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1. INTRODUCTION 

 

This document is the Reference Manual for the modeling language LPL (Linear 
Programming Language – or Logical Programming Language). It contains the 
complete syntax and semantic specification. A free version of LPL and various shorter 
papers are available from the LPL-Site at: www.virtual-optima.com. 

1.1. WHAT IS LPL? 

LPL is a structured mathematical and logical modeling and programming language 
with a powerful index mechanism, which allows one to build, maintain, modify, and 
document large linear, non-linear, and other mathematical models. It allows one to 
create automatically different input files – like the MPSX standard file for linear 
models or some evaluation code – for an optimization software package. LPL contains 
also an Input and Report Generator, which allows the user to input data from various 
sources (files, databases) and to output the results in different forms (files, databases 
or reports). With LPL it is possible to write models close to the conventional 
mathematical notation. LPL can also be used as a data manipulation language to 
handle and to manipulate entire multi-dimensional tables (data cubes) in an easy 
fashion, much like a sparse matrix manipulation system. LPL can even be used as a 
data modeling package to generate on the fly a 3-norm database structure. LPL 
includes different interesting features not found in other systems: The language 
supports the modeler in unit declaration, goal programming, multi-objective models, 
logical modeling, certain scheduling problems, a method in breaking a large model 
into several submodels, model documentation, and sophisticated report generation. It 
allows the modeler to generate a LaTeX-file to document the model and includes 
other features. For educational purposes, a small and robust LP-solver is included in 
the package. For permutation problems a Tabu-heuristic solver and a local-search 
solver are also integrated. Several commercial solvers are linked to LPL. 

 

The main features of LPL are: 
• A simple syntax of mathematical and logical models with indexed expressions close 

to the mathematical notation, and directly applicable for documentation, 

• Formulation of both small and large LP's and other mathematical and logical models 
with optional separation of the data (a model instance) from the model structure, 

• Availability of a powerful index mechanism, making model structuring flexible, 
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• An innovative and high-level Input and Report Generator for input/output handling, 
they can read/write whole tables from and to databases, and generate reports, 

• Intermediate indexed expression evaluation (much like matrix manipulation) and data 
modeling capability, 

• Tools for debugging and viewing the model (e.g. explicit equation listing, picture), 

• Built-in text editor to enter the LPL model and an easy code to use generator, 

• Fast production of the MPSX standard file and other output files, 

• An open interface to most LP and MIP solver packages available on the market, open 
programmable interface also to non-linear solvers (using the DLL), 

• A sophisticated model environment to browser and editing large models, 

• A small LP-solver and a heuristic solver for permutation problems, 

• A simple and complete programming language. 

1.2. LPL HIGHLIGHTS 

LPL contains: 
• A declarative mathematical language: LPL can be used to formulate concisely 

complete mathematical linear, non-linear and logical models of large size. The data 
can be stored in the model itself or outside in databases. The interface to various 
commercial solvers is integrated and easy configurable. Real-live models with 500000 
constraints have been processed and solved using LPL. 

• An algorithmic programming language: LPL is a complete programming language, 
which allows one to write algorithms to pre- or post-process the data or to loop 
through many optimizations (while adding constraints dynamically, for example). It 
has all necessary control structures of another programming language. The language 
further permits to break down a complex model into logical modules (itself models or 
model-parts). The modules can be themselves entire optimization models which can 
be processed individually or communicate their results. 

• An optimization tool: LPL is designed to communicate with various commercial and 
free mathematical linear, mixed-integer, and non-linear mathematical packages to 
solve large optimization problems (CPLEX, Xpress, MOPS, GLPK, lp_solve, XA, 
Mosek, Conopt, Loqo, a.o). LPL comes with an own LP-solver for solving small LP 
models, as well as with a heuristic Tabu-search solver to solve certain scheduling 
problems. 

• A data modeling tool: LPL can be used to generate a database. From an LPL 
modeling specification one can generate automatically a SQL-script, which generates 
a complete database optionally loaded with data. LPL can read/write from/to various 
database systems (mySQL, InterBase, SyBase, Oracle, DB2, Microsoft Access, Excel, 
a.o.). 

• A data manipulation tool: Like a data manipulation language (DML) in database, 
LPL can manipulate (join, select, project, etc.) large multi-dimensional data (data 
cubes) in a sparse way. The data are read from or written to databases or text files in 
various ways. Tools exist for generate various pivot tables from a multi-dimensional 
data cube in order to change the view on the fly in the modeling environment. 

• A modeling environment: LPL comes with a powerful model browser. It allows the 
user to view and traverse the model in different ways and to find and modify all 
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elements on a single mouse click. A model editor, a table browser with pivot-table 
functionality, a graphical modeling- and instance viewer, a drawing tool to generates 
various pictures, this all is integrates in an easy to understand user interface. 

• A documentation tool: From a LPL model specification enriched with inline model 
documentation text, one can generate automatically a LaTeX-file or a PDF-file to 
produce a printable or publishable model documentation report (requires a free 
LaTeX-documentation system to be installed). 

• A library in other applications: LPL comes as a dynamic link library and its whole 
functionality can be used (and hidden from the user) in another application, for 
example in a Visual Basic, C++ or Java application. 

• An Internet solving tool:  LPL is a client- and a server-application. Installing an 
LPL-client on a machine and a server on another, the two can communicate: The 
client can send the model to the server machine where the model can be manipulated, 
calculated or solved by a LPL-server in the same way as on the local machine. It is 
completely transparent to the user (true ASP: application service providing). On the 
server machine, one only needs to install a Tomcat WWW-Server (a free Java-based 
distributed software) and an LPL-server. 

1.3. BACKGROUND 

The development of the LPL language was initially motivated by practical modeling 
tasks such as model building, modification, and documentation for large LP models. 
Many important elements of the LPL language have been created from practical 
modeling experience. The model used for planning agricultural politics in 
Switzerland, for example, contained about 20'000 variables and 8'000 constraints 
using various optimization functions. The entire model is coded in LPL consisting of 
about 50 submodels in the meanwhile. Since the beginning, LPL has been modified 
and updated many times and it is now a general-purpose modeling language which 
allows one to represent most LP models and many others, also non-linear 
mathematical as well as models containing logical constraints. 

 

For a long time, matrix generators have been the predominant tools to produce 
standard input files for (large) models on computers. Some are widely used, while 
others have been built for special models only. 

 

In this manual, an alternative tool is presented: a mathematical modeling language, 
called LPL. It allows one to formulate models in terms more familiar to an analyst. 
The fundamental idea of LPL is to write a mathematical model in a concise, symbolic 
form, close to the algebraic notation for variables, constraints, and objectives, and to 
leave as much work as possible to the machine to translate this symbolic form into a 
coded form usable for an external solver. An LPL compiler, which performs this 
translation, is implemented in the software. Integrated within the language is also a 
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Report Generator, which can write complicated reports to text files or databases. 
Furthermore, an Input Generator is available, which can read data in a flexible and 
complex way from text files or databases. 

 

An LPL model is a complete and readable formulation of a mathematical model and it 
can also be used for documentation and expression evaluation independently of any 
optimization. The LPL compiler is implemented in DELPHI 2007 from Borland and 
was developed under Windows. However, the code is written in a highly portable way 
and can also be compiled with freePascal, a free Pascal compiler 
(http://www.freepascal.org/) and is, therefore, easily portable to other platforms. 
Furthermore, it was also compiled under Kylix (Delphi on Linux). The main design 
principle has been simplicity without scarifying the power; simplicity for the user of 
the language and simplicity for the implementer of LPL. 

 

1.4. OVERVIEW OF THE MANUAL 

Chapter 2 explains the use of the LPL software. Chapters 3 to 10 give a detailed 
overview of the LPL language and its syntax as well as the semantic. Chapter 3 
describes the basic syntax elements of LPL. Chapter 4 contains all the information 
about the structure and overall semantic of an LPL model. Indices and index-lists, the 
most fundamental elements of LPL, are explained in detail in chapter 5. Internal data 
and table formats of data in a model are explained in chapter 6. Chapter 7 gives 
detailed information about variables and constraints. The chapter 8 explains the use of 
units in LPL. The Input/Report Generator of LPL, which contains the whole 
input/output handling, is described in chapter 9. Compiler switches and the option 
statement are listed and explained in chapter 10. Chapter 11 explains the use of the 
dynamic link library (lpl.dll and lplj.dll). The entire language syntax description is 
collected in Appendix  A. 

 

1.5. WHAT TO DO NEXT? 

• First read the README.TXT file in the software distribution, 

• If you are a new LPL user, read [Hürlimann 2006b] and do the tutor examples, 

• Read the paper [Hürlimann 2004a], if you want first to get an overview of the 
LPL modeling language. 

• Read §3 and §4 to get an idea of LPL basic syntax, 
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• If you need to build an application in, say, Visual Basic or Java, using the LPL 
capabilities and its dynamic library, read §11. 
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2. INSTALLING AND RUNNING LPL 

 

LPL can be tested on the Internet and a free version can be downloaded from the LPL-
Site. It contains the LPL compiler and other modeling tools, as well as a collection of 
tutor models. All files at the site are stored as compressed files zipped using WINZIP 
[www.winzip.com]. The README.TXT file gives detailed instructions on how to 
install LPL. 

2.1. FUNCTIONAL OVERVIEW 

LPL is a modeling language to code mathematical and other models. The LPL-
compiler first parses the code and (optionally) runs it. The source code is written in 
LPL-syntax and is stored in a textfile, called LPL-file. Depending on the compiler 
switches, it generates various output files. It can call a solver (another program that 
solve mathematical problems) automatically, specified by the solver interface 
parameters. Depending on the solver interface, the solver writes the results into files 
or passes the data directly back to LPL in memory. Finally, LPL writes all output 
specified by the WRITE statements to the NOM-file, which can be viewed as a report 
or result file to the model. 

If a syntax error occurred during the parsing/running, it is aborted immediately and -- 
depending on the implementation -- an editor is called and an error pointer is placed at 
the position where the error occurred together with an error message read from the 
lplmsg.txt file (where all compiling and running error messages are listed). At the 
beginning of the parsing, the file lplcfg.lpl -- if present and found -- is read and parsed 
also. If this file is in the same directory as the launched compiler it will be found. This 
file must be in LPL syntax and contains general options such as solver interface 
parameters, directory paths, and others. 

The LPL compiler can generate other information (besides the NOM-file) about the 
model as files, called the XXX-files (where XXX contains three letters). These file 
names can be derived from the extension of the file name: For example, if 
MyModel.lpl is the LPL-file then MyModel.nom is the NOM-file. 

 

LPL can write the following files: 

MPS-file : a MPSX file for linear and quadratic models. The MPS-file is the known 
MPSX solver input file representing a LP model. Most commercial LP solvers 
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accept MPSX files as input. The format of the MPS file may be found in the 
literature. One should note that LPL does not generate a RANGE section. 
BOUNDS are limited to FX, UP, and LO. The COLUMN section may, however, 
contain the necessary markers for integer variables, such that a MIP model is 
correctly translated into the MPSX standard. Furthermore, LPL can generate 
quadratic problems extending the MPSX standard by adding a QP-matrix section 
as specified by the CPLEX solver. This allows the modeler to generate quadratic 
problems still in the MPS format. 

EQU-file : an explicit equation-listing of the model. The EQU-file is a complete and 
explicit constraint listing of the model with all indexes expanded and removed. It 
is an important debugging tool. 

LPO-file : a complete instantiation of the model for analysis. The LPO-file is 
generated by the LPL compiler, and is the most important link to some solvers. It 
represents the model with all indices expanded and all expressions evaluated. It 
contains all constraints explicitly, much like a full equation listing. The LPO-file 
is just a convenient way to store the fully instantiated model, like the standard 
MPS-file. But contrary to the MPS-file it takes less space on disk and is not 
limited to linear problems. Furthermore, a simple stack based interpreter can 
evaluate the constraints and the derivatives which are mandatory for non-linear 
solvers. The LPO-file is not an ASCII file and cannot be displayed or printed 
directly.  

LPX-file : a solution file of the model. 

INT-file : an human readable form of the LPO-file. 

TEX-file : a LaTeX file for documenting the model (see §10.6). 

SQL-file : an SQL script for creating a complete relational database out of a LPL 
syntax specification (see §9). 

SQ2-file : an LPL source file containing the READ/WRITE statements needed to 
communicate with the database created by the SQL-script file. 

BUG-file : a file for debugging the model. 

two LOG-files : which document the compiling process (files: lpllog.txt and 
lplStat.txt). 

These files are generated using different compiler switches (see §10.4). The LPL-file 
itself is not generated, it is the source code written in LPL syntax of the model. The 
filename extension of this file must be '.lpl'. 

2.2. PROGRAMS 

LPL consists of four executables of the compiler: two console versions, a Windows 
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(95/98/2000/XP) version, and a dynamic link library. All executables and the library 
are based on exactly the same code. 

2.3.1. LPLC.EXE 

The executable lplc.exe is the console LPL compiler. It parses and runs the LPL-file, 
generates eventually an LPO-file or MPS-file, calls the specified solver, writes the 
NOM-file and exits. This execution path, however, can be modified using the 
compiler switches (see §10.4).  

The program is called as: 
 
lplc <modelfile> [ CompilerSwitches ] [ APL ] 
 

where <modelfile> is the LPL-file. The LPL-file must have a filename extension .lpl. 
CompilerSwitches is empty or a set of lower case characters as specified in §10.4. The 
APL parameter specifies the assigned parameter list (APL) (see §10.5) to a run. 

2.3.2. LPLS.EXE 

The executable lpls.exe is the console LPL compiler/solver. It supposes that an LPO-
file has already been generated by a LPL compiler and reads it. Then it calls a solver, 
which solves the model, finally an LPX-file is generated which contains the solution 
of the model, then it exits. 

The program is called as: 
 
LPLS <modelfile> [ CompilerSwitches ] [APL] 
 

where <modelfile> is the LPO-file. The LPO-file must have a file extension lpo. 
CompilerSwitches is empty or a set of lower case characters as specified in §10.4. But 
only a few options are interpreted. The parameter APL is not used. 

This program is used as an LPL-server for the Internet solver. A client lplc.exe 
somewhere in the Internet compiles the model and writes an LPO-file which is then 
transferred to the lpls.exe server. This can be done automatically by lplc.exe just by 
configuring the Internet-Solver. The generated LPX-file now can be retransferred to 
the client. lpls.exe must be installed in a Tomcat environment, where it can be called 
as a process. 

2.3.3. LPLW.EXE 

The executable lplw.exe is more than just an LPL-compiler and interpreter. It contains 
an entire model environment to browse and edit the model. The compiler switches are 
the same as for lplc.exe: 

 
lplw <modelfile> [ CompilerSwitches ] [APL] 
 



CHAPTER 2 

10 

The user manual [Hürlimann 2006a] explains the modeling user interface. 

2.3.4. LPL.DLL & LPLJ.DLL 

The library lpl.dll (and lplj.dll for Java) is a dynamic link library that integrates the 
complete LPL functionality into another application. This library and its use are 
explained in §11. 
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3. BASIC LPL LANGUAGE ELEMENTS 

 

This chapter gives a systematic overview of LPL's basic elements: reserved words, 
identifiers, numbers, dates, operators, functions and expressions. 

3.1. BASIC CHARACTERS 

The basic alphabet of LPL consists of the following characters: 
 
A ... Z, a ... z _                 (letters and underscore) 
0 ... 9                            (digits) 
+ - * / % & ? = < > ( ) [          (and other characters) 
\ ] { | } . , : ; ' $ @ # ^ " ~ 
 

The alphabet of LPL models only contains printable ASCII characters and can, 
therefore, be manipulated as ordinary text. Names (identifiers), reserved words, 
operators, and other elements (the "words" or tokens of the language) are formed 
using one or more characters. These "words" are written in sequences to form a model 
code. 

Between the words any number of spaces (blanks), tabs or linefeed characters or other 
control character (character with ASCII-code <= 32) can be placed. A good style of 
writing a code would be to begin a new declaration or statement on a new line, and 
emphasize the structure of the model using indentation. Breaking a large model into 
smaller model components and submodels or distribute it into several files helps also 
to make the model readable and maintainable. 

3.2. LPL TOKEN 

An LPL model consists of different basic elements: the tokens (or "the words" of the 
language), as already mentioned. They are: (1) Identifiers to designate indices, 
elements of indices, parameters, variables, constraints, and other user name; (2) 
Numbers, strings and dates to define data; (3) Functions to calculate a specific value; 
(4) Operators to build expressions, and (5) various other "words" such as comments, 
reserved words. All these elements are called tokens (words). The different kinds of 
tokens are explained now in the subsequent sections. 
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3.3. RESERVED WORDS 

Reserved words (also keywords) are an integral part of the language LPL. They 
cannot be used as user-defined identifiers. The reserved words are: 
 
 ABEL_DQS ABEL_DPL ABEL_DSP ABEL_QS ABEL_PL
 ABEL_SP ABS ADDCONST ADDM ALIAS
 AND ARGMAX ARGMIN ARCTAN ASSUMPTION
 ATLEAST ATMOST BINARY BREAK CEIL
 CHECK COL CONSTRAINT COS DATE
 DEFAULT DISTINCT DO ELSE EMPTY
 END EXACTLY EXIST EXP FLOOR
 FOR FORALL FREE FREEZE FROM
 FUNCTION IF IN INTEGER LOG
 MAX MAXIMIZE MIN MINIMIZE MODEL
 NAND NOR NOW OPTION OR
 ORD PARAMETER POSSTR PRIORITY PROB
 PROD QUERY READ REAL RGB
 RND RNDN ROW SEMI SET
 SIN SORT SPLIT SQRT STRING
 SUBJECT SUBSTR SUM THEN TO
 TRUNC UNFREEZE UNIT VARIABLE VARIANT
 WHILE WRITE XOR 

The reserved words can be typed in lower- or uppercase characters, they are NOT 
case-sensitive (all other identifiers are case-sensitive). 

3.4. IDENTIFIERS 

Identifiers are used to denote user defined objects such as indices, their elements, 
variables, constraints, and parameters. The syntax of an identifier in LPL consists of a 
letter or an underscore followed by any combination of letters, digits or underscores. 
Identifiers are case-sensitive, that is, LPL distinguishes lower and upper case letters 
(except in reserved words). Hence, 'ImportedProducts' and  'IMPORTEDPRODUCTS' 
are two different identifiers. Examples: 

 
Var_1 
TEXT 
_None 
ImportedProducts 
This_is_A_long_Identifier 
3xY                         -- illegal, starts with a digit 
Two words                   -- illegal, must not contain a space 
 

LPL can handle qualified identifiers. These are identifiers containing one or several 
dots. Examples: 

 
Submodel.a    -- denotes declaration a in model Submodel 
b.a.i         -- denotes i in model a within model b 
 

(See §4.4 on how to use qualified identifiers.) 
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3.5. NUMBERS 

Numbers are constants of real type. They constitute the numerical data of the model. 
They may also be used to denote elements of a set. If nothing is indicated, numbers 
are considered as DOUBLE (8-bytes). In Boolean expressions, zero is interpreted as 
FALSE and any other value is interpreted as TRUE. Examples: 

 
123 
+234.980 
-87467632.098 
- 56 
3.6E-3     (or 3.6e-3)  (is the same as: 0.0036) 
.5         (a number can begin with a decimal point) 
5.         (a number can end with a decimal point) 
 

In data tables within an LPL model, a dot (.) may be used to replace a default 
numerical value. The default value can be defined by the user, if he did not, it is zero. 

3.6. DATES 

Dates are values to define a time point. They can be placed anywhere where numbers 
are allowed. Internally they are stored as doubles anyway, so LPL does not make any 
difference between dates and numbers (except in output and input). One can calculate 
with them in the same way as numbers, although not many operators make sense for 
them. In the LPL code, however, they have a specific syntax. They always begin with 
a '@' character followed by four digits for the year. Optional then it follows a dash 
and two digits for the month, another dash and two digits for the day, followed by an 
optional time, initiated by a 'T' and two digits for the hour, a colon and two digits for 
the minutes, another colon and two digits for seconds. Examples: 

 
@2003-10-07T12:01:01  7th of Oct 2003 at midday plus 1 min. and 1 sec. 
@2003   at the beginning of year 2003 
@2002-02   at the beginning of February 2002 
@2001-05-12  at the beginning of 12th of May 2001 

3.7. STRINGS 

Strings are sequences of arbitrary characters. They can be used in expressions. They 
must be written within single quotes. Strings can also be used to define elements. 
Examples: 

 
'MyString' 
'another string' 
'%@*456\'h$£' 
 

Non-printable characters can be included within strings. They must be headed by the 
backslash character. The following characters are defined: 

 
\a bell 
\b backspace 
\f form feed 
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\n new line 
\r carriage return 
\t tab 
\\ \ 
\' ' (quote)         
\" " (double quote) 
 

Hence if the user needs to add tabs to the string, it must be written as follows 
 
'ABC\tDEF\tGHI\n'  (string containing two tabs and a new line) 
 

To break a string over several lines, a backslash must be added to the end of a line. 
This removes the end-of-line and all blanks at the beginning of the following line. 

Note that path-names in Windows contain the backslash character: such as 
c:\lpl\models. As a consequence, this string must be written as c:\\lpl\\models 
in LPL (alternatively the syntax c:/lpl/models can be used in the context of file 
names). The non-printable characters above can also be used in comment strings 
delimited by "...". 

3.8. DELIMITERS 

A blank (the space), all character with ASCII code lower then 32 (such as  new-line or 
tab), all characters with ASCII code greater than 127 are considered as token 
delimiters. They separate the words of the language. 

3.9. ELEMENTS 

Elements of a set have a special syntax. (They have the same syntax than the read-
tokens, see the read statement). A sequence of characters all with ASCII code smaller 
than 128 and greater than 32 which does not contain any of the following 13 
characters 
 ( ) * , / : ; [ | ] ' " = 

or a single quoted string can be used as an element name in a set. Examples: 
 
4to5 
06-31-93 
<g.u#45$> 
'an element' 
'l\'element* '    (the backspace is an escape character) 
un(hj             (illegal, because the forbidden '(' occurs) 
 

Note also that the element syntax is case-sensitive. Hence, “June” and “JUNE” are 
considered different by the LPL compiler. 

3.10. OPERATORS 

Operators are used to form expressions. The following operators are defined in LPL in 
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decreasing precedence order: 
 
+ - ~ # $      unary plus and minus, not, cardinality, base set 
IN             membership of an element within a set 
( )            expression nesting 
^  %  ?<  ?>   power, modulo, smaller, larger 
/  *           division, multiplication 
<ind-op>       all indexed operators (see below) 
-  + &         binary plus, minus, string concat 
<rel-ops>      relational operators (see below) 
AND  NAND      binary and operators 
OR  NOR        binary or operators 
-> <- <-> XOR ..    implication, rev. impl., equivalence, 

                 exclusive OR, set range 
:=             assignment operator 
, |            a comma or a bar, for an expression list 
 

Example: 
 
2 + 3 * -7 < b AND c = 0 
 

which will be interpreted as: 
 
(2 + (3 * (-7)) < b) AND (c = 0) 
 

The parentheses may be used to change the operator's precedence, as in: 
 
2*(3+6) 
 

The operators have the following meaning (where x and y are arbitrary expressions): 
 
+ x return x   (unary plus) 
- x return -x  (unary minus) 
# s return cardinality of a set s 
i IN s return the position of element i within set s 

or 0 if i is not in s 
~ x return 1 if x=0, else return 0 
( x ) nesting x, return x 
'x' return string x 
<numb> return the number <numb> 
<id> return the value of the identifier id 
x ^ y return y-th power of x, error if x<0 
x % y return x modulo y 
x ?< y return the smaller of x and y 
x ?> y return the larger of x and y 
x / y division (error if y=0) 
x * y multiplication 
x - y subtraction 
x + y addition 
x & y string concatenation of x and y 
x >= y return 1 if x>=y, else 0 (str or num compar.) 
x <= y return 1 if x<=y, else 0 (str or num compar.) 
x > y return 1 if x>y, else 0  (str or num compar.) 
x < y return 1 if x<y, else 0  (str or num compar.) 
x <> y return 1 if x<>y, else 0 (str or num compar.) 
x = y return 1 if x=y, else 0  (str or num compar.) 
x AND y return true if x and y are both true 
x OR y return true if at least one of x or y is true 
x XOR y return true if either x or y is true 
x<->y return true if x XOR y is false 
x->y return true if x is false or y is true 
x<-y return true if x is true or y is false 
x NAND y return true if at least one of x or y is 

false 
x NOR y return true if both x and y are false 
x := y return the value of x (side-effect: assigns 
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the value of y to x) 
x , y return y (side effect: evaluates both: x , y) 
 

Examples: 
 
2^4+2 = 18 
3=2 = 0  (=FALSE) 
3<2-6 = 1  (=TRUE) 
1 or 6-6 = 1  (=TRUE) 
~(0 and 1+1) = 1  (=TRUE) 
a:=3 , 4 = 4  (side effect: assign 3 to a) 
 

There is no explicit TRUE or FALSE Boolean value. Like in C, the numerical values 
1 (or any value different from zero) means TRUE and 0 means FALSE. This means 
that an expression such as a<>0 can always be written simply as a. Since a can be a 
real, this rises a problem of precision. All numerical comparison operators on reals are 
considered within LPL as operators with a small range. a<>0, for example is 
interpreted as TRUE (=1) if and only if a is within the range [-ε,ε], where ε is a small 
number (typically, ε=1E-8). 

 

The IN operator tests, whether a particular element is within a specific set. The first 
argument must be a local index (see §5.5) or a bounded index; the second argument 
must be an unbounded index (see binding). 

Example: Suppose the following entities are defined: 
 
SET i := / 1:10 /;   -- the set {1,2,3,4,5,6,7,8,9,10} 
SET j := / 2:4 /;    -- the set {2,3,4} 
PARAMETER a{i}; 
 

then the following expressions 
 
SUM{i | i IN j} a[i]   -- sum all a[i], such that i is an element in j 
SUM{j} a[j IN i];      -- the same 
 

both sums up the three following values:  a[2] + a[3] + a[4]. 

 

The relational operators are: '>='  '<='  '>'  '<'  '<>'  and '=' . They compare numeric or 
alphanumeric values. If one argument is an index and the other evaluates to a number 
then the index is interpreted as a position (see §5.5ff) within the set. If one argument 
is a string, the index is interpreted as element-name and an alphanumeric comparison 
takes place. Example: 

 
VARIABLE x{i,j | i<j};    -- if position i is less than position j } 
VARIABLE y{i,j | i<'AS'}; -- for all i, such that the element-name is 
                          -- alphabetically before 'AS' 
 

The first statement declares a variable for every tuple (i,j), if the element of i has a 
position which is less than the position of the element of j (all sets are ordered in 
LPL). This, actually, declares the upper right triangular matrix of x{i,j}, if i and j have 
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the same numbers of elements. 

The second expression declares a variable for every tuple (i,j) such that the name of i 
(the element within the set i) comes alphabetically before 'AS'. 

3.11. INDEXED OPERATORS 

The operators SUM, PROD, FORALL, EXIST, MAX, MIN, ARGMAX, ARGMIN, 
COL, ROW, ATLEAST, ATMOST, EXACTLY, FOR, (indexed-)AND, OR, XOR, 
NOR, and NAND are called index-operators. They are defined in LPL as follows: 

 
SUM{i} a[i] return the sum of vector a over index i 
PROD{i} a[i] return the product of vector a over index i 
FORALL{i} a[i] same as: AND{i} a[i] 
EXIST{i} a[i] same as: OR{i} a[i] 
MIN{i} a[i] return the smallest a[i] within the vector a 
MAX{i} a[i] return the largest a[i] within the vector a 
ARGMIN{i} a[i] return the position of the smallest a[i] 
ARGMAX{i} a[i] return the position of the largest a[i] 
COL{i} a[i] expands a write/read horizontally 
ROW{i} a[i] expands a write/read vertically 
ATLEAST(k){i} a[i] return true, if at least k of all a[i] are 

true 
ATMOST(k){i} a[i] return true, if at most k of all a[i] are 

true 
EXACTLY(k){i} a[i] return true, if exactly k of all a[i] are 

true 
AND{i} a[i] return true if all a[i] are true 
OR{i} a[i] return true if at least one a[i] is true 
XOR{i} a[i] return true if exactly one a[i] is true 
NAND{i} a[i] return true if not all a[i] are true 
NOR{i} a[i] return true if all a[i] are false 
FOR{i} (A) return A (side-effect: executes A #i times) 
{i} x[i] return x[#i], side effect: run through i 
 

These operators have the same meanings as the corresponding sum and product 
operators (∑ and ∏), the 'min' and 'max' function over an index in mathematics, and 
the ∀- and ∃-operator in the predicate logic etc. COL and ROW are only used for the 
Input and Report Generator (see §10). ARGMIN and ARGMAX have the same 
meaning as MIN and MAX, but they return the position of the smallest or largest 
element instead of the element itself. ATLEAST, ATMOST, and EXACTLY are 
logical operators to formulate expressions such as “at least k of all elements in a 
vector are zero”. They return TRUE or FALSE. FOR is an iterator like for in C or 
Pascal to define loops. The five operators AND, OR, XOR, NOR, and NAND are 
binary operators, but they also can be used as index-operators. The index-operators 
are always followed by an index-list (see §5). Examples: 

 
SUM{i} 1 evaluates to n, if n is the number of 

elements of set i (same as: #i) 
SUM{i} a[i] sums all a over i  (  a[1]+a[2]+a[3]+...) 
SUM{i|a[i]<100} a[i] sums all a over i such that a[i] is less than 

100 
MAX{i} a[i] return the largest a[i] 
MIN(i | a>0) a[i] return  the smallest of all a[i] greater zero 
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EXIST{i} a[i] tests, whether any a[i] is not zero. If yes, 
it evaluates to the first position with 
a[i]<>0 else it return 0 

FORALL{i} a[i] return 1 if all a[i]<>0 else it return 0 
AND{i} a[i] return TRUE if all a[i] are TRUE 
PARAMETER a{i,j,k}; 
VARIABLE x{i,j | FORALL{k} a[i,j,k]} ; 
 

The last expression means: There exists a variable x{i,j} for every {i,j}-tuple, if for all 
k in a[i,j,k], a[i,j,k] is not zero. The underlying operator of FORALL is AND (or the 
ALL operator in predicate logic). This could also be written as: 

 
VARIABLE x{ i,j | AND{k} a[i,j,k] } ; 
 

or by explicitly mention all elements in k: 
 
VARIABLE x{i,j | a[i,j,1]<>0 AND a[i,j,2]<>0 AND ... AND a[i,j,#k]<>0 } ; 
 

where #k is the number of elements in k. 

