Generic Directory Watcher Service - The Code Project - Files and Folders

HCODEIPROYECT

Your Visual Studio and
.NET Resource

All Topics, C#, .NET >> Files and Folders >=> File System C# (C# 2.0)
http://www.codeproject.com/cs/files/directorywatcherservice.asp Windows, .NET (.NET 2.0)
Win32, VS (VS2005)
- - Dev
Generic Directory Watcher Posted: 1 Jan 2007
- Updated: 8 Feb 2007
Service Views: 16,325

By Luke Stratman.

This service watches for filesystem events in directories
and runs specified programs in response to those events.

18 votes for this article. /S w—" " —

Popularity: 5.9. Rating: 4.7 out of 5.

Download Directory Watcher service - 11.3 Kb
Download source files - 26.2 Kb

As | was experimenting with the media center functionality of Windows Vista RC2 one
afternoon, | realized that it would be great to have a service running that would
automatically transcode recordings from Microsoft's heavyweight DVR-MS format to a
more svelte WMV file. Well, a utility (DVRMSToolbox) already exists to handle this
scenario. But what if you wanted to add more functionality, like reorganizing the
recording by automatically renaming it and copying it to another directory? Thus was
born the idea for the Directory Watcher, a generic service that watches directories
contained in the configuration file for fileysystem events and then runs specified
applications in response to those events.

The Directory Watcher service makes use of several .NET features and programming
concepts to do its job, the first and foremost of which is the Fi | eSyst en\\at cher

class. This is a built-in class in the .NET framework that resides in the System | O

namespace and handles all of the heavy lifting involved in watching a directory for
filesystem events. The real work that this service does is to spawn and regulate handler
threads in response to these events which segues nicely into the next concept, the
Count i ngSenpahor e.

The Count i ngSemaphor e class is a custom class that is implemented by this service

and extends the standard, binary semaphore behavior provided by the built-in .NET
Moni t or class. Semaphores are used to provide thread synchronization by controlling

access to a critical section by multiple executing threads. .NET provides binary
semaphore, or mutex, functionality through use of the | ock keyword or through direct

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (1 di 21)09/08/2007 11.36.38

http://www.codeproject.com/
http://www.codeproject.com/?cat=1
http://www.codeproject.com/?cat=3
http://www.codeproject.com/?cat=5
http://www.codeproject.com/cs/files/
http://www.codeproject.com/cs/files/#File+System
http://www.codeproject.com/cs/files/directorywatcherservice.asp
http://www.codeproject.com/script/Articles/list_articles.asp?userid=742666
http://www.codeproject.com/script/articles/top_articles.asp?st=2
http://www.codeproject.com/cs/files/directorywatcherservice/directorywatcher.zip
http://www.codeproject.com/cs/files/directorywatcherservice/directorywatcher_src.zip
http://thegreenbutton.com/forums/thread/53128.aspx

Generic Directory Watcher Service - The Code Project - Files and Folders

use of the Moni t or class: these two constructs ensure that only one thread at a time
can access a section of code.

However, what we need in this application is a resource-based semaphore: instead of
restricting access to a section of code to a single thread, we want n number of threads

to be able to access the section at a given time. Through this, we can control the
number of processes being executed at a given time in response to filesystem events.
The Count i ngSemaphor e class provides this: the first n number of threads entering a

critical section will claim one resource and be allowed to execute, but subsequent
threads will block trying to claim a resource and will be forced to wait until one of the
initial threads finishes before it can execute.

Finally, we make use of framework's ability to runtime-compile code in order to provide
a measure of scripting support. When trying to do something extremely simple, like
send an email to someone, to handle a filesystem event it's often a PITA to compile and
maintain an entirely separate executable for the task. So, the service allows small
snippets of .NET code to be specified that will handle events (they must meet certain
criteria that will be covered later). We make use of the classes in the CodeDom

namespace to perform runtime-compilation and generate assemblies in memory for
these snippets. The service's filesystem event handler code then invokes the handler
classes defined therein in addition to giving the user the option of using traditional, pre-
compiled applications to handle events.

One of my favorite improvements in .NET 2.0 are the dramatically improved
configuration classes: Conf i gur ati onEl enment, Confi gurati onSecti on,

ConfigurationEl enent Col | ecti on, etc. They make it relatively painless to define

configuration data classes, declaratively populate them through the App.config file, and
access them programatically (as opposed to being forced to load the config file contents
into an Xnl Docunent object and perform XPath queries against it). The Directory

Watcher service makes full use of this functionality; below is a sample App.config file
that mimics the 11S SMTP pickup directory behavior, but uses Cygwin's exim MTA

instead:

=] Collapse

<?xm version="1.0" encodi ng="utf-8""?>
<confi gurati on>
<configSections>
<section nanme="wat chl nf ormati on"
type="Di rect or yWat cher . Wat chl nf or mati on, DirectoryWatcher"/>
</ confi gSecti ons>
<appSettings>
<add key="maxConcurrent Processes" val ue="20"/>
</ appSetti ngs>
<wat chl nf or mat i on>

