
The Power Threading Library 

Brought to you by 

Jeffrey Richter and Wintellect 

(Last update: May 26, 2009) 
 

The Power Threading Library consists of a number of classes to assist you with building responsive, 

reliable, and scalable applications and components. There are also a bunch of general-purpose utility 

classes in this library that have nothing to do with threading but I threw them in here anyway. This 

document provides an overview of the namespaces and classes defined within the library.  

Note that there are three versions of this DLL library (and accompanying documentation/debug files): 

Usage Files 

For Desktop/Server CLR applications Wintellect.Threading.dll 

Wintellect.Threading.xml 

Wintellect.Threading.pdb 

For SIlverlight applications Wintellect.Threading.Silverlight.dll 

Wintellect.Threading.Silverlight.xml 

Wintellect.Threading.Silverlight.pdb 

For Compact Framework applications Wintellect.Threading.CompactFx.dll 

Wintellect.Threading.CompactFx.xml 

Wintellect.Threading.CompactFx.pdb 

 

Due to Silverlight’s security model, its subset of the .NET  Framework’s class library, and the nature of 

SIlverilght applications, the Winellect.Threading.Silverlight.dll contains a subset of the functionality 

offered by the Wintellect.Threading.dll. This means that some of the types described below are not 

available in the Silverlight version of the DLL. Of course, this also makes the Silverlight version of the DLL 

significantly smaller in size which is ideally suited for Silverlight’s downloading nature. 

For similar reasons, the Compact Framework version of the library, Wintellect.Threadin.CompactFx.dll, 

also contains a subset of the functionality offered by the Wintellect.Threading.dll. Furthermore, since I 

personally do very little Compact Framework development, this version of the library has not been 

rigorously tested. The Compact Framework version is offer AS IS. Certainly, I appreciate any feedback on 

the library and there is a good chance that I will fix any bugs or make good suggested improvements. All 

three versions are produced from the same source code base. 



The Wintellect.Threading.AsyncProgModel Namespace 
I suspect that most developers will find the types defined in the Wintellect.Threading.AsyncProgModel 

namespace to be the most useful. This namespace defines a number of classes that are directly related 

to threading and the CLR’s Asynchronous Programming Model (APM). Chapter 23 of my CLR via C# book 

(Microsoft Press, 2006) goes into great detail about the CLR’s APM. Specifically, the types in this 

namespace aid developers who are defining their own types that support the APM. Types in this 

namespace can also be used by developers who need to invoke several asynchronous requests and 

coordinate their response. 

The AsyncEnumerator class is particularly useful for developers who are trying to build responsive, 

reliable, and scalable applications and components. This class allows developers to leverage all the 

features of the APM using the simpler, more-familiar synchronous programming model. In fact, the 

AsyncEnuemrator class allows programmers to take their existing synchronous code and apply just a few 

changes to it in order to convert it into asynchronous code thereby reducing the number of threads and 

context switches required in their application and components.  

In addition, my AsyncEnumerator class offers many productivity features: 

 The ability to coordinate many concurrently executing asynchronous operations. 

 Coordinate the cancellation and timeout of asynchronous operations 

 Optionally use SynchronizationContext for callbacks so that marshalling is not necessary for 

GUI applications (such as Windows Forms and Windows Presentation Foundation) and also 

ASP.NET web applications. 

  

http://www.amazon.com/gp/product/0735621632/qid=1140039111/sr=1-2/ref=sr_1_2/104-9334151-2570318?s=books&v=glance&n=283155


The AsyncEnumerator class works with any class that supports the IAsyncResult APM this includes all 

Stream-derived class (such as FileStream and NetworkStream), Pipes, all WebRequest-derived classes, 

DNS, Socket, SqlCommand, all delegates, and more. It also works in all application models including 

Console apps, Windows Forms, Windows Presentation Foundation, ASP.NET Web Services and Web 

Forms, Window Communication Foundation, NT Services, and more.  