The EXIST index-operator has a similar meaning. Its underlying operator is the OR 
operator: 

 
PARAMETER a{i,j,k} ; 
VARIABLE x{ i,j | EXIST{k} a[i,j,k] } ; 
 

The last expression means: There exists a variable x(i,j) for every {i,j}-tuple, if for all 
k at least one a[i,j,k] is not zero. This could have been written as: 

 
VARIABLE x{ i,j | OR{k} a[i,j,k] } ;     -- is the same 
 

or by explicitly mention all elements in k: 
 
VARIABLE x{i,j|a[i,j,1]<>0 OR a[i,j,2]<>0 OR ... OR a[i,j,#k]<>0}; 
 

where #k is again the number of elements in k. 

Hence, the OR operator -- used as index-operator -- is exactly the same as the EXIST 
operator and the AND operator is the same as the FORALL operator. 

Note that the XOR, NOR, and NAND operators can be used as binary or as index-
operators. 

3.12. FUNCTIONS 

The following algebraic functions are defined in LPL (where x, y and z are arbitrary 
expressions): 

 
NOW return the actual Date/Time 
ABS(x) return the positive value of x 
ARCTAN(x) return the ArcTan of x 
BREAK(x) return x (side-effect: leaves a FOR/WHILE 

loop) 
CEIL(x) return the smallest integer greater than x 
FLOOR(x) return the greatest integer smaller than x 
TRUNC(x) return x truncated to an integer 
SIN(x) return the sinus of x 
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COS(x) return the cosines of x 
ARCTAN(x) return the arc tangens of x 
LOG(x) return the natural logarithm of x, error if 

x•0 

EXP(x) return ex 
SQRT(x) return the square root of x, error if x<0 
RND(x,y) return an uniform random value in the 

interval [x,y] 
RNDN(x,y) return a normal distributed value with mean x 

and standard deviation y 
IF(x,y,z,...) return y if x is true , else return z 
SORT(a) return 1, (a must be a parameter) side-

effect: a is sorted in a decreasing way. 
SPLIT(id,id1,char) return 1, slits each id1 (string) into a list 

to id, the split character is char 
POSSTR(x,y) return the position of substring x within y 

(zero is x is not a substring in y) 
SUBSTR(x,y,z) return the substring of string x at position 

y with length z (null string of not possible) 
ORD(x) return the ASCII-code of x (x is a char). 
WHILE(x,y) return y (side-effect: executes y as long as 

x is true) 
 

The IF is evaluated as follows: If x is TRUE, then y is returned else z is returned. If z 
is omitted then the third parameter is considered to be zero. 

Examples: 
 
IF(2>1 ,12 , 13)           evaluates to  12 (since '2>1' is TRUE) 
2 + IF(1=2-1 , 4,5)        evaluates to  6 
- IF(2,3,4) - IF(0,100,5)  evaluates to  8 
IF(2=0,1)                  evaluates to  0 
 

The IF can be used also with more than three arguments. For example, the expression: 
 
IF(a,b,c,d,e) 
 

returns b if a is TRUE, else it returns d if c is TRUE, else it returns e. It is like a 
switch-statement in C: every second expression (beginning with the first one) is a 
condition to check: the first that is true is fixed and the subsequent expression is 
evaluated and its result is returned. 

The SORT(a) function is somewhat special. Its return value is always 1, but the side-
effect is to sort the index of a. 

Example: Let b{i} be a parameter index over i. 
 
set i := /1:10/; 
parameter b{i} := [2 3 5 1 7 8 4 6 0 9]; 
parameter a{i} := b[i]; 
parameter dummy{i} := sort(a); 
 

First the parameter values of b are copied to a. Then a is sorted. However the result is 
NOT a list of values from b, it is the indexes of b. Hence a{i} is: 

 10 6 5 8 3 7 2 1 4 9    in this order 

because 9 is the 10th element within b, 8 is the 6th element in a, etc. 

The SPLIT(a,b,c) function return s 1, but its side-effect is to split strings b into a. 
Example: 



CHAPTER 3 

20 

set i := /1:5/; 
string parameter b{i} := [‘1,2,3’ ‘4,,5’, ‘6’ ‘8,9,10’ ‘3,4’ ]; 
parameter a{i,k={1:3}} := split(a,b,’,’); 

The result is a two-dimensional array a: 
parameter a:= [1 2 3 , 4 0 5 , 6 0 0 , 8 9 10 , 3 4 0]; 

Note that of a is numeric then the split product are automatically cast into numbers. 

3.13. COMMENTS 

Three kinds of comments are defined in LPL. The first two kinds are skipped by the 
compiler, the third is read. 

(1) A comment can be inserted between tokens anywhere in the model. They are 
delimited by the symbols (* and *). Example: 

 
(* This is a comment *) 
(* comment (*  nested comment *)  ends first comment *) 
 

The (* ... *) comments can be nested. This kind of comment is just skipped by the 
compiler. 

(2) A second kind of comment -- useful for short remarks -- is restricted to one line. 
All character beginning by a -- (double dash) up to an end-of-line is considered as a 
comment. Example: 

 
PARAMETER a;   -- here is a short comment 
 

(Note that the -- comment is not interpreted as ordinary comment in Format B tables 
and in text files read by a READ statement.) 

 (3) There is another comment enclosed within double quotes " ... " called comment 
attribute. It is read and memorized by the compiler. Note that these comments can 
span over several lines. Like strings, they can contain the same non-printable 
characters. The length is not limited. 

3.14. OVERVIEW OF ALL TOKENS 

The following special characters are used as tokens in following contexts: 
 
+ unary or binary plus operator 
- unary or binary minus operator 
* multiply operator 
/ division op., begin/end data format B 
& string concatenation operator 
% modulo operator, read/write format specifier 
^ power operator 
< less operator 
> greater operator 
= equal operator, match-operator in database 

communication 
(  ) to bracket index-lists, to change operator 

precedence in expressions 
[  ] to bracket applied index-lists, lower/upper 

bound specification 
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{  } to bracket an index-list 
' ... ' string: to enclose alias names of elements, 

and string literals 
" ... " to enclose a comment attribute 
| data tables delimiter for multi-declaration 

and expression selector in index-lists 
. decimal point, or default value in data 

tables 
, to list items in sets, data tables, index-

list operator, index-list sep., in format A 
and B 

: define operator, write format delimiter 
; terminal delimiter of a statement 
# cardinality operator 
$ set transform operator 
~ NOT operator 
@ date/time data 
 

Tokens consisting of more than one character are: 
 
-- begin a one-line comment 
(* begin a comment 
*) end comment 
<> not-equal operator 
<= less or equal than operator 
>= greater or equal than operator 
:= assign operator 
-> logical implication 
<- reverse implication 
<-> logical equivalence 
?< smaller-than operator 
?> larger-than operator 
<Reserved words> meaning explained in context 
<Identifiers> user defined entity 
<Numbers> to define numeric data 
<Dates> to define a date 
<Strings> to define a string 
 

3.15. EXPRESSIONS 

The different tokens, such as identifiers (parameter-, variable- and index-names, etc.), 
numbers, dates, strings, operators and functions are used to form expressions used in 
various contexts of the model code. Expressions written in the LPL language are very 
close to ordinary mathematical notation or expressions of other programming 
languages, such as Java. There are particularities because of the indexed operators 
absent from typical programming languages: 

- The ∑ and the ∏ symbol used in mathematics to sum or multiply terms over 
indices is replaced by the reserved word SUM and PROD. 

- The ∀- and ∃-operator in predicate logic are replaced by the reserved words 
FORALL and EXIST. 

- Indices are not subscripted as in aij. Braces are used instead to enclose the index-
list and the index-names are separated by commas as in a{i,j} and a[i,j] (instead 
of  aij). 



CHAPTER 3 

22 

A well-formed expression always evaluates to a numerical value or to a string. If the 
expression is a Boolean expression, it evaluates to 1 (or another non-zero) for TRUE 
and 0 for FALSE. Therefore, the expression '1=2' evaluates to 0 and is interpreted as 
FALSE. Parameters (numerical data) return their value as entered in the table. If they 
are not defined they return the default value. The same is true for variables. Indices 
used in an expression return the position of a specified element (set are always 
considered as ordered). If indices are used in an expression, they must be bound (see 
§5 binding) to an index in a previous index-list (except the second argument of the IN 
operator).  Examples: 

 
4*7+7^2 is a single expression that returns 71 
4^6/c is a single expression, if 'c' is just a 

single parameter 
SUM{i} a[i] is a single expression, since it returns only 

one value (the sum of all a[i]) 
a[i,j] + c[j] is an indexed expression, i,j must be bound 

before (it returns a two-dimensional table) 
a[i] + SUM{i}c[i] is another indexed expression 
 

Expressions are used in two different contexts within an LPL model code: 

 - in every statement to define and assign data (also to define constraints) 

 - in the index-list to limit the tuples by a condition 

Examples: 
 
PARAMETER composed{i} := a[i] + SUM{i} c[i];  -- assign data 
. . . {i,j,k,m | a[i]>b[j] OR c[k]<d[m] }     -- in an index-list 
CONSTRAINT r: x+y-23*z + 78;                  -- define a constraint 
WRITE  : a+b ;                                -- write an expression 
 

The comma operator is a list operator the left term is evaluated then the right term is 
evaluated (always in this order) and the value of the second is returned. Example: 

 
PARAMETER b := a:=23 , a+c      -- assigns 23 to a and returns a+c (to b) 
PARAMETER a := (b:=78 , b+6);   -- a is 84 (side effect: b:=78) 
 

The assign operator in expression produces a side effect, it assigns a value to an 
entity. An example on how to combine the comma with the assign operator (using 
also a FOR loop) is the following LPL program to calculate the greatest common 
divisor of the two numbers 994009 and 96709 (Euclid's algorithm): 

 
PARAMETER a := 994009; b := 96709; t; 
WRITE: FOR{i={1:10}} IF(b=0,BREAK(a),(t:=a,a:=b,b:=t%b)); 
 

This feature allows the modeler to implement algorithms as expressions in LPL. 
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4. STRUCTURE OF AN LPL MODEL 

The overall syntax of an LPL model is as follows: 
 
MODEL <ModelHeader> 
  <statement list> 
END 
 

The statements can be classified into 6 declarations, 13 instructions and the empty 
statement. They can be in any order. The 6 declarations are: The set, parameter, 
variable, constraint, unit, and model declaration. The 13 instructions are: solve, read, 
write, check, option, variant, if, while, for, internal-proc-call, external-proc-call, 
model-call, and the assignment instruction. 

The syntax of all statements (declarations, definitions and instructions) is similar and 
consists of a sequence of at most 20 attributes: The pretype, type, genus, name, index, 
expression, range, subject-to, unit, if, priority, probability, to, from, alias, quote, 
comment, default, string and the freeze attribute. Not all statements contain all 
attributes. Each statement ends with a semicolon. For example in: 

 
INTEGER VARIABLE x ALIAS X “Quantity to transport” [0,10] ; 
 

INTEGER  is the type attribute 
VARIABLE  is the genus attribute 
x  is the name attribute 
“Quantity to transport”  is the comment attribute 
ALIAS X  is the alias attribute 
[0,10]  is the range attribute 

Each statement always begins with one of the first four attributes (a pretype, type, 
genus, or a name attribute), it then follows an optional index attribute and the other 
attributes can be in any order. We now list all statement attributes. 

4.1. THE STATEMENT ATTRIBUTES 

Each statement consists of a sequence of the following attributes with the exception of 
the if, for, while statement – which have a special syntax. 

4.2.1. THE PRETYPE ATTRIBUTE 

This attribute consists of the SEMI or ASSUMTION keyword and are only used for the 
variable declaration, to specify if a variable is semi-continuous or an assumption (for 
assumption based models only). 

 
SEMI VARIABLE x [2,10]; -- a semi-continuous variable with range 2 to 10. 
SEMI INTEGER  y [3,5];  -- a semi-continuous integer variable with 
                        -- the possible values are  0, 3, 4, and 5. 
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ASSUMPTION BINARY a;    -- an assumption variable 

SEMI defines a semi-continuous or a semi-continuous integer variable. A semi-
continuous (integer) variable can have value zero or values in a range [a,b]. For semi-
continuous variables the range [a,b] is continuous, for semi-continuous integer 
variables the range [a,b] only contains integer values between a and b. 

4.2.2. THE TYPE ATTRIBUTE 

This attribute consists of one of the keyword REAL, FREE, INTEGER, BINARY, 
DATE, STRING, or DISTINCT. It defines the type of a declaration. If no type 
attribute is used, the value domain of a declaration is double (8-byte floating point) 
This corresponds to REAL. The keyword FREE stands for a free real variable (the 
lower bound is not zero but minus infinity), INTEGER stands for integral numbers. If 
it is used for variables it declares (discrete) integer variables. BINARY declare the 
values to be zero or one. Used in variables it declares logical variables (0-1 variables). 
BINARY overrules the range attribute. DISTINCT is applicable for indexed 
variables. It says that all variables must be integer and different from each other. LPL 
automatically generates the corresponding constraints. DATE is basically the same as 
REAL, however the input and output are dates. STRING declares the entity to be a 
sequence of characters (variable cannot be of type STRING). The lengths of the string 
do not need to be declared. Strings are allocated dynamically. 

 
INTEGER PARAMETER a;      -- only integral values are allowed for a 
BINARY VARIABLE b;        -- b is a 0-1 variable 
DISTINCT VARIABLE x{i};   -- all variables are discrete and distinct 
STRING PARAMETER c;       -- c is a string parameter 
 

4.2.3. THE GENUS ATTRIBUTE 

This attribute consists of one of the keyword SET, PARAMETER, VARIABLE 
CONSTRAINT, UNIT, MODEL, MAXIMIZE, MINIMIZE, QUERY, OPTION, READ, 
WRITE, CHECK, IF, WHILE, FOR, EMPTY, FREEZE, UNFREEZE. It tells what kind 
of statement it is.  
The SET, PARAMETER, VARIABLE CONSTRAINT, UNIT, MODEL are for the six 
declarations: The set, parameter, variable, constraint, unit, and model declaration. 

 
SET i;                 -- declares a set named i  
PARAMETER a := 2;      -- declares a parameter a and assigns 2 to it 
VARIABLE x; y;         -- declares variable x and y 
CONSTRAINT c : x+y>=2; -- defines a constraint named c 
UNIT meter;            -- defines a unit meter 
 

If several consecutive statements declare the same genus then it is not necessary to 
repeat the genus attribute over and over again (see above the declaration of the y 
variable). The model declaration is special in the sense that it can contain a complete 
model (see §4.5). 
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MODEL submodel;         -- declares a submodel within another model 
  <statement list> 
END 
 

Models can be recursively declared within other models (see § 4.3.6). 
The keywords MAXIMIZE, MINIMIZE, QUERY, OPTION, READ, WRITE, CHECK, 
IF, WHILE, FOR, EMPTY, FREEZE, UNFREEZE are to start the solve, option, read, 
write, check, if, while, for, and internal-proc-call instruction. These statements always 
must start with these keywords. 

 
MAXIMIZE obj: x+y;       -- solve statement named obj (maximizing) 
MINIMIZE this: x-y;      -- solve statement named this (minimizing) 
QUERY q1: x OR y;        -- solve statement for logic models (query) 
OPTION solver:=cplex65;  -- instruction option: “use solver cplex65” 
READ FROM MyFile : a;    -- read data from file MyFile 
WRITE a,b,c;             -- write data a, b, and c to some file 
CHECK : a>=b;            -- check for expression a>=b 
IF a>12 THEN … END       -- if instruction 
WHILE a<>b DO … END      -- while loop instruction 
FOR {i} DO … END         -- for loop instruction 
EMPTY MyModel;           -- internal-proc-call EMPTY 
 

(The other three instructions (external-proc-call, model-call, and the assignment 
statement) begin with a user-defined identifier, which is the name attribute.) 

4.2.4. THE NAME ATTRIBUTE 

This attribute consists of a user-defined identifier. Every set, parameter, variable, 
constraint, unit, model declaration and every solve and option instruction has a unique 
user-defined name. It is used for reference in expressions and other parts of the code. 

 
MINIMIZE this: x-y;  -- solve (minimized) statement name is: ‘this’ 
VARIABLE x;          -- declares a variable with the name x 
 

4.2.5. THE INDEX ATTRIBUTE 

This attribute consists of a list of set names separated by commas and surrounded by 
braces. It is to define tables of values (vectors, matrices or higher dimensional tables) 
(see chapter 5). 

 
SET i; j;          -- declares two sets 
VARIABLE x{i,j};   -- declares a matrices x of variables 
 

These previous five attributes – if used – must be in this order. The next 16 attributes 
can  be in any order within a statement. 

4.2.6. THE EXPRESSION ATTRIBUTE 

This attribute defines or assigns an expression that represents the value(s) of the 
declared entity. It can also be a table of values. Example: 

 
PARAMETER a{i} := b+c;    -- declaration of a and assigns values 
PARAMETER d{i} :  b+c;    -- definition of d 
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CONSTRAINT h : x+y >=10;  -- defines a constraint h 
 

This attribute consists of an assignment or definition operator followed by an arbitrary 
expression. The assignment operator is := and the definition operator is : (a colon). 

4.2.7. THE RANGE ATTRIBUTE 

This attribute consists of an expression (containing exactly one comma) surrounded 
by brackets. It defines a lower and upper bound on a numerical entity. The lower 
bound and upper bound are especially for variables: they are translated as bounds for 
the solver. LPL translates the expression automatically to lower and upper bounds of 
variables at the moment of solving. 

 
PARAMETER a [3,5];       -- a must be in the range 3 to 5 
VARIABLE x  [3-2,10+12]; -- lower bound of x is 1 upper bound is 22 
 

The bounds are defined only for numerical entities otherwise they are ignored. 
Variables without a range indication have range [0,∞]. Parameters and free variables 
have the default range [-∞,∞]. Binary variable automatically have range [0,1]. 

4.2.8. THE SUBJECT-TO ATTRIBUTE 

This attribute begins with the two keywords SUBJECT TO extended by a list of 
identifiers of constraints and of models. It is using only in a solve instruction. The list 
contains the constraints that must be included or excluded from the solving. 

Example: 
 
MINIMIZE obj: x+y  SUBJECT TO modelA, ~modelB, const1, ~const2; 
 

This instruction says that all constraints in model modelA, but none in model modelB 
and the constraint const1, but not the constraint const2 must be taken into account for 
the minimization of x+y. 

4.2.9. THE UNIT ATTRIBUTE 

This attribute begins with the keyword UNIT followed by a unit expression in 
bracket. It allows the modeler to add a measure to the identifier. The unit expression is 
much like any expression except that its syntax is very limited. It can only contain: 
unit identifiers, numbers, unary plus and minus, the binary multiply and divide 
operators. Units are explained in §8. Example: 

 
UNIT meter;           -- defines a basis unit of meter 
UNIT second;           -- defines a basis unit of second 
PARAMETER length UNIT [meter]; 
VARIABLE velocity UNIT [meter/second]; 
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4.2.10. THE IF ATTRIBUTE 

This attribute begins with the keyword IF followed by an expression. It is applicable 
for the constraint declaration and the read and write and a solve instruction. 

If applied to a read or write statement, then the entire instruction is ignored at 
execution time if the condition is false. Applied to a constraint, it means that the 
constraint has no effect if the condition is false. An absent if-attribute is interpreted as 
true. Applied to a solve-statement, it is executed or not depending on the Boolean 
expression of the if-attribute. 

4.2.11. THE PRIORITY ATTRIBUTE 

This attribute begins with the keyword PRIORITY followed by an expression. For 
integer and binary variables one can add a priority. This priority is passed over to the 
MIP solver whenever possible, where the way of branching is affected. Higher 
priority means that the variable is branched on earlier. Example: 

 
BINARY VARIABLE x{i} PRIORITY a[i]; 
 

4.2.12. THE PROBABILITY ATTRIBUTE 

This attribute begins with the keyword PROB followed by an expression. For 
assumption variables in probabilistic argumentation systems, one can add the 
probabilities for each assumption. The syntax is: 

 
ASSUMPTION BINARY x{i} PROB a[i]; 
 

4.2.13. THE TO ATTRIBUTE 

This attribute begins with the keyword TO followed by an expression, which return a 
string (a file name). It is used only in the write instruction to define the file name to 
which the instruction should write (see §9). Example: 

 
WRITE x TO 'file.txt';        -- writes x to file 'file.txt' 
STRING PARAMETER a := ‘text’; -- declare a string and assign some 
WRITE a TO a & ’.txt’ ;       -- write a to file ‘text.txt’ 
 

4.2.14. THE FROM ATTRIBUTE 

This attribute begins with the keyword FROM followed by an expression, which return 
a string (a file name). It is used only in the read instruction to define the file name 
from which the instruction must read (see §9). Example: 

 
READ FROM 'file.txt' : a;  -- opens and read data a from this file 
READ FROM 'db,tab' : … ;   -- reads data from database db and table tab 
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4.2.15. THE ALIAS ATTRIBUTE 

This attributes begins with the keyword ALIAS followed by at most two unique 
identifiers separated by a comma. Each declaration has a unique identifier (the name 
attribute). However, sometimes it is useful to have more than one name for the same 
entity. The alias attribute allows the modeler to declare at most two additional names: 
the alias names. Normally the alias names are shortcuts which can be used in complex 
expressions later on in the model. Example: 

 
VARIABLE ProductQuantity ALIAS X; 
CONSTRAINT C : ... + X + ...; 
-- instead of: CONSTRAINT C : ... + ProductQuantity + ...; 
 

The user does not need to make compromises on the name length between the 
expressiveness and the shortness of a name. He can use both, short and long names for 
the same object. 

The alias attribute is also useful for sets. Often a set name is used several times in the 
same expression but should be separately identified as in: 

 
SET location; 
PARAMETER link{location,location}; 
 

A better formulation might be 
 
SET location ALIAS i,j; 
PARAMETER link{i,j}; 
 

This formulation avoids introducning extra local indices later on, if the first and 
second indices in link have to be referenced separately. 

4.2.16. THE QUOTE ATTRIBUTE 

This attribute consists of a single quoted string. It is used in the read and write 
instruction to define the data format (see §9). It is also used in the objective function 
for defining various attributes (see §7.3). 

4.2.17. THE COMMENT ATTRIBUTE 

This attribute consists of a double quoted string. Each statement may contain this 
attribute. It gives a brief description of the statement. These comments are 
remembered by LPL and can be recalled later on. Example: 

 
PARAMETER Price{i,j} "Price of commodity i in country j" ; 

4.2.18. THE DEFAULT ATTRIBUTE 

This attribute begins with the keyword DEFAULT followed by a number. It declares a 
default value for the entity, that is, the value used for a dot or for the values not 
assigned to the entity. If no default attribute is used, the default is zero. 
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PARAMETER a DEFAULT 1;   -- a has a default value of 1 
PARAMETER b ;            -- b has a default value of 0 
 

Only numerical defaults are allowed. 

4.2.19. THE STRING ATTRIBUTE 

This attribute begins with the keyword STRING followed by a unique user defined 
identifier. It is used only in set declarations to assign (longer) element names to each 
element entry. Example: 

 
SET i STRING iName; 
 

which is basically the same as 
 
SET i; 
STRING PARAMETER iName{i}; 
 

However, the first notation links i and iName uniquely. The iName elements (which is 
generally a more explicit name for an element) can be printed instead of the elements 
of i. In an expression the iName element can be accessed by i.sname instead of 
i.ename. 

4.2.20. THE FREEZE ATTRIBUTE 

This attribute consists of the keyword FREEZE. Applied to set and parameter 
declarations make them immune against EMPTY or snapshot read instructions. 
Example: 

 
MODEL m; 
  PARAMETER a := 4 FREEZE;  -- keep that value 
  PARAMETER b := 5;         -- volatile 
  EMPTY m;                  -- delete all data within m (except a) 
  WRITE a,b;                -- b returns the default (0), but a is 4 
  READ FROM 'snapshot.sps'; -- values for a does not change either 
END 
 

Applied to variables their values are frozen against solvers (a solver does not change 
their value because they are defined as fixed bounds). Applied to constraints, it means 
to ignore the constraint for the solver. 

4.3. THE STATEMENTS 

The 19 different statements are now briefly explained. 

4.3.1. SET DECLARATION 

The set statement declares or defines an index or a relation (see compound set) used 
in the model. An index is also called a set in LPL. A set consists of a list of items 
(called elements). An element may be an integer, a range of integers or a string with a 
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define syntax. Sets may be indexed too, and they are called compound sets. The set 
statement begins with the reserved word SET followed by zero or several index 
declarations or definitions. (Sets are explained in §5.) Example: 

 
SET 
  i;                 -- declares an index (set) called 'i' (no data) 
  h := / 1 2 /;      -- declares a set h with its elements ‘1’ and ‘2’ 
  j := /1:10/;       -- declares a set j with its elements ‘1’ to ‘10’ 
  Seasons := / spring, summer, autumn, winter / ; 
                     -- declares a set Seasons with four elements 
  IndexedSet{i,h};   -- a list of (i,h) tuples 
 

4.3.2. PARAMETER DECLARATION 

The parameter statement declares or defines the data (numerical or alphanumerical) 
used in the model. They are normally numerical values (real or integer). Single 
parameters or multi-dimensional tables (vectors, matrices or n-dimensional arrays) 
may be defined. The dimensions are determined by the indices, which have been 
declared before in the set statement. The data may be put in predefined table-formats 
or they may be numerical expressions. The reserved word PARAMETER heads a 
parameter statement and it is followed by zero or several parameter declarations or 
definitions (see §6). Example: 

 
PARAMETER 
  a;              -- declares a single parameter a (no data) 
  b := -4.678;    -- defines a single parameter b and assigns a value 
  c{i};           -- declares a vector c where i is an index 
                  -- the length of the array depends on the number 
                  -- of the elements of i 
  d{i,j};         -- declares a 2-dimensional numerical data array d 
                  -- (a matrix) with index i and j 
                  -- the maximal length of the matrix is the Cartesian 
                  -- product over ixj) 
  e{i} := b*c[i]; -- define e from other parameters (or entities) 
 

i and j are index names, which must have been declared before in the model. 

The structure {i} or {i,j} is called index-list. An index-list declares over 
which sets a parameter, a variable, or a constraint runs. Index-lists are also used 
together with index-operators. Index-lists are explained in more detail in §5. The data 
table formats are explained in §6. 

4.3.3. VARIABLE DECLARATION 

The variable statement declares or defines all variables used in the model. It has 
exactly the same structure as the parameter statement except that it is headed by the 
reserved word VARIABLE. Variables are discussed in §7. Example: 

 
VARIABLE X;       -- declares a model variable X 
VARIABLE y{i};    -- declares a vector of variables y, the length of 
                  -- the array is the cardinality of set i 
VARIABLE z{i,j};  -- two-dimensional array of variable z 
 

For assumption based models, VARIABLE is preceeded by the keyword 
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ASSUMPTION (and then VARIABLE can be omitted). If  REAL ASSUMPTION  are 
defined, the solver is GAUSS (GLOG) otherwise it is ABEL (ALOG). 

4.3.4. CONSTRAINT STATEMENT 

The constraint statement declares or defines all constraints of the model. They are 
declared exactly in the same way as parameters are, which are defined by expressions, 
except that they are headed by the reserved words CONSTRAINT. A definition of a 
constraint assigns an arithmetical expression to the declared constraint separated by a 
definition operator. More information on this statement is provided in §7. Example: 

 
CONSTRAINT Res: x + y - 23*z < 12;     -- defines a constraint 'Res' 
CONSTRAINT q{i,j} : x[i,j] + y[i] = 0; -- two-dimensional array  
                                       -- of constraint 

4.3.5. UNIT DECLARATION 

The unit statement allows the user to define units such as meter, kilogram, inch, yard, 
etc. They are used to measure numerical entities, to check their commensurability if 
compared or used in expressions, and to scale automatically commensurable values. 
Basic units (see elementary units) are just declared and derived units depend on other 
units (basic or derived once). The unit statement begins with the reserved word UNIT 
followed by the unit declarations and definitions. Example: 

 
UNIT 
  meter;                      -- a basic unit 'meter' 
  mile     := 1800*meter;     -- a derived unit 'mile' 
  sec;                        -- another basic unit 
  day      := 86400*sec;      -- another derived unit 
  velocity := mile/day;       -- and still another 
 

What is a basic unit and what is a derived unit is entirely decided by the user. They 
may depend on the circumstances. Units can only be defined once in a model. They 
are explained in §8. 

4.3.6. MODEL DECLARATION 

A LPL model can be a hierarchical structure, since sub-models can be declared within 
models. Sub-models are like parameterless functions: they can be executed by calling 
them. Models nested within other models have their own name space, which means 
that: 

1 The same name can be reused in another models without a name conflict, 

2 The identifier is exportable using the dot-notation (see below). 

Example: 
 
MODEL m;                   -- line 1 
  PARAMETER a; b; c;       -- line 2 
  MODEL mm;                -- line 3 
    PARAMETER a; bb; cc;   -- line 4 
  END                      -- line 5 
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  MODEL nn;                -- line 6 
    PARAMETER d;           -- line 7 
  END                      -- line 8 
END                        -- line 9 
 

Two models (model mm and nn) are nested within the model m. The parameters a, b, 
and c on line 2 are visible within the model m (from line 2 to line 9) which means that 
they are also visible within its submodels. They are even visible outside model m and 
can be accessed by the dot notation in an expression as: 

 
 ... m.a ... m.b ... m.c 
 

The parameters a and bb on line 4 are defined in model mm, i.e. they are only visible 
inside the model mm which extends from line 4 to 5. They can, however be accessed 
from model m, for instance, through a dot-notation mm.a, and outside model m, 
through the --notation m.mm.a. 