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (2 di 21)09/08/2007 11.36.38

http://www.cygwin.com/
http://www.exim.org/

Generic Directory Watcher Service - The Code Project - Files and Folders

<di rect ori esToWat ch>
<di rect oryToWat ch pat h="c:\ Cygw n\var\ spool \ exi m pi ckup" >
<fil eSet sTowat ch>
<fil eSet Towat ch>
<event sToWat ch>
<event ToWat ch type="Created"/>
</ event sToWat ch>
<pr ogr ans ToExecut e>
<pr ogr amToExecut e pat h="c:\ Cygw n\ bi n\ exi m 4. 52- 2. exe"
argunments="-odf -t" redirectFileToStdi n="true"/>
<pr ogramlfoExecut e pat h="c:\ Cygwi n\ bi n\rm exe"
ar gunment s=" " ; { P} " ; "/ >
</ pr ogr ans ToExecut e>
</fil eSet ToWwat ch>
</fil eSet sToWat ch>
</ di rect oryToWat ch>
</ directori esToWat ch>
</ wat chl nf or mat i on>
</ confi guration>

All of the data contained therein is referenced through classes that inherit from
Conf i gurati onEl enment, Confi gurati onSecti on, or

ConfigurationEl enment Col | ection. The <confi gSecti ons/ > node contains the
class and assembly reference that tells .NET's Conf i gur at i onManager class that the
<wat chl nf or mat i on/ > node and all of its children are represented by the

WAt chl nf or mat i on class. If we look at the code for this class, we see that it is very
simple:

public class Watchlnformation : Configurati onSection

{
/1] <sunmary>
/1] Collection of directories that we are to watch for fil esystem changes.
[l </summary>
[ConfigurationProperty("directoriesToWatch”, IsRequired = true)]
public DirectoryToWat chCol | ection DirectoriesToWatch
{
get
{
return (DirectoryToWat chCol | ecti on) base["directoriesToWatch"];
}
}
}

By flagging the Di r ect ori esToWat ch property with the Conf i gur ati onProperty
attribute, it tells us that the <di r ect ori esToWat ch/ > node is represented by an
object of type Di r ect or yToWat chCol | ecti on. To retrieve the information from the
configuration file for a property, all you have to do is reference base

["nodeOr Attri but eNane"] and cast it as the type the node represents. .NET's

configuration classes will take care of all of the rest. This behavior follows recursively
through the rest of the child nodes; an exhaustive analysis of all of the configuration

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (3 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

classes used in this application isn't necessary since the classes basically just map
nodes and attributes in the config file to properties in the classes. The MSDN
documentation on the Syst em Conf i gur at i on namespace provides a thorough

coverage of the topic here.

However, there is definitely a gotcha with regards to the configuration classes: they
don't provide a direct way for you to store configuration information for a property in a
text node instead of an attribute. For instance, when you look at a typical line in the
config file,

<pr ogr anToExecut e pat h="c:\ Cygwi n\ bi n\ exi m 4. 52- 2. exe" argunents="-odf -t"
redirectFil eToStdi n="true"/>

you see that values for each property (of the Pr ogr amlfoExecut e class in this case)

are contained in an attribute. This works fine for simple values, but what about for free-
form text like snippets of .NET code that we need to be able to specify in order to
provide runtime-compilation support? Storing that sort of data in an attribute just isn't
practical, but the configuration classes just don't provide default functionality for
storing data in text nodes: they see all nodes as complex objects and all attributes as
simple values. This is where the old way of doing XML serialization provided a lot more
flexibility: you would simply flag the property that you wanted stored in a node with an
[Xm El enent ()] attribute instead of with an [Xml Attri bute()] attribute and you

were off to the races. While there is a way to get this functionality in the configuration
classes, it's not really documented by Microsoft (or anyone else, as far as | could tell)
and involved me hacking around in the Syst em Conf i gur ati on assembly (thank

God for Lutz Roeder's .NET Reflector) to figure out what was going on. It's actually
pretty simple and here's the code for Pr ogr anmCode, the configuration class for runtime-
compiled code where we had to implement this functionality:

E|Collapse
public class ProgranCode : Confi gurati onEl enent

{

/1] <sunmmary>
/1l The text of the actual code that we are to conpile.

[l </summary>
private string text = null;

/1] <summary>
/1] Line nunber in the configuration file for this el enent
/1l (used for possible exception nessages).

[l </summary>
private int |ineNunber = 0O;

/1] <sunmmary>
/1] Path to the configuration file in which this el enent resides
/1l (used for possible exception nessages).

/11 <l summary>
private string fileNane = "";

/1] <sunmmary>
/1]l Assenbly that results when we conpil e the code.

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (4 di 21)09/08/2007 11.36.38

http://msdn2.microsoft.com/en-us/library/system.configuration.aspx
http://www.aisto.com/roeder/dotnet/

Generic Directory Watcher Service - The Code Project - Files and Folders

/1] </summary>
private Assenbly assenbly = null;

/1] <sunmmary>
/1l The language for this code snippet.

/1] <l summary>
[ConfigurationProperty("language", |IsRequired = true)]
publ i c ProgranmlLanguage Language

{
get

{

return (Progranianguage) base["| anguage"];

}
}

/1] <sunmmary>
/1] Text representing the actual code.

[l <l summary>
public string Text

{
get

{

return text;

}
}

/1]l <sunmary>
/1l Collection of referenced assenblies for this snippet of code.

[l <l summary>
[ConfigurationProperty("referencedAssenblies")]
publ i c ReferencedAssenbl yCol | ecti on Ref erencedAssenbl i es

{
get

{

return (ReferencedAssenbl yCol | ecti on) base["ref erencedAssenblies"];

}
}

/1]l <sunmary>
/1l Assenbly representing the conmpiled results of the code

/1] <l summary>
public Assenbly Assenbly

{
get

{

/[l QOmtted for brevity's sake, we'll cover this |ater

}
}

[l <sunmary>

/11 Handl er for the case where we encounter an unrecogni zed el enent

/1l while attenpting to deserialize the class from XM.; deals with

/11l "custom' properties, specifically the Text property, whose value is set
/11 in an el ement node instead of an attribute.

