraints) 

WEBAPPLICATIONPOOLNAM

E 

Websites installed using this template are always 

associated with a new separate application pool 

(serving one w3wp.exe) Used in IIS as application pool 

String (MS IIS 

application pool 

naming 



name 

 (e.g. MyWebApplicationPool) 

constraints) 

ShowStorageOptions 

(Properties)Dlg 

1 : show this dialog 

0: omit dialog 

0/1 

RequireSQLDatabase Set this property to 1 if your web application requires a  

SQL Database 

1 : show this dialog 

0: omit dialog 

 

0/1 

DBPrefix Prefix for free database name proposal 

(e.g. MyWebApplicationDB_) 

String (MS SQL 

Database naming 

constraints) 

USRPrefix Prefix for free database user name proposal 

(e.g. MyWebApplicationDBUser_) 

String (MS SQL 

user/login naming 

constraints) 

ShowCreateFirstUserDlg 1 : show this dialog 

0: omit dialog 

0/1 

ShowWebsiteLaunchOption Show / hide launch checkbox for web-based post setup 0/1 

openurl Do you want the checkbox for launching the website on 

the last dialog. 

yes/no 

STARTUPDIR Default startup directory for web-based post  String 

SCRIPTLANGUAGE Either ASP or PHP or Perl – determines which checks are 

performed and how the website / application is 

configured 

Enum 

(ASP,PHP,PERL) 

SCRIPTVERSIONMIN/MAX For ASP.NET 2.0 for example: 

Min: 2.0.50727.1 

Max: 2.0.65535.65535 

String 

DATABASEENGINE Checks, dialogs and setup procedures differ for MS SQL 

and MySQL databases 

ENUM (MSSQL, 

MYSQL) 

MYSQLPrivileges Arguments for GRANT 

(e.g.: ALL or INSERT,SELECT,DELETE,UPDATE,ALTER) 

String 

PHPMODULES Modules compiled in or added through php.ini file. 

 

Example: 

mssql for php_mssql.dll 

Use a comma separated list to check for more than one 

String 



extension: 

odbc, mssql, gettext, mysql, mysqli 

SCRIPTPARSE List of files to parsed for strings like e.g.  

@@SQLUSERUSERNAME@@. If strings like this are 

found they are replaced with a variable collected in 

wizard mode – see below for detailed explanation 

Use a comma separated list for several files. All files 

should be relative to the source folder. (e.g. config.file, 

lib/another.file) 

String 

SETREADONLY List of files to whose file attribute should be set to Read-

only ( e.g. oscommerce likes “config.php” file to be set 

read-only) 

Use a comma separated list for several files. All files 

should be relative to the source folder. (e.g. config.file, 

lib/another.file) 

String 

MD5PREFIX Prefix added before user’s password in md5() function 

Alternatively give it the value “randomSalt” for a 

random salt value – e.g. osCommerce needs this. 

String 

DBPORT Default MySQL database port 

E.g.: 3306 

String 

checkIfIUSRisListedOnPHPUpl

oadDir 

Some PHP applications require the IIS Anonymous User 

to have List Folder / Read permission for the php upload 

directory (e.g. 4images). When setting this value to 1 -

>IUSR permissions for the upload directory are checked 

and a warning is displayed to the user if the permissions 

do not fit  (default is 0) 

0/1 

WANTinstalllogFile Set this value to 1 if you want a log file with the name 

”install.log” to be created during the install. This file 

contains short information about the things that have 

been done during the install (default is 1). 

Note: Don’t set this to 1 if your web application already 

has  a file named install.log in the web applications 

directory it’ll probably get overwritten. 

 

0/1 

IISVERSION If the installer is run on Vista or Windows Server 2008 

this Property will contain the string “7” 

e.g.”7” on IIS7 

 empty string on 

IIS6 



IIS7REQUIREDMODULES If the installer is run on Vista or Windows Server 2008 

this Property will be checked automatically if the 

required modules are installed (use a comma separated 

list) 

this registry hive is checked: 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\InetStp\

Components 

http://learn.iis.net/page.aspx/135/discover-installed-

components/  

Note: You should check at least for WMICompatibility 

as the installer needs it by itself 

e.g. 