The path of model identifiers separated by a dot from the nested models inwards 
determines how the corresponding entity is accessed from outside. 

The two parameters a (on line 2 and 4) have the same name which means that the 
visibility of a (line 2) has a “hole” from line 3 to 5. Using the identifier a within the 
model mm refers the parameter a (line 4) and not a (line 2). How could a (line 2) be 
referenced within model mm? By using the dot-notation m.a within the model mm. 

The concept of MODEL is important not only for structuring the information 
hierarchically but also for hiding and encapsulate a piece of knowledge and to 
decompose the entire structure in manageable modules. 

Models can be declared after their call instruction within other models. This is called 
forward referencing. 

4.3.7. SOLVE STATEMENT 

The solve statement declares or defines objective functions (if any) of the model. They 
are declared exactly in the same way as constraints, which are defined by expressions, 
except that they are headed by the reserved words MINIMIZE, MAXIMIZE or 
QUERY. A definition of an objective assigns an arithmetical expression to the declared 
objective separated by a definition operator. More information on this statement is 
provided in §7. Example: 

 
MAXIMIZE obj : x+y;                    -- statement to maximize x+y 

4.3.8. READ STATEMENT 

The read statement defines the data input of the model. The model data can be read 
from files in many formats. It begins with the reserved word READ followed by 
several attributes such as a device name to read from and an indication how and what 
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to read. Example: 
 
READ FROM 'text.txt' '%2:table' : a , b , c ; 
 

This instruction reads three read-tokens from the textfile text.txt beginning with the 
second occurrence of table within the file and assigned the result to the model 
entities a, b, and c (note that a,b,c are three identifiers in the model). The read 
statement is explained in §9. 

4.3.9. WRITE STATEMENT 

The write statement defines the output of the model. A mask within the write 
statement (the comment attribute) defines, how the output has to be formatted and the 
expression of the write statement specifies what to output. The comment attribute is 
used as mask. Example: 

 
WRITE 'This is the mask with two place holder: 1) %4s 2) %6.2f end' 
      : 'xyz', 12.56 
 

This statement uses the layout of the mask to write the output. It begins with the 
reserved word WRITE followed by a mask, a definition operator and an expression. 
The expression in the previous example is another single quoted string and a number. 
It outputs the mask while filling in the place holders by the expression parts. In the 
last example, it will output the following line: 

 
This is the mask with two place holder: 1)  xyz 2)  12.56 end 
 

The write statement may also be used independently of any mask to write tables to the 
output file. It is explained in §9. Example: 

 
WRITE a; 
 

4.3.10. CHECK STATEMENT 

The check statement is useful to check the data consistency within the model. It 
begins with the reserved word CHECK. Example: 

 
CHECK This{i} : a[i]>1 and a[i]<100; 
CHECK "check a+b<0 has failed" : a+b < 0 ; 
 

The first check tests, whether all a[i] are between 1 and 100. The second simply 
checks, whether a+b<0. If the check fails, the run is aborted with an error message. 
Hence, the three following statements check exactly the same condition: 

 
CHECK This{i,j}: a[i,j] > 1 ;     -- all a[i,j] must be greater than one 
CHECK {i,j} :  a[i,j] > 1 ; 
CHECK : FORALL{i,j} (a[i,j] > 1) ; 
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4.3.11. OPTION INSTRUCTION 

This instruction is used to predefine various global parameters of a model: the solver 
used, a random seed for generating randomized data and others. The different options 
are explained in §10. Example: 

 
OPTION r := 10;                            -- set the random seed to 10 
OPTION path := ‘c:/lpl/models;d:/models;’; -- sets the directory path 
OPTION solver := xpressSol;                -- sets the solver to Xpress 
 

4.3.12. VARIANT  INSTRUCTION 

This instruction allows one to execute a list of submodels at this point of execution, 
we call them variant points. The list is given in an APL parameter @VAR. If nothing 
has been indicated in the APL parameter, then the default list is executed. Example: 

 
VARIANT va 'subModel1+subModel2'; 
 

In the previous instruction the variant is called va. The default sub-models to execute 
are submodel1 and submodel2 in this order. This can be override by an APL 
parameter as follows: 

 @VAR=va(submodel3+submodel4+submodel5) 

In the later case, the three submodels submodel3, submodel4, and submodel5 
are executed at the variant point va instead. 

Each model has a default variant point. This point in a model is before the first 
instruction that is neither a declaration (set, parameter, variable, constraint, unit, and 
model declaration), nor a read nor an option statement. The default variant point is 
like a nameless variant point. At this point one can also execute a list of submodels 
indicated by an APL parameter. Example: 

 @VAR=(submodel1+submodel2) 

In this previous case, the submodels submodel1 and submodel2 are executed at 
the default variant point. If no APL @VAR parameter has be defined, a submodel 
called data will be executed automatically at the default variant point, if it exists. 

4.3.13. IF INSTRUCTION 

This instruction is for branching. It begins with the keyword IF followed by a 
(Boolean) expression. This is followed by a THEN keyword.  After that any number of 
statements follow, an optional ELSE clause and ending with an END keyword. 
Example: 

 
IF a>b THEN 
  <statement list>   (to be executed if a>b is true) 
ELSE 
  <statement list>   (to be executed if a>b is false) 
END 
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Note that no declarations can be placed in the statements lists within an if statement. 

4.3.14. WHILE INSTRUCTION 

The while instruction implements loops. It begins with the keyword WHILE followed 
by a (Boolean) expression. This is followed by a DO keyword and a sequence of 
statements that ends with a keyword END. Example: 

 
WHILE a>b DO 
  <statement list>    (to be executed as long as a>b is true) 
END 
 

No declaration can be placed in the statement lists within a while statement. 

4.3.15. FOR INSTRUCTION 

The for instruction is another loop statement. It loops over sets. It begins with the 
keyword FOR followed by an index attribute. This is followed by a DO keyword and a 
sequence of statements that ends with a keyword END. Example: 

 
FOR{i} DO 
  <statement list>     (to be executed for all elements in set i) 
END 
 

No declaration can be placed in the statement lists within the for statement. 

4.3.16. INTERNAL-PROC-CALL INSTRUCTION 

The four different internal-proc-call instructions begin with the keyword EMPTY, 
FREEZE, UNFREEZE followed by a list of identifiers, and ADDCONST followed by a 
constraint specification. The first is called the empty instruction. It clears the data 
store of various entities. Example: 

 
EMPTY ModelY, a, b;  -- clears all the data in ModelY, the entity a and b 
 

The second and third are the freeze and unfreeze instruction. It can be used to “freeze” 
and “unfreeze” the value of various entities. Example: 

 
VARIABLE x; y; 
PARAMETER a:=2; 
FREEZE x, y;  -- fixes the values of the variables x and y 
FREEZE a;     -- fix the value of the parameter a 
UNFREEZE x;   -- now unfix the value of variable x 
FREEZE MyModel;  -- freeze the constraints in MyModel 
 

Freezing a parameter or a set means that its value will not be modified by a snapshot 
read or an EMPTY instruction. It can be modified by an assignment or another 
reading instruction. Constraints and solve statements can also be “activated” 
(unfreeze) or “inactivated” by the instruction which means that they are not send to 
the solver: 

 
CONSTRAINT MyConstraint: x+y; -- define a constraint 
FREEZE MyConstraint;          -- inactivates it 
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UNFREEZE MyConstraint;        -- activates it 
 

Freezing/unfreezing a model entity means to freeze/unfreeze all constraints within a 
model and within all its submodels. 

The addconst instruction has the same syntax as a constraint – except for the 
beginning keyword, which is ADDCONST instead of CONSTRAINT. This instruction 
allows adding constraints at runtime. They are used in the context of row-generation 
and the ‘keep’ option in the solve statement. 

4.3.17. EXTERNAL-PROC-CALL INSTRUCTION 

Procedures form two standard libraries, called Sys and Draw can be called from 
within a LPL model. See §10.7. Example: 

 
Sys.Call(‘myProgram.exe parameter’);  -- executes an external program 
Draw.Ellipse(1,2,3,4,0);              -- draws an ellipse 
 

4.3.18. MODEL-CALL INSTRUCTION 

For running MyModel within another (main) model one just can write the instruction: 
 
MyModel; 
 

4.3.19. ASSIGNMENT INSTRUCTION 

Sets, parameters and variables can be assigned and reassigned at any time after the 
declaration. The assignment can also take place at the same statement of the 
declaration. Example: 

 
PARAMETER b;      -- declare b (n data) 
b := 10;          -- now assign a value to b 
b := 11;          -- reassign another value to b  
PARAMETER a := 2; -- declare a parameter a and assign a value 
SET s ;           -- declare a set s (no data) 
s := / 1:10 /;    -- s was declared to be a set 
 

Sets and parameters can be defined. The difference between assignment and 
definition is important. Data can be assigned at various time points of the execution; a 
definition, however, takes place once and only once. Example: 

 
PARAMETER a:=1; b:=2;    -- declare and assign a and b 
PARAMETER c : a+b;       -- a definition (c is ALWAYS a+b) 
b:=20;                   -- reassign b 
 

This example assigns a value 1 and 2 to a and b. The parameter c then is defined. This 
cannot be re-assigned. Its value will always be a+b (at the line 2 its value is 3). If later 
in the code, b is assigned to be 20 (as in the example above in line 3), then 
automatically c has a new value of 21.  



STRUCTURE OF AN LPL MODEL 

37 

4.3.20. THE EMPTY STATEMENT 

The empty statement consists of a single semicolon. It has no function except it ends a 
sequence of declarations. For example, a sequence of set declarations can be written 
without repeating every time the keyword SET. So, we may write 

 
SET i; j; 

Instead of 
 
SET i; SET j; 

An empty statement ends the declaration list and a subsequent declaration must begin 
with the corresponding keyword (in the example SET): 

 
SET i;; SET j;  -- second SET keyword is mandatory 

 

4.4. THE DOT NOTATION 

As indicated in §3.4, identifiers can be extended by a dot and another identifier, called 
qualified identifiers: 

 
Identifier { '.' Identifier } 
 

This is also called the dot-notation. The purpose of this notation is the following. If an 
identifier is followed by a dot and one of the following words in the list in an 
expression occurs, then the corresponding attribute is returned from the expression. 
For instance, if X is a variable then X.nam returns the string “X” since “X” is the 
name of X. As another example, X.comment returns the comment attribute of X. 
The following words after the dot can occur. They are: 

 
Notation or returned value return type 
   (String or Numberic) 
----------------------------------------------------------------- 
X.ptyp X._01 pretype attribute of X S 
X.type X._02 type attribute of X S 
X.genu  X._03 genus attribute of X S 
X.name X._04 name attribute of X S 
X.indx  X._05 index attribute of X S 
X.expr X._06 expression attribute of X S 
X.cond X._07 condition attribute S 
X.rang X._08 the range/subject-to attr. S 
X.uni X._09 unit of X as string S 
X.prio X._10 if/priority/probability att. S 
X.to1 X._11 to/from attribute  S 
X.ali1  X._12 first alias of X S 
X.ali2  X._13 second alias of X S 
X.quot  X._14 quote attribute S 
X.comm X._15 comment attribute S 
X.defa X._16 default attribute S 
X.stri X._17 string attribute S 
X.frez X._18 freeze attribute S 
X.asgn X._19 assign/define operator: S 

(' ': none, '0' for table assignment, 
'1' for :=,  '2' for table definition, 
'3' for : (definition)) 
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X.namx X._20 dot notated name attribute of X S 
 

X.rhs X._21 right hand side value of constraint X N 
X.lhs X._22 left hand side value of constraint X N 
X.lrhs X._23 same as:  X.lhs-X.rhs N 
X.low X._24 the lower bound value of X N 
X.upp X._25 upper bound value of X N 
X.dual X._26 dual value or reduced price of X N 
X.lran X._27 lower sensitivity range in LPs of X N 
X.uran X._28 upper sensitivity range in LPs of X N 
X.enam X._31 element name (X must be a set) S 
X.snam X._32 element string name S 
X.intn X._33 the internal name S 
X.extn X._34 the external name S 
 
X.stat X._35 solver status [0..7] of model X N 
X.prty X._36 problem type [0..15] of model X N 
X.time X._37 elapsed time of a model run in msecs N 
 

All attributes and their corresponding dot notation can be used in expressions. Note 
that X._21 to X._34 are indexed if the entity is indexed. Example: 

 
SET i:=/1:10/; PARAMETER a{i} := i; b{i} :=i*i; 
               PARAMETER X{i} [a+1,b+10] DEFAULT 23; 
 

Now, the following terms can be used in an expression: 
 
...+ X._24[1] + ...   -- adds 2 to the expression (since a[1]+1 is 2) 
...- X.upp[3] + ...   -- subtracts 19 from the expression (b[3]+10 = 19). 

 

4.5. HOW IS A MODEL PROCESSED? 

An LPL code is processed as follows by the LPL compiler: 

1 Parse the code completely, 

2 Run the main (top) model. 

The LPL code is a hierarchical structure and a model within a model can be defined 
hierarchically as seen above. The main model is the model declared as the top model 
of the hierarchical structure. 

 

Running a model means to execute all the statements in the sequence in which they 
are written in the code. Submodels are executed by calling them explicitly by a model-
call instruction. Models can be declared after their use. There is a forward reference 
mechanism of the LPL parser, which allows using model call identifiers to be defined 
later on in the source code. 
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5. INDICES 

 

This chapter explains how indices and sets are declared and used in LPL. Indices are 
the most important construct in the LPL language. 

5.1. INTRODUCTION 

An index is a finite collection of different elements. As in mathematics, indices are 
used to define multidimensional objects like vectors or matrices. An expression xij is 
said to have two indices i and j, both representing a collection (set) of elements, say 

 i = {1, ... , m}   and   j = {1, ... , n} . 

The integers 1 to m are the elements of i and the integers 1 to n are the elements of j. 
The variable xij consists of m*n single variables, which – explicitly written in a matrix 
form  –  is as follows: 

 

x11 x12 . .. x1n

x21 x22 . .. x2n

.. . . .. . .. .. .
xm1 xm 2 . .. xmn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

In LPL, an index is also called a set, or even index-set. This is justified by the fact that 
a set in LPL may not only contain a list of elements but also compound sets or 
relations. An item of a set is called element. From the point of view of database 
theory, an index defines a domain of elements. Therefore, the term domain may also 
be used. It may be confusing to give the same entity four different names: index, set, 
index-set, and domain. The justification is the following: Although they have the 
same meaning in LPL modeling, their functional meaning is quite different: 

- Index is used in the mathematical context of running though some operators 
like in the expression aii =1

n∑ , which is nothing else than an abbreviation of 
a1 + a2 +. ..+an . 

- Set is a fundamental notion in mathematics. There may be operations like “for 
each element x in the set S ( x ∈S ) do something,” or even more interesting 
“for all elements x in S with the property P(x) ({x ∈S P(x)}) do something.” 

- Index-set is a mix up of index and set to emphasize their close links. 

- Domain is a fundamental notion in database theory. Databases are (sparse) 
tables running through domains. Operations like select a subtable or join two 
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tables are important manipulations. They can be viewed as set manipulations. 

Unlike in mathematics, where the elements are a range of positive integers, but like in 
databases, LPL also uses strings to designate elements. 

Indices must be declared in the Set statement. It begins with the reserved word SET 
followed by the different set declarations separated by semicolons. Sets may be 
declared first and defined later on. Example: 

 
SET  i;                 -- declare an index-set named 'i' 
SET  i := / 1,2,3,4 /;  -- define the index-set 'i' now 
 

A set is declared by writing just an identifier that designates the set followed by a 
semicolon. A set is defined by an identifier followed by an assignment operator and a 
list of elements optionally separated by commas. The list of elements are surrounded 
by two '/'. The number of elements in a set is not limited. The number of elements a 
set contains is called its cardinality. The order of the elements within a set is, in 
general, not important. LPL, however, also allows one to refer to the position of an 
element within the set. In this case, the order of the elements is important and the set 
is called an ordered set. Regardless of whether or not a set is ordered, LPL assigns a 
number to each element called position. The position of the first element is 1 and the 
position of the last element is the cardinality of the set. 

5.2. ELEMENTS AND POSITION 

The syntax of elements has already been explained in §3.9. Element names are always 
considered as strings, even if they are written as numbers. Hence the set 

 
SET IntSet := /1, 2, 3, 5/; -- 4 elements: '1', '2', '3' and '5'. 
                           -- The commas are optional 
 

contains four strings as names, although they are written as integers. Note that the 
position of an element within a set is not the same as the element itself, since the 
element is a string and its position is an integer. In the following set 

 
SET i := / 6 7 8 9 10 11 12 13 14 15 16 /; 
 

the element '6' has position 1 and the element '16' has position 11. 

Identifiers may be more descriptive than integers to represent elements. Example: 
 
SET seasons := / spring summer autumn winter / ; 
 

The set seasons contains four elements: spring, summer, autumn and winter. 

A consecutive list of integers (a range of integers) can also be abbreviated as 
 
SET  IntegerRangeSet := /1:10/;   -- contains 10 elements 
 

This is the same as the following: 
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SET  IntegerRangeSet := / 1 2 3 4 5 6 7 8 9 10 / ; 
 

A colon must separate the two limits. The limits are included in the elements list. No 
space is allowed before or after the colon. 

5.3. RELATIONS (COMPOUND SETS) 

Sets can also be indexed like an parameter or variable. In this case, they declare or 
define a tuple-list. Example: 

 
SET location := / NY BO LA /;          -- a set of plant locations 
SET links{location,location} := / NY BO , NY LA , LA NY /; 
 

location is a simple set. links is the allowed list of connections between the locations, 
which is a subset of the Cartesian product (locationxlocation). This is called a 
compound set. Relations are a powerful mean to define multidimensional sparse 
subtables. 

5.4. INDEX-LISTS 

Indices are used in LPL to define multidimensional objects such as parameters, 
variables, and constraints. In mathematical notation, subscripts are used to define such 
objects as xij. x is said to be a two-dimensional matrix with m rows and n column, if m 
is the cardinality of index i and n is the cardinality of index j. The number of 
subscripts following an object is called the dimension (or the arity) of that object. 

In LPL, the subscripts are written differently: they are separated by commas and 
surrounded by braces. So xij would be written as x{i,j} in LPL. The {i,j}-part is called 
index-list. Index-lists are used to define parameters, variables, constraints, and 
relations. They are also used together with index-operators in LPL. Example: 

 
PARAMETER A{i,j};          -- 2-dimensional data matrix 
VARIABLE X{i,j,k,l,m};     -- 5-dimensional variable 
CONSTRAINT R{i};           -- 1-dimensional constraint 
 ... SUM{i,j,k} ...        -- 3-dimensional summation 
 

If the indices in an index-list are replaced by an element of that set, the list is called a 
tuple. The list of all distinct tuples is the complete tuple list. It is the same as the 
Cartesian product of all indices in the index-list. Therefore, an index-list defines a 
Cartesian product and the number of all tuples in a complete tuple list is the product 
of all cardinalities of the indices and is called the cardinality of the index-list. One 
order of the complete tuple-list is called the lexicographic order. It is obtained by 
placing first the tuple, where all elements have position 1 in their sets and then placing 
the tuple by changing the elements with subsequent higher position from right to left 
within the index-list. Example: 
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SET  i := / 1:3 / ; 
SET  j := / 1:2 / ; 
PARAMETER a{i,j}; 
 

'{i,j}' is an index-list, '[3,2]' is a tuple of it, The complete tuple-list in lexicographic 
order is: { [1,1] [1,2] [2,1] [2,2] [3,1] [3,2] }. Its cardinality is 6(=3x2). 

 

Sets, parameters, variables, and constraints can be indexed by just appending an 
index-list to the corresponding identifier. This defines or creates simultaneously many 
individual objects (parameters, variables or constraints). The number is the cardinality 
of the appended index-list. Every time an indexed object is used in LPL, one may 
think of a loop statement, which is executed in the background in lexicographic order 
of the tuple list. But, in general, the user need not care about that; LPL does it 
automatically. Example: 

 
SET  i := / 1:10 / ; 
PARAMETER a{i} := b[i] + 2 ; 
 

This assignment defines a parameter a over the set i. The statement, however, assigns 
not one value, but ten values simultaneously, since the cardinality of the index-list 
'{i}' is 10. One may think of the parallel execution of the following ten statements 

 
a[1] := b[1] + 2 ; 
a[2] := b[2] + 2 ; 
a[3] := b[3] + 2 ; 
a[4] := b[4] + 2 ; 
a[5] := b[5] + 2 ; 
a[6] := b[6] + 2 ; 
a[7] := b[7] + 2 ; 
a[8] := b[8] + 2 ; 
a[9] := b[9] + 2 ; 
a[10] := b[10] + 2 ; 
 

Of course, on a sequential machine these statements are executed sequentially 
(normally in the mentioned lexicographic order). 

There are, however, situation where the user must know in which order an indexed 
expression is evaluated. This can be shown by the simple shifting up and down of 
tables by one position. Example: 

 
PARAMETER 
  a{i} := a[i+1]; 
  a{i} := a[i-1]; 
 

Since the expression is evaluated sequentially in lexicographic order (i from the first 
to the last element), the first expression does a down-shift within the table: the first 
element is lost, the last will be zero (the default of a), and all others are shifted down. 
Note that LPL does not generate “a out of index bound” error or something the like. 
Accesses to element outside of bounds or inexistent elements inside the bounds 
generate the default value (normally zero). 

The second expression will place a zero at the first place and shift this up to the end, 
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such that the whole table will be filled up with zero. The whole table is lost. So be 
careful, when using the same identifier at the left and right-hand-side of the assign 
operator. 

Every index-operator must also be followed by an index-list. Again, the cardinality of 
the index-list determines how many times the operator is executed. Example: 

 
SET   i := / 1:10 / ; 
SET   j := / 1:20 / ; 
PARAMETER  a := SUM{i,j} b[i,j]; 
PARAMETER  c{i} := SUM{j} b[i,j]; 
 

The SUM operator, in the third assignment, sums 200 (10x20) terms and the sum is 
stored in a single parameter a. In the second assignment, 20 terms are summed up and 
assigned to one of c. This is done 10 times. 

Sometimes, the same index must be used several times in the same index-list or in 
different index-lists in the same expression. This produces some ambiguity in the 
expression evaluation. Suppose, the following statement was written: 

 
PARAMETER a{i,j,i} := b[i,i,j] + 2; 
 

It is not clear how to evaluate this term. To avoid all ambiguities in such situations, 
the user may use local indices. A local index is an identifier which replaces a (global) 
index-name. It is used locally in an expression, much like a local variable in a 
programming language. The local index precedes the index it replaces in the index-list 
and is followed by an equal sign or the reserved word IN. Example: 

 
PARAMETER a{d1=i,j,d2=i} := b[d1,d2,j] + 2 ; 
PARAMETER a{d1 IN i,j,d2 IN i} := b[d1,d2,j] + 2 ;  -- is the same 
 

d1 and d2 are two local indices for i, which is replaced in the subsequent expression. 
Local indices must be added to index-lists if ambiguity arises. But they can be used 
everywhere as well. Some modeler may even prefer to use local indices 
systematically. Example: 

 
PARAMETER c{index1}   := SUM{index2} b[index1,index2]; 
                         -- without local indices 
PARAMETER c{i=index1} := SUM{j=index2} b[i,j]; 
                         -- with local indices 
PARAMETER c{i IN index1} := SUM{j IN index2} b[i,j]; 
                         -- is the same 

5.5. INDEX-LISTS WITH CONDITIONS 

Every index-list can be extended with a condition beginning with the '|' character 
before the right brace. Example: 

 
... { i,j,k | i=k AND a[i]<>12 } ... 
 

This index-list is the same as the mathematical expression 
 {i ∈I , j ∈J , k ∈K (i = k) ∧ ai ≠ 12}. 
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The condition after the character '|' can be any legal (Boolean) expression. If the 
condition evaluates to zero (FALSE), it means that the specific tuple is not selected 
and must be discarded. This limits the tuple list and the resulting tuple list is a subset 
of the complete tuple list. Example: 

 
VARIABLE  X {i,j | a[i,j]} ; 
 

This statement declares a variable for every tuple of '{i,j}', such that the 
corresponding a[i,j] is not zero. If a{i,j} is a sparse table, x{i,j} also will be a sparse 
table. Subsequent use of the variable X discards automatically all non-existent tuples. 
Therefore, a subsequent expression like 'SUM{i,j}X[i,j]' may produce fewer variables 
than the cardinality of the complete SUM-index-list. 

Another mathematical example: Suppose, the following 5 equations R are defined as 
following: 
 Rt is: xt = yt + akzkk <t

5∑        with   t = {1,. ..,5} 

They can be formulated in LPL as (note the use of a local index k) 
 
SET    t := / 1:5 / ; 
CONSTRAINT  R{t} :  x[t]  =  y[t] + SUM{k=t | k<t} a[k]*z[k]; 
 

Also relation-names can be used in index-lists. If one needs to sum up over all links 
defined previously as: 

 
SET location := / NY BO LA /;          -- a set of plant locations 
SET links{location,location} := / NY BO , NY LA , LA NY /; 
VARIABLE x{links};                     -- declared over a relation 
PARAMETER a{location,location};        -- defined over the complete 
tuple list 
 

then this can be done in the following way: 
 
 ... SUM{links}  x[links] ... 
 

But there may be a problem: suppose one needs to sum up all a[i,i] over links only. It 
could be done in two different ways as following: 

 
 ... SUM{i=location,j=location | links[i,j]}  a[i,j] ... 

or 
 ... SUM{links[i,j]}  a[i,j] ... 
 

The first way is by using two local indices for the same set (location), running 
through the complete tuple list (full Cartesian product locationxlocation), and 
selecting only the links. The second way is more efficient: the program runs only 
through all links. But now there are two local indices to identify them in a[i,j]. Local 
indices for the basic sets of relations are appended to the relation-name within the 
index-list and surrounded by brackets. In this case, the number of local indices must 
correspond to the declaration of the relation. 
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One can mixed them up too: If the modeler must sum x and a over links, then it can be 
done by  

 
 ... SUM{k=links[i,j]}  ( a[i,j] + x[k] ) ... 
 

where k is a local index for links, whereas i and j are two local indices for location. 

5.6. APPLIED INDEX-LISTS AND BINDING 

The construct  
 [ index , index , ... ] 

used before, is called applied index-lists. Applied index-lists are appended to indexed 
entities in expressions. An applied index-list can be any expression surrounded by 
brackets. Example: 

 
PARAMETER a{i,j} := b[i,j] + SUM{i} c[i,j]; 
 

[i,j] following b and c are applied index-lists. 

 

Every index in an applied index-list must be bound to a previous index in an index-
list. This is called index binding. The next picture shows by arrows, how the bindings 
takes place in the previous expression. 

  

a{i,j} := b[i,j] + SUM{i} c[i,j] ;
 

The index i has been used two times in an index-list (after a and after SUM). This can 
produce an ambiguity for the i in the applied index-list after c: It is unclear which of 
the previous i's it is bound to. The LPL compiler interprets this automatically as 
shown by the arrows. The rule is: bind indices to the closest one in the syntax tree. 

A specific binding can be overruled by the user, if local indices are used. They can 
eliminate any doubt about binding. Hence, the last example could have been written 
as (using local indices k1, k2, and k3): 

 
PARAMETER a{k1=i,k2=j} := b[k1,k2] + SUM{k3=i} c[k3,k2]; 
 

This eliminates any doubt about the binding of i after c. If local indices are used in a 
systematic way then applied indexed-list contain only local indices. This may be 
“cleaner” and more transparent. But the user is entirely free to use local indices 
regularly or not. In an ambiguous expression they must be used, in all other they can 
be used. 

Indices in a condition within the index-list must also be bound. Example: 
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X{i,j| a[i] OR b[j] OR SUM{k} c[k,i] < 1};

 
Applied index-lists (or parts of them) may be dropped, if there is no doubt how the 
indices have to be bound. Therefore the last two examples can be abbreviated as: 

 
PARAMETER a{i,j} := b + SUM{i} c; 
VARIABLE  X { i,j | a OR b OR SUM{k} c<100 ); 
 

This shortens the expressions, but it might be more cryptic. 

Every index used in an expression must be bound to an identical index in a previous 
index-list as has been explained just before, except it is indexed itself. In that case, 
their basic indices must be bound. Example: 

 
SET 
  i; j;                   -- two basic sets 
  k{i,j};                 -- an indexed set (relation) 
PARAMETER 
  a{i,j} := k + i ;       -- note : k is not bound directly, but i and j 
are 
  a{i,j} := k[i,j] + i ;  -- the same without dropping the applied index-
list 
 

An index in an applied index-list can also be replaced by an element of that index in 
quotes or by a number, which indicates the position of an element. Example: 

 
PARAMETER b{i,j} :=  / ...data here... /; 
PARAMETER a{i}   :=  b[i,'J4'] ; 
PARAMETER a{i}   :=  b[i,4] ; 
 

J4 must be an element of set j. '4' means “put here the fourth element from j”. 

An index in an applied index-list may be an arbitrary expression. Example: 
 
PARAMETER a{i,j} := b[i+3,j-4] ; 
 

The next figure shows how the table a is copied from the table b. The shaded regions 
are data block assigned through the last statement. The white space is filled with the 
default value. 