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (5 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

/1] </summary>

/1]l <param nane="el enent Nane" >

/1] Name of the unrecognized el enent.

[l <[paranpr

[l <param nanme="r eader" >

[/l Reader object that is involved in the deserialization.

Il <l paran>

/1l <returns>

/1l True if we actually recognize the el enent, false otherw se.

/1l <lreturns>
protected override bool OnDeserializeUnrecogni zedEl enent (string el enent Nane,
Xm Reader reader)

{
if (elementNane == "text")
{
text = reader.ReadString();
reader . Read();
return true
}

return base. OnDeseri al i zeUnr ecogni zedEl enent (el enent Nane, reader);

}

/1] <sunmmary>

/1] Instantiates the object using data stored in XM;

/1l records the filename and |ine nunber

/1l (for use later in possible exceptions) and then calls the base nethod.
/1] <l summary>

/1] <param nane="reader">

/Il Reader object that is involved in the deserialization.

/1l <l paranmpr

/1l <param nane="seri alizeCol | ecti onKey">

/1] True to serialize only the collection key properties, false otherw se.

/1] <[paranpr
protected override void DeserializeEl enent (Xm Reader reader

bool serializeColl ectionKey)
{

I i neNunber = ((1ConfigErrorlnfo)reader).Li neNunber;
fileNanme = ((1ConfigErrorlnfo)reader).Fil enane;

base. Deseri al i zeEl enent (reader, serializeCollectionKey);

}

/1] <sunmary>
/1l Called after the deserialization process is conplete;
/1] validates the object's data.

[l </summary>
protected override void PostDeserialize()

{
if (text == null)
t hr ow new Confi gurati onErrorsException
("\"text\" is arequired elenent.", fileNanme, |ineNunber);

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (6 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

base. Post Deseri al i ze();

First, you see that the Text property (which holds the actual text of the code that
we're going to compile) is not decorated with a Conf i gur ati onProperty attribute.
This is because we don't want the configuration deserialization logic to try to

automatically deserialize the node. Instead, we're going to rely on
OnDeseri al i zeUnr ecogni zedEl enent : this method is called during deserialization

when a node that is not mapped to a property is encountered. It passes in the name of
the element and the Xm Reader object involved in the deserialization and allows for

custom deserialization within the method. So we override this method: since the
<t ext / > node won't be mapped to a configuration property, this method will be

invoked when the deserializer encounters it. We check to see if the element name is
"t ext " and, if so, all we have to do is set an internal member, t ext, to the string

value of the node, advance the reader to the next node in the DOM, and return true.
The return value seems to contradict what's documented on MSDN for this method: |
don't know if I'm misreading their documentation but, to set the record straight, you
want to return t r ue when the node was actually valid and was processed, and f al se

otherwise. A f al se return value will cause the configuration deserializer to throw an
exception.

Startup logic
The code in the service's OnSt art event handler is fairly straightforward:

E|Co|lapse
protected override void OnStart(string[] args)

{
W iteToEvent Log(Event LogEnt ryType. | nf or mati on,

"Starting up the Directory Watcher service.");

try
{
Il CGet the section fromthe configuration file that contains the
/'l directories/file sets that we are to watch
wat chl nformati on =
(Wat chl nf or mat i on) Confi gur ati onManager . Get Sect i on("wat chl nf or mati on");

/[l Get the maxi num nunber of concurrent processes that can be active
[l (if specified)
i f (ConfigurationManager. AppSettings["maxConcurrent Processes”] !'= null)
maxConcur rent Processes =
Convert. ToU nt 32(Conf i gur ati onManager . AppSet ti ngs
["maxConcurrent Processes"]);

W iteToEvent Log(Event LogEnt ryType. | nf or mati on,

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (7 di 21)09/08/2007 11.36.38

http://msdn2.microsoft.com/en-us/library/system.configuration.configurationelement.ondeserializeunrecognizedelement.aspx

Generic Directory Watcher Service - The Code Project - Files and Folders

"Using a concurrent process count of {0}.",
maxConcur rent Processes) ;

/[l Instantiate the regul ati on semaphore to enforce the maxi mum process

[/ count

executi onRegul at or = new Counti ngSemaphor e(maxConcur r ent Processes);

foreach (DirectoryToWatch directoryToWatch in
wat chl nf ormati on. Di r ect ori esToWat ch)

{

foreach (Fil eSet Towatch fil eSet Towatch in
di rect oryToWat ch. Fi | eSet sToWat ch)

{

/1 1f we're using any runtinme-conpiled code, validate each assenbly
/'l that was generated to nake sure that only one class exists in it

/1l that inplenents the |FileSystenkEvent Handl er interface
foreach (PrograniToExecute progranlfoExecute in
fileSet Towat ch. ProgransToExecut e)

{

i f (progranilToExecut e. Code. Text != null)
Val i dat eAssenbl y(progr aniToExecut e. Code. Assenbl y) ;

/'l Create and instantiate an individual FileSystemMtcher for
/1l each wildcard file set and a single FileSystentcher object

// to handl e al

regul ar expression file sets

if (fil eSet Towatch. Mat chExpressi onType ==
Mat chExpr essi onType. Wl dcard | |
wat chers[di rectoryToWatch. Path][""] == null)

