LPL Tutorial

Tony Hiirlimann
Department of Informatics
University of Fribourg

October 31, 2008

Abstract

Several small LPL model examples guides you through certain capacities