  

b(i,j) a(i,j)

 
Circular access can be generated by a wrap around function. The n-th wrap around 
element of i and the m-th previous wrap around element can be accessed as 

 
PARAMETER a{i,j} := b[(i-1+n)%#i+1 , (i-1-m+#i)%#i+1 ] ; 
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6. DATA IN THE MODEL 

 

All numerical values or strings used in an LPL model are called data. Data can be 
added directly to an algebraic expression, as in '43 + 3/7' or '5*x'. Most data, however, 
are assigned to a parameter in the Parameter statement, which is headed by the 
reserved word PARAMETER followed by an identifier and an assignment operator. 
Then follows the data in a predefined format or as an expression. Example: 

 
PARAMETER  a := 10; 
PARAMETER  b{i,j,k} := 12; 
 

The first declaration assigns the value 10 to the identifier a. It can from now on be 
used in an expression replacing the value 10. The second declaration assigns 12 to 
every tuple of b. (It is certainly not very useful to fill up a whole three dimensional 
tables with one number, but this is only for illustration.) It is much like a loop 
statement in a programming language. In Pascal, this statement may be represented as 
the following sequence of instructions, where m, n, and p are the cardinalities of the 
three sets i, j, and k: 

 
for i:=1 to m do 
  for j:=1 to n do 
    for k:=1 to p do 
      b[i,j,k]:=12; 
 

Data do not need to be numerical; they can be strings. Strings are declared within the 
parameter statement by adding the reserved word STRING as type attribute. Example: 

 
STRING PARAMETER 
  a{i} := [ 'One' 'Two' 'Three' ]; 
  text :=  ['A whole phrase might be assigned to a string variable'] ; 
 

(Note in the second example, that even a simple string declaration must be surrounded 
by “[” and “]”.) Normally, strings are read from files by the Read statement to be used 
in the Report Generator (Write statement). The manipulations of them within the 
model are limited to string comparison (see Section 4.7). Basically, they are used to 
write tables with the Write statement. 

 

Data can be added directly to a LPL model in three ways: two table formats and the 
assignment by expressions. The first is called Format A and is a very simple format 
for lists (or vectors) of small sizes. The second is called the Format B. It is a powerful 
representation of sparse multi-dimensional tables. 
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6.1. FORMAT A 

Suppose there are two sets defined as 
 
SET i:=/1:3/; j:=/1:2/; 
 

then one can declare a (two-dimensional) numerical matrix as follows: 
 
PARAMETER a{i,j} := [ 10 20 . , 100 . 300 ]; 
 

For each tuple of parameter a, a value is entered in lexicographic order surrounded by 
brackets ([,]). Optional commas can be used to separate the data. This format is useful 
for small data lists. A dot means the default value. It is important to note that the set 
must be defined before a format A table can be entered, since the number of values 
between [ and ] is the cardinality of the full Cartesian product of its index-list. 

This format can also assign string to an indexed string entity. 
 
STRING PARAMETER s{i,j} := [ 'one' 'two' '' , 'four' '' 'six' ]; 

6.2. FORMAT B 

The table format B is a powerful format specification to define sparse 
multidimensional tables. It can be used to specify sets, relations, numerical tables, or 
tables containing strings. It consists of a unique syntax with several options: (1) the 
list-option, (2) the colon-option, (3) the transpose-option, (4) the template-option, and 
(5) the multiple-table-option. 

The table specification begins with a / and end with a /. 
 
SET k  := // ;           -- k is the empty set 
PARAMETER v{k} := // ;   -- v is an empty numerical vector 
 

6.2.1. THE LIST-OPTION 

For sets, the elements are just listed sequentially between the slashes. For a numerical 
data vector the corresponding elements and its values must be listed sequentially as 
in: 

 
SET k := / one two three four /;               -- / {element} / 
PARAMETER v{k} := / one 1  three 3  two 2 /;   -- / {element Data} / 
 

There is no need to list the elements of set k two times. One could also just declare the 
set k and assign the data as well as the elements within the declaration of v as follows: 

 
SET k; 
PARAMETER v{k} := / one 1  two 2 three 3  four . /; 
 

Since the fourth entry is not defined for the vector v, a dot is used instead. This 
defined four elements for the set k and three elements for the vector v. 
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For a numerical (two-dimensional) matrix c with rows i and columns j, the following 
declaration can be used 

 
SET i  := / row1  row2  row3 /; 
SET j  := / col1  col2 /; 
PARAMETER c{i,j} := / row1 col1 1  row1 col2 2  row2 col2 4  
                      row3 col2 6 /; 
 

A comma can separate the entries. The declaration of c can also be written as 
 
SET i; j; 
PARAMETER c{i,j} := / row1 col1 1 , row1 col2 2 , row2 col2 4 , 
                      row3 col2 6 /; 
 

Now suppose, just relations (Boolean tables instead of numerical tables) are needed. 
A one-dimensional table w is defined as a set, by listing its elements 

 
SET k    := / one two three four /; 
SET w{k} := / one two three /; 
 

The vector w is nothing else then a subset of k. The advantage of declaring w{k} 
instead of 

 
SET w := / one two three /; 
 

is to constrain the elements of set w to the elements of k and to check this requirement 
automatically. 

A two-dimensional relation b can be defined correspondingly as 
 
SET i; j; 
SET b{i,j} := / row1 col1  row1 col2  row2 col2  row3 col2 /; 
 

Just leave out the numerical values. The elements of a relation are called tuples. In our 
example (row1 col2) is the second tuple within b, b contains therefore 4 tuples, a 
subset of the full Cartesian product over ixj. 

 

The declaration of string vectors is similar. They are declared as follows: 
 
SET k; 
STRING PARAMETER z{k} :=  
    / one 'string one' two 'string two' three . four 'string four' /; 
 

A two-dimensional string table is declared similarly as 
 
SET i; j; 
STRING PARAMETER c{i,j} :=  
    / row1 col1 'row1 col1'  row1 col2 .  row2 col2 'row2 col2' 
      row3 col2 'row3 col2' /; 
 

Higher-dimensional (sparse) tables can be declared similarly as  
 
SET i; j; k; 
SET e{i,j,k} := / i1 j1 k1 , i2 j1 k2 , i3 j2 k3 , i3 j2 k4 /; 
STRING PARAMETER   g{i,j,k} :=  
   / i1 j1 k1 '1' , i2 j1 k2 '2' , i3 j2 k3 '3' , i3 j2 k4 '4' /; 
PARAMETER f{i,j,k} :=  
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   / i1 j1 k1 1 , i2 j1 k2 2 , i3 j2 k3 3 , i3 j2 k4 4 /; 
 

These declarations define 3 three-dimensional 3x2x4 tables, a relation e, a numerical 
table f, and a string table, g containing only 4 entries. 

 

We summarize: Sparse tables can be declared just by listing the element tuples in any 
order. If the table is numerical or if it contains strings, then the corresponding data 
must be inserted right after the tuples. 

 

6.2.2. THE COLON-OPTION 

Sometimes tables are built of blocks of smaller tables. It is convenient to have an 
option that allows the model-builder to specify the subtables separately. 

Suppose, the following sparse 14x14 numerical matrix is given (where a dot denotes 
an non-existent element). 

 
    | c1  c2  c3  c4  c5  c6  c7  c8  c9 c10 c11 c12 c13 c14 
----|------------------------------------------------------- 
r1  |  .   .   .   .   .   .   .   .   .   1   2   3   4   5 
r2  |  .   .   .   .   .   .   .   .   .   6   .   8   9  10 
r3  |  1   1   1   1   1   .   .   .   .  11  12   .  14  15 
r4  |  .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r5  |  .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r6  |  .   .   .   .   .   .   .   4   4   4   .   4   4   7 
r7  |  .   .   .   .   .   .   .  44  44  44  44   .  44   7 
r8  |  .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r9  |  .   .   .   .   .   .   .  55  55  55  55  55  55   7 
r10 |  .   .   .   .   .   .   .   .   .   .   .   .   .   . 
r11 |  .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r12 |  .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r13 |  .   .   .   .   .  13  14   .   .   .   .   .   .   7 
r14 |  .   .   .   .   .  12  12   .   .   .   .   .   .   7 
 

The most simple way to specify this matrix using LPL data table formats would be to 
explicitly list all entries different from zeroes (or the default) -- as we have seen above 
in the list-option -- as following: 

 
SET rows; cols; 
PARAMETER mat{rows,cols} := / 
 r1  c10  1 
 r1  c11  2 
 r1  c12  3 
 ..... 
 r14 c7  12 
 r14 c14 7   /; 
 

Another way to specify the matrix is to divide it into blocks or subtables (see the 
“SubTable” in the syntax specification) defined as following 

 
SET rows; cols; 
PARAMETER mat{rows,cols} := / 
    : c10 c11 c12 c13 c14 : 
  r1    1   2   3   4   5 
  r2    6   .   8   9  10 
  r3   11   12  .  14  15 
 
    : c1  c2  c3  c4  c5 : 
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  r3   1   1   1   1   1 
 
    : c8  c9  c10 c11 c12 c13 : 
  r6   4   4    4   .   4   4 
  r7  44  44   44  44  .   44 
  r9  55  55   55  55  55  55 
 
    :  c6  c7 : 
  r14  12  12 
  r13  13  14 
 
    : (tr) r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 : 
   c14      7  7  7  7  7  7   .   7   7   7   7     /; 
 

The subblocks begin with a colon (:) followed by a list of elements of the last set 
(cols) in any order. A second colon terminates the list. Right after this, an element of 
the first set (rows) and as many data as there are elements between the two colons 
follow. This can be repeated. New-line characters are not important within the format. 
So, the next to the last subblock could also be written as 

 
    :  c6  c7 :  r14  12  12   r13  13  14 
 

An interesting option inside the colon-option right after the first colon is called the 
transpose-option written as (tr). It just reverses the last and the next to the last index 
in such a way that elements from the next to the last index are listed within the colons, 
whereas elements of the last index must be written after the second colon. This is 
interesting especially for two-dimensional tables, but is also valid for higher 
dimensional tables. The effect is obvious, if one looks at the last subblock in the 
matrix defined above. 

The whole matrix could be considered as one block and one may also write the full 
matrix as: 

 
SET rows; cols; 
PARAMETER mat{rows,cols} := / 
   :  c1  c2  c3  c4  c5  c6  c7  c8  c9 c10 c11 c12 c13 c14 : 
r1     .   .   .   .   .   .   .   .   .   1   2   3   4   5 
r2     .   .   .   .   .   .   .   .   .   6   .   8   9  10 
r3     1   1   1   1   1   .   .   .   .  11  12   .  14  15 
r4     .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r5     .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r6     .   .   .   .   .   .   .   4   4   4   .   4   4   7 
r7     .   .   .   .   .   .   .  44  44  44  44   .  44   7 
r8     .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r9     .   .   .   .   .   .   .  55  55  55  55  55  55   7 
r10    .   .   .   .   .   .   .   .   .   .   .   .   .   . 
r11    .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r12    .   .   .   .   .   .   .   .   .   .   .   .   .   7 
r13    .   .   .   .   .  13  14   .   .   .   .   .   .   7 
r14    .   .   .   .   .  12  12   .   .   .   .   .   .   7  /; 
 

 

The colon-option can also be used for one or higher than two-dimensional tables, or 
for relations or string tables. Consider first one-dimensional tables. Using the same 
examples for the vectors v, w, and z as above, they can be declared as  

 
SET k; 
PARAMETER v{k} := /  : one  two  three  four : 
                    1    2      3     .  /; 
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SET  w{k} := /  : one  two  three  four : 
                    +    +      +     .  /; 
STRING PARAMETER z{k} := 
  /  : one          two          three          four : 
       'string one' 'string two' 'string three' .     /; 
 

This format needs two remarks: 1) since the tables are one-dimensional, the data 
follow right after the second colon. No further elements are needed. 2) The 
declaration of w must indicate which elements are in the set w and which are not. The 
elements not in w are just notified as a dot and the others by any other character or 
string ('+' is used the subsequent examples). Note that the declaration of w could also 
be written as 

 
SET  w{k} := /  : one  two  three : 
                    +    +      + /; 

The second remark does not change the requirement that the same number of items as 
elements between the colons must follow the second colon. Note this was not the case 
in the first example, where one can write 

 
SET w{k} := / one two three /; 
 

One does not need to state this as 
 
SET w{k} := / one + two + three + /;  -- faulty declaration 
 

Although this seems not to be consequent at first sight, it is nevertheless convenient 
and a little practice may convince the user that the adopted solution is simpler. 

Of course, one can adopt the solution that no '+' is needed either in 
 
SET  w{k} := /  : one  two  three : 
                    +    +      + /; 

One can write this just as 
 
SET  w{k} := /  : one  two  three : 
                                   /; 

without the '+' indication. But in this case, the colon-option is not useful for higher 
dimensional relations. Consider the relation e (above) which was declared as 

 
SET e{i,j,k} := / i1 j1 k1  i2 j1 k2  i3 j2 k3  i3 j2 k4 /; 
 

Using the colon-option, the relation e cab be declared as 
 
SET e{i,j,k} := / :  k1  k2  k3  k4 : 
               i1 j1  +   .   .   . 
               i2 j1  .   +   .   . 
               i3 j1  .   .   +   . 
               i3 j2  .   .   .   +  /; 
 

We see: for higher-dimensional tables the colon-option can also be used. The 
elements of the last index-set are listed first between the colons. The colon-option is 
followed of as many elements as the table has dimensions less one in the same order 
in which they are listed within the index-list {...}. 

The transpose-option could also be used in this case. The next to the last index-set is 
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just exchanged with the last index-set. Hence, the table e can also be declared as 
 
SET e{i,j,k} := / : (tr)  j1  j2  : 
                i1 k1      +   . 
                i2 k2      +   . 
                i3 k3      +   . 
                i3 k4      .   +   /; 
 

Correspondingly, using the colon-option  the three-dimensional 3x2x4 numerical table 
f (see above) is declared as 

 
PARAMETER f{i,j,k} := / : (tr)  j1  j2  : 
                 i1 k1      1   . 
                 i2 k2      2   . 
                 i3 k3      3   . 
                 i3 k4      .   4   /; 
 

6.2.3. THE TEMPLATE-OPTION 

The colon-option is a powerful method to partition a sparse multi-dimensional table 
into non-sparse subblocks of the same dimension as the original table. Sometimes it is 
useful to partition the table into subblocks of lower dimension. To do this, the 
modeler uses the template-option. Consider again our 14x14 matrix. The matrix can 
be viewed as a list of slices of (one-dimensional) row vectors. The matrix can be 
declared as: 

 
SET rows; cols; 
PARAMETER mat{rows,cols} := / 
 [r1,*]  c10 1  c11 2  c12 3  c13 4  c14 5 
 [r2,*]  c10 6  c12 8  c13 9  c14 10 
 ... some rows are cut ... 
 [r13,*]  c6 13  c7 14  c14 7 
 [r14,*]  c6 12  c7 12  c14 7   /; 
 

A slice begins with a template, that is, by a left bracket, or parenthesis a list of 
elements or stars separated by commas, and terminates with a right bracket or 
parenthesis. The number of elements or stars in the template must correspond to the 
number of indices used in the indexlist {...}.  The number of the stars indicates the 
dimension of the slice. By default -- that is without any template -- it is supposed that 
the dimension of the slice is the same as the original table. This corresponds to a 
template containing stars only. In our 14x14 matrix the default template is [*,*]. It is 
not needed to write the default template, but it is not an error to write it either. 

A template such as [r1,*] means that it follows a slide (or a subtable) of one 
dimension (since one star is used in the template). The first index (rows) is bound to 
the element r1 for the whole slice and the second (cols) is free. Hence, we need only 
to list elements of the free index-sets together with the corresponding value for 
numerical tables. For relations, only the element tuples of the free index-sets are listed 
in arbitrarily order. Therefore, if mat{rows,cols} is a relation, one can declare it as: 

 
SET rows; cols; 
SET mat{rows,cols} := / 
 [r1,*]  c10   c11   c12   c13   c14  
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 [r2,*]  c10   c12   c13   c14  
 ... some rows are cut ... 
 [r13,*]  c6   c7   c14  
 [r14,*]  c6   c7   c14    /; 
 

Several templates and slices can be repeated in arbitrary order. The four-dimensional 
2x3x4x5 sparse table d{i,j,k,m} defined without templates as 

 
SET i; j; k; m; 
PARAMETER d{i,j,k,m} := / i1 j1 k1 m1 1 
                     i1 j1 k1 m2 2 
                     i1 j1 k2 m1 3 
                     i1 j2 k2 m3 4 
                     i2 j1 k3 m4 5 
                     i2 j3 k3 m5 6 
                     i2 j3 k4 m1 7 /; 
 

can also be declared as 
 
PARAMETER d{i,j,k,m} := / [i1,j1,*,*] k1 m1 1  k1 m2 2  k2 m1 3 
                     [*,*,*,*]   i1 j2 k2 m3 4  i2 j1 k3 m4 5 
                     [i2,j3,*,*] k3 m5 6  k4 m1 7  /; 
 

Another way to define the slices is 
 
PARAMETER d{i,j,k,m} := / [i1,j1,k1,*] m1 1  m2 2 
                   [i1,*,k2,*]  j1 m1 3  j2 m3 4 
                   [i2,*,*,*]   j1 k3 m4 5  j3 k3 m5 6  j3 k4 m1 7 /; 
 

The template-option and the colon-option can also be mixed in the same table. 
Therefore, our four-dimensional table d can be declared as 

 
PARAMETER d{i,j,k,m} := / [i1,j1,*,*] : m1 m2 : 
                               k1   1  2 
                               k2   3  . 
                     [i2,*,*,*]     : m1 m4 m5 : 
                             j1 k3     .  5  . 
                             j3 k3     .  .  6 
                             j3 k4     7  .  . 
                     [*,*,*,*]   i1 j2 k2 m3 4   /; 
 

The template-option together with the colon-option is a powerful method to break a 
sparse, multi-dimensional table down into blocks (sub-tables) of different dimensions. 
And the syntax is straightforward and simple: 

- If the sparse table contains just some unrelated tuples, the list-option is an 
appropriate mean, 

- If the table can be broken down into homogeneous, two-dimensional sub-tables, 
the colon-option is your choice. 

- If the table can be broken down into sub-tables of any lower dimensional tables, 
the template-option is the right choice. 

- If the sub-tables of lower dimension are two-dimensional, then the colon-option 
and the template-option can be combined. 

- If a transpose representation is needed, the transpose-option within the colon-
option is helpful. 

But there is more to come. 
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6.2.4. THE MULTIPLE-TABLE-OPTION 

Sometimes several similar tables, that is with the same dimension and sparcity, are 
used to model the data. Suppose, one uses three sets j, k, and m. Furthermore, there 
are 5 three-dimensional 2x2x5 sparse tables: a relation i{j,k,m}, three numerical 
tables a{i} (note that i is considered a three-dimensional relation), b{j,k,m}, and 
c{j,k,m}, as well as a string table d{j,k,m}. Suppose they are defined as following 

 
SET j; k; m; 
SET i{j,k,m} :=      /     [j1,*,*] : m1  m2  m3  m4  m5 : 
                                 k2    +   +   +   +   + 
                                 k3    +   +   +   +   + 
                           [j4,*,*] : m1  m2  m3  m4  m5 : 
                                 k2    +   +   +   +   + 
                                 k3    +   +   +   +   + 
                           [j4,*,m6]  k4  k5  k6 /; 
PARAMETER a{i}:=     /     [j1,*,*] : m1  m2  m3  m4  m5 : 
                                 k2    1   2   3   4   5 
                                 k3    6   7   8   9  10 
                           [j4,*,*] : m1  m2  m3  m4  m5 : 
                                 k2    .  12  13  14  15 
                                 k3   16  17  18   .  20 
                           [j4,*,m6]   k4 21  k5 22  k6 23  /; 
PARAMETER b{j,k,m} := /    [j1,*,*] : m1  m2  m3  m4  m5 : 
                                 k2   -1  -2  -3  -4  -5 
                                 k3   -6  -7   .  -9 -10 
                           [j4,*,*] : m1  m2  m3  m4  m5 : 
                                 k2  -11 -12 -13 -14 -15 
                                 k3  -16   . -18 -19 -20 
                           [j4,*,m6]  k4 -21  k5 -22  k6 -23  /; 
PARAMETER c{j,k,m} := /    [j1,*,*] : m1  m2  m3  m4  m5 : 
                                 k2   31  32  33  34  35 
                                 k3   36  37  38   .  40 
                           [j4,*,*] : m1  m2  m3  m4  m5 : 
                                 k2   41  42  43   .  45 
                                 k3   46  47  48  49  50 
                           [j4,*,m6]  k4 51  k5 52  k6 53  /; 
STRING PARAMETER d{j,k,m} :=  
                      /   [j1,*,*] : m1  m2  m3  m4  m5 : 
                                k2    a   b   c   d   e 
                            k3   aa  bb  cc  dd  ee 
                          [j4,*,*] : m1  m2  m3  m4  m5 : 
                                k2  aaa   . ccc  dd  eee 
                                k3 aaaa bbbb  . dddd eeeee 
                          [j4,*,m6]  k4 xxx  k5 yyy  k6 zzz  /; 
 

All five tables are similar. They are indices over the same sets and their sparcity is 
almost identical. Therefore, one can merge them together. The format B allows this by 
adding a list of identifiers right after the first slash enclosed by two bars. The 
identifiers are considered as names of tables of the same dimension. If they aren't, 
because they have been declared before, an error will indicate this. The five tables 
defined above can be declared in a compact way as follows 

 
SET i; j; k; m; 
PARAMETER a{i}; b{j,k,m}; 
STRING PARAMETER d ; 
SET i{j,k,m} := / |a b c d| 
                      [j1,*,*] : m1  m2  m3  m4  m5 : 
                            k2    1   2   3   4   5 
                                 -1  -2  -3  -4  -5 
                                 31  32  33  34  35 
                                  a   b   c   d   e 
                            k3    6   7   8   9  10 
                                 -6  -7   .  -9 -10 
                                 36  37  38   .  40 
                                 aa  bb  cc  dd  ee 
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                      [j4,*,*] : m1  m2  m3  m4  m5 : 
                            k2    .  12  13  14  15 
                                -11 -12 -13 -14 -15 
                                 41  42  43   .  45 
                                aaa   . ccc  dd  eee 
                            k3   16  17  18   .  20 
                                -16   . -18 -19 -20 
                                 46  47  48  49  50 
                               aaaa bbbb  . dddd eeeee 
                      [j4,*,m6]  : k4  k5  k6 : 
                                   21  22  23 
                                  -21 -22 -23 
                                   51  52  53 
                                  xxx yyy zzz  /; 
 

Several points have to be clarified for the multiple-table-option:  

1) Tables can be declared without indicating the dimension, as it is the case for i and 
d. The table a has the dimension of i. But i might be a simple (static) set or a relation. 
Hence, there is no need do know the concrete dimension at this point. From the 
declaration “STRING d”, one can only deduce that it represents a single string or a 
table of strings. Only at the point of the assignment the dimension is fixed. The 
declaration of b was given together with the indexlist {j,k,m}. But again, the explicit 
dimension is unknown. All one knows at this point, is that b must have at least the 
dimension of 3, since {j,k,m} indicates a Cartesian product of triples. But j or k or m 
might be themselves relations of multiple dimensions. 

2) All these pending dimensions are resolved at the heading of the last declaration: i is 
said to be of dimension of {j,k,m}, so is a and b  -- which is confirmed -- d gets now 
the same dimension and c is just newly created as a numerical table of the same 
dimension at this point. Of course, since the sets j, k, and m will be assigned with 
elements at this moment, their dimension will be fixed to one. 

3) The data are listed in a natural way. If the colon-option is used, the slices of data 
are listed in the order of the table names declared within the two bars. So first come 
the data slice for a, then the data slice for b, then the data slice for c and finally the 
slice for d. But where are the data of i? Strictly speaking, the data slide of i should be 
listed first, as it were the case if i would have been declared independently (see 
above). But here another simplification at the cost of stringency has been adopted: If 
multiple tables are declared at the same place and if the first table is a relation, then its 
data can just be left out and they are all assigned as if all were '+' (or different from a 
dot). A little reflection shows that this simplification makes sense. Normally, a 
relation is an important entity within a model, and several data tables can be defined 
over the same tuple list as the relation. Hence, the relation can be implicitly defined 
through its data tables. 

4) If no colon-option is used for a multiple table declaration, then the tuples are listed 
as in the single table declaration. Each element tuple is now followed by as many data 
as table names are declared within the two bars. As an example, the user might 
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declare the five tables as following 
 
SET i{j,k,m} := /               | a   b   c   d | 
                      j1 k2 m1   1  -1  31   a 
                      j1 k2 m2   2  -2  32   b 
                      j1 k2 m3   3  -3  33   c 
                      ... here more to come... 
                      j4 k4 m6  21 -21  51   xxx 
                      j4 k5 m6  22 -22  52   yyy 
                      j4 k6 m6  23 -23  53   zzz  /; 
 

Again as in the single table declaration, it is not needed to explicitly assign a data 
element to the table i. Every listed tuple is assigned to i implicitly. Therefore, the 
following table declaration for i is perfectly correct: 

 
SET i{j,k,m} := / 
                      j1 k2 m1 
                      j1 k2 m2 
                      j1 k2 m3 
                      ... here more tuples to come... 
                      j4 k4 m6 
                      j4 k5 m6 
                      j4 k6 m6  /; 
 

The reader has seen a complex and somewhat arbitrary example of the multiple-table-
option. This might give the impression that this option is not very useful in practical 
data modeling. But the multiple-table-option is already useful in simply defining 
several vector over the same index. Here is an example. Suppose the modeler has a set 
i and three numerical data vector as following 

 
SET   i    := / i1    i2    i3    i4    i5    i6    i7  /; 
PARAMETER  a{i} := [  .     1   2.4  -6.7     8     .     .  ]; 
PARAMETER  b{i} := [  2     .   -23  5.56     .     .     8  ]; 
PARAMETER  c{i} := [  1     0    .   10.3     .     .     .  ]; 
 

The four statements are a correct form to represent the vectors in LPL. But there is a 
more concise form using the multiple-table-option: 

 
SET  i  := / |   a       b       c  | 
    -------------------------------- 
     i1          .       2       1 
     i2          1       .       0 
     i3          2.4   -23       . 
     i4         -6.7     5.56   10.3 
     i5          8       .       . 
     i6          .       .       . 
     i7          .       8       .   /; 
 

 

It is remarkable that all these options to define sparse multi-dimensional tables can be 
specified with the simple syntax of the table format B.  

6.2.5. THE STAR INDEX-SET 

In the context of the Format B, another feature is useful: the star index. One can 
define a table without using index-names, as follows: 

 
SET p "products";  
PARAMETER cdata{p,*} := /  
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             :price  quantity: 
  apple       1.2      234 
  banana      1.3      123 /; 
 

This code will generate automatically a new nameless set for '*' which contains the 
elements 'price' and 'quantity'. More than one star can be used. 

The table cdata can be extended later on by making further assignments to it as 
follows: 

 
PARAMETER dummy: {p} (cdata[p,'total'] :=  
                             cdata[p,'price']*cdata[p,'quantity']); 
 

The star index set now contains three elements: 'price', 'quantity' and 'total' and the 
two-dimensional table cdata contains now three columns. Stared indexsets can also 
have a name for later reference: In this case, one has only to add an identifier just after 
the star as in: 

 
PARAMETER cdata{p,*name}; 
 

'name' is now the name of the stared index set. The only difference between stared and 
not-stared indexes is that stared indexes do not need to be declared in the model. 

6.3. ASSIGNMENT/DEFINITION THROUGH EXPRESSIONS 

Any simple or indexed expression can be assigned to a parameter. The assignment 
operator is the token := (a equal sign followed by a colon). Example: 

 
PARAMETER a := 2^4 + 4*6 + IF(2=1,2,4) ;   -- a is 44 
PARAMETER b{i} := c[i] + SUM(j) d[i,j] ;   -- assign a list of values 
 

It is also possible to define an expression using the define operator : (a colon). This 
means that the values always correspond to the expressions (without the need to 
reassign the entities defined (see also § 4.4.18). 
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7. VARIABLES AND CONSTRAINTS 

7.1. VARIABLES 

All unknowns used in an LP model are called model variables or just variables. Each 
variable used in an LPL model must be declared in the variable statement. Variables 
are declared in exactly the same way as parameters except that a variable declaration 
is headed by the reserved word VARIABLE. Example: 

 
VARIABLE 
  x;                -- a single variable declaration named 'x' 
  Name;             -- another single variable 'Name' 
  y {i,j};          -- an indexed variable 'y' where i and j are sets 
  z {i,j,k,m};      -- a four dimensional variable 'z' 
  w { i | i<>5 };   -- with a condition 
 

Like parameters, variables may also have default values, lower and upper bounds, 
integer or binary type, or a unit specification. Lower and upper bounds on variables 
directly produce a bound constraint in the output, and an integer attribute produces a 
mixed integer model. Variables and parameters are almost the same: they have both 
numerical values, which can be used within any expression. Example: 

 
VARIABLE 
  y UNIT 1000*pound ;  -- a unit specification 
  INTEGER x;           -- integer variable x 
  w   [1,10];          -- bounds and integer type 
 

However, there are subtle differences (1) the variables are assigned under the control 
of an external solver, (2) one can assign a value to a variable, but this value is 
considered as start value for a solution process; (3) One can even assign an expression 
to a variable that contains itself other variables, in this case it is considered as a 
constraint. Example: 

 
VARIABLE  x; 
PARAMETER a := x; 
VARIABLE  y := 3; 
VARIABLE  z : x + y; 

In the declaration and assignment of the parameter a, the value of x (whatever it is at 
the actual moment) is assigned to a. In the declaration of y, y gets a start value of 3 
that will be modified by the solver. In the definition of z, a constraint z=x+y is 
generated.  

If the defined variable is a binary then we have four different possibilities: 
 
BINARY VARIABLE  x: a*y+2 <= 6; 
BINARY VARIABLE  x -> a*y+2 <= 6; 
BINARY VARIABLE  x <-> a*y+2 <= 6; 
BINARY VARIABLE  x <- a*y+2 <= 6; 
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The first and second lines are exactly the same. On the right of the four operators, one 
may have any expression containing other variables. In all cases, this is interpreted as 
a (logical) constraint. Again, if the right-side expression does not contain variables 
then it is interpreted as a starting value for the variable (zero or one). 