Fi | eSyst emMat cher wat cher =
new Fi | eSyst emat cher (di rect or yToWat ch. Pat h) ;

[l Set the filter to the match expression for wldcard file

/]l sets,

[/ the actua

and bl ank (to capture changes for all files and do
matching in the event handler) for regular

/'l expression file sets
wat cher. Filter =
(fil eSet Towat ch. Mat chExpr essi onType ==
Mat chExpr essi onType. Wl dcard ?
fil eSet Towat ch. vat chExpression : "");

/1l Attach handlers to the various fil esystemevents that we're
/'l supposed to watch for

if (fil eSet Towatch. EventsToWatch["All"] = null)

{
wat cher . Changed += new Fi | eSyst enmEvent Handl er (wat cher _OnChanged) ;
wat cher. Created += new Fi | eSyst emEvent Handl er (wat cher _OnChanged) ;
wat cher . Del et ed += new Fi | eSyst enkEvent Handl er (wat cher _OnChanged) ;
wat cher . Renanmed += new RenanedEvent Handl er (wat cher _OnChanged) ;

}

el se

{

foreach (Event ToWatch event ToWatch in

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (8 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

fil eSet Towat ch. Event sToWat ch)

{
i f (event ToWat ch. Type == Wat cher ChangeTypes. Changed)
wat cher . Changed +=
new Fi | eSyst enEvent Handl er (wat cher _OnChanged) ;
el se if (event ToWatch. Type == Wat cher ChangeTypes. Cr eat ed)
wat cher. Created +=
new Fi | eSyst enmEvent Handl er (wat cher _OnChanged) ;
el se if (event ToWat ch. Type == Wat cher ChangeTypes. Del et ed)
wat cher. Del eted +=
new Fi | eSyst enmEvent Handl er (wat cher _OnChanged) ;
el se if (event ToWat ch. Type == Wat cher ChangeTypes. Renaned)
wat cher . Renanmed +=
new RenanedEvent Handl er (wat cher _OnChanged) ;
}

}

/Il Create a new dictionary entry for this directory path if

/[l it doesn't exist already
if (!watchers. Contai nsKey(directoryToWatch. Path))
wat cher s[di rect oryToWat ch. Path] =
new Di ctionary<string, FileSystemMtcher>();

/1l Add the watcher to the list for this directory and

/'l enable it
wat cher s[di rect oryToWat ch. Pat h] [wat cher. Filter] = watcher;
wat cher . Enabl eRai si ngEvents = true;

}

Wit eToEvent Log(Event LogEntryType. | nf or mati on,
"Added watcher for the path \"{O}\"" +
"and the {1} \"{2}\".",
di rect oryToWat ch. Pat h,
(fil eSet Towat ch. Mat chExpr essi onType ==
Mat chExpr essi onType. Wl dcard ?
"wi | dcard expression"” : "regular expression"),
fil eSet Towat ch. Mat chExpr essi on) ;

}
}
}

/'l Log any exceptions that occur during startup
catch (Exception exception)
{
W iteToEvent Log(Event LogEnt ryType. Error,
"Exception occurred while starting the service." +
"\ n\nType: {0}\nMessage: {1}",
exception. Get Type(). Ful | Nane, exception. Message);
t hr ow,

}

base. OnSt art (args);

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (9 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

We start by getting access to the configuration data in the App.config file by using .
NET's built-in Conf i gur at i onManager class. That one line of code is all that's

necessary; the Conf i gur at i onManager takes care of reading the data from the
config file and instantiating all of the child properties:

wat chl nf ormati on = (Wt chl nf ormati on) Confi gur ati onManager . Get Secti on
("wat chl nformation");

For each file set, we then check its handler programs and if any are represented by
runtime compiled code, then we do a validation of the assembly that was generated to
make sure that it meets our requirements. The validation functions that are involved
are as follows:

=] Collapse

protected static void ValidateAssenbl y(Assenbly assenbl y)
{

}

protected static Type Fi ndEvent Handl er Type(Assenbly assenbl y)
{

Fi ndEvent Handl er Type(assenbl y) ;

Type event Handl er Type = nul | ;

foreach (Type type in assenbly. Get Types())

{
if (type.CetInterface("IFileSystenEventHandler") !'= null)
{
/1 If we've already found a qualifying type, then throw an exception
if (eventHandl er Type !'= null)
t hr ow new Ar gunment Excepti on(
String. Format ("Mul tiple classes inplenenting " +
"I Fi | eSyst enEvent Handl er were found in {0}.",
assenbl y. Ful | Nane)) ;
event Handl er Type = type;
}
}

/1 1f no qualifying types were found, then throw an exception
i f (event Handl er Type == nul |)
t hrow new Argunent Excepti on(
String. Format ("No cl asses inplenenting |FileSystenEvent Handl er " +
"were found in {0}.", assenbly. Full Nane));

return event Handl er Type;

It just does a simple check of the assembly's types and makes sure that one, and only
one, class (the main handler class) implements the | Fi | eSyst enEvent Handl er

interface which is defined as follows:

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (10 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

public interface |Fil eSystenEvent Handl er
{

/1]l <sunmary>

/1l Handl er function that is called whenever a fil esystem event occurs.
/1] <l summary>

/1l <param nane="e">

/1] Argunents (file name, directory, event type, etc.) associated with
/1l the event.