WMICompatibility, 

FastCgi, CGI, 

ASPNET, 

BasicAuthenticatio

n, 

WindowsAuthentic

ation 

 

 

 

 

Configuring Your Web Application  With Collected User Data 

What we’ve done so far: We’ve included all files and added the right permissions if necessary and we’ve altered 

some properties so that we get the desired windows installer dialog sequence. During this install sequence we 

get a lot of user data we might want to use for modifying a web application’s config file(s) during setup. 

Here is a list of the user input we could use:  

Name: Description: 

WEBSITEIP IP of the website, either someting like 192.168.0.1 or 

‚*‘ for all unassigned 

WEBSITEPORT Port of the website, e.g. 80 

WEBSITEDESCRIPTION Description of the website as listed in IIS configuration 

WEBSITEHOSTHEADER Hostheader of the website, e.g. www.domain.tld or 

empty 

TARGETDIR Installation directory 

VIRTUALDIRECTORYNAME Name of the virtual directory mapping 

SQLDATABASE Configured SQL database name 

DBHOST Database hostname 

SQLUSERUSERNAME Configured SQL user name 

SQLUSERPASSWORD Configured SQL user password 

http://learn.iis.net/page.aspx/135/discover-installed-components/
http://learn.iis.net/page.aspx/135/discover-installed-components/


USERUSERNAME First user name 

USERPASSWORD First user name’s password 

USERMD5PASSWORD First user name’s password md5 encrypted 

USEREMAIL First user name’s email 

URLHOST Hostname of the Homepage (e.g. 

http://www.codeplex.com) 

URLDIR Directory of the page after the hostname (e.g. 

subfolder/folder) 

DBHOSTANDPORT Will combine DBHOST and DBPORT 

(DBHOST:DBPORT) if DBHOST is an IP address or only 

localhost if DBHOST is localhost 



XML Example (e.g.: web.config) 

 

This is an example of how to use WIX to set a connection string in a web.config file during setup 

 (Also valid for other XML files) 

Structure of the web.config file: 

<configuration> 

. 

. 

. 

  <connectionStrings> 

    <add name="SiteSqlServer" connectionString="Data Source=.\SQLExpress;Integrated 

Security=True;User Instance=True;AttachDBFilename=|DataDirectory|Database.mdf;" 

providerName="System.Data.SqlClient" /> 

. 

. 

. 

 

We want to change the value of connectionString. Wix gives us the possibility to navigate to an xml element 

through an xpath expression to get to ours the xpath query would be: 

    /configuration/connectionStrings/add[@name="SiteSqlServer"]     

 

1. Which values do we want to add: 

Property Meaning Example 

DBHOST Server and Instance name of 

your sql server (see Database 

setup I/II dialog) 

“.\sqlexpress” 

SQLDATABASE Name of the web application 

database (see Database setup 

I/II dialog) 

“MyWebapplicationDB_1” 

SQLUSERUSERNAME The user with which your web 

application connects to the sql 

server (see Database setup 

II/II dialog) 

“MyWebapplicationUser” 

SQLUSERPASSWORD The users password “0815blabla” 

 

2. The  connection we enter in WixEdit should look like: 

Data Source=[DBHOST];Initial Catalog=[SQLDATABASE];User 

Id=[SQLUSERUSERNAME];Password=[SQLUSERPASSWORD]; 

When the installer runs the [PROPERTY] gets filled with the actual value 

 



 

Please note that all variables which should be parsed have to be encapsulated by 

square brackets (e.g.: [SQLDATABASE]) 

a. Adding it as configuration command in wixedit 

b. Go to ‘Files’ 

c. Select the ApplicationSetup Component -> Select ‘New’ -> Select ‘utilXmlFile’ 

d. Select the utilXmlFile Element 

i. Set  ‘Action’ to ‘setValue’ 

ii. Set ‘ElementPath’ to: 
/configuration/connectionStrings/add[\[]@name="SiteSqlServer"[\]] 

Please note that we need to escape the right and left square bracket in WixWdit. 