7.2. CONSTRAINTS 

The constraint statement contains the constraints and the objective function of a 
model. The reserved word CONSTRAINT heads the definition, followed by a 
constraint identifier, a colon (the definition operator), and an expression containing 
variables. Example: 

 
CONSTRAINT t : x-y; 
CONSTRAINT r : x+y^2 = 2; 
CONSTRAINT re{i} :  lo(i) <= xe[i] - SUM{j} ye[i,j] <= up[i]; 
MAXIMIZE ma : x-y+z; 
 

Constraints are automatically of binary type. If the expression is not Boolean (as the 
first “x-y” then it is interpreted as being greater or equal to zero. Hence, the first 
example above is the same as: 

 
CONSTRAINT t :  x-y >= 0; 
 

The same variable may be used several times in the constraint. LPL takes care of this 
automatically and will reduce the expression (supposing the expression is linear 
otherwise no reduction is done). Example: 

 
CONSTRAINT R : x + y =  2*x - 12*y; 
 

will be translated by LPL as 
 
CONSTRAINT R : 13*y - x = 0; 
 

A constraint can be made inactive by adding the keyword FREEZE as an attribute. An 
inactive constraint does not produce any output to the LPO-file and to the solver, only 
the active do. An inactive constraint can be made active by an unfreeze instruction. 
Example: 

 
CONSTRAINT 
  r1 : x+y+z <= a; 
  r2 : x-y-z > b; 
  r3 FREEZE : 2*x - y -1 < d; 
  .... 
UNFREEZE r3; -- reactivate the constraint r3 
 

7.3. THE OBJECTIVE FUNCTION 

The objective function may be defined first as inactive constraint entity as in 
 
CONSTRAINT profit FREEZE:  x + y + z; 
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Later on, one may maximize the profit by writing 
 
MAXIMIZE obj : profit; 
 

This solve statement generates a model instance, calls a solver and reads the solution 
back to LPL (see §10.2.3) in the meantime the execution of the model run is stopped. 

One can also directly define the maximizing function as 
 
MAXIMIZE profit:  x + y + z; 
 

By default, all active constraints within the model are sent to the solver as well as all 
constraints defined in submodels called by a variant instruction. An alternative is 
using the subject-to attribute, in which one can select a list of constraints and 
submodel constraints: 

 
MAXIMIZE profit : x + y + z  SUBJECT TO mod1,~mod2,~const1; 
 

This solve statement takes all constraints of model mod1, but excludes all constraints 
of model mod2, and also ignores the single constraint const1. 

The objective function can contain a switch within single apostrophes: 
 
minimize obj 'mip+lp': x+y+z+a;  
minimize obj 'lp': x+y+z+a; 
minimize obj 'keep': x+y+z+a; 
 

The string ‘lp’ means to solve the relaxed LP. ‘mip+lp’ means to solve the mip, then 
fix all integer and binary variables and finally solve the corresponding lp. The ‘keep’ 
option says to keep the solver open, so one can add constraints on the fly (with the 
addconst-instruction) in order to speed up a row-generation scenario (works actual 
only with CPLEX). The solver will be closed automatically at the end of a run. 

MAXIMIZE or MINIMIZE statement may be used several times within the same 
model. Between two optimizing stage, several variables may be fixed or unfixed using 
the freeze and unfreeze instruction. This is useful for multi-stage modeling. 
Constraints may be activated or inactivated using the same keywords between two 
optimizing stages. Another way to activate and inactivate constraints is the IF 
attribute: For example: 

 
CONSTRAINT c IF a>=b : x+y=9; 
 

The constraint c is active if the condition a>=b is true, otherwise the constraint is not 
considered (same as frozen), that is, it is not sent to the solver. 

LPL automatically recognizes the problem type if it runs a model. They are: 
 
0 NONE no variables or constraints are defined 
1 LS linear system (no max or min objective) 
2 iLS integer linear system 
3 LP linear program 
4 MIP mixed integer (linear) problem 
5 QP quadratic problem (obj has x’Qx, Q semi-definite) 
6 iQP quadratic integer problem 
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7 QCP quadratic constraint as x’Qx, (convex constraints) 
8 iQCP quadratic constraints with integer vars 
9 NLS non-linear system 
10 iNLS non-linear integer system 
11 NLP non-linear optimization problem 
12 iNLP non-linear integer opt. problem 
13 PERM permutation problem 
14 ALOG assumption logic problem (solver is ABEL) 
15 GLOG GAUSS assumption problem (solver is GAUSS) 

 

LPL checks whether all constraints are linear. If they are, it returns LS, iLS, LP, or 
MIP. It also checks whether at least one optimization function exists in the model if 
not, it returns LS, iLS, NLS, or iNLS. If the objective function is quadratic and all 
constraints are linear, LPL returns QP, with integer variables it is iQP. If some 
constraints have quadratic expressions, then it is a QCP, and with integer variables it 
is an iQCP. If some variables are discrete, it returns iLS, MIP, iNLS, or iNLP. 

PERM is a special problem type (see §10.2.3) and can be "solved" using the 
integrated TABU heuristic solver. PERM problems are models in which  

1 Only one variable is declared as:  DISTINCT VARIABLE x{i} [1,#i];      

2 Only an optimization function without any other constraints is declared. 

The problem is to find a permutation x which optimizes the objective. Many problems 
in scheduling can be formulated as permutation problems. LPL supports this model 
class with an integrated heuristic TABU solver. 

7.4. LOGICAL CONSTRAINTS 

Logical constraints are supported. They are translated by default into a MIP 
formulation. Suppose one wants to impose the following constraint to an otherwise 
mathematical model, where x is a variable of type real: 

 
VARIABLE x [0,100]; 
CONSTRAINT R : x>=20 or x<=10; 
 

All variables that are used in logical constraints must be bounded explicitly. Since R 
is not a mathematical formulation of a model constraint, an LP/MIP-solver would not 
be able to solve the model. Therefore it is translated automatically by LPL into a set 
of pure mathematical constraints. The constraint R, for example, would be translated 
into the following two constraints where d is a newly introduced 0-1 variable. 

 
CONSTRAINT R1: x >= 20*d; 
CONSTRAINT R2: x + 90*(1-d) <= 100; 
 

One can see that the two mathematical constraints (R1 and R2) are the same as R, by 
the following reasoning: Suppose d=1, then it follows from R1 that x≥20 and from R2 
that x≤100. On the other side, if d=0 then it follows from R1 that x≥0 and from R2 it 
follows that x≤10. Therefore, d is a “switch” for x between the two intervals [0,10] 
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and [20,100]. (Note that the upper bound (100) on x is important and necessary). 

Table 1 summarizes all logical operators that are defined in LPL and that can be used 
in the formulation of logical model constraints. Of course, all operators can also be 
used in Boolean expressions that are evaluated immediately (which do not contain 
model variables) as in 

 
PARAMETER a{i,j}; 
VARIABLE X{i,j | ATLEAST(3) {i} a[i,j]}; 
 

This declaration of the variable X is perfectly correct. It means that the variable X is 
declared for every (i,j)-tuple, such that at least three of a row i in the (known) data 
matrix aij are different from zero. 

 

Note that the operators AND, OR, XOR, NOR, and NAND can be used as binary 
operators as well as index-operators. As an example, “AND{i} a[i]” simply means the 
same as “a[1] and a[2] and ... and a[n]”. Furthermore, “x AND y” can also be written 
as “AND(x,y)”. It should also be noted that the AND{} has the same meaning as 
FORALL{} and the OR{} is the same as EXIST{}.  

EXACTLY, ATLEAST, and ATMOST are index-operators with a slightly different 
syntax. The reserved word is followed by an integer surrounded by parentheses. The 
expression 

 
ATMOST (4) {i} a[i]; 
 

means that “at most 4 out of all a[i] should be true (=non-zero)”. If this is the case, 
then the expression returns true, otherwise it returns false. 

 
Operator Alternative formulation Interpretation 
--------------------------------------------------------------------- 

(x and y are any logical sub-expression containing variables) 
unary operators 
~x  x is false 
 
binary operators 
x AND y ATLEAST(2) (x,y) both (x and y) are true 
x OR y ATLEAST(1) (x,y) at least one of x or y is true 
x XOR y EXACTLY(1) (x,y) exactly one is true (either ... 
or) 
x -> y ~x OR y x implies y (implication) 
x <- y x OR ~y y implies x (reverse implication) 
x <-> y (x -> y) AND (y -> x) x if and only if y (equivalence) 
 ~(x XOR y) 
x NOR y ~(x OR y) none of x and y is true 
 ~x AND ~y 
 ATMOST(0) (x,y) (at most none is true) 
x NAND y ~(x AND y) at most one is true 
 ~x OR ~y 
 ATMOST(1) (x,y) (at least one is false) 
 
indexed operators 
AND{i} x[i] ATLEAST(#i){i} x[i] all x[i] are true 
OR{i} x[i] ATLEAST(1){i} x[i] at least one of all x[i] is true 
XOR{i} x[i] EXACTLY(1){i} x[i] exactly one of all x[i] is true 
NOR{i} x[i] ATMOST(0){i} x[i] none of all x[i] is true 
NAND{i} x[i] ATMOST(#i-1){i} x[i] at least one of x[i] is false 
FORALL{i} x[i] ATLEAST(#i){i} x[i] all x[i] are true 
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EXIST{i} x[i] ATLEAST(1){i} x[i] at least one of all x[i] is true 
ATLEAST(k){i} x[i] at least k of all x[i] are true 
ATMOST(k){i} x[i] at most k out of all x[i] are true 
EXACTLY(k){i} x[i] exactly k out of all x[i] are true 

Table 1: logical operators in LPL 

LPL also allows one to introduce predicate variables. They are simply declared as 
variables of type BINARY such as 

 
BINARY VARIABLE MyPredicate{i}; 
 

To link the predicate with the rest of the otherwise mathematical model, an expression 
can be attached to the predicate. Suppose that a predicate P is introduced into the 
model with the meaning that it is true, if another (real) variable x is strictly between 
its lower (l) and upper (u) bounds. The following declaration introduces this predicate 
P and the real variable x, and links the predicate to the (real) variable. 

 
VARIABLE x [l,u];              -- quantity x of product i 
BINARY VARIABLE P -> l<=x<=u;   -- product i is manufactured 
 

This declaration expresses the logical condition P → l ≤ x ≤ u . This means that if P 
is true then x is strictly between the lower and upper bound. 

It is also possible to link a predicate to an arbitrary, mathematical expression, such as 
 
VARIABLE x [lx,ux]; y[ly,uy]; 
BINARY VARIABLE Q -> (x>a) or (y<b); 
 

The declaration of the predicate Q expresses the logical condition 
Q → ((x > a)  or (y < b)) . Predicates defined in this way, are automatically translated 
to model constraints containing 0-1 variables by the LPL compiler. 

Several LPL examples can be found in the model library. 
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8. UNIT STATEMENT 

 

Most quantities in models are measured in units (dollar, hour, meter, horsepower etc.). 
In physics and other scientific, technical and commercial applications, using units of 
measure has a long tradition. It increases the reliability and the readability of 
calculations. Furthermore, explicit mention of units can give the compiler additional 
checking power. This reduces the number of syntax errors, and can let the compiler do 
the job of automatic unit conversion and scaling. 

Units are declared and defined in a UNIT statement where the elementary units are 
declared as unique identifiers, and the derived units are defined through their 
commensurateness relationship (unit expression). An elementary unit is simply a unit 
that is not itself dependent on other units. Derived units, on the other hand, are based 
on other units and expressed by a unit expression. Two units are commensurable if 
their unit expression is the same except by a numerical factor. An example is: 

 
UNIT 
  gram;                   -- an elementary unit called gram 
  Mile; inch; year;       -- three other elementary units 
  kilo := 1000;           -- derived and dimensionless 
  kg := kilo*gram;        -- derived and compound, but commensurable to 
gram 
  SquareMile := Mile*Mile;         -- a derived unit 
  acceleration := inch/year/year;  -- another one 
 

Units and unit expressions can be attached to every entity (except for SET and READ 
entities for which they are ignored). This is done by adding a unit attribute to the 
corresponing entity. An example is: 

 
PARAMETER  weight UNIT [kg];                    -- unit of weight is kg 
INTEGER VARIABLE   cars UNIT [1000] [0,100];    -- unit of cars is in 
1000 
CONSTRAINT  r  UNIT [12*kg];                    -- r is in dozen of 
kilogram 
 

Two entities are commensurable if their attached units are commensurable. So weight 
and r are commensurable, but cars and weight are not. 

Expressions also carry a unit expression. Expressions consisting of identifiers (entity 
names) carry the same unit as identifiers, expressions consisting of numbers must be 
extended by a unit expression, encluded within brackets. Example: 

 .... +  600[hour/day]  - .... 

All other expressions carry the unit of their operation combination. Most operators 
carry the same unit as their arguments. For example, the expression “a+b” carries the 
same unit as a or b (a and b must be commensurable). On the other hand, “a*b” 
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carries the same unit as the unit of a times the unit of b. The operators that change the 
unit are as follows: 

 
 times: unit(a*b) = unit(a)*unit(b) 
 divide: unit(a/b) = unit(a)/unit(b) 
 modulo: unit(a%b) = unit(a)/unit(b) 
 expo: unit(a^b) = unit(a)*unit(a)*....b times (b must be an integer) 
 sin: unit(sin(a)) = dimensionless 
 cos: unit(cos(a)) = dimensionless 
 sqrt: unit(sqrt(a) = sqrt(unit(a)) 
 

If the unit check (OPTION unitCheck) is turned on, the LPL compiler does the 
following: 

 - Checks whether two subexpressions are commensurable 

 - Scales the data if needed 

8.1. EXAMPLE 

Suppose the following piece of model is given: 
 
UNIT dollar;  
PARAMETER a UNIT [dollar] := 10[dollar]; 
  b UNIT [10*dollar]      := 100[dollar]; 
  c UNIT [100*dollar]     := a+b; 
  a1 UNIT [dollar]        := /10/; 
  b1 UNIT [10*dollar]     := /10/; 
  d UNIT [100*dollar] DEFAULT 2; 
WRITE a ; b; c; a1; b1; d; 
WRITE xx UNIT [1/10*dollar] : a1+b1+2[dollar]; 
END  
 

A basic unit dollar is declared. The parameter a is measured in dollar. The assigned 
expression 10[dollar] means that 10 dollars is assigned to a. The parameter b is 
measured in 10 dollars. The assignment 100[dollar] means that 100 dollars is 
assigned to b independent of the measurement of b. Since numbers in expressions do 
not have units, they must be extended by a unit expression. This is done by 
10[dollar], because an expression like a:=10 would be illegal. Since a is 
measured in dollar assigning 10 (10 what?) does not make sense. However, 
a:=10[dollar] does perfectly make sense. This can be seen using another operator 
apart of “:=”: The expression a+10 is illegal, because a is measured in dollar but 10 
has no unit, hence they are not comparable. We must write a+10[dollar].  

Parameter a and b are written using their units. Hence, WRITE a outputs 10 and 
WRITE b also outputs 10 (because 100 dollar is 10 times 10 dollar). The parameter c 
is measured in 100 dollar. Since a+b is 110 dollars, this outputs 1.1 (since 110 dollars 
are 1.1 times 100 dollar). 

Let's now turn to the parameters a1 and b1. The numbers within /.../ (see data Format 
B) are interpreted differently than numbers in expressions. The declaration a1 UNIT 
dollar :=/10/; means that a1 is measured in dollar and the data 10 is assigned to 
a1. This data is measured in dollar. The difference can now be seen in the declaration 
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b1 UNIT 10*dollar:=/10/;. b1 is measured in 10 dollar and 10 (of 10 dollar) is 
assigned to b1, which gives 100 dollars (like b). Note the subtle and important 
difference. In b the number to assign is embedded within an expression, therefore it 
must carry its own unit to make the expression commensurable. In b1 the number is 
data and is considered to come from outside. Therefore, its unit is determined by the 
units of the entity. Numbers within the Format A and B as well as numbers read from 
data tables via a read statement are considered as data and are scaled accordingly. 
Numbers of DEFAULT values also are considered as data. Hence, the declaration d 
UNIT 100*dollar DEFAULT 2; means that d is by default 200 dollars not 2 
dollars. But writing d by the command WRITE d; outputs 2 since d is measured in 
100 dollar.  

The WRITE instruction can have its own UNIT of measurement as is seen in the 
instruction WRITE xx UNIT 1/10*dollar : a1+b1+2[dollar]; This means: 
“add a1 (10 dollars) and b1 (100 dollars) and 2 dollars (giving 112 dollars) and write 
the result in 1/10 dollar (which is 1120)”. 

8.2. SUMMARY OF THE SEMANTIC 

1 Numerical data assigned to an entity are considered as numbers measured in the unit of the entity. 

So, “PARAMETER a UNIT km/sec:=/23/;” means a is 23 km/sec. 

2 Numerical data within the Format A and B as well as numerical data read by the READ statement 

and the DEFAULT value are considered as data in this sense. 

3 Numbers within expressions are not considered as data and must be extended by their own unit of 

measurement (exa.: “...+ 10[dollar] + ...”). (Note that the IF operator has 2 or three arguments, if 2 

are used then the third is considered to be zero. Using units, one must explicitly write the third 

argument even if it is zero. Exa.:  “...+ 10[dollar] + IF(x>0, 10[dollar], 0[dollar]) + ...” . Note also 

that the second and third argument must be commensurable, but neither must be commensurable 

to the first argument which specifies the condition.) 

4 While writing the entities they are written in the unit of the entity (exa.: “PARAMETER b UNIT 

10*dollar :=100[dollar]; WRITE b;” will output 10. 

5 Writing expressions require to extend the WRITE statement with a commensurable measurement 

to the assigned expression. 

6 Conditions as in “x{i,j | Condition}” or in “IF(Condition,a,b)” need not be commensurable to 

surrounding expressions. The same is true for applied Indexlists as in “...+ a[AppliedIndexList] + 

...”. 

The use of Units can be studied by the model tutor04.lpl. 
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9. INPUT AND REPORT GENERATOR 

Two powerful statements (READ/WRITE statement) give the user a tool to read data 
from and write data to (1) plain text files, (2) snapshots or (3) databases. Together, 
they define the Input and Report Generator of LPL. 

9.1. THE READ STATEMENT 

The Read statement reads data from (1) text files, (2) snapshots or (3) databases. Its 
overall syntax is: 

 
READ [ IList ] [ 'Format' ] [ FROM SExpr ]  [ : Expr ] ; 
 

(1) Reading from text file is done sequentially and token-wise. A token is any 
sequence of characters having the same syntax as the elements (see §3.9). 

A sequence of delimiters is just like one delimiter character with the exception of tabs. 
Several successive tabs in a text file are interpreted by LPL's READ statement as 
token of an empty string. The modeler indicates how and what to read from the text 
file using an expression. A good example to begin is the model tutor08.lpl 
together with the data file tutor.txt. 

The syntax of the From-attribute begins with the reserved word FROM followed by 
an expression returning a string that must by a legal and existing filename. 

Example: 
 
READ FROM 'MyFile.dat' ;           -- opens 'MyFile.dat' for input 
READ FROM 'a:/subdir/file.dat' ;   -- indicates a path 
 

The block attribute (‘Format') defines a region (a block) within the text file to read. 
Without any block indication the file is considered as one single block and is read 
entirely in one Read statement (to an EOF mark). If there is a block attribute, it 
indicates the block to select from the file. The block must be marked by a user-defined 
string at the beginning of a line: it is called the block-delimiter. The block-delimiter 
must be an identifier or a single quoted string. A Read statement containing such a 
block instruction will place the read pointer at the beginning of the line after the 
block-delimiter, and reads until the next block-delimiter or an end-of-file is 
encountered. If the block-delimiter occurs several times within the file, the different 
blocks are numbered beginning with one and can be read with separate Read 
statements indicating just this number. 

Example: Suppose the text file to read is “MyFile.dat” and the is “Table” and the text 
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file is divided into 3 such blocks (such like the tutor.txt file). 

The instruction 
 
READ FROM 'MyFile.dat' ; 
 

opens the file MyFile.dat and all subsequent READ statements will read from this file, 
until another device name is used. The instruction 

 
READ '%1:Table';  
 

defines the block delimiter. The block attribute is a string having the following 
syntax: 

 
 'c [<BlockNumber>] [: <BlockDelimiter>]' 
 

It begins with a character c. If c is the character % then the read is done token-wise in 
the same syntax as elements. If c is a different character (for example ;) then the 
tokens are split using just that characters. The character c is followed by 
<BlockNumber> which can be a number or an identifier, followed by a colon and by a 
block-delimiter string. If <BlockNumber> is an identifier then this identifier must be 
defined in the model and evaluate to a number. The instruction 

 
READ '%2:Table' : <read-expr>;  
 

places the read head after the second occurrence of the block-delimiter and read from 
the file whatever is define by <read-expr> until the next block-delimiter. If the block-
delimiter does not occur within the file, then the reading head is place at the end of the 
file and nothing is read. The instruction 

 
PARAMETER ID := 10; 
STRING PARAMETER myFile := 'myFile.dat'; 
READ '%ID:Table' FROM myFile: <read-expr>;  
 

places the read head after the tenth occurrence of the block-delimiter 'Table' and read 
from the file 'myFile.dat' whatever is define by <read-expr> until the next block-
delimiter. 

All subsequent Read statements do no longer need to define the file name or the 
block-delimiter. They can simply be written as: 

 
READ '%2' : .... ; 
READ '%3' : .... ; 
READ '%1' : .... ; 
 

The blocks can be read in any order. If no block number is given, the first block is 
read. Blocks can be read from different files in any order. In this case, the filename, 
the block number, and the delimiter must be added in each READ statement. 

The following example reads data first from file f1.dat beginning with the third 
occurrence of '##' and ending with a subsequent '##'. Afterwards, data are read from 
file f2.dat beginning at the first '##' and ending at the next '##'. Finally, another block 
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is read from file f1.dat beginning with the second occurrence of '-----' and ending with 
the next '-----'. 

 
READ FROM 'f1.dat' '%3:##'    :  ..... ; 
READ FROM 'f2.dat'            :  ..... ; 
READ FROM 'f1.dat' '%2:-----' :  ..... ; 
 

A delimiter must occur at the beginning of a new line within the file. 

 

Finally, the Read statement contains an expression, which says how and what to read 
from a file block. The expression is an ordinary LPL expression with some 
constraints: it may only contain the following operators and arguments: 

 

 , (comma)  : to list identifiers in a specific order to be read and assigned 

 COL : index-operator to read tokens repeatedly on a line 

 ROW  : index-operator to read repeatedly lines 

 set, parameter, and variable identifiers 

 the string ‘lf’ do skip a line 

 

Furthermore, index-list of ROW and COL can only contain basic sets (no compound 
sets). ROW cannot be nested either. 

The block to read is divided into read-tokens as defined above. Comments of the form 
(* ... *) are skipped by the read statement. The tokens are read in a sequential order 
and are assigned to the identifiers in the order indicated by the read-expression. 
Example: 

 
PARAMETER a; b; c;    -- declare three numerical entities 
STRING PARAMETER d;   -- declare a string entity 
READ : a,d,c,b ;      -- read four tokens and assign them in this order 
 

This reads four tokens and assign them to the parameters and strings a, d, c, and b in 
this order. If the file contains the following text to read: 

 
      23  34         text  56 
 

then a gets the numerical value 23, d gets the string value '34', c gets zero since 'text' 
is converted to zero, and b will be 56. If required, the token is converted into numeric 
data. But no error will indicate a failure in this conversion. Furthermore, the read text 
does not need to correspond to the read expression. Suppose the Read statement above 
reads the line:  23  34          text 

or the line:  23  34          text  56  6789 

In the first case, the last identifier b does not get a value, in the second case, the 
additional text '6789' is ignored. 
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The real power of the Read statement comes from the two index-operators COL and 
ROW. They are needed to repeat and to synchronize the reading within the block of 
read-tokens. Example: 

 
SET i; 
PARAMETER a{i}; 
READ : ROW{i} ( i , a ) ; 
 

This statement reads repeatedly the first two tokens on each line and assign the result 
to i and a[i]. If the read block is 

 
  bean   230 
  corn   0 
  rye    4571 
 

then the set i will contain the three elements bean, corn, and rye and the integers will 
be assigned to the parameter a, as if the modeler had defined them within the LPL 
model as follows: 

 
SET i := / bean , corn , rye  /; 
PARAMETER a{i} := [ 230 , 0 , 4571 ]; 
 

The ROW operator also synchronizes the reading, since it begins to read on a new line, 
independently of the numbers of tokens on a single line present in the file. Therefore 
the following block will produce the same result (as above): 

 
  bean   230  here are other tokens 
  corn 
  (* mais 23    this line is skipped because it is a comment *) 
  rye    4571  456 
 

The third and subsequent tokens on line 1 and 4 are ignored and the missing token on 
line 2 does not disturb the reading process, and a[2] does not get a value. 
While the ROW operator extends readings over lines repeatedly, the COL operator 
repeats reading tokens on the same line up to an end-of-line character (eoln). The 
following instruction has the same effect as the 'READ : ROW ...' instruction above: 

 
READ : COL{i} ( i, a[i] ) ; 
 

if the data in the file are organized in one line as follows: 
 
  bean   230  corn   0  rye    4571 
 

The COL operator reads two tokens repeatedly up to an eoln. The following Read 
statement combines the two operators and reads a two dimensional table as well as the 
elements for both sets 

 
SET rows; columns;                  -- declare two sets 
PARAMETER table{rows,columns};      -- declare a two-dimensional table 
READ : COL{columns} columns ,       -- read the first line 
       ROW{rows} ( rows , COL{columns} a[rows,columns] ) ; 
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And here is the block to be read as defined in the text file: 
 
           A  B  C  D  E  F 
  bean    1   2  3  4  5  6 
  corn    7   8  9 10 11 12 
  rye    13  14 15 16 17 18 
 

The first part of the expression “COL{columns} columns” reads the first line and 
assigns the tokens to the set columns. The next part of the expression “ROW{rows} 
(rows,X)” reads two elements on the following lines repeatedly, the first are the 
element-name of rows and the second (X) is another expression “COL{columns} 
a[rows,columns]” containing one token to read repeatedly on the same line up to an 
eoln and assigns the tokens to the corresponding a[i,j]. The resulting assignment is: 

 
SET columns := / A B C D E F /; 
    rows    := / bean corn rye  /; 
PARAMETER a{rows,columns} = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]; 
 

Relations (see compound sets) can also be “read” using the Read statement. Suppose, 
the following sets are defined 

 
SET i; j; compound{i,j}; 
 

Now suppose, that the file contains the tuples [i,j] each on a line as follows: 
 
i1 j1 
i2 j1 
i2 j2 
i2 j3 
.... 

The read statement 
 
READ : ROW{i,j} ( i , j ) ; 
 

reads the data correctly. But the compound{i,j} relation remains empty. There is a 
simple way to assign also a relation through a Read statement 

 
READ : ROW{i,j} ( i , j , compound ) ; 
 

Since compound[i,j] is a relation and since i as well as j has been read already, there 
is no further need to read another token to define a tuple of the relation compound. 
LPL simply assigns the tuple to the indexed set compound[i,j] without advancing the 
file pointer. 

 

(2) Reading from snapshots is another way to input data into the model. Snapshots 
are binary files generated by LPL previously by writing snapshots (see below). A 
snapshot is a file containing all data (including variable values) generated at a specific 
moment of a model run. If a model is solved after a lengthy calculation, for example, 
the user can generate a snapshot. Loading (or reading) this snapshot later on will 
restore exactly the same data within LPL without solving the model again. 
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Reading a snapshot will delete all data within LPL and storing the data from the 
snapshot. To read a snapshot the instruction is as follows: 

 
READ FROM 'mySnap.sps'; 
 

The extension '.sps' is important. LPL will recognize a snapshot by this extension of 
the filename. READ FROM+ and READ FROM* are used in the context of reading 
multiple snapshots. 

 

(3) Reading from databases is explained below. 

One can specify whether the READ will be executed or not. In the following READ, 
the statement will be executed if a>=b otherwise it is ignored: 

 
READ FROM 'MyFile.dat' IF a>=b : ...; 

9.2. THE WRITE STATEMENT 

A Write statement writes output to (1) text files, (2) snapshots, or (3) databases. The 
syntax is similar to the Read statement: 

 
WRITE [List] [ IList ] [ 'Format' ] [ TO SExpr ]  [ : Expr ] ; 
 

(1) Writung to text files is a powerful way to generate tables. The simplest way is 
write tables with a predefined format. It only uses the reserved word WRITE followed 
by a list of identifiers. This identifier may represent a data table, a variable (indexed 
or not), a constraint, a set or a string. Example: 

 
WRITE a, b; 
 

Another way is to output an expression as follows: 
 
WRITE{i} : a[i]-b[i]; 
 

This generates a one-dimensional table of the given expression. 

The TO attribute: By default, the Write statement write to the NOM-file -- the file 
with the same name as the LPL-file but with extension ‘nom’. The user does not need 
to open or close output files. At the first WRITE-statement, the NOM-file is opened 
for writing, overwriting eventually an existing NOM-file. In the process of a 
compilation all WRITEs are written sequentially to this file as long as the modeler 
does not use a TO attribute as follows: 

 
WRITE TO 'NewFile.txt';  -- opens and creates the file ‘NewFile.txt’ and 
                         -- erases an old one if it exists 
 

After this instruction, LPL closes the previous NOM-file and creates and opens a new 
file for writing the subsequent outputs.  

The new file is treated as write file to which new output is appended by default, but 
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this can be changed by TO+ or TO- as follows: 
 
WRITE TO+ 'NewFile.txt';   -- opens NewFile.txt for appending 
WRITE TO  'NewFile1.txt';  -- also opens NewFile1.txt for appending 
WRITE TO- 'NewFile2.txt';  -- open NewFile2.txt overwriting its content 
 

If LPL was launched with an 'a' parameter then all WRITE TO are treated as “open 
for appending” regardless whether the minus sign was used or not. At the end of the 
compilation (or after an error occurred) the last output file is closed. 