[l <[paranpr
void OnFil eSystenEvent (Fi | eSystenEvent Args e);

It's then a simple matter of iterating over each directory, iterating over each file set
contained within the directory, and creating Fi | eSyst em\\at cher objects

appropriately. The only wrinkle occurs when handling wildcard (*. t xt) vs. regular
expression (*l og_(oct ober | novenber)) matched file sets. The
Fi | eSyst em\\t cher class contains a Fi | t er property that, when set, instructs the

object to watch for events only for files matching the specified wildcard. So, when we
preparing to watch a wildcard matched file set, we just set the Fi | t er property and

move on. However, for regular expression matched file sets, we have to do an
evaluation of whether or not a file is within a particular set in the event handling code,
so, for each directory path containing at least one regular expression matched file set,
we declare a single, catch-all Fi | eSyst enW\at cher object by setting its Fi | t er

property to a blank string (" "). The event handler function (covered later) that is

invoked whenever a change is detected will then take care of the actual regular
expression evaluation to decide which file set (if any) a file belongs to and will invoke
its handler applications accordingly.

Runtime compilation

Support for runtime-compiled code in the service is accomplished through the use of
the CodeDomnamespace and is implemented in the Pr ogr antCode configuration class

in the form of a property called Assenbl y, which is shown below:

=] Collapse

public Assenbly Assenbly
{
get
{
[l If the code has not already been conpiled, do so now
if (assenbly == null)
{ CodeDonPr ovi der codeProvi der = null;

/'l Get the proper code provider based on the code's | anguage

i f (Language == Progranianguage. CShar p)
codeProvi der = new CShar pCodeProvi der () ;

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (11 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

el se i f (Language == Progranmianguage. Vi sual Basi c)
codeProvi der = new VBCodeProvi der () ;

Conpi | er Par amet ers conpi | er Paraneters = new Conpi | er Paraneters();

/[l Set the conpiler options so that we don't generate an assenbly
/1 on disk and we create a |ibrary assenbly that does not contain

/1 debug information

conpi | er Par anet er s. Gener at eExecut abl e = fal se;

conpi | er Par anet er s. Gener at el nMenory = true;

conpi | er Par amet er s. | ncl udeDebugl nformati on = fal se;

conpi | er Paramet ers. Conpi l erOptions = "/target:|library /optimze";

conpi | er Par anet er s. Ref erencedAssenbl i es. Add(" System dl | ");

conpi | er Par anet er s. Ref erencedAssenbl i es. Add(
AppDonai n. Current Domai n. BaseDi rectory +
"\\Di rect oryWat cher. exe");

/1 Add any assenbly references (besides Systemdl|l and
/| DirectoryWatcher.exe, which everyone gets) specified for this
/'l code
foreach (ReferencedAssenbly referencedAssenbly in
Ref er encedAssenbl i es)
conpi | er Par anet er s. Ref er encedAssenbl i es. Add(
ref erencedAssenbl y. Nane) ;

[/l Generate the assenbly
Conpi l erResults results =
codeProvi der. Conpi | eAssenbl yFr onSour ce(
conpi | er Paranet ers, text);

/'l Check the return code and throw an exception if the conpilation failed
if (results. NativeConpil erReturnVal ue != 0)
t hrow new Conpi | ati onException(results. Errors);

assenbly = results. Conpi |l edAssenbl y;
}

return assenbly;

}
}

The CodeDomclasses make it very easy to do this compilation. To start, we have to get

the proper code provider type based on the language of the code snippet, then we have
to set the compiler parameters appropriately. We want the resulting assembly to be as
compact as possible so we explicitly exclude debug information and specify a compiler
option for optimization. We also don't want to create any assembly files on disk, so we
set the option telling the compiler to generate it in memory only. We then add the
necessary assembly references (everyone gets Syst emand Di r ect or yWat cher . exe

since they're the bare minimum required for a handler class to operate) and invoke the
compilation function. If we get a return code of O, we know we succeeded and now
have an Assenbl y object from which we can create types and handle filesystem

events. Here is an example runtime-compiled program that sends an email notification

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (12 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

by creating a file in the SMTP pickup directory used as an example earlier ("Use your
EasyButton to find my EasyButton? Won't that, like . . . tear a hole in the universe or
something?"):

=] Collapse

<pr ogr amloExecut e>
<code | anguage="CShar p" >
<t ext >
<! [CDATA[
usi ng System
using System | Q
usi ng DirectoryWtcher;

public class NotifyC ass : |Fil eSystenkEvent Handl er

{
public Notifyd ass()
{
}

public void OnFil eSystenEvent (Fi | eSyst enEvent Args e)

{
Pat h. Get TenpFi | eNane() ;

new StreamWiter(tenpFil eNane);

string tenpFil eNane
StreanWWiter witer

witer. WiteLine("To: |stratman@nuail.cont);

witer. WiteLine("From |stratman@mail.conl);
witer. WiteLine("Subject: File change notification");
witer.WiteLine("");

witer. WiteLine(e.FullPath + " has changed.");
writer.C ose();

Fil e. Move(tenpFi | eName,
"c:\\Cygwi n\\var\\spool\\exim\" +
pi ckup\\emai | .txt");
}
}
11>
</text>
</ code>
</ pr ogr anifoExecut e>

Event handling logic

When a filesystem event is detected, a handler function is invoked that is responsible
for running the necessary applications to respond to the event:

=] Collapse

protected void wat cher _OnChanged(obj ect source, FileSystenEventArgs e)