 

iii. The ‘File’ should always be relative to the target dir as you can see in the screenshot: 

[TARGETDIR]web.config or [TARGETDIR]App_Data/somefile.xml 

 

iv. ‘Id’ is the Windows Installer Identifier for this element you can choose as you like 

 

v. ‘Name’ defines the xml attribute we want to change. You’ll have to add this 

element using right click in the left window and choose ‘New’ -> ‘Name’. Set the 

‘Name’ to connectionStrings 

vi. Modify the ‘Value’ element to hold your connection string. Set ‘Value’ to 

Data Source=[DBHOST];Initial Catalog=[SQLDATABASE];User 

Id=[SQLUSERUSERNAME];Password=[SQLUSERPASSWORD]; 

 

  



Unstructed File Example (e.g.: config.php) 

 

The Windows Installer technology has built in features to alter .INI or XML-Files which are great but won’t help 

us if we want exchange some variables in a .PHP-File (or other ini files) for example. For thiscase you’ll find a 

SCRIPTPARSE property in the template. Add a comma delimited string with all files into that property which 

need to be altered. This could be something like config.php, lib/settings.php, 

admin/settings/something.inc.php… I guess you get the idea… Specify the files relative to the “Source” folder.  

Sample:  If I would like to modify e.g. a file named “config.inc.php”. This file lies in  ..\Web Application 

Template\Sources\include   I give the SCRIPTPARSE property the value “include\config.inc.php”. 

 

Now in the  config.inc.php” file I escape the parameters that  I would like to be filled: 

Old: 

… 

$database_host = “put-you-host-in-here” 

$database_user = “your-username” 

… 

New: 

… 

$database_host = “@@DBHOST@@” 

$database_user = “@@SQLUSERUSERNAME@@” 

… 

Every string in these files which equals @@ a varibable from the “colleteded user data” list and an ending @@ 

is changed into the value collected during installation. 

  

Formatiert: Schriftart: Calibri, 10 pt,
Nicht Fett, Nicht unterstrichen,
Schriftartfarbe: Automatisch



SQL Database Setup 

 
Add create queries for tables and initial data inserts in Binary/MyApp.sql. This SQL script is executed against the 
database during setup (Database and User configuration is done by WIX).  
 
You can also use @@PARAM@@ variables there which will be parsed before execution (see example above).  



Step 3: Generate a MSI package for your web application (Build) 

 

 

Before we can build the MSI Package we take a look at  

 

      Build -> Build Settings  

 

and check if the compiler Options (Properties) (for light.exe and candle.exe) are correct: 

 

 Options (Properties) for Candle.exe: 

 "<projectfile>" -ss -out "<projectname>.wixobj" <extensions> 

 

Options for Light.exe 
 "<projectname>.wixobj" -cultures:en-us -out "<projectname>.msi" <extensions> 

 

Now we’ll build the MSI Package using  

 

Build -> Build MSI setup package 

 

and find a new .msi file in our web application template folder. Congratulations! 

  



Creating an Installer for x64 

Why can’t I run the installer on 64bit windows? 

Some checks that are done in the beginning to gather data, e.g. IIS7 required modules, PHP and Fastcgi Settings 

some of these settings are in registry (HKEY_LOCAL_MACHINE\SOFTWARE\) or on the  file system (e.g. in 

system32). If you would run the x86 msi on a x64 OS these paths get masqueraded (e.g. 

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node or SysWOW64) by the OS , i.e. the check would fail 

(because it is looking at the wrong place).  

The cure: You need to run those checks in 64bit mode. 

The process: 

1. Create your installer as before for the x86 platform (e.g. MyWebapplication.msi) 

2. Test it - if it works fine, run the x64 config script generator against it, e.g.: 

Buildx64Config.vbs “MyWebapplication.wxs” “C:\Program Files\Windows Installer XML 

v3\bin” 

 

Whereas the usage is: 

Buildx64Config.vbs [*.wxs file] [path to WIX binaries(candle.exe & light.exe)]") 

Getting Further Information 

As already mentioned WiX is capable of doing a lot of things and if you want to extend or change the functions 

in the provided template you should check out the following resources: 

 

Websites: 

- Web application installer 

http://www.codeplex.com/wai 

 

- WiX tutorial 

http://www.tramontana.co.hu/wix/ 

- Windows Installer Reference 

http://msdn2.microsoft.com/en-us/library/Aa372860.aspx 

 

Mailing lists: 

- WiX-Users / Windows Installer XML (WiX) Toolset 

http://www.mail-archive.com/wix-users@lists.sourceforge.net/ 

 

 

http://www.codeplex.com/wai
http://www.tramontana.co.hu/wix/
http://msdn2.microsoft.com/en-us/library/Aa372860.aspx
http://www.mail-archive.com/wix-users@lists.sourceforge.net/