A format attribute can be added to the write statement to overrule the format. This 
also determines the layout of the data. The format attribute is a single quoted string 
with the following syntax: 

 
  "%" ["-"] [width] ["." prec] type 

 

A format specifier (for numerical data) begins with a % char. After the % come the 
following, in this order: 
 An optional left justification indicator, ["-"] 
 An optional width specifier, [width] 
 An optional precision specifier, ["." prec] 
 The conversion type character, type 

The following list summarizes the possible values for type: 
 
%, ‘ ‘    (A double ‘%%’ or ‘% ‘) Escape sequence for  %. 
d Base-10 decimal. The argument must be an integer value. The value is converted to a 

string of decimal digits. If the format string contains a precision specifier, it indicates that 
the resulting string must contain at least the specified number of digits; if the value has 
less digits, the resulting string is left-padded with zeros. 

u Unsigned base-10 decimal. Similar to d but no sign is output. 
x Hexadecimal (16-base integer). The argument must be an integer value. The value is 

converted to a string of hexadecimal digits. If the format string contains a precision 
specifier, it indicates that the resulting string must contain at least the specified number of 
digits; if the value has fewer digits, the resulting string is left-padded with zeros. 

o Octal (8-base integer). (not in Delphi, but in Java5) 
b,B Format for the value of Boolean: “true” or “false” (not in Delphi). 
c Outputs a single char, outputs ‘?’ for value >255. (not in Delphi). 
f Fixed 10-base float. The argument must be a floating-point value. The value is converted 

to a string of the form "-ddd.ddd...". The resulting string starts with a minus sign if the 
number is negative. The number of digits after the decimal point is given by the precision 
specifier in the format string—a default of 2 decimal digits is assumed if no precision 
specifier is present. 

e Scientific 10-base float in exponential notation. The argument must be a floating-point 
value. The value is converted to a string of the form "-d.ddd...E+ddd". The resulting 
string starts with a minus sign if the number is negative. One digit always precedes the 
decimal point.The total number of digits in the resulting string (including the one before 
the decimal point) is given by the precision specifier in the format string—a default 
precision of 15 is assumed if no precision specifier is present. The "E" exponent character 
in the resulting string is always followed by a plus or minus sign and at least three digits. 

g General 10-base float. The argument must be a floating-point value. The value is 
converted to the shortest possible decimal string using fixed or scientific format. The 
number of significant digits in the resulting string is given by the precision specifier in 
the format string—a default precision of 15 is assumed if no precision specifier is 
present. Trailing zeros are removed from the resulting string, and a decimal point appears 
only if necessary. The resulting string uses fixed point format if the number of digits to 
the left of the decimal point in the value is less than or equal to the specified precision, 
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and if the value is greater than or equal to 0.00001. Otherwise the resulting string uses 
scientific format. 

n Base-10 floating point number with locale-dependent thousand separator. The argument 
must be a floating-point value. The value is converted to a string of the form "-
d,ddd,ddd.ddd...". The "n" format corresponds to the "f" format, except that the resulting 
string contains thousand separators. (not in Java). 

m Money. The argument must be a floating-point value. The value is converted to a string 
that represents a currency amount (locale-dependent(. (Note for Delphi users: The 
conversion in Delphi is controlled by the CurrencyString, CurrencyFormat, 
NegCurrFormat, ThousandSeparator, DecimalSeparator, and CurrencyDecimals global 
variables or their equivalent in a TFormatSettings data structure. If the format string 
contains a precision specifier, it overrides the value given by the CurrencyDecimals 
global variable or its TFormatSettings equivalent.) (not in Java). 

s String. The argument must be a character, a string, (or a PChar value, in Delphi). The 
string or character is inserted in place of the format specifier. The precision specifier, if 
present in the format string, specifies the maximum length of the resulting string. If the 
argument is a string that is longer than this maximum, the string is truncated. 

z The fractional decimal part is transformed to the nearest rational nominator / denominator 
number of at most the number of digits specified in the precision specifier in the 
denominator. (only in LPL). 

t All date/time formats (see below). 
 

For all floating-point formats, the actual characters used as decimal and thousand 
separators are obtained from the LOCALE information of the operating system. 

 

For the date/time type t, a second character follows – this is the standard that has been 
adopted also by Java 5. These date/time types are similar to but not completely 
identical to those defined by GNU date and POSIX strftime(3c). 

The following conversion characters are used for formatting time: 
 
H Hour of the day for the 24-hour clock, formatted as two digits with a leading zero as 

necessary i.e. 00-23. 00 corresponds to midnight. 
k Hour of the day for the 24-hour clock, i.e. 0-23. 0 corresponds to midnight. 
I Hour for the 12-hour clock, formatted as two digits with a leading zero as necessary, i.e. 

01-12. 01 corresponds to one o'clock (either morning or afternoon). 
l Hour for the 12-hour clock, i.e. 1-12. 1 corresponds to one o'clock (morning or 

afternoon). 
M Minute within the hour formatted as two digits with a leading zero as necessary, i.e. 00-

59. 
S Seconds within the minute, formatted as two digits with a leading zero as necessary, i.e. 

00-60 ("60" is a special value required to support leap seconds). 
L Millisecond within the second formatted as three digits with leading zeros as necessary, 

i.e. 000-999. 
p Locale-specific morning or afternoon marker in lower case, e.g."am" or "pm". 
 

The following conversion characters are used for formatting date: 
 
B Locale-specific full month name, e.g. "January", "February". 
b Locale-specific abbreviated month name, e.g. "Jan", "Feb". 
h Same as 'b'. 
m Month, formatted as two digits with leading zeros as necessary, i.e. 01-13, where "01" 

is the first month of the year and ("13" is a special value required to support lunar 
calendars). 

A Locale-specific full name of the day of the week, e.g. "Sunday", "Monday". 
a Locale-specific short name of the day of the week, e.g. "Sun", "Mon". 

http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormatSymbols.html#getAmPmStrings()�
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormatSymbols.html#getMonths()�
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormatSymbols.html#getShortMonths()�
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormatSymbols.html#getWeekdays()�
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DateFormatSymbols.html#getShortWeekdays()�
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Y Year, formatted to at least four digits with leading zeros as necessary, e.g. 0092 equals 
92 CE for the Gregorian calendar. 

y Last two digits of the year, formatted with leading zeros as necessary, i.e. 00-99. 
d Day of month, formatted as two digits with leading zeros as necessary, i.e. 01-31, where 

"01" is the first day of the month. 
e Day of month, formatted as two digits, i.e. 1-31 where "1" is the first day of the month. 
 

The following conversion characters are used for formatting date/time: 
 
R Time formatted for the 24-hour clock, same as "%tH:%tM". 
T Time formatted for the 24-hour clock, same as "%tH:%tM:%tS". 
r Time formatted for the 12-hour clock, same as "%tI:%tM:%tS %Tp". The location of 

the morning or afternoon marker ('%Tp') may be locale-dependent. 
F ISO 8601 complete date formatted, same as "%tY-%tm-%td". 
c Date and time formatted.  
 

Examples are given in the tutor20.lpl model file. 

 

The format string allows the user to define the layout of the specific output. The 
format string may contain any characters (tabs and new-lines included), and several 
format specifiers, and may extend over several lines. The Write statement outputs the 
format string as is by substituting the format specifier. Example: 

 
WRITE ‘Text: %s \nValue %12.5f  again text: %7s \n’ 
   :  ‘ABCDE’ , 123456.789876 , XYZ; 
 

This instruction will output the following : 
Text: ABCDE  

Value 123456.78988  again text:     XYZ 

  

Each subexpression (separated by a comma) is evaluated and the value replaces a 
format specifier. Hence, ‘ABCDE’ replaces ‘%s’, ‘123456.78988’ replaces ‘%12.5f’, 
and so on. 
Write expression also can contain the two indexed operators COL and ROW in a similar 
way as in the READ expressions. The COL operator repeats a format specifier 
horizontally, whereas the ROW operator repeats a format specifier vertically. Example: 

 
SET i := /P1 P2 P3 P4/; 
WRITE "begin %s end"  : COL{i} i; 
WRITE "---  %3s ---\n"  : ROW{i} i; 
 

The first write statement produces the following output to the NOM-file: 
 
   begin P1  P2  P3 xP4 end 
 

The second write statement produces the following output: 
 
   ---  P1  --- 
   ---  P2  --- 
   ---  P3  --- 

http://www.w3.org/TR/NOTE-datetime�
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   ---  P4  --- 
 

A good example to study this Write statement is model file tutor09.lpl. 

 

(2) Writing to a snapshot has the simple syntax: 
 
WRITE TO 'mySnap.sps'; 

The extension of the filename is important and must be '.sps'. LPL writes all data 
(including variable values) to the snapshot file, which can be loaded by a READ later 
on to restore the LPL data store. 

 

One can specify whether the WRITE will be executed or not. In the following WRITE 
the statement will be executed if a>=b otherwise the WRITE statement is ignored: 

 
WRITE a,b  IF a>=b; 

9.3. DATABASE CONNECTIVITY 

The READ and WRITE statement can also be used to read from and write to 
databases. The interface between LPL and a database is coded in a dynamic link 
library called lpldb.dll. This library must be present. 

The general syntax of the READ-statement reading from a database db and a table is: 
 
READ IndexList FROM 'db,table' : Expr ; 
 

where Expr is an expression of comma separated assignments between an LPL entity 
and a database field. The match-operator is = . On the left of the = operator, the LPL 
entity must be written and on the right, the database field (within apostrophes). 

Indexlist contains a list of indices. They must also be read from the table. The 
expression FROM 'db,table' indicates the source where db is the database filename (or 
a string parameter name) and table is the tablename or a SQL query statement. 

 

The WRITE-statement has almost the same syntax: 
 
WRITE IndexList TO 'db,table' : Expr ; 
 

The expression Expr is similar with the exception that the database field name is on 
the left hand side of the match-operator (=) and on the right hand side any expression 
is allowed. Another difference is of whether the data must simply be updated or 
inserted. To update existing records, one uses the TO (or TO+ to add records) 
keyword. If new records must be inserted (clearing completely the table content first), 
one uses the TO- construct (the keyword TO with a minus sign). If we use TO* 
instead (TO with a star), it means that the corresponding database table and its fields 
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must be created. The table should not exist before. If we use TO** (TO with two 
stars), it means that the corresponding database must be created. If it exists, it is 
deleted first. 

 

Example: Suppose the following declarations are given: 
 
  SET 
    i ALIAS j STRING iN; 
    k; 
    S{i,j}; 
  PARAMETER 
    A{i}; 
    B{i,j}; 
  VARIABLE 
    X{i,j}; 
 

Suppose further that the database MyDB consists of the following three tables 
(represented by the following SQL-statements): 

 
CREATE TABLE iTable ( 
  ID INTEGER NOT NULL PRIMARY KEY, 
  iName varchar(20), 
  A double, 
  XX double 
) 
 
CREATE TABLE kTable ( 
  ID varchar(20) NOT NULL PRIMARY KEY, 
  XX integer 
) 
 
CREATE TABLE ijTable ( 
  ID INTEGER NOT NULL  REFERENCES iTable (ID), 
  ID1 INTEGER NOT NULL  REFERENCES iTable (ID), 
  B double, 
) 
 

Then the following READ statements read from different tables or queries and have 
the following syntax: 

 
  PARAMETER para   := 5; 
  STRING    MyDB   := 'MyDatabase.mdb'; 
 
  READ{i} FROM 'MyDB,iTable' : 
    i  = 'ID', 
    iN = 'iName', 
    A  = 'A'; 
  READ {i,j} FROM 'MyDB,ijTable' : 
     i = 'ID', 
     j = 'ID1', 
     S = ('ID','ID1'), 
     B = 'B'; 
  READ {k} FROM 'MyDB,SELECT * FROM kTable WHERE XX <= :para' : 
     k = 'ID'; 
  WRITE {i} TO 'MyDB,iTable' : 
    'ID' = i, 
    'XX' = SUM{j} X; 
 

The first READ statement reads the entities i, iN and A which are matched by the 
fields 'ID', 'iName' and 'A' in the database table iTable. The number of records gives 
the cardinality of i. The second READ statement reads from a relationship. Since S is 
a tuple list and does not correspond to a field entry, one has to say how S is to be 
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matched by a multiple of fields. The third READ reads from a query (a select 
statement). It is a parameterized query where records only are read with the condition 
XX<=5 true. The parameter name must be a legal parameter defined before in the 
LPL code and begins in the query string with a colon. Before reading, this parameter 
name together with the dot is replaced by the parameter value. Only then is the 
SELECT statement been sent to the database server. 

It is also possible to call parameterized stored procedures. Suppose the database stores 
a query called Query3 which is defined as follows (where XY is a tablename, 
tours2 is a field and vari is a parameter): 

 
SELECT * FROM XY WHERE (((InStr([tours2],vari))>0)); 
 

Then one can call the query within LPL as follows (tour is a singleton parameter): 
 
  read{i} from 'db,Query3@vari=:tour' : ………… ; 
 

The DB connection feature in LPL is not limited to a specific database provider. One 
can read/write from/to Mirosoft Access, mySQL, Oracle or even Excel in this way. 
The provider is specified by a database connection string defined as an option (see 
OPTION in Chap 10.2.7): 

   
OPTION db := '...' ; 

Model examples showing the DB connection are tutor18.lpl. and tutor19.lpl. 

9.4. GENERATING A DATABASE FROM A LPL CODE 

One can generate a complete database just from a LPL model structure. This tool 
supposes that certain entities in the language can be matched with entities in the 
database. It is obvious to match SETs in the language with keys in a table, since both 
must have the property, that the single elements must be different from each other. 
This guarantees uniqueness. Therefore, every SET defined in a model language code 
creates a table with a key field. Each SET in the model creates a basic table in the 
DB. Conversely, the primary keys in every 3-norm database table (which does not 
define a relationship nor has a foreign key) could be used to generate a basis SET in 
the modeling language code. Furthermore, all entities (parameters, variables, 
constraints etc.) in the language, which are indexed over one single index, can be seen 
as an additional data field in the basic table, in which the corresponding index-set is 
the primary key. The converse is true too: Every field (except the primary key field) 
could be identified as a one-dimensional vector, hence an entity indexed over the set 
that is matched with the key. However, sometimes it is more convenient to interpret 
fields as slices in a two-dimensional entity. This is particularly interesting, if one 
should iterate over field-names in the modeling language code.  



INPUT – AND REPORT GENERATOR 

81 

 

LPL generates a SQL script (the SQL-file is a file with the same name as the model 
file and an extension '.sql') which can be interpreted by any database server and create 
the corresponding database. To instruct LPL to generate the SQL-file, it (lplc.exe) 
must be launched with 'q' as a second parameter: 

 
lplc tutor08 q 
 

This command will generate a file tutor08.sql. (Alternatively, there is a menu item in 
the tools menu in the lplw.exe.) In addition, a second file is generated (‘tutor08.sq2’) 
which contains a model in LPL code of the Read/Write statements. This model can 
then be included in the main model to read/write data from the database. 
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10. COMPILER DIRECTIVES AND OPTIONS 

 

Compiler directives and the Option statement allow the user to guide the way in 
which a model is compiled. 

10.1. COMPILER DIRECTIVES 

A compiler directive in LPL is a comment beginning with the following three 
characters (*$. They have special meanings for the LPL compiler: 

 
(*$I <filename>*)  File include 
 

A compiler directive can be placed anywhere within the model where a normal 
comment is legal. 

10.1.1. FILE INCLUDE (*$I*) 

The (*$I directive redirects the LPL scanner to read from another file at this point and 
-- at the end of that file -- reading continues from the calling file. Hence, the model 
may be split in different LPL files. For an example see the tutor07.lpl model file. 

Nested include files are also possible up to a level of 5. The filename must be within 
single quotes. Example: 

 
 (*$I 'include.dat' *)     -- in main file 
 (*$I 'include2.dat' *)    -- in an included file 
 

10.2. THE OPTION STATEMENT 

An LPL model can also contain option statements. They define various directives to 
control behavior of the LPL compiler, solver or other part of LPL. The syntax is: 

 
OPTION <ident> := <value> ; 
 

OPTION is a keyword, <ident> is an identifier and <value> is the value (numeric or 
alphanumeric) to be assigned to the option. The following options are implemented: 

 
OPTION binding := - (+)    (off/ON)   (index binding) 
OPTION unitCheck := + (-)  (ON/off)   (Unit checking) 
OPTION solver := <string> | Id        (Solver parameter interface) 
OPTION solver_options := <string>     (additional solver options) 
OPTION solver_list := <string>        (a list of solvernames) 
OPTION path := <string>            (directory paths) 
OPTION workingDir := <string>         (working directory) 
OPTION randSeed := <number>           (sets the random seed) 
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OPTION formatMask "<string>"          (defines a mask for a WRITE) 
OPTION db := <string>                 (a db connection string) 
 

10.2.1. APPLIED INDEX-LIST ON AND OFF WHILE PARSING 

Applied index-list can be dropped in an LPL model. Hence, expressions such as 
“SUM(i) a” and “SUM(i) a[i]” are both equivalent, if a is declared over i. By default, 
both notations are legal. If, however, the parse option 

 
OPTION binding := '+'; 
 

is used, then the modeler cannot drop the applied index-list and the parser checks of 
whether an applied indexlist was dropped, if so, a parse error is generated. The 
instruction  

 
OPTION binding := '-'; 
 

makes dropping again possible. By default applied index-lists can be dropped. The 
main purpose of this directive is model debugging (see also binding). 

10.2.2. UNIT CHECK ON AND OFF WHILE PARSING 

Normally, the commensurability of units within expression is checked while parsing 
the model. By default the parser runs with the unit check option ON: 

 
OPTION unitCheck := '+' ; 
 

There may be reasons that the model, or parts of it, must be parsed without unit check. 
The user can then remove unit checking by:  

 
OPTION unitCheck := '-' ; 
 

10.2.3. THE SOLVER INTERFACE PARAMETERS (SIP) 

LPL has a flexible and transparent solver interface. The communication between LPL 
and an solver is basically determinate by 23 solver interface parameters (SIP) 
(explained below) placed in the single solver parameter string (SPS). For later 
reference, we call these parameters SIP1, SIP2, ..., and SIP22). The SIPs are separated 
by commas within the SPS. They are defined in an OPTION statement as following: 

 
OPTION solver := 'solver parameter string';  (* the SPS *) 

That is: 
 
OPTION solver := 'SIP1,SIP2,...,SIP19,SIP20'; 
 

The SPS in the OPTION statement can also be an identifier in which case the 
identifier must have been defined before as a solver. Example: 
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OPTION solver := cplex; 
 

In this case, a solver option  
 
OPTION solver ALIAS cplex := '......'; -- the SPS for solver Cplex 

must have been defined before. Note that several solvers can be predefined and are 
distinguished by the ALIAS name. 

 

The solver interface parameters are (SIP1 to SIP23): 

1. Indicates what to do before the solver is called. It is: 
 
'' (empty) nothing to do (the default) 
'lpo' the LPO-file is generated before solving 
'mps' the MPS-file is generated before solving 
'lpo+mps' both LPO- and MPS-file are generated 
'equ' the EQU-file is generated before solving 
else the string is interpreted as a program name to be 

executed as a child process (while the parent waits) 

Example: If the SIP1 consists of the string lpo, then LPL generates the LPO-file just 
before it calls the solver. 

 

2. Indicates what to do after the solver has terminated. It is: 
 
'' (empty) nothing is done (the default) 
'sol' the SOL-file and the DUA-file are read after solving 
'lpx' the LPX-file is read after solving 
 

Example: If the SIP2 contsists of the string sol, then LPL reads the SOL-file just 
after the solver terminates. 

3. The program or the library that is called as solver. It is: 
 
'lpl-lp' LPL's own LP solver is called (the default) 
'perm' LPL's internal permutation-heuristic is called 
'cplex*.dll' The dynamic link library of CPLEX is called 
'cplex6*.dll' The library of CPLEX65 or CPLEX60 is called 
'mops*.dll' The dynamic link library of MOPS solver is called 
'mosek*.dll' The dynamic link library of MOSEK solver is called 
'xpress' The dynamic link library of Xpress solver is called 
'xa' The dynamic link library of XA solver is called 
'loqo' The dynamic link library of the Loqo solver is 

called 
'conopt' The dynamic link library of the ConOpt non-linear 

solver is called 
'cfsqp' The dynamic link library of cfsqp solver is called 
'OptQuest' The dynamic link library of OptQuest solver is 

called 
'Internet' The model is sent to an Internet server 
'' or 'nosolver' nothing is done (no solver is called) 
else the program specified by the parameter is called 
 

4. The name of the solver options mapping file (SOMF) (explained below), 

5. The name of the solver parameter file (SPF) (explained below), 

6. The content of the solver parameter file (the solver options), the different 
options are separated by a newline char (\n). 
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7. The string replacing '%3' within the SIP6, if the model has to be maximized, 

8. The string replacing '%3' within the SIP6, if the model has to be minimized, 

9. The filename from which LPL has to read the solution (SOL-file), 

10. An integer indicating on which physical position on a line in the SOL-file the 
first character of the variable name is found, 

11. An integer indicating on which physical position on a line in the SOL-file the 
first digit of the value is found, 

12. An integer indicating the length of the numerical value of the variable in the 
solution file, 

13. The filename from which LPL has to read the dual values (DUA-file), 

14. An integer indicating on which physical position on a line in the DUA-file the 
first digit of the dual value is found, 

15. A substring searched in the SOL-file to indicate that the model is optimal, 

16. A substring searched in the SOL-file to indicate that the model is infeasible, 

17. A substring searched in the SOL-file to indicate that the model is unbounded, 

18. A substring containing the model types (see §7.3), separated by colons, that this 
solver can solve. An empty substring means that the solver has no restriction. 

19. The string replacing '%4' within the SIP6, if the model is a MIP (actually used 
only in Xpress). 

20. The string 'd' or 'dh' or empty. An empty string means that LPL will not 
generate derivatives or the Hessian, 'd' means to generate derivatives only, 'dh' 
means to generate derivatives and the Hessian. 

21. A solver dependent parameter: (Used actually for Cplex as wait-loop number). 

22. A solver dependent parameter: (waiting time in loop in secs). 

23. A solver dependent parameter: (display time interval in milli-secs of callbacks) 

 

All parameters (except parameter 8 and 9) may contain the following strings: 

'%1' : which is substituted by the model name 

'%2' : which is substituted by the objective function name 

'%3' : which is substituted by SIP7 or SIP8, depending whether the model is to be 
maximized or minimized. 

'%4' : which is substituted by SIP19, if the problem is a MIP-problem. 

'%%' : which is substituted by the solver options string defined in a OPTION 
solver_options := '......'; statement. 

Any other characters or strings are taken literally. (Note that a backslash initialize a 
non-printable character, see §3.7.) 
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The parameters 9 to 17 are used to read the solution back to the LPL system. They 
suppose that the solver writes the solution to a SOL-file and DUA-file. They must 
contain one variable name per line with its value. All lines not containing a variable 
name in positions specified in SIP10 is ignored. If a substring specified in SIP15, 
SIP16, SIP17 is found in the SOL-file, this is interpreted as a solver status (optimal, 
infeasible, or unbounded). 
Examples for SPS for several solvers can be found in the file lplcfg.lpl. 

COMMUNICATION BETWEEN LPL AND A SOLVER 

When LPL runs a solve statement, the following procedure is called: 

1 All constraints are generated (a model instance is created) and the problem type 
(see §7.3) is automatically detected by LPL. 

2 If the problem type is NONE then the procedure exits and no solver is called. 

3 Next the SIP1 is processed. 

4 The SOL- and DUA-files are erased if they exist and the values of all variables 
are set to zero. 

5 Next the solver options SIP6 are processed, that is, the parameters that are passed 
to the solver. 

1 all substrings '%0' ... '%3' within SIP6 are substituted as explained above, 

2 SIP6 is merged with the solver option string (SOS) define in a “OPTION 
solver_options := '...SOS...';”. If the SIP6 contains the substring '%%', it is 
substituted by the SOS, otherwise the SOS is appended to the SIP6. (We 
call the resulting string eSIP6). 

3 SIP4 (if not empty) is interpreted as a filename (the solver options mapping 
file (SOMF)) and all solver options in the eSIP6 are substituted by a 
corresponding entry in the SOMF file (see below the SOMF file), 

4 SIP5 (if not empty) is interpreted as a filename ( solver parameter file 
(SPF)) and the modified eSIP6 string is written to this file. 

6 The solver is called as specified by the SIP3. 

7 The SIP2 is processed. 

 

Example 1: Suppose a model contains the two following OPTION statements: 
 
OPTION solver := cpl; 
OPTION solver_options := 'timelimit 60'; 
 

The solver cpl must have been defined before (typically in the file lplcfg.lpl) as 
following: 

 
OPTION solver ALIAS cpl := ',,cplex65.dll,cplex.prm'; 
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Note that all SIPs are empty except the third and the fourth for this solver. The model 
is handed over to the solver directly within the memory. LPL does this automatically. 
The solution is retrieved by LPL directly within the memory also. SIP3 says to call 
the DLL library of cplex65.dll (www.ilog.com) as solver in step 6 above. SIP4 is 
needed to substitute the solver options (see below, the SOMF) to work with the 
library. 

Example 2: Suppose a model contains the two following OPTION statements: 
 
OPTION solver := mopsSol; 
OPTION solver_options := 'XMXLPT=1\nXMXMIN=1\n'; 
 

The solver MOPS (www.mops.fu-berlin.de) must have been defined before (typically 
in the file lplcfg.lpl) as following: 

 
OPTION solver ALIAS mopsSol  := 'mps,sol,mops.exe,,XMOPS.PRO,\      
XFNMPS=\'%1.mps\'\nXMINMX=%3\nXFNLPS=\'%1.sol\'\nXFNIPS=\'%1.sol\'\n\ 
XOUTLV=3\n,\'max\',\'min\'\ 
,%1.sol,12,25,15,%1.sol,89,solution,infeas,unbound,LS:iLS:LP:MIP'; 

SIP1 is 'mps'; hence, at step 3 the MPS-file is created. In step 5 the solver options are 
processed. Suppose the model name is xyz.lpl, it is to be maximized, and the 
objective name is obj then the SIP6 will be translated into the string: 

 
XFNMPS=’xyz.mps’\nXMINMX=max\nXFNLPS='xyz.sol'\nXFNIPS='xyz.sol'\nXOUTLV=
3\n 
 

Next it is merged with the SOS string': 
 
XMXLPT=1\nXMXMIN=1\n 
 

SIP4 is empty, hence this string is left unchanged. SIP5 is ' XMOPS.PRO '. Hence the 
default configuration file XMOPS.PRO (the solver parameter file (SPF)) is created 
with the content of: 

 
XFNMPS=’xyz.mps’ 
XMINMX=’max’ 
XFNLPS='xyz.sol' 
XFNIPS='xyz.sol' 
XOUTLV=3 
XMXLPT=1 
XMXMIN=1 
 

These are the solver parameters that will be read from the MOPS solver. Next in step 
6, the solver specified in SIP3 is called, that is, the program mops.exe is executed. 
Next in step 7, SIP2 is 'sol'. Therefore, the file specified in SIP10 is read as a SOL-file 
and the file specified in SIP13 is read as a DUA-file. 

THE-FILE 

The solver option mapping file can be used to substitute solver options for any 
specified solver. An example is the file CPLEX11.PRM used for the CPLEX11 
dynamic library. As an example, the option “tilim 60” will be substituted with “1039 

http://www.ilog.com/�
http://www.mops.fu-berlin.de/�
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d 60”. This later will be interpreted by the LPL to CPLEX interface. The 
corresponding line in the CPLEX11.PRM file is: 

 
TILIM                 1039 d  Global time limit 

 

The line is separated into four parts from left to right: (1) the name as used in LPL’s 
eSIP6 (option solver part—see above) (here: TILIM), (2) the substitute (here: 1039), 
(3) an attribute (here: ‘d’), this is used in the LPL to CPLEX interface to call the right 
routine: possible values are ‘i’ (for integer values), ‘d’ for doubles, ‘s’ for string 
values). (4) the rest of the line, which is a comment for the user only. The four parts 
must be separated by at least one blank. The first part is not case-sensitive. 

The above entry will call CPLEX's routine CPXsetdblparam(env,1039,60). For more 
detail see the CPLEX library and the CPLEX parameter manuals. 

The SOMF-file can also be used for other solvers (for example xpress.prm for the 
Xpress solver). 

THE SOLVER STATUS 

When a solver was called, LPL will return the status of the problem as: 
 
0 'NOT SOLVED' no solver was called 
1 'UNBOUNDED' the problem is unbounded 
2 'INFEASIBLE' the problem is infeasible 
3 'ABORTED' the solver was aborted 
4 'TROUBLES' the solver had problems to solve the problem 
5 'HEURISTIC' the solution is not necessary optimal 
6 'NORMAL' the solver terminated normally (not necessary  

with an optimal solution) 
7 'OPTIMAL' an optimal solution was found 
 

The solver status is communicated to LPL by the means of several solver interface 
parameters (SIP15-17). The solver status (as number 0-7) can also be returned from 
LPL by the expression within the model: 

 
<ModelName>.stat ; 
 

where <ModelName> is the model name that has been solved. 

THE HEURISTIC SOLVER 

LPL comes with an integrated heuristic solver for certain problems (PERM), called 
permutation problems. A permutation problem is defined as following: Let π be a 
vector of the n numbers in the range [1,n]. The objective is to find the permutation(s) 
π i  over all n! permutations which minimizes a certain function f: 
 min

π
f (πi)  

This problem has many applications. Four solvers are directly integrated: (1) a 
heuristic based on the tabu search method, (2) a heuristic based on local search; (3) a 
random search solver; and (4) a full enumeration solver. The tabu search solver is 
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useful in finding good solution to many problems. The local search solver looks in the 
neighborhood repeatedly until it finds a local minimum and then stops. It has been 
shown to be useful for some problems. The random search solver is not a solver to use 
when a good solution is to be searched. It is rather to analyze the problems. It 
generates a sample of permutation and calculates the objective function for each 
permutation. It gathers the minimum, the maximum found and returns the means as 
well as the standard deviation (in the LOG-file). The full enumeration solver 
enumerates all permutations and returns the optimum. Needless to say, that this is 
only useful for very small problems.  