{
Fi | eSyst em\at cher wat cher = (Fil eSyst emat cher) sour ce;

DirectoryToWat ch directoryToWatch =
wat chl nf ormati on. Di rect ori esToWat ch[wat cher. Pat h] ;

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (13 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

/[l If this watcher is a wildcard watcher, grab its prograns fromthe

/'l configuration section
if (watcher.Filter !'="")
{
Pr ogr aniToExecut eCol | ecti on progransToExecute =
di rectoryToWat ch. Fi | eSet sToWat ch[wat cher. Filter]. ProgransToExecut e;
AddPr ogr ansToQueue(progr ansToExecut e, e. Ful | Path, e. ChangeType);

}

/[l Otherwi se, go through the list of regular expression file sets for this
/1l directory, see if any of themmtch the file that was nodified, and, if

/1l they do, get their progranms fromthe configuration section
el se
{
foreach (Fil eSet Towatch fil eSet Towatch in
di rect oryToWat ch. Fi | eSet sToWat ch)

{
if (fileSetToWatch. Mat chExpressi onType ==
Mat chExpr essi onType. Regul ar Expr essi on &&
fil eSet Towat ch. Mat chRegex. | sMat ch(e. Nane))
AddPr ogr ansToQueue(fi | eSet Towat ch. Progr ansToExecut e, e. Ful | Pat h,
e. ChangeType);
}

Again, it's pretty straightforward: if the source Fi | eSyst en\\at cher object wasn't a
catch-all for regular expression matched file sets (i.e. didn't have its Fi | t er property
set to " "), then we reference the config data to get the list of programs that we're

supposed to execute for this file set and pass them to another function responsible for
starting up the programs. Otherwise, we iterate over each file set for the directory and,
if it's a regular expression file set, we apply it against the file name and, if it matches,
we pass its program list to the aforementioned program function. That program
function is as follows:

=] Collapse

protected void AddProgransToQueue(ProgranToExecut eCol | ecti on progransToExecut e,
string fil ePat h,
Wat cher ChangeTypes event Type)

Li st <Executi onl nst ance> executi onl nst ances =
new Li st <Executi onl nst ance>();
Thread executionThread =
new Thr ead(new Par amet eri zedThreadSt art (RunPrograns)) ;

/'l Loop through each program and create an Executionl nstance object for it
foreach (ProgranilToExecut e programloExecute in progransToExecute)

{

Executi onl nst ance executi onl nst ance;
/1 1f we're running a pre-conpiled application, create the necessary

/'l ProcessStartlnfo object
i f (prograniToExecut e. Code. Text == nul)

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (14 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

{
ProcessStartinfo startinfo =
new ProcessStart | nfo(progranmloExecut e. Pat h);
Filelnfo filelnfo = new Filelnfo(filePath);
startlnfo. Argunents =
progr anlfoExecut e. Argunent s. Repl ace("{P}", filePath);
startlnfo. Argunents =
startlnfo. Argunents. Repl ace("{F}", filelnfo.Nane);
startlnfo. Argunents =
startlnfo. Argunents. Repl ace("{E}", filelnfo.Extension);
startlnfo. Argunents =
startlnfo. Argunents. Repl ace("{D}", filelnfo.DirectoryNane);
if (filelnfo.Extension !="")
startInfo. Argunents =
startlnfo. Argunents. Repl ace("{f}", filelnfo.Nane. Substring(0,
filelnfo.Nane.Length -
filelnfo.Extension.Length - 1));
el se
startlnfo. Argunents =
startlnfo. Argunments. Repl ace("{f}", filelnfo.Name);
startl nfo. UseShel | Execute = fal se;
startl nfo. Redi rect St andar dl nput =
pr ogr anifoExecut e. Redi rect Fi | eToSt di n;
executi onl nstance =
new Executionl nstance(startlnfo, eventType, fil ePath,
pr ogr anifoExecut e. Redi rect Fi | eToSt di n) ;
}

/[l OQtherwi se, we're using runtine-conpiled code and we need to create

/'l an instance of the class that inplenments |FileSystenkEventHandl er
el se
{
| Fi | eSyst enEvent Handl er event Handl er =
Cr eat eEvent Handl er | nst ance(pr ogr amToExecut e. Code. Assenbl y) ;
executi onl nstance = new Executi onl nst ance(event Handl er, event Type,

filePath);
}
execut i onl nst ances. Add(execut i onl nst ance) ;
}
/]l Start the thread that will execute the prograns
executionThread. Start (executi onl nst ances);

}

This function is responsible for taking a list of programs to execute and then spinning
off a worker thread to execute those programs in sequence. The fact that an event can
invoke more than one program is one reason why this must be handled in a separate
thread: using the example of the SMTP pickup directory from the configuration section,
we run one command to send the email and another to clean the message file up from

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (15 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

the pickup directory. We obviously don't want the cleanup command run until the
message sending command finishes, so we use a thread to start a program, wait until it
completes, start the next program, and repeat until we reach the end of the list.