The AsyncEnumerator offers many usage patterns. Some common usage patterns are listed below: 

 Issue one asynchronous operation and process it when it completes 

 Issue many asynchronous operations and process all of them when all of them complete 

 Issue many asynchronous operations and process each of them as each completes 

 Issue many asynchronous operations, process some and discard the rest. 

 Issue many asynchronous operations, process some until cancellation or timeout occurs; 

discard the rest. 

 Call asynchronous subroutines allowing for composition of asynchronous routines. 

 When used with the SyncGate class, several AsyncEnumerators that are running 

concurrently can access shared data in a thread-safe reader/writer fashion without ever 

blocking a thread. 

Documentation for the AsyncEnumerator can be found here: 

 http://channel9.msdn.com/posts/Charles/Jeffrey-Richter-and-his-AsyncEnumerator/ 

 http://msdn.microsoft.com/en-us/magazine/cc163323.aspx  

 http://msdn.microsoft.com/en-us/magazine/cc546608.aspx  

 http://msdn.microsoft.com/en-us/magazine/cc721613.aspx  

Type Name Type Description 

AsyncEnumerator Use this class to execute asynchronous operations using a synchronous 
programming model via C#’s iterator feature.  
http://msdn.microsoft.com/msdnmag/issues/07/11/ConcurrentAffiars/ 

EventApm Use this class to turn an event-based asynchronous programming model 
into the IAsyncResult-base programming model. This class is typically 
used to integrate classes that use the Event-base APM with the 
AsyncEnumerator. 

AsyncResult 
AsyncResult<TResult> 

Use these classes to help you implement the APM on one of your own 
types. 
http://msdn.microsoft.com/msdnmag/issues/07/03/ConcurrentAffairs/ 

SyncContextAsyncCallback This class calls an AsyncCallback method using the application model’s 
desired thread. 

SyncGate Used to have multiple AsyncEnumerator objects access shared data in a 
thread-safe way. The technique employed by this class is similar to that 
employed by my ReaderWriterGate class (see the 
Wintellect.Threading.ReaderWriterGate namespace below). 

CountdownTimer This class offers a countdown timer that adheres to the APM. 

ApmWrap This class allows you to associate an arbitrary piece of data with any 

http://channel9.msdn.com/posts/Charles/Jeffrey-Richter-and-his-AsyncEnumerator/
http://msdn.microsoft.com/en-us/magazine/cc163323.aspx
http://msdn.microsoft.com/en-us/magazine/cc546608.aspx
http://msdn.microsoft.com/en-us/magazine/cc721613.aspx
http://msdn.microsoft.com/msdnmag/issues/07/11/ConcurrentAffiars/
http://msdn.microsoft.com/msdnmag/issues/07/03/ConcurrentAffairs/


IAsyncResult object. 

The Wintellect.Threading.ReaderWriterGate Namespace 
This namespace defines my ReaderWriterGate synchronization primitive. For details on how to use this 

type and how it works, please see the November 2006 issue of MSDN Magazine’s Concurrent Affairs 

column which discusses it. 

Type Name Type Description 

ReaderWriterGate 
ReaderWriterGateCallback 
ReaderWriterGateReleaser 

Construct a ReaderWriterGate and then queue into it methods matching 
the ReaderWriterGateCallback delegate. Your callback method will 
receive a RederWriterGateReleaser object. 

The Wintellect.Threading.ResourceLocks Namespace 
This namespace defines several classes that allow locking of resources/objects. For details on how to use 

all of these related types, please see the June 2006 issue of MSDN Magazine’s Concurrent Affairs column 

which discusses them. In short, ResourceLock is an abstract base class that defines a reader/writer lock 

programming model. Throughout all your code, you think about your locks using reader/writer 

semantics and you code to this abstract base class. Then, I also provide several concretes classes derived 

from ResourceLock. In your program, you decide which of the concrete classes to construct and you can 

change from class to another easily without affecting the rest of your code.  