The solvers are invoked by one of the following lines: 
 
OPTION solver := tabuSol; 
OPTION solver := randSol; 
OPTION solver := locaSol; 
OPTION solver := enumSol; 
 

These options should only be used for permutation problems. LPL recognizes 
automatically, when a model is a permutation problem. Therefore, one must 
communicate this within the LPL model by one of the four options. The modeler, 
however, should be careful not to use the heuristic solver for problems that are not 
permutation problems. 

The user can configure, in a limited way, these four solvers through the SIP6. For 
example, for the TABU solver the SIP6 is: 

 
0:60:30000:17:100:20:8:1:1 
 

These are 9 numeric parameters separated by colons are passed to the heuristic solver. 
The nine parameters are: 

- Number indicating which solver to use (0=tabu, 1=rand, 2=local, 4=enum), 

- Time limit in seconds (60), 

- Number of maximal iterations (30'000) 

- Length of TABU list (17) (only for tabu) 

- The number of iterations at the beginning after which the search of the 
neighborhood is switched to an exhaustive search of all O(n2) neighbors 
(intensive search) (100) (only tabu) 

- Switch to a slightly randomized solution if the solution does not improve after this 
number of iterations (20) (only tabu) 

- The number of random exchanges to generate the slightly randomized solution of 
the last parameter (8) 

- Indicate whether to use a randomized solution to start the search or not (0=not 
randomized, 1=randomized) (1), 
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- Indicates whether to be mute or to show immediately whether an improved 
solution has been found (0=to be mute, 1=yes write them). 

10.2.4. DIRECTORIES AND FILE PATHS 

The paths to all directories used in LPL are collected in the directory list. All files 
(even DLLs) are searched in this list of directories and in the following order. The 
paths in the list are separated by semicolons. 

The directory list is built (in this order) from 

1  The working directory or the current directory, 

2 The directory of the executable, 

3 The lplpath directory list, 

4 The user-defined directory list. 

(The directory list is displayed in the <LPL : Options> window of the Windows 
version of LPL or at the beginning of a compilation when the compiler switch 'ww' is 
used.) 

The working directory is normally the directory specified in the first program 
parameter where the model file is stored. If no model file is specified, it is the 
directory of the executable or the current directory from where the executable was 
launched. The working directory can be changed within LPL using the option 

 
OPTION workingDir := '<workingDirectoryName>'; 
 

(In the Windows version the working directory is also changed through a open file 
dialog box; however the SaveAs dialog does not change it.) All intermediary files 
generated by LPL are saved in the working directory (except the files in the WRITE 
statement specified by their own path). 

The directory of the executable is the directory where the executable (lplw.exe or 
lplc.exe or the application which uses the lpl.dll) is located. 

The lplpath directories is set by the environment variable 'LPLPATH'. Add the line: 
 
set LPLPATH := <my lplpath directory list>. 
 

to the autoexec.bat file and reboot the machine;  or (in Windows 2000/XP) add 
interactively the environment variable. 

The user-defined directories are specified by the option 
 
OPTION path := '<List of directories separated by ';'>' 
 

Example (note that the backslash is an escape character): 
 
OPTION path := 'c:/lpl;c:/lpl/models;c:/solver/cplex'; 
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The following indicate how LPL looks for files: 

- The file lplStat.txt are only written to the directory of the executable. 

- All other files are read and searched in the directory list (in the order of the list), 
and they are written to the working directory by default. 

10.2.5. RANDOM NUMBER INITIALIZATION 

The built-in random generator can be initialized with this option: 
 
OPTION randomSeed := 1;    -- sets the random seed to 1 
 

10.2.6. FORMAT MASKS FOR WRITES 

The option 
 
OPTION formatmask ALIAS mask1 ‘ <content of the mask> ‘; 
 

defines a format mask for one or several subsequent WRITE statements. In a 
subsequent WRITE statement one then can use this mask as: 

 
WRITE ‘@mask1’ : .... ; 
 

If the mask in a WRITE statement begins with a @ character then it points to a format 
mask definition and takes that mask. 

10.2.7. DATABASE CONNECTION STRING 

This option allows the modeler to specify a connection string that is necessary to 
connect to the specific database system. The connection string specifies the 
information needed to connect to a database. Examples are given in the file 
lplcfg.lpl. 

10.3. THE FILE LPLCFG.LPL 

If the file lplcfg.lpl exists in the LPL-path, then this file is compiled before the 
model file. The file lplcfg.lpl is treated as an include-file after the MODEL 
declaration at the very top of each model file. The user can define different options 
(for example solver interface parameters) which are available in every model. 

10.4. COMPILER SWITCHES 

The LPL compiler can be called with three parameters. The first is a filename (a 
model in LPL syntax). The extension of the filename must be lpl, but is not needed 
when launching LPL. The second parameter is an optional string of at most 8 
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characters as follows to instruct LPL how to compile – the compiler switches. (The 
third is explained in the next section, §10.5). 

 
lplc <modelfile> [CompilerSwitches] [APL] 
 

CompilerSwitches can be empty or can contain any characters. The following 
characters, however, modify the default behavior of the compiler: 

 
'a' : The NOM-files are never overwritten, but they are appended. 
'c' : The solver is not called. 
'd' : Debugging information is written to the BUG-file. 
'dd': more info to the BUG-file 
'e' : Generates the EQU-file 
'ee': Generates the EQU-file with long names (eventually) 
'eee': Generates sparse EQU-file (only variables with value<>0)  
'f' : Create a comment file (modelfile.eng) after parsing 
'g' : Given a model with randomized data (RND()), run it for a 

number of times with different random initialization 
'h' : No WRITE statement is executed 
'i' : Generates the INT-file 
'j' : Generates the INT1-file 
'l' : Generates the LPO-file 
'm' : Generates the MPS-file 
'p' : Generates slack variables for all constraints while parsing, 
      Adds a new minimizing function: minimize all slacks. 
'q' : Generates a SQL-script and a (LPL) MODEL file. 
'r' : Only run the model (do not parse it anymore) 
's' : Only parse the model, but do not run it 
'ss': Only parse, strips off all comments, stores a new file 
'sss': Only parse, strips off all comments, stores a new file, encrypt 
't' : Generates a partial LATEX-file 
'T' : Generates a complete LATEX-file 
'u' : The constraints are not generated and a solver is not called 
'v' : Write output to file lplStat.txt. 
'vv': Write output also to file lpllog.txt. 
'w' : Generates more output during compilation. 
'ww': Generates even more output during compilation. 
'x' : The configuration file lplcfg.lpl is ignored while parsing. 
'y' : <not documented> 
'z' : Compile all LPL models in a given directory (only lplc.exe) 
'1','7' : Level of translation of logical constraints into 0-1 

constraints. 
any other character does not modify the default behaviour. 
 

The order of the characters does not matter. Note, however, that there are 
interdependencies between the switches. The switches ‘ss’ and ‘sss’ need to be 
explained further: Using the switch ‘ss’, parses the model, strips all comments out and 
stores the model source in the LPL-file then exits. 

The switch ‘sss’, in addition of stripping all comments, replaces all identifiers in a 
way that the model cannot be read anymore by a user, but LPL still can run it. It is 
made to hide the knowledge modeled in the model to others. At the same time a CRP-
file is generated (a file with the same name as the model but with extension .crp), 
which maps the real names with the encrypted names. 

The switch ‘p’ is interesting when a model is infeasible. Running it with this switch 
will reveil the infeasibilities eventually. 
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10.5. THE ASSIGNED PARAMETER LIST (APL) 

One can call LPL (lplc.exe, lpls.exe, lplw.exe) with a third parameter: the assigned 
parameter list (APL). The parameter list must have the following format: 

 
ID=value,ID=value, ... 
 

ID can be any non-indexed PARAMETER (or STRING PARAMETER) name within 
a LPL model or it can be one of the strings 'solver', 'solver_options', ‘@VAR’, 
'@RL', '@DOC' , '@ID', '@IP', or '@IP1'.  

- If ID is a model parameter defined in the model, its value is assigned exactly in the 
same way, as if it where defined within the model. For example, if within the 
model xx.lpl a parameter aa  is declared as: 

 
PARAMETER aa;   -- with no value assigned 

 

and one calls the LPL compiler with 
 

lplc xx.lpl - aa=10 
 

then the parameter within the model gets the value 10 after a parse of the model 
xx.lpl. Several parameters can be assigned in this way. The assigned parameter list 
can also be set with the lpl.dll, just call it as: LPLsetP(12,‘aa=10’). 

- If ID is 'solver' then the corresponding solver will be used to solve the problem. 
If, for example, one uses 

 
lplc xx.lpl - solver=glpkSol 

 

then the glpkSol will be used. This supposes that 'glpkSol' was defined within 
lplcfg.lpl or the model. 

- If ID is 'solver_options' then the corresponding solver options will be used 
to solve the problem. If, for example, one uses 

 
lplc xx.lpl – “solver=cplex,solver_options=timelimit 10” 

 

then the solver cplex will be used with a time limit of 10 secs. This supposes that 
'cplex' was defined as a solver within lplcfg.lpl or the model as well as the file 
cplex.prm is available (see SOMF-file). 

- If ID is '@VAR' then a list of submodels are executed at the different variant points 
of execution. The value must begin with a variant name, followed by submodel 
names in parentheses. The submodel names must be separated by a `+´. If more 
than one variant is defined then they must be separated by a semicolon. The variant 
name can be omitted, in which case the submodels are executed at the default 
variant point. Example: 

 
  lplc xx.lpl - @VAR=va1(model1+model2);va2(model3+model4);(model6) 
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 When LPL is called with the previous APL parameter, then at the variant point 
va1 the models model1 and model2 are executed, at the variant point va2 the 
models model3 and model4 are executed, and at the default variant point the 
model model6 is executed. 
In any case, without a default variant parameter, a submodel called data is 
executed at the default variant point if it exists. 

- If ID is '@RL' (RandomLoop) is used together with the compiler switch 'g'. One can 
choose the number of randomized solutions. For example the call to: 

 
lplc xx.lpl g @RL=23 

 

This command will run the model for 23 times each time with another random 
seed. This supposes also that some data within the model are generated randomly. 

- If ID is '@DOC' then value must be a filename, (If the filename begins with a ‘*’ 
then this character will be replaced by the LPL model filename). The file must 
contain the documentation part of the model (see 11.6). In this case the actual 
documentation will be replaced with the documentation in this file after a parse. In 
this way, one can generate multiple language documentations for a model. 

- (The three strings '@ID', '@IP', or '@IP1' are for internal use only.) 

10.6. MODEL DOCUMENTATION 

The compiler switch 't' or ‘T’ will generate a documentation file in LaTeX (called 
TEX-file): ‘t’ generates a partial LaTeX file that can be included into another LaTeX 
document using TeX’s \include{…} command, and ‘T’ generates a standalone 
LaTeX file that can be translated into a PDF or HTML document using free software.  

The model documentation in the LPL source code is part of the model source code. It 
consists of comment attributes and documentation comments. 

1. Comment attributes are strings within quotes (“……”) and have already been 
explained in chapter 4. 

2. Documentation comments are text of an unlimited number of lines enclosed within 
(**……*) in the model code. Leading spaces and * (a star sign) on all lines within 
the documentation comment are ignored. For example: 

 
(** The purpose of this model component is 
  * to optimize the profit. The variable 
  * is the quantity of the product … . 
  *) 
MODEL OptProfit; 
  …… 

A documentation comment can be attached to every entity. It is normally placed in 
the source code before the formal declaration of the entity (as in the example 
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above: before MODEL OptProfit …). It can also be placed after if no other entity 
follows. This allows one to place the eventually large documentation comment for 
the main model after the formal model. Each documentation comment can contain 
any LaTeX specification and commands (that make sense in a particular context) 
because the model documentation is automatically processed by the TeX/LaTeX 
typsetting system. 

The documentation comment in LPL may also contain one the three following @-
specifications. 

1. @Here is text@ : The part “Here is text” will be typesetted as is in a 
type-font style, typically as: Here is text. The user must care to place a 
beginning @ and an ending @. The documentation tool in LPL translates  
           @Here is text@ 
into the verbatim LaTeX code: 
       \verb?Here is text? 

2. @. (@ and a dot , beginning on a new line): This translates into an 
enumerated list. The list must end with an empty line. 

3. @@ (two @’s on a new line): Includes the formal model in a verbatim and 
shaded environment. 

4. @§   (@ and a ‘§’): adds the whole model in Math-Mode. 

5. @! (@ and a exclamation mark)  adds the LaTeX commands 
\begin{shaded}{\small\begin{verbatim}       or 
\end{verbatim}}\end{shaded}             alternatively. 

 

(All specifications could also be realized – of course – by using the appropriate 
LaTeX commands.) 

 

The translation tool from LPL to a LaTeX code also uses a list of predefined TeX and 
LaTeX definitions, which are found in the file, called lpl.tex, distributed with all 
lpl packages. 

 

To generate a model documentation proceed as follows: 

1. Software needed: You’ll need LPL and a free LaTeX distribution (p.e. from  
www.miktex.org , download the minimal package from the Miktex Web-site 
and install it). 

2. Write the documentation in the LPL-code. 
3. Generate the TEX-file using lpl’s command switch ‘T’ (where mymodel.lpl 

is the LPL model file: 

http://www.miktex.org/�
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   lplc mymodel T 

4. Translate the resulting TEX-file (here mymodel.tex) using pdflatex in the 
Miktex distribution. This program is by default installed in directory 
c:\texmf\miktex\bin. Hence execute 
  c:\texmf\miktex\bin\pdflatex mymodel.tex 

5. The result is a PDF-file, that is called mymodel.pdf in our case. 

 

The whole documentation can also be in a separate file. The file can be read 
automatically after a parse by the @DOC APL-parameter. The structure of the file is 
as follows: 

1. Each comment attribute begins with the two character ## followed by the 
entity name to which it belongs. Then follows a blank and the comment itself. 
For example, if the parameter a is defined as: 
    parameter a “Comment to this parameter”; 

then the file would contain a line as follows 
    ##a Comment to this parameter 

2. Each documentation comment begins with the two characters #& and followed 
by the entity name to which it belongs. Then follows a blank and the comment 
itself. 

3. Each formatting string in a Write statement begins with the two characters #! 
and followed by the entity name to which it belongs (the entity name is 
‘W’+nr , where nr is the number of the Write statement. Then follows a blank 
and the comment itself. 

4.   

 

Each comment in the file can contain multiple line the comment ends when an ## , an 
#& , an #! or an eof occurs. The last newline characters are removed from the 
comment content. 

10.7. CALLABLE FUNCTIONS FROM LIBRARIES 

The external-proc-call instructions make a certain number of external procedures 
available within an LPL model from two libraries: The Sys and the Draw library. 

10.7.1. THE SYS LIBRARY 

The Sys library contains the following function: 
 
Sys.Call(‘notepad.exe file.txt’);  -- calls an external program 
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(More library functions will be added soon.) 

10.7.2. THE DRAW LIBRARY  

The Draw library allows one to draw within LPL. The call of these functions is as 
follows: 

 
Draw.Line(x,y,x1,y1[,c2,w]); draw an line (default c2=0, w=1) 
Draw.Rect(x,y,x1,y1,c1,[c2,w]); draw a rectangle (def: c2=c1, w=1) 
Draw.Ellipse(x,y,x1,y1,c1,[c2,w]); draw an ellipse (def: c2=c1, w=1) 
Draw.Ratio(x,y); defines the x- and y-ratio (zoom) 
Draw.Ratio(x,y,y1); defines also bottom-left as origin 
Draw.Text(t,x,y[,a,h],c3); write a text to the picture 

(default: a=0, h=12) 
Draw.setFont(t,h); sets the font an dits height 
Draw.Density(x,y,x1,y1,p,n,c); draw a density function of p 
Draw.Back(f); load and draw a background picture 

stored as JPEG- or BMP-file. 
Draw.SaveJPEG(f); save a JPEG-file of the drawing 

space and clear the drawing space 
 

The tuple (x,y) gives the coordinate of the top-left of a box, (x1,y1) the bottom-right 
of the box, c1, c2, and c3 are color numbers (c1 is the fill color and c2 is the pen color 
and c3 is the font color), w is a pen width, t is a text of up to 255 chars, a is a number 
for the angle, h is the font height, f is a filename, p is a parameter (variable)  defined 
in the model. The parameters within [ and ] are optional. 

All instructions draw on a single drawing space of 2000x2000 pixels with the top-left 
point as the origin. The default ratio is (40,40) [Draw.Ratio(40,40)]. This means 
that any (x,y) point is interpreted as (40*x,40*y) pixels. Example: 

 
Draw.Line(1,1,2,3,0,1); 
 

This instruction draws a line from pixel point (40,40) to (80,120) with color 0 and pen 
with 1. If a third parameter y1 in Draw.Ratio is used, then the origin is put at the 
bottom-left point (0,y1) (with y1<=2000) and the space to draw on is (0,0) to 
(2000,y1). The color are specified as numbers. They can be attributed through the 
function RGB(r,g,b), which assigns a color in the RGB (red,green,blue) color space 
(with 255≥r,g,b≥0). Hence, RGB(0,0,0) means black (no color), and 
RGB(255,255,255) means white (saturated all three colors), and RGB(255,0,0) 
means red (red only saturated). 

Another way to assign the color is by any positive number or any expression that 
result in a positive number. The color numbers are assigned as follows:   
 Grey gradient: 32 to 63 
 Red gradient: 64 to 91   
 Green gradient: 92 to 127   
 Blue gradient: 128 to 159   
 Yellow gradient: 160 to 192   
 Magenta gradient: 193 to 223   
 Cyan gradient: 224 to 255   
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The numbers 0 to 31 are reserved for a list of saturated colors. Model examples to 
study the use of LPL’s drawing library are tutor21.lpl and tutor22.lpl. 

10.8. MODEL FILE ENCRYPTION  

The LPL files (model files) can be encrypted. The LPL compiler automatically 
recognizes if a file is encrypted and takes the necessary steps. The user does not 
intervene in any case. The user can only encrypt a file or decrypt a file using the local 
popup menu in the lplw.exe browser’s editor. To encrypt and to decrypt, the user must 
enter a key (password). Each file in a model project can be encrypted separately and 
with a different key and can only be decrypted with the same key. 

10.9. UNDOCUMENTED FEATURES OF LPL 

Undocumented features are extension of LPL on an experimental basis. That is, they 
can be removed or modified at any time.  

1. (LPL4.43h) The $ operator to work with very large data cubes: An example is 
given by the following model: 

 
(* undocumented feature in LPL the $ attribute and the $ function *) 
 
MODEL test; 
  SET i := /1:10/; j := /1:5/; 
    ij{i,j} := /1 2 , 2 3, 3 4, 4 5 /; 
    newij : 1..#ij  "make a basic set out of an indexed set"; 
 
  PARAMETER x{ij} := ij; y{newij} := 10*newij; 
    a{i,j} := y[$ij];  -- use of $ 
 
END 
 
Explain: 
The cardinality of i is 10, of j is 5, and of ij is 4. 
But the Cartesian product of ij is 50. That is, each element of ij  
is mapped to the space from 1 to 50. The four elements (1,2), (2,3),  
(3,4) and (4,5) are mapped to the four numbers 2, 8, 14, and 20. 
It corresponds to the lexicographic ordering of the four elements in ij. 
This can be seen, if you look at the parameter x. 
Certainly, x also only contains four elements, but still they are mapped 
to the space from 1 to 50. 
By introducing a new set newij – with the same cardinality than ij -- one 
introduces a new basic set of the same cardinality as ij (four). The 
parameter y now, is mapped into the integer space from 1 to 4 (not from 1 
to 50, like x). 
 
To make the correspondence between the two sets (ij and newij),  
$ can be used as an unary function in an expression,  
which makes the transformation between the two mappings (see parameter a). 

2. Compiler switch 'k' has the effect that SETs are read at once and cannot be 
extended later. This allows one to read a subset on primary keys of a database without 
modifying all the READ statements, for example. Suppose the primary key ID of a 
table contains 10 elements (ten records). An READ only reads 5 records (by a 
SELECT statement for example), then all derived tables containing the foreign key ID 
only read the corresponding records containing the 5 elements. No SELECT is 
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necessary. (For an example see tutor18.lpl, run the model with and without the 
OPTION 'k' and compare.) 

3. You can use a parameter in the syntax as follows: 
 
PARAMETER M := 10; 
SET i : 1..M; 

Use this only for a single definition of  i. 

4. The keyword ADDM (a function) adds an element to a set at run-time. Use it as: 
  
SET i; 
……… 
i := ADDM(‘1’); 
………  
 

5. Option compilerSwitch:=‘wwvv’;  sets the compilerSwitches. It is 
supposed that the user knows what he does! Use with care! 

 
6. Read a range from a EXCEL sheet: One can read a range from an excel sheet as 
follows: 
 
read from ‘xls:file.xls,[sheet1$A1:Z10]’ : a; 
 
The file specification must begin with ‘xls:’ followed by the excel file name. The 
‘table’ is a worksheet name followed by a ‘$’ then follows a upperleft lower right cell. 
The data are read cell by cell from left to right and top to bottom and assigned to a 
paramenter ‘a’ , a set a ect. in a lecicographic order. The modeler is responsible of 
setting right the dimesions (sets). 
This feature is good for quick and dirty reading from Excel.
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11. THE LPL RUNTIME LIBRARY 

The LPL package comes with a 32-bit DLL (Dynamic Link Library) called lpl.dll: 

It can only be used under Windows. The DLL allows the user to integrate  the 
complete LPL functionalty into an application written in another language, for 
example C++. This chapter is an overview on how to use it and gives examples. It is 
supposed that the reader is familiar with the DLL-programming under Windows or 
has at least some basic knowledge. 

The library exports procedures to access and modify LPL internal structures. It 
supposes that an LPL-file (a source code written in LPL) has been produced as text 
file (using a text editor). The package can generate different output-files, for example 
the LPO-file. It calls automatically a configured solver (see the file lplcfg.lpl) and 
finally, writes the result to a NOM-file, just like the lplc.exe or the lpls.exe 
can do. First the exported functions are listed and than several examples are given. 

11.1 EXPORTED PROCEDURES 

The dynamic link library lpl.dll exports the following procedures: 
 
procedure LPLsetCallbacks(c:TProc; w:TProcC); stdcall; export; 
procedure LPLinitParam; stdcall; export; 
procedure LPLinit(Fn:pChar; maxt,maxa,maxr:integer); stdcall; 

export; 
function  LPLcompile(opt:pChar):integer; stdcall; export; 
function  LPLcompileWithCallbacks(opt:pChar; c:TProc; 

w:TProcC):integer; stdcall; export; 
procedure LPLfree; stdcall; export; 
function  LPLwhere:integer; stdcall; export; 
procedure LPLgetErrMessage(n:integer; var msg:PChar); stdcall; 

export; 
function  LPLgetError:integer; stdcall; export; 
procedure LPLsetError(n:integer); stdcall; export; 
procedure LPLgetP(which:integer; var sP:pChar); stdcall; export; 
procedure LPLsetP(which:integer;sP:pChar); stdcall; export; 
function  LPLsolve(opt:pChar):integer; stdcall; export; 
procedure LPLsaveSnapshot(sP1:pChar); stdcall; export; 
procedure LPLloadSnapshot(sP1:pChar; add:integer); stdcall; export; 
procedure LPLgenACCESSdb; stdcall; export; 
 
function  LPLgetHandle(name:pChar):LPLhandle; stdcall; export; 
function  LPLgetFocusHandle:LPLhandle; stdcall; export; 
procedure LPLsetFocus(h:LPLhandle); stdcall; export; 
function  LPLisFocus:integer; stdcall; export; 
procedure LPLsetFirstEntity(genus:integer); stdcall; export; 
procedure LPLnextEntity(genus:integer); stdcall; export; 
procedure LPLgetElementList(n,enam:integer; var sP:pChar); stdcall; 

export; 
procedure LPLgetAttr(attr:integer; var sP: pChar); stdcall; export; 
function  LPLgetGenus:integer; stdcall; export; 
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procedure LPLPivotSetParam(which,n:integer); stdcall; export; 
function  LPLPivotGetParam(which:integer):integer; stdcall; export; 
procedure LPLPivotInit; stdcall; export; 
function  LPLPivotX:integer; stdcall; export; 
function  LPLPivotY:integer; stdcall; export; 
function  LPLPivotData:pChar; stdcall; export; 
procedure LPLsetSelect(n,what:integer); stdcall; export; 
 
function  LPLgetValue(n,attr:integer):TREAL; stdcall; export; 
procedure LPLgetValueS(n,attr:integer; var sP:pChar); stdcall; 

export; 
function LPLgetM(attr:integer):TREAL; stdcall; export; 
function LPLgetDependenyFrom(n:integer):LPLhandle; stdcall; export; 
function LPLgetDependenyTo(n:integer):LPLhandle; stdcall; export; 
function LPLgetDependenyKind(n:integer):char; stdcall; export; 

 

They are exported as follows: 
 
exports 
  LPLsetCallbacks,          -- not in lplj.dll 
  LPLcompileWithCallbacks,  -- only in lplj.dll 
  LPLinitParam, 
  LPLinit, 
  LPLcompile, 
  LPLfree, 
  LPLwhere, 
  LPLgetErrMessage, 
  LPLgetError, 
  LPLsetError, 
  LPLgetP, 
  LPLsetP, 
  LPLsolve, 
  LPLsaveSnapshot, 
  LPLloadSnapshot, 
  LPLgenACCESSdb, 
 
  LPLgetHandle, 
  LPLgetFocusHandle, 
  LPLsetFocus, 
  LPLisFocus, 
   LPLsetFirstEntity, 
  LPLnextEntity, 
  LPLgetElementList, 
  LPLgetAttr, 
  LPLgetGenus, 
 LPLPivotGetParam, 
 LPLPivotSetParam, 
 LPLPivotInit, 
 LPLPivotX, 
 LPLPivotY, 
 LPLPivotData, 
 LPLsetSelect, 

  LPLgetValue, 
  LPLgetValueS, 
  LPLgetM, 
  LPLgetDependencyFrom, 
  LPLgetDependencyTo, 
  LPLgetDependencyKind; 
 

The following types are defined as: 
 
integer 4 bytes 
pChar pointer to a null-terminated string 
TProc pointer to a parameterless procedure (4 bytes) 
TProcW procedure (s:pChar); stdcall; 
LPLhandle as 4-byte integer  (zero for nil pointer) 
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char 1 byte char 
 

Certain procedures must be called in a specific order. LPLinit must be called first to 
allocate the memory and to initialize all variables. Next one may call LPLcompile or 
LPLsolve. Several calls of these two functions can be made in any order. If the error 
value at the return time of one of them is different from zero -- which means that an 
error occurred -- then one can call GetErrorMessage and LPLgetError to find out 
more about the specific error. Finally, before leaving the library, one must call 
LPLfree to free the memory again. Certain procedure (p.e. LPLgetP) returns a string, 
this is marked as “var x: pChar”. In this case, the user only needs to pass a pointer to 
a memory location where he allocated space before. The procedure then fills the 
allocated memory with a zero-terminated string. It is in the clients reponsability to 
allocate enough space. The procedures are now explained in more details: 

 

LPLsetCallbacks allows the user set the callback (c) and to redirect the output of the 
LPL messages during the compilation (w). 

The procedure (parameter) c:TProc is LPL's callback procedure. It is executed once 
at the beginning of each statement while compiling; if c is nil, then a default empty 
callback procedure is executed (nothing is done). The user can hook her own 
procedure here to allow her to get the control periodically while LPL is compiling (for 
a typical callBack function see below at LPLsetError). 

LPL generates many messages depending on whether the compiler switch is '', 'w' or 
'ww' are set or not. All messages are handled by the callback procedure w:TprocC 
(second argument of LPLsetCallbacks). The user can write her own Write procedure 
and redirect these messages.  

Example: Suppose the user writes the procedure 
 
procedure MyWriteToLog(s:pChar); stdcall; 
begin writeln(s); end; 
 
procedure MyCallback; stcall; begin end; // do nothing 
 

now she assigns these procedures to LPL message stream by: 
 
... 
LPLsetCallbacks(MyCallback,MyWriteToLog); 
... 
 

Then all LPL messages will be printed wherever writeln writes. The MyWriteToLog 
procedure, however, can be much more complicated. The messages could be written 
into a LOG-window (like in lplw.exe). lplw.exe, by the way, uses exactly this 
method. Note that this procedure is not in lplj.dll. Use LPLcompileWithCallbacks 
instead. 
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LPLinitParam handles the startup (console) parameters of the application that 
includes lpl.dll (model name, compiler switches) and passes them to LPL.  

Suppose a program MyProg  (using lpl.dll as part of its application) is called as: 
 
MyProg test.lpl ww 

then LPL’s (1) the model name (‘test.lpl’) and (2) LPL’s compiler switches (‘ww’) 
are overwritten by the two parameters. LPLinitParam should be called once only at 
the very beginning even before LPLinit . 

 

LPLinit allocates memory and initializes the internal store of LPL. The parameters are 
as following: 

 
Fn is the modelname. It will overwrite a previously 

assigned modelname. A empty string does not 
overwrite the modelname. 

maxt number of bytes allocated for strings, set elements, 
and texts (default is 20000). 

maxa 8*number of bytes for non-zero numerical data 
(default is 20000) 

maxr roughly the length of the LPO-file (default is 
20000) 

 

LPL has an automatic allocation mechanism for memory and the user does not need to 
do something special. Assigning the three parameter maxt, maxa and maxr to 0 – 
hence calling LPLinit as:  LPLinit(Fn,0,0,0) – is normally the best choice. LPL 
then will allocate a default amount of memory. If later in the run this turns out to be 
too small then LPL’s memory manager executes an efficient reallocation. Nothing is 
to be done by the user. 

The minimal values of the three parameters are reported at the end of a run in the 
lpllog.txt file (option wwvv). The user of lpl.dll could then copy these thee values 
into the parameters of the procedure LPLinit in order to minimize LPL’s internal 
reallocations. 