Another reason for spinning off a thread is that we want the calling event handler
function to return as quickly as possible: if the event handler actually blocked waiting
for the handling programs to run, then it's possible for the Fi | eSyst emt cher 's

internal buffers to fill up and for events to be dropped. So, this function creates a list of
ProcessSt art | nf o (if the program is a traditional, pre-compiled application) and

| Fi | eSyst enEvent Handl er (if the program is represented by runtime-compiled

code) objects representing each program that should be run and then starts up another
thread to run them in sequence. Finally, that thread's startup function looks like this:

=] Collapse

public static void RunPrograns(object source)

{

Li st <Executi onl nst ance> executi onl nst ances =
(Li st <Execut i onl nst ance>) sour ce;

/1 If we're watching for a create event, we first try to open the file in
/'l exclusive node; this is to account for the "long copy" scenari o where
/'l the create event is fired when the copy first starts, but we need to

/[l wait until the copy conpl etes before we begin our processing
i f (executionlnstances[O0].Event Type == Wat cher ChangeTypes. Cr eat ed)

{

FileStreamfileStream = null;

while (fileStream == null)

{
try
{
fileStream =
Fi | e. Open(executionl nstances[0].Fil ePath, FileMde. Open,
Fi | eAccess. Read, Fil eShare. None);
}

[/l Catch the | CException that will be thrown when we fail to open

// the file in exclusive npde

catch (I OException exception)

{
string warni ngTrap = excepti on. Message;
Thr ead. Sl eep(1000) ;

}

/1 Log any ot her unhandl ed exceptions that are thrown

catch (Exception exception)

{

Wit eToEvent Log(Event LogEntryType. Error,

"Unhandl ed exception occurred while waiting for " +
"\"{0}\" to becone available." +
"\ n\nType: {1}\nMessage: {2}",
executi onl nstances[0] . Fi | ePat h,
exception. Get Type() . Ful | Nane,

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (16 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

excepti on. Message) ;

}
}

fileStream d ose();

}

/[l Caima resource fromthe counting semaphore and enter the critica

[l section
executi onRegul ator. P();

foreach (Executionlnstance executionlnstance in executionlnstances)

{
try
{

[l If we're running a pre-conpiled application, start the

/'l process
i f (executionlnstance. Event Handl er == nul I)
{
WiteToEvent Log(Event LogEnt ryType. | nf or mat i on,
"Runni ng programin response to event for " +
"{3} being {4}:\n\"{O}\"{1}{2}.",
executionl nstance. Start | nfo. Fi |l eNane,
(executionl nstance. Startl nfo. Argunments !'= "" ?
" " 4+ executionlnstance. Startlnfo. Argunents :
Illl)’
(executionl nstance. RedirectFil eToStdin ?
" < \"" + executionlnstance. FilePath +
B T I
execut i onl nstance. Fi | ePat h,
executi onl nst ance. Event Type. ToStri ng(). ToLower ());

Process executi onProcess =
Process. Start (executi onl nstance. Start | nfo);

I/ 1f we're redirecting the file to the standard input stream open
/1 it up and read its contents into the streamin 1 KB chunks
i f (executionlnstance. RedirectFil eToStdi n)

{
Bi nar yReader bi naryReader =
new Bi nar yReader (Fi | e. Open(executi onl nstance. Fi | ePat h,
Fi | eMbde. Open)) ;
Bi naryWiter binaryWiter =
new Bi naryWiter (executi onProcess. St andar dl nput . BaseSt r ean) ;
byte[] buffer = new byte[1024];
int readSi ze = bi naryReader. Read(buffer, 0, buffer.Length);
while (readSize !'= 0)
{
binaryWiter. Wite(buffer, 0, readSize);
readSi ze = bi naryReader. Read(buffer, 0, buffer.Length);
}
bi nar yReader . O ose();
bi naryWiter.d ose();
}

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (17 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

/1l Wait for the process to exit and then clean it up
executi onProcess. Wai t For Exi t () ;
executi onProcess. d ose();

}

/1 O herw se, invoke the OnFil eSystenEvent () nethod for the

/1 handl er class defined in the runtine-conpiled code

el se

{

WiteToEvent Log(Event LogEnt ryType. | nf or mat i on,

"I nvoki ng {0}.OnFi |l eSystenkEvent() in " +
"response to event for {1} being {2}.",
execut i onl nst ance. Event Handl er. Get Type() . Nane,
execut i onl nstance. Fi | ePat h,
executi onl nst ance. Event Type. ToString(). ToLower());

Filelnfo filelnfo = new Fil el nfo(executionl nstance. Fi | ePat h);
Fi |l eSyst enEvent Args event Argunents =
new Fi | eSyst enEvent Ar gs(executi onl nstance. Event Type,
filelnfo.D rectoryNane,
filelnfo. Nane);

executi onl nst ance. Event Handl er . OnFi | eSyst enEvent (
event Argunent s) ;
}

}

/[l Log any exceptions that occur while running the program
catch (Exception exception)

{
Wit eToEvent Log(Event LogEntryType. Error,
"Exception occurred while running \"{O}\"." +
"\'n\nType: {1}\nMessage: {2}",
executionl nstance. Start | nfo. Fil eNane,
exception. Get Type(). Ful | Nane, exception. Message);
}

}

// Rel ease the resource and exit the critical section
executi onRegul ator. V() ;

}

The first thing it does is a trick to account for the "long copy" scenario. If a file is being
created, but is being copied from somewhere, it could take a while if the file is large or
if the transport protocol is slow. In either case, we don't want to start our handler
applications until the file finishes copying, but the create event is fired when the copy
operation first starts. So, we try to open the file with an exclusive lock, which will throw
an | CExcept i on while the copy is still in progress. So, we catch that exception, sleep

for one second, try again, and repeat until the open operation is successful. We then
close the handle and continue executing. Before actually starting the programs, we
claim a resource from the Count i ngSemaphor e:

/'l Claima resource fromthe counting semaphore and enter the critical section

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (18 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

executi onRegul ator. P() ;

If there are resources available, then the call will return immediately and we wiill
continue executing. Otherwise, the call will block until a resource becomes available.
This gives us a way to control the number of running processes in an environment
where the churn on a directory may be very high. Once a resource is claimed, we
branch depending on what type of program (pre- or runtime-compiled) this is. If it's a
pre-compiled program, we start the process and, if we're supposed to redirect the file
to the process' standard input, we open a handle to the file and read it into the
standard input stream. If it's a runtime compiled program, we create a

Fi | eSyst enEvent Ar gs object and invoke the OnFi | eSyst entEvent () method of the

| Fi | eSyst enEvent Handl er interface. After we've finished executing the program,
we release our resource back to the Count i ngSenmaphor e:

// Rel ease the resource and exit the critical section
execut i onRegul ator. V() ;

The implementation of the Count i ngSenmaphor e class used for this service is basically
a simple wrapper around the built-in Moni t or class. It's all that was needed for this
project, but you can check out a more full-featured implementation here.

= Collapse
public class Counti ngSemaphore

{

/1] <sunmary>
I/l Resource limt for the semaphore

/1] <l summary>
private uint count;

[l <sunmmary>

/1] Default constructor; resource count is 1, neaning the class wll act
/1l like a standard, binary semaphore.

/1] <l sumrary>

publ i c CountingSemaphore() : this(1)

{

}

/1] <sunmary>

/1l Constructor that allows you to set the nunber of resources that should
/1l be avail able for consunption.

/1] <l summary>

/1] <param nane="count">Nunber of resources that should be avail abl e

/1] for consunption</paranp
publ i ¢ Counti ngSermaphore(ui nt count)

{

this.count = count;

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (19 di 21)09/08/2007 11.36.38

http://www.codeproject.com/csharp/dijkstracountingsemaphore.asp

Generic Directory Watcher Service - The Code Project - Files and Folders

}

/1] <sunmary>

/1l Function that should be called when | eaving the critical section; frees

/1l up one resource.
/1] <l summary>
public void AddOne()
{

V() ;
}

/1] <sunmmary>

/1l Function that should be called when entering a critical section; clains

[/l one resource or waits if no resources are avail abl e.
/1] <l summary>
public void WitOne()
{
P() ;
}

/1] <sunmmary>

/1l Function that should be called when entering a critical section; clains

[/] one resource or waits if no resources are avail abl e.

/1] <l summary>
public void P()

{
| ock(this)
{
whil e (count <= 0)
Monitor.Wait(this, Tineout.Infinite);
count - -;
}
}

/1] <sunmmary>
/1l Function that should be called when | eaving the critical section;
[l] frees up one resource.

[l <l summary>
public void V()
{
| ock(this)
{
count ++;
Moni t or. Pul se(this);

}
}
}

Be sure to alter the account that the service runs under according to your needs. When

watching folders only on the local machine, you can typically leave it as the Local

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (20 di 21)09/08/2007 11.36.38

Generic Directory Watcher Service - The Code Project - Files and Folders

System account, unless the ACLs on a directory explicitly exclude the SYSTEM user in
which case you'll have to switch to a user with rights to that directory. When watching
folders on a network share, however, you need to switch the account to one with local
network access: on Windows XP and 2003 you can use the Network Service account
(provided that the share is open to everyone), and on Windows 2000 you can use a
domain account. However please note that, per the comments by Jeffrey Walton, this

service (specifically the Fi | eSyst em\at cher class that it depends on) will not work

when watching network shares on a non-Windows OS box, such as a share on an IBM
eServer or a Samba share on a Linux box.

. 2007-01-01 - Initial publication.

. 2007-01-02 - Added the errata section.

. 2007-01-06 - Added support for runtime-compiled event handling code.

. 2007-02-08 - Fixed a bug where specifying <event ToWat ch type="All"/>in

the config file wasn't attaching event handlers properly.

I'm a senior software engineer at a small financial services firm in Herndon, VA, just west of Washington,
DC. | specialize in web-based application development and have extensive experience in .NET 1.1/2.0, ASP.
NET, web service implementations, and SQL Server 2000/2005 database design and administration. I've
also worked with wide variety of other languages, APIs, and technologies including C/C++ (in both Windows
and Linux), DirectX, Java, Perl, and PHP.

Outside of work, I'm a rabid DC sports fan and | love the outdoors, especially when | get a chance to hike
or kayak.

Click here to view Luke Stratman's online profile.

THE Cope /i)

The Visual Studio .NET Developer's Homepage

|§ 29 comments have been posted for this article. Visit http://www.
codeproject.com/cs/files/directorywatcherservice.asp to post and
view comments on this article.

Updated: 8 Feb 2007 Article content copyright Luke Stratman, 2007
everything else Copyright © CodeProject, 1999-2007.

http://www.codeproject.com/cs/files/directorywatcherservice.asp?print=true (21 di 21)09/08/2007 11.36.38

http://www.codeproject.com/script/profile/whos_who.asp?id=349853
http://www.codeproject.com/script/profile/whos_who.asp?vt=arts&id=742666
http://www.codeproject.com/cs/files/directorywatcherservice.asp
http://www.codeproject.com/cs/files/directorywatcherservice.asp
mailto:webmaster@codeproject.com

	codeproject.com
	Generic Directory Watcher Service - The Code Project - Files and Folders