Type Name Type Description 

ResourceLock This abstract base class defines the object model for all the other 
types derived from it. This class allows you to always code using 
reader-writer lock semantics and then select or change the actual lock 
at a later time. 

NullResourceLock This lock performs no locking; it allows you to remove thread 
synchronization without modifying any code.  

ExclusiveSpinResourceLock This lock performs a spin lock. For more information about this, see 
the October 2005 issue of MSDN Magazine’s Concurrent Affairs 
column. 

MonitorResourceLock This lock wraps the .NET Framework’s Monitor class. 

OptexResourceLock This lock performs an exclusive, non-thread-affinitized lock. For more 
information about this, see the March 2006 issue of MSDN Magazine’s 
Concurrent Affairs column. 

OneManyResourceLock This lock wraps my reader/writer lock presented in the June 2006 
issue of MSDN Magazine’s Concurrent Affairs column. 

OneResourceLock This is slightly faster version of my OneManyResourceLock. It is faster 
because it supports mutual-exclusion only. 

OneManySpinResourceLock This lock is a spin lock that offers reader/writer semantics. 

ReaderWriterResourceLock This lock wraps the .NET Framework’s ReaderWriterLock class. 

ReaderWriterSlimResourceLock This lock wraps the .NET Framework’s ReaderWriterLockSlim class. 
Your application must be running on .NET Framework v3.5 or later to 
use this class. 

EventResourceLock This lock wraps Windows’ Event kernel object. 

http://msdn.microsoft.com/msdnmag/issues/06/11/ConcurrentAffairs/default.aspx
http://msdn.microsoft.com/msdnmag/issues/06/06/ConcurrentAffairs/
http://msdn.microsoft.com/msdnmag/issues/05/10/ConcurrentAffairs/
http://msdn.microsoft.com/msdnmag/issues/06/03/ConcurrentAffairs/
http://msdn.microsoft.com/msdnmag/issues/06/06/ConcurrentAffairs/


MutexResourceLock This lock wraps Windows’ Mutex kernel object. 

SemaphoreResourceLock This lock wraps Windows’ Semaphore kernel object. 

SlimResourceLock This lock wraps Windows Slim Reader/Writer object. Your application 
must be running on Windows Vista or later to use this class. 

  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/initializesrwlock.asp


The Wintellect.Threading.ResourceLocks.Diagnostics Namespace 
This namespace defines several classes that modify or observe the behavior of the locks defined in the 

Wintellect.Threading.ResourceLocks namespace. 

Type Name Type Description 

DeadlockDetector 
DeadlockException 
WaitChainInfo 

This sealed class offers deadlock detection for 
ResourceLock-derived types. When a deadlock is detected, 
an Exception<DeadlockExceptionArgs> is thrown. You can 
also walk a thread’s wait chain to get back a WaitChainInfo 
collection. 

ResourceLockDelegator This class is the base of all ResourceLock modifier classes 
and all ResourceLock observer classes.  

ResourceLockModifier This class is the base of all ResourceLock modifier classes. 

ExclusiveOwnerResourceLockModifier This class modifies an exclusive lock (non reader/writer 
lock) forcing the thread that obtained the lock to be the 
same thread that releases the lock. 

RecursionResourceLockModifier This class modifies any lock by adding recursion support to 
the lock. That is, a thread that gets a lock can get it multiple 
times. 

ResourceLockObserver This class is the base of all ResourceLock observer classes. 

TimeoutNotifierResourceLockObserver This class observes a lock and throws an exception if the 
lock has waited more than the specified amount of time. 

StatisticsGatheringResourceLockObserver This class observes a lock and keeps historical information 
about the lock’s behavior and use as well as moment in 
time information (useful for debugging and logging). 

ThreadSafeCheckerResourceLockObserver This class observes a lock and ensures that that lock is 
behaving as expected. This is used to test a lock that you 
have implemented yourself. 

  



The Wintellect.Threading Namespace 
This namespace defines a number of utility classes that are directly related to threading. 

Type Name Type Description 

ArbitraryWaitHandle This class, derived from System.Threading.WaitHandle, can be used to turn an 
arbitrary IntPtr handle, or SafeHandle-derived object  into a WaitHandle-
derived object so allowing the object to be waited on. Good for processes, 
threads, or other Windows kernel objects not natively supported by the .NET 
Framework class library. 

InitializeOnce A sealed class that you can use to ensure that a function executes only once 
even if multiple threads attempt to execute it. This is also useful for ensuring 
that an object is initialized only once.  

InterlockedEx This static class defines a number of static methods that perform thread-safe 
atomic manipulation of values. Operations include: 
Math (Add, AddModulo, Decrement, DecrementIfGreaterThan, Increment, 
Max, Min),  
Bit (And, Or, Xor, BitTestAndCompliment, BitTestAndReset, BitTestAndSet), 
Masked Bit (MaskedAdd, MaskedAnd, MaskedExchange, MaskedOr, 
MaskedXor), 
Generic Morph (Morph), 
Convenience methods (IfThen), 
and support for types not natively supported by the .NET Framework 
including UInt32 and UInt64 (Exchange, CompareExchange). 

Progress A thread-safe progress management and reporting class. 

Singleton A class that ensures that a singleton object is created only once even if 
multiple threads try to create it simultaneously. 

SyncContextEventRaiser This class raises an event by calling the callback method using the application 
model’s desired thread as determined by the SynchronizationContext. 

ThreadUtility This static class defines a number of static methods that perform various 
thread operations.  
 
The NameFinalizerThreadForDebugging method sets the name of the CLR’s 
Finalizer thread. 
 
The Spin method wastes CPU time for the number of milliseconds specified. 
 
The StallThread method temporarily stalls a thread and is typically used for 
testing. 
 
The IsSingleCpuMachine field returns true if machine has just 1 CPU; else 
false. 
 
Most of the remaining methods are just P/Invoke wrappers to Win32 
methods: 
BeginBackgroundProcessingMode / EndBackgroundProcessingMode 
CancelSynchronousIo 
GetCurrentProcessorNumber 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/setthreadpriority.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/cancelsynchronousio_func.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getcurrentprocessornumber.asp


GetCurrentWin32ThreadHandle 
GetCurrentWin32ThreadId 
GetWindowProcessId 
GetWindowThreadId 
OpenThread 
SwitchToThread 

  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getcurrentthread.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getcurrentthreadid.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/windows/windowreference/windowfunctions/getwindowthreadprocessid.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/windows/windowreference/windowfunctions/getwindowthreadprocessid.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/openthread.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/switchtothread.asp


The Wintellect Namespace 
This namespace defines a number of general-purpose classes that are not directly related to threading. 

Type Name Type Description 

Disposer Use this sealed class to wrap an IDisposable’s Dispose method. 

Exception<T> A generic Exception class that makes it very easy to define new exception types. 

Flags Use this static class to assist in the manipulation of bit flags on Int32 values. 

OperationTimer Use this class to time an algorithm’s performance. It also shows how many 
Garbage Collections occurred due to objects being created in the algorithm. 

SafePinnedObject A class that pins an object to be passed to native code. If the object is 
unreferenced, this object ensures that the pinned object becomes unpinned. This 
class is used with the Wintellect.IO.DeviceIO class. 

The Wintellect.CommandArgumentParser Namespace 
This namespace defines a number of classes to help with command-line argument parsing. 

Type Name Type Description 

CmdArgAttribute Use this custom attribute on a type’s public field/property to 
associate it with a command-line argument. 

CmdArgEnumValueDescriptionAttribute Use this custom attribute to assign help text to a type’s public 
field/property. 

CmdArgParser Use this class to display your application’s Usage or to parse a 
command-line into a type’s object setting the object’s 
fields/properties. 

ICmdArgs Implement this interface to let your type have more control 
over the parsing of command-line arguments.  

The Wintellect.IO Namespace 
This namespace defines some classes that allow low-level device I/O control operations. 

Type Name Type Description 

DeviceControlCode Instance of this structure abstract a device I/O control code. 

DeviceIO Use this static class to open a device, send codes to the device, get device 
information, and set device information. 

DeviceIOInfo Create instance of this class to open a device, send control codes to the 
device, get device information, and set device information. 

The Wintellect.Threading.LogicalProcessor Namespace 
This namespace defines types for querying the computer’s logical processor information. 

Type Name Type Description 

LogicalProcessorInformation This sealed class defines a static method that queries the CPU’s logical 
processor information. It is basically a wrapper around the Win32 
GetLogicalProcessorInformation method. 

http://msdn2.microsoft.com/en-us/library/ms683194.aspx


Change Log 
February 1, 2009 

 Added the Wintellect.Threading.AsyncProgModel.EventApm class to the library 

 Obsoleted the Execute method of the AsyncEnumerator and AsyncEnumerator<TResult> 

class as this encouraged poor programming practices and causes deadlocks in Windows 

Forms and WPF apps if not used correctly with AsyncEnumerator’s SyncContext property. 

You can mimic Execute’s behavior using code similar to: 

          ae.EndExecute(ae.BeginExecute(…)); 

 Added greatly improved debugging support to the AsyncEnumerator. 

o You can pass a debugTag string to AsyncEnumerator’s ctor to uniquely identify each 

AsyncEnumerator object.  

o You can now call SetOperationTag before calling an End/EndVoid method to 

associate a string debug tag with an operation. This is useful in debugging scenarios as it 

allows you to easily identify operations via a string name. Note that the 

SetOperationTag method is marked with a 

[Conditional("AsyncEnumeratorDebug")] attribute so that the compiler only 

emits calls to this method if the AsyncEnumeratorDebug symbol is defined at compile 

time. I recommend you define this symbol for debug builds and do not define it for 

release builds. This way, your release builds do not incur any performance hit associated 

with calling the SetOperationTag method.  

o When an End/EndVoid method is called, these methods now capture the calling thread’s 

stack information effectively recording the location in your code of the operations you 

initiate.  

Since call stack capturing incurs a performance cost, the AsyncEnumerator will only 

capture stacks if AsyncEnumerator’s static EnableDebugSupport method is called 

first. Typically you would invoke this method in a debug build of your application and 

not invoke it in a release build.  

Note that call stacks are not captured in the Silverlight or Compact Framework version 

of the library due to these platforms not offering this feature.  

Using the Visual Studio debugger, you can now look at each AsyncEnumerator object to 

determine which asynchronous operations it is still waiting to complete.  

o In addition to the above, when your iterator executes a “yield return” statement, the 

AsyncEnumerator object now records the computer’s timestamp allowing you to know 

how long the AsyncEnumerator has been waiting for operations to complete. 

TIP: In the debugger, just hover over your AsyncEnumerator variable to see what it is 

waiting for and how long it has been waiting.  



o The AsyncEnumerator has a static GetInProgressList() method that returns a list 

of all the AsyncEnumerator objects that are currently processing an iterator. The list 

returned is sorted in last-yield-return time order with the AsyncEnumerator object that 

has been waiting the longest at element 0. You can examine each element’s debugTag 

(passed to each AsyncEnumerator’s constructor) and then examine each object’s 

operations that have not completed yet.  

TIP: You may want to add AsyncEnumerator.GetInProgressList() to the debugger’s watch 

window to easily see all the operations that your application is working on.  

o To examine an AsyncEnumerator’s variables, do the following: From a Visual Studio 

Immediate window, enter a line similar to the following to force a specific 

AsyncEnumerator object to “wake up” (replace 0 with whichever AsyncEnumerator 

object you want to debug) : 

          AsyncEnumerator.GetInProgressList()[0].Cancel(null)  

March 7, 2009 

 Added the public static FromAsyncResult method. This method attempts to extract a 

reference to an AsyncEnumerator or AsyncEnumerator<TResult> object from an 

IAsyncResult object. For some applications, this can be convenient as it allows the 

application to not have to keep a reference to the AsyncEnumerator/ 

AsyncEnumerator<TResult> object itself as it can acquire a reference to it later.  

May 26, 2009 (Version 4.6.0.0) 

 Added a new CountdownTimer class to the Wintellect.Threading.AsyncProgModel 

namespace. This class offers a timer that adheres to the asynchronous programming model 

so that it can be used easily with the AsyncEnumerator class as well as in other scenarios. 

 Added a new ApmWrap<T> struct to the Wintellect.Threading.AsyncProgModel. This light-
weight struct has the ability to associate an arbitrary piece of data (of type T) with any 
IAsyncResult object. When the asynchronous operation completes, the associated piece of 
data can be retrieved to complete processing. This struct is typically used when you are 
implementing code that wraps an asynchronous operation and you wish to add some 
context or state of your own to complete the wrapping.  
 
Here is an example of how to use this struct: 
 

public sealed class MyFileStream { 

   private static ApmWrap<Int64> s_apmWrap = new ApmWrap<Int64>(); 

   private FileStream m_fs;   // Initialization not shown 

   private Byte[] m_buffer = new Byte[1000]; 

 

   public IAsyncResult BeginXxx(AsyncCallback cb, Object state) { 

      Int64 startTime = Environment.TickCount; 

      return s_apmWrap.Return(startTime, 

         m_fs.BeginRead(null, 0, m_buffer.Length, 



            s_apmWrap.Callback(startTime, cb), state)); 

   } 

 

   private Int32 EndXxx(IAsyncResult result) { 

      Int64 startTime = s_apmWrap.Unwrap(ref result); 

      Console.WriteLine("Operation took {0} ticks to complete.",  

         Environment.TickCount - startTime); 

      return m_fs.EndRead(result); 

   } 

} 

 Added the StreamExtensions class to the Wintellect.IO namespace. The methods perform an 

asynchronous copy of data from one stream to another. Currently, the 

BeginCopyStream/EndCopyStream methods are not C# 3.0 extension methods because 

adding this small feature would make my library depend on .NET 3.5 and I’m not ready to 

abandon support for .NET 2.0 yet.  

 Fixed a small bug where an interator that did not execute any “yield return” statements 

returned a null IAsyncResult from BeginExecute. 

 Improved the error handling when detecting that an asynchronous operation completed 

after an iterator has completed execution (and therefore, there is no way to clean up the 

completed operation).  

o In the new code, if an exception occurs in the iterator, then the AE will not attempt to 

discard any outstanding operations; and you will receive the exception that occurred in 

your iterator code. In this case, note that resources could be leaked until 

AppDomain/process shutdown if more operations complete in the future. So, an 

unhandled exception in an iterator should be considered fatal.  

o Only if no unhandled exceptions are thrown from inside the iterator will the AE discard 

any pending operations. If these operations cannot be cleaned up then an 

Exception<NoEndMethodCalled> will be thrown. Again, this should be considered fatal 

and you should fix your source code to ensure that you have specified a cleanup method 

for the operation. Consider using AsyncEnumerator’s ThrowOnMissingDiscardGroup 

method to help you produce correct source code. 

 Fixed a small bug where a NullReferenceException could get thrown from inside my 
AsyncResult object due to a race condition. This bug was never possible when using the 
callback method technique; it could only happen in scenarios when threads were waiting on 
the internal manual-reset event. 