 

LPLcompile compiles the file defined previously by LPLinitParam or in the 
procedure LPLinit as model name using the compiler switches opt. The switches are 
defined in the reference manual (see Compiler Switches). 

If LPLcompile succeeds, its return value is zero. If LPLcompile fails to compile and/or 
run the model, an error is generated and the return value is the error number. Its 
message can be returned by the function LPLgetError. This number reflects an error 
message in the text file lplmsg.txt. The message file must be present to get an error 
message. 
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LPLcompileWithCallBacks  is the same as LPLcompile. However, it comes with two 
further parameters (the two callback parameters in LPLsetCallbacks). This function is 
only exported from the lplj.dll. 

 

LPLfree frees the memory and clears the LPL store completely. It should be called 
once at the end. LPLinit and LPLfree should be used in pair. After a call to LPLfree, 
one can again call LPLinit to reallocate the memory for LPL (which should be 
followed by another LPLfree at the end). 

 

LPLwhere returns an integer value depending on the state of the LPL compiler: 
 
-1: In an error state (after an error occurred) 
0 : At startup or after calling LPLfree 
1 : After calling LPLinit 
2 : After parsing 
3 : After running (no model instance created) 
4 : After running (model instance created) 
6 : while parsing 
7 : while running 
8 : while constraints generating 
9 : while solving 
10 and higher: the state is:  “multiple snapshot analysis” 

 
LPLgetErrMessage returns the corresponding error message in file lplmsg.txt, 
given its error number. The first parameter is the error number. It must correspond to 
an error number contained in the first three positions of a line within the file 
lplmsg.txt. The second parameter is the returned message. 

 

LPLgetError returns the last error of a compilation. It is zero, if no error occurs 
otherwise it is an positive integer from 1 to 999. This number is interpreted as the first 
three digits on a line in the file lplmsg.txt. 

 

LPLsetError can be used to set an error (in particular the error 599 (user abort). But 
this works only if no error has been occurred prior to this call. Hence, it can be called 
only once, any other call has no effect. The procedure LPLsetError is useful in the 
callBack function (parameter c in the procedure LPLsetCallbacks). A typical callBack 
function for LPL is (it is used in the lplw.exe): 

 
procedure MyCallBack; 
begin 
  case LPLwhere of 
    0: Form.Label2.Caption:='No model'; 
    1: Form.Label2.Caption:='LPL kernel initialized'; 
    2: Form.Label2.Caption:='Model parsed'; 
    3: Form.Label2.Caption:='Model ran'; 
    4: Form.Label2.Caption:='Model ran/instance created'; 
    6: Form.Label2.Caption:='parsing...'; 
    7: Form.Label2.Caption:='running...'; 
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    8: Form.Label2.Caption:='constraint generating...'; 
    9: Form.Label2.Caption:='solving...'; 
  end; 
  SouForm.Update; 
 
  if PeekMessage(msg,0,0,0,pm_remove) then DisPatchMessage(msg); 
  if flagSet then begin LPLsetError(599); flagSet:=false; end; 
end; 
 

This function must be assigned while calling LPLsetCallbacks, for example: 
 
LPLsetCallbacks(MyCallBack,nil) 
 

While compiling/running the model (using LPLcompile) this function then checks 
periodically in which state the LPL compiler is and returns a message to the 
Form.Label2.Caption label. Then it checks Windows events to be hooked on. Finally, 
it calls LPLsetError to abort the compilation, if flagSet is set. The Boolean flagSet 
typically is set if the end-user clicks on an ABORT-button. 

 

LPLgetP returns different information pieces from the LPL kernel depending on the 
first parameter which. The returned information is stored in the second parameter sP. 
If which is the number as follows then the returns string is given as: 

 
1 : the actual modelname 
2 : the actual compiler switches 
3 : the size of maxa (in LPLinit) 
4 : the size of maxt (in LPLinit)  
5 : the size of maxr (in LPLinit) 
6 : the Filesearch path (all dirs in which LPL looks for a file) 
7 : the actual working directory 
8 : the LPL version 
9 : the directory of the started application 
10: the problemtype (if LPLwhere>0) 
11: the solver status as string (if LPLwhere>0) 
12: the assigned parameter-list (see : APL) 
13: the log message 
15: the clientID 
16: version type: (Free, Professional, Enterprise) 
otherwise : sP is the empty string 
17: parameter guiding the generation of DB or snapshot 
 

The problem type and the solver status are explained elsewhere. 

 

LPLsetP writes information in the same way as LPLgetP gets it. If the parameter 
which is the number as follows then the following information is written by the 
parameter sP: 

 
1 : the modelname 
2 : the compiler switches 
6 : the File search path is extended by sP 
7 : the working directory 
12: the assigned parameterlist (see : APL) 
otherwise : do nothing 
17: parameter guiding the generation of a Database (0:all entities, 

1:data (parameters and sets only), 2,3: variable 
only. 
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LPLsolve solves an instantiated model in a LPO-file and saves the result in the LPX-
file. It loads a model store in the file <modelname>.LPO, calls the appropriate solver 
and writes the solution to an LPX-file then exits. The parameter opt is the same as for 
LPLcompile (the compiler switches). 

 

LPLsaveSnapshot saves a snapshot of the data stored in the LPL-kernel to a file, 
called snapshot-file. The parameter sP1 is the filename. It should have filename 
extention sps or sns. 

 

LPLloadSnapshot loads an existing snapshot file previously saved with 
LPLsaveSnapspot. The first parameter (sP1) is the filename, the second parameter add 
is an integer. If add is zero then LPL's data store is cleared and replaced by the data in 
the snapshot. If add is different from zero, then the store is prepared to accept multiple 
snapshots. If add is -1 then a second snapshot is read as a comparative snapshot. 

 

LPLgenACCESSdb generates a new ACCESS database from the actual LPL store of 
a model. Make sure that the empty database access.mdb is accessible in the directory 
list of LPL. 

 

The next procedures work with a focus, that is, an internal pointer to a given entity of 
the model, and an LPLhandle. LPLhandle must be defined as a 4-byte integer. The 
focus can be used to retrieve information from the focused entity. The user can set the 
focus to any entity using the LPLsetFocus. While running a model,the focus is set 
automatically to the actual executing statement. This allows the user to access the 
attributes of the actual executing statement through the callback Function. 

 

LPLgetHandle gets an LPLhandle to an entity given by a name (argument name), if 
possible. It is Zero if undefined. The argumentr name can be in dot-notation. Hence, if 
a name (say ‘abc’) is defined in a submodel (say ‘mySub’), then the name should be 
‘mySub.abc’ (using the dot-notation of the identifiers). Note that (since LPL is case-
sensitive) the name must exactly match the case-sensitivity of the declared entity 
name. 

 

LPLgetFocusHandle returns an LPLhandle to the focus. 

 

LPLsetFocus sets the focus to a gentity given by an LPLhandle (argument h), if 
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possible. While running, the focus is set automatically to the actual executing 
statement. 
 

LPLisFocus returns true of false of whether the focus is set or not. Suppose that a 
model does not contain a SET entity, then a call to to LPLsetFirstEntity(1) 
cannot set the focus, hence a subsequent call to LPLisFocus returns FALSE. 

 

LPLsetFirstEntity gets an internal focus to the first entity of a specific genus, is 
possible. The genus is given by an integer with the following meaning: 

 
0  : any genus 
1  : SET declaration 
2  : PARAMETER declaration 
3  : VARIABLE declaration 
4  : CONSTRAINT declaration 
5  : UNIT declaration 
6  : MODEL declaration 
7  : MAXIMIZE, MINIMIZE, QUERY statement 
8  : READ statement 
9  : WRITE statement  
10 : CHECK statement  
11 : OPTION statement 
12 : VARIANT statement  
13 : IF-(ELSE) statement  
14 : WHILE statement  
15 : FOR statement  
16 : internal proc call  
17 : external proc call  
18 : model call  
19 : Asignment statement 
20 : ELSE (part of IF) 
21 : END (WHILE,IF,FOR)  
22 : END (MODEL)  
23 : else (others) 
  

Example: A call to LPLsetFirstEntity(0) sets the focus to the first entity – this 
must be the top-most MODEL entity of the model, since each model begins with a 
model entity. A call to LPLsetFirstEntity(1) sets the focus to the first SET 
entity within the model. 

 

LPLnextEntity sets the focus the next entity, if possible, within the entity list of a 
corresponding genus. 

 
A call to one of the three procedure LPLsetFocus, LPLsetFirstEntity, and 
LPLnextEntity will set an internal HasFocus to true or false, depending of whether the 
call was successful. This value can be returned by LPLisFocus.  
As an example let us run through the whole model an collect all SET names. The code 
would be something like the following: 

 
Declare : ThisSetName AS String 
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LPLsetFirstEntity(1)      //sets the focus to the first SET entity 
while LPLisFocus() DO     // check the focus 
   ThisSetName = LPLgetAttr(4)  //return the SET’s name 
   LPLnextEntity(1)             // go to the next SET entity 
endwhile 

 

LPLgetGenus returns the genus of the focused entity. The genus return value is given 
in the list above in the LPLsetFirstEntity definition. 

 

LPLPivotSetParam sets a parameter for the pivot table generation. These parameter 
should be set before the LPLPivotInit function is called. If none is set, then default 
parameters are used. The function parameter which specifies which of the pivot 
parameter has to be set. The function parameter n specifies the value of that pivot 
parameter. which can be: 

 
1 : the number of horizontally expanded indexes 
2 : the number of excluded indexes 
3 : the attribute to be returned (see LPLgetValue function) 
4 : The aggregate operator (0:none, 1:sum, 2: count, 3:average) 
5 : The element or string name (0:element, 1: string) (second 

parameter of LPLgetElementList) 
6 : The sparcity index yes or no (0: no, 1: yes) 
7 : The sparcity of the table (0: no, 1: yes) [--does not yet work] 
8 : The expression (0-5) 
9 : The subtree node (0 to …) 
-1: Sort on the n-th row/column (for cols n is negative) 
-2: Sort is ascending (n=0) / decending (n<>0) 
10-29 : the order of the indexes (permutation) 

The ordering of the indexes must be a legal permutation beginning at 1; if not LPL 
will take the default ordering. For example: 

LPLPivotSetParam(10,2); 
LPLPivotSetParam(11,1); 
LPLPivotSetParam(12,3); 

means that the second index should be at the first position, the first index at the 
second position, and the third index at the third position. 

 

LPLPivotGetParam returns the value of pivot internal parameter. The function 
parameter which specifies which parameter to be returned: 

1 : the total number of (non-empty) pivot elements 
2 : the total number of rows of the pivot table 
3 : the total number of colums of the pivot table 
4 : the number of colums used for indexes 
5 : the number of rows used for indexes 
 

LPLPivotInit create an internal data structure for a focused entity. It must be called 
before the next three functions. 

  

LPLPivotX and LPLPivotY return the (x,y)-position of the current pivot element 
within a grid beginning with (0,0). 

 



CHAPTER 10 

110 

LPLPivotData returns the content of the (x,y) cell. After the data has been returned, 
this function advances to the next (non-empty) (x,y) cell. LPLPivotX returns -1, if the 
end of the table has been reached. Example code for representing a pivot table in the 
grid Grid: 

 
LPLPivotInit; 
while LPLPivotX<>-1 do begin 
  x:= LPLPivotX; y:= LPLPivotY; 
  Grid.Cell[x,y] := LPLPivotData; 
end; 
 

LPLsetSelect  sets the selection of elements for pivot tables of an index-set. The set 
must be in the focus. The parameter n is the n-th element of the set. If n is zero then 
the selection is applied to all elements. The parameter what is 1, 0 or -1, which means 
select, unselect or inverse the selection. (By default all elements are selected.) 
Example: 

 
LPLsetSelect(0,0); 
LPLsetSelect(2,1); 

Means to unselect all elements from the focused set and then select the second 
element. Subsequent pivottables that contain this index-set will only display the table 
with the second element. 

 

LPLgetElementList returns the n-th element-name-list or element string list of the 
focused entity. If the focused entity is not indexed then an empty string is returned, if 
it is a basic set then the n-th element of the set is returned. If it is indexed, then the n-
th entry is returned with the element names separated by a ‘@’ character. Example: 
Collecting all element names of an entity named 'abc' could be done with the 
following pseudo code: 

 
... 
integer n := 0; string sP := ' '; list of string Li; 
LPLsetFocus('abc'); 
while sP <> '' do begin 
  n := n+1; 
  LPLgetElementList(n,0,sP); 
  Li[n] := sP;  
endwhile; 
... 
 

If the n-th name does not exist, then sP is returned as an empty string. The second 
parameter is 0, if the element name is asked otherwise the corresponding STRING 
attribute is returned. Note that since data change in time, the n-th element name list 
might be different between different calls. 

 

LPLgetAttr returns an attribute of the focused entity. The returned string is stored in 
sP. Note that the attribute is returned exactly as it is stored in the source code of an 
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LPL model. The parameter attr can have the following value: 
 
1 : the pretype attribute is returned 
2 : the type attribute is returned 
3 : the genus attribute is returned 
4 : the name attribute is returned 
5 : the index attribute is returned 
6 : the expression attribute is returned 
7 : the condition attribute is returned 
8 : the range or the subject-to attribute is returned 
9 : the unit attribute is returned 
10: the if/priority/probability attribute is returned 
11: the to/from attribute is returned 
12: the first alias name is returned 
13: the second alias name is returned 
14: the quote attribute is returned 
15: the comment attribute is returned 
16: the default attribute is returned 
17: the string attribute is returned 
18: the FREEZE attribute is returned 
19: the dot-notated statement name is returned 
20: the name attribute as dot-notation is returned 
 
21: the delayed operator is returned 
      (' ': not important, '0' for table assignment, 
       '1' for :=, '2' for table defs, and '3' for definitions) 
22: <sourcefileName> , <line> , <col> of entity 
23: the expression attribute as a postfix tree 
24: the condition attribute as a postfix tree 
25: the range attribute as a postfix tree 
26: the unit attribute as a postfix tree 
27: the if-attribute as a postfix tree 
28: the to/from-attributes as a postfix tree 
 

Suppose the following entities have been declared in a LPL model: 
 
PARAMETER xx{i,j} UNIT [1000*m]; 
VARIABLE yy{i,j,k,l | i<>j AND a>8}; 
 

then the following calls to LPLgetATTR : 
 
LPLsetfocus('xx'); LPLgetATTR(5,sP); 
LPLgetAttr(9,sP); 
LPLsetfocus('yy'); LPLgetATTR(5,sP); 
 

return the following three strings in sP: 
 
{i,j} 
1000*m 
{i,j,k,l | i<>j AND a>8} 
 

If the entity does not have the corresponding attribute then an empty string is returned. 
If the parameter i is in the range [21…26], then a string is generated that represents an 
internal LPL expression structure in postfix-notation (only for advanced users!). The 
structure of the resulting string is documented elsewhere). An empty string is returned 
for an empty tree. 

 

LPLgetValue returns a value from the focused entity that is at the position n within 
the table of the focused entity. The parameter attr can be: 
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20 : the value is returned 
21 : the rhs is returned  
22 : the lhs is returned 
23 : the lrhs (slack) is returned  
24 : the lower bound is returned 
25 : the upper bound is returned  
26 : the dual value is returned 
27 : the lower range is returned  
28 : the upper range is returned 

 

LPLgetValueS is the same as LPLgetValue, but it returns a string for the focused 
entity. The parameter attr can be: 

 
30 : the value of a string parameter is returned 
31 : the enam is returned (the focus must be a set) 
32 : the snam is returned (the focus must be a set) 

 

LPLgetM returns a global data from LPL as double. The function returns the 
following value for the parameter attr : 

 
35 : solver status is returned [0..7]  
36 : problem type [0..15] 
37 : elapsed time of a model run in msecs 
 
 

LPLgetDependencyFrom, LPLgetDependencyTo, and LPLgetDependencyKind are 
only for advanced users and are not documented. 

 

11.2 USING THE LIBRARY 

The library can be used in every programming environment that allows one to load 
true 32-dll libraries. Several examples are given. 

11.2.1 USING THE LPL LIBRARY FROM DELPHI 

The three executables lplc.exe, lpls.exe and lplw.exe could be built quite easily using 
the LPL library lpl.dll. The complete source code of lplc.exe (using the library) in 
Delphi would be: 

 
program lplc;             //generates the program lplc.exe 
  {$APPTYPE CONSOLE} 
  const dllLpl = 'lpl.dll'; 
  type TProcC = procedure(var s:pChar); stdcall; 
       TProc  = procedure; 
 
  procedure LPLsetCallbacks(c:TProc; w:TProcC); stdcall; external dllLpl; 
  procedure LPLinitParam; stdcall; external dllLpl; 
  procedure LPLinit(Fn:PChar;maxa,maxt,maxr:integer); stdcall; external dllLpl; 
  function  LPLcompile(opt:pChar):integer; stdcall; external dllLpl; 
  procedure LPLfree; stdcall; external dllLpl; 
 
  procedure MyCallBack; begin {write('.');} end; 
  procedure MyWrite(var s:pChar); stdcall; begin writeln(s); end; 
 
begin 
  LPLsetCallbacks(MyCallBack,MyWrite); 
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  LPLinitParam; 
  LPLinit('',0,0,0); 
  LPLcompile(''); 
  LPLfree; 
end. 
 

The application assigns the callback and the LOG-output (LPLsetCallbacks), then it 
reads the parameters (modelname, compiler switches, size of memory allocation) 
(LPLinitParam), allocates memory for the LPL kernel (LPLinit), then it compiles and 
runs the model (LPLcompile) and finally cleanup the LPL kernel (LPLfree) and exits. 
Hence, this implements a complete run of an LPL-model. This application can be 
called as: 

 
lplc MyModel ww 
 

MyModel is a LPL-file and ww are the compiler switches. The two parameters 
MyModel and ww are automatically handled and read by the LPLinitParam procedure. 

11.2.2 USING THE LPL LIBRARY FROM VISUAL BASIC 

Here is a complete example with Visual Basic. We suppose that the LPL model file to 
compile is called “alloy.lpl”. Furthermore, the lpl.dll should be in Window's system 
directory to be found in this code. The complete code of the VB module is as follows: 

 
Option Explicit 
 
' Import functions from library lpl.dll  
 
Private Declare Sub LPLsetCallbacks Lib "lpl" (ByVal cl As Long, ByVal wl As Long) 
Private Declare Sub LPLinit Lib "lpl" (ByVal Fn As String, _ 
    ByVal maxa As Long, ByVal maxt As Long, ByVal maxr As Long) 
Private Declare Function LPLcompile Lib "lpl" (ByVal pOpt As String) As Long 
Private Declare Sub LPLfree Lib "lpl" () 
Private Declare Function LPLwhere Lib "lpl" () As Long 
Private Declare Sub LPLsetError Lib "lpl" (err As Long) 
Private Declare Sub LPLgetP Lib "lpl" (ByVal n As Long, s As String) 
 
Public AbortBottonClick As Boolean 'this is a boolean set to true by a button   
                     'click (clicking the botton aborts an LPL run) 
 
Private Sub MyWriteLog(s As String)  'LPL WriteToLog callback 
  ' Note that s cannot be accessed in VB, so it must be read through LPLgetP 13 
  Dim s1 As String 
  Dim p As Long 
  s1 = String(256, " ") 
  LPLgetP 13, s1 
  p = InStr(s1, Chr(0)) - 1 
  s1 = Left(s1, p) 
  Debug.Print s1 
End Sub 
 
Private Sub MyCallBack()  'LPL general callBack 
  Dim where As Long 
  Dim s As String 
  where = LPLwhere 
  s = Switch(where=-1,"error",where=0, "0", where=1, "LPL initialized", _ 
    where=2, "parsed", where=3, "run ok", where=4, "run ok", where=5, "5", _ 
    where=6, "parsing...", where=7, "running...", where=8, "const gen...", _ 
    where=9, "solving...") 
  ' Debug.Print "MyCallback returns: " & s 
  If AbortBottonClick Then LPLsetError (599) 
  AbortBottonClick = False 
End Sub 
 
Public Sub Compile() 
  Dim lRet As Long 
  LPLsetCallback AddressOf MyCallback, AddressOf MyWriteLog 
  LPLinit "alloy.lpl", 0, 0, 0 
  lRet = LPLcompile("wvv") 
  LPLfree 
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End Sub 
 
 
Sub main() 
  AbortBottonClick = False 
  Compile 
End Sub 
 

A call to the routine Main() will call the LPL-compiler, generate a MPS-file or a 
LPO-file (depending on the compiler switches), call the solver, and finally write the 
result into the NOM-file exactly as from the executable lplc.exe. Furthermore, all LPL 
callback messages are written into the Immediate (debug) window in VB as well as to 
the LOG-file lpllog.txt. 

11.2.3 USING THE LPL LIBRARY FROM C++ 

The following function in C++ shows how to compile and run the model “alloy.lpl” 
using C++. It does it just like the lplc.exe program from the LPL distribution. Note 
that the lpl.dll should be in Window's system directory or somewhere that it could be 
found from this code. The complete code of the C++ module is as follows: 

(I am grateful to Andreas Klinkert who has written and tested this code.) 
 
 
 
//----------------------------------------------------------------------- 
// Language: C++, Win32API 
// Date: 06.03.06 
//----------------------------------------------------------------------- 
// Language: C++, Win32API 
 
 
int CallLplDll(void) 
{ 
 // Define types of function pointers to imported DLL functions: 
 typedef void (CALLBACK* LPFNDLL_LPLinit)(LPCSTR, INT, INT, INT); 
 typedef INT (CALLBACK* LPFNDLL_LPLcompile)(LPCSTR); 
 typedef void (CALLBACK* LPFNDLL_LPLfree)(void); 
 
 // Declare function pointers to imported DLL functions: 
 LPFNDLL_LPLinit LPLinit = NULL; 
 LPFNDLL_LPLcompile LPLcompile = NULL; 
 LPFNDLL_LPLfree LPLfree = NULL; 
 
 // Load LPL DLL: 
 LPCSTR lpszDllFile = "lpl.dll";  // Name of DLL file. 
 HINSTANCE hDll = ::LoadLibrary(lpszDllFile);  // Get DLL handle. 
 if (hDll == NULL) { 
  // Error loading DLL. 
  return 1; 
 } 
 
 // Load DLL functions: 
 LPLinit = reinterpret_cast<LPFNDLL_LPLinit>(::GetProcAddress(hDll, "LPLinit")); 
 LPLcompile =  
        reinterpret_cast<LPFNDLL_LPLcompile>(GetProcAddress(hDll, "LPLcompile")); 
 LPLfree = reinterpret_cast<LPFNDLL_LPLfree>(GetProcAddress(hDll, "LPLfree")); 
 if (LPLinit == NULL || LPLcompile == NULL || LPLfree == NULL) { 
  // Error loading DLL function. 
  FreeLibrary(hDll); 
  return 2; 
 } 
  
 // Execute DLL functions: 
 LPCSTR lpszModelFile = "alloy.lpl";  // Name of LPL model file. 
 LPCSTR lpszCompileOptions = "ww";   
      // Possible options: "", "w", "ww", ... (see LPL reference). 
 LPLinit(lpszModelFile, 0, 0, 0);  // Initialize LPL. 
 const int nRes = LPLcompile(lpszCompileOptions);   
      // Compile LPL model with specified options. 
 if (nRes != 0) { 
  // Error compiling model. 
  LPLfree(); 
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  FreeLibrary(hDll); 
  return 3; 
 } 
 LPLfree();  // Finalize LPL. 
 
 FreeLibrary(hDll); 
 return 0; 
} 
//----------------------------------------------------------------------- 
 

11.2.4 USING THE LPL LIBRARY FROM JAVA 

A java program must use the library lplj.dll (instead of lpl.dll). Both libraries are 
identically from the functional point of view. Java needs a special interface: the Java-
Native-Interface, therefore some functions have different signatures. See file 
NativeLPL.java for the correct signature. On the base of the class NativeLPL and the 
two interfaces LogCallback and LPLCallback (as displayed above), one  can 
implement, for example, the complete LPL console compiler (working in exactly the 
same way as lplc.exe) as follows: 

 
public class NativeLPLDemo implements LPLCallback, LogCallback {     
  public static void main(String[] args) { 
    NativeLPLDemo demo = new NativeLPLDemo(); 
    demo.compile(); 
  } 
 
    //implement LPL callbacks 
    public void callback() { ;} //nothing to do  
    public void callback(String message) 
      {System.out.println(message);} 
 
    private void compile() { 
      NativeLPL.LPLinitParam(); 
      NativeLPL.LPLinit("",0,0,0); 
      NativeLPL.LPLcompileWithCallbacks("",this,this); 
      NativeLPL.LPLfree(); 
    } 
} 
 

The complete example is stored in the zipped file javaexam.zip. To execute the 
example, do the following. 

1) Uncompress javaexam.zip to a new folder. 
2) Copy lplj.dll and alloy.lpl into that folder also (if they are not there already). 
3) Compile the java files with the command: 

                                  javac –classpath . *.java  
4) Execute the class LPLC using the command: 

              java LPLC alloy w 
The last command is exactly the same as if you executed the program lplc.exe  as:  
                     lplc alloy w 
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APPENDIX A:  LPL SYNTAX 
The complete LPL syntax is presented as the extended Backus-Naur form. The following symbols are 
metasymbols (are not part of the LPL syntax), unless they are included in quotes (such as "{" or "["): 
 = means “is defined as” (defines a production) 
 | means “or” 
 { } enclose items which may be repeated zero or more times 
 [ ] enclose  items which may be repeated zero or one times 
 ( ) determines the order of meta-operations 
 ... (in "A" | ... | "Z") means «all letters from 'A' to 'Z'» 
 " encloses a literal (except """, which means the character "). 
All other symbols are part of LPL. Reserved words are written entirely in uppercase letters. The starting 
symbol is Model. 

 
Model =  (MODEL | FUNCTION) ModelHeader StatSeq END 
ModelHeader = Id [Attrs] ";" 
StatSeq = { NEntity | Model | IEntity | AssignStat | ForStat | WhileStat | IfStat | Proc } 
NEntity = [Type] [NKeyword] Id IList Attrs ";" 
IEntity = IKeyword [Id] [IList] Attrs ";" 
Type = [ ASSUMPTION | SEMI ] INTEGER | BINARY | DISTINCT | STRING | REAL | FREE | DATE 
NKeyword = SET | UNIT | PARAMETER | VARIABLE | CONSTRAINT 
IKeyword = READ | WRITE | CHECK | MAXIMIZE | MINIMIZE | QUERY | OPTION | ADDCONST 
IList = "{" Index {"," Index} ["|" Expr] "}" 
Index = [Id ("="|IN)] QualId ["[" Id {"," Id} "]"] | 
 Id ("="|IN) "{" "1:" Expr "}" | '*'[Id] 
Attrs = { ALIAS Id ["," Id] | FREEZE | DEFAULT (Number|String) | "[" Expr "]" | UNIT "[" 

Expr "]" | STRING Id [Comment] | TO ["+" | "-"] Expr | FROM Expr | Comment | 
String | IF Expr | SUBJECT TO List | (PROB|PRIORITY) Expr | AssOp (Expr|Table) } 

AssignStat = QualId IList Attrs ";" 
ForStat = FOR IList DO StatSeq END 
WhileStat = WHILE Expr DO StatSeq END 
IfStat = IF Expr THEN StatSeq [ELSE StatSeq] END 
Proc = (EMPTY|FREEZE|UNFREEZE) List ";" | QualId ";" | LibraryCall ";" 
List = ["~"] QualId { "," ["~"] QualId } 
 
Expr = SimpleExpr {Relation SimpleExpr} 
SimpleExpr = [Indexing] Term {MulOp Term} 
Term = [ "+" | "-" | "#" | "~" | "$" ] Factor 
Factor = Number ["[" Expr "]"] | Id IN QualId | "(" Expr ")" | QualId ["[" Expr "]"] | 

Funct "(" Expr ")" | String 
Relation = "," | ":=" | ".." | "->" | "<-" | "<->" | XOR | | OR | NOR | AND | NAND | "=" | 

"<>" | "<" | "<=" | ">" | ">=" | "+" | "-" | "&" | "?<" | "?>" 
MulOp =  "*" | "/" | "^" | "%" 
Indexing = [IndexOp] IList 
IndexOp = OR | XOR | NOR | AND | NAND | EXIST | FOR | FORALL | PROD | MAX | MIN | PMAX | 

PMIN | ROW | COL | SUM | (ATLEAST|ATMOST|EXACTLY) "(" Int ")" | FOR 
Funct = NOW | ABS | BREAK | CEIL | COS | EXP | FLOOR | LOG | SIN | SQRT | TRUNC | RND | 

RNDN | SORT | IF | ARCTAN | POSSTR | SUBSTR | WHILE 
 
Table = TableA | TableB | TableC 
TableA = "[" {Data} "]" 
TableB = "/" [MultiOpt] {SubTable} "/" 
SubTable = [lp TemplateOpt rp] [ColonOpt] ListOpt 
MultiOpt = "|" Id {Id} "|" 
TemplateOpt = EleOrStar { "," EleOrStar } 
ColonOpt = ":" ["(tr)"] {Element} ":" 
ListOpt = {{Element} {Data} [","]} 
lp = "(" | "[" 
rp = ")" | "]" 
Data = Number | "." | String 
Element = char1 {char1} | String 
EleOrStar = element | "*" 
TableC = "/" Int ":" Int "/" 
 
Comment =  """ {char} """ 
String = "'" {char} "'" 
QualId =  Id { '.' Id} 
Id = letter {letter | digit} 
Number = Int | Real | Date 
Int = digit {digit} 
Real = {digit} "." {digit} [ "E" ["+" | "-" ] Int ] 
Date = "@" {digit} [ "-" {digit} [ "-" {digit} [ "T" {digit} [ ":" {digit} [ ":" 

{digit} ]]]]] 
AssOp = ":=" | ":" | "->" | "<-" | "<->" 
digit = "0" | ... | "9" 
letter = "A" | ... | "Z" | "a" | ... | "z" | "_" 
char = (any character) 
char1 = any chars except blanks or one of the 13 chars: ( ) * , / : ; [ | ] ’ ” 
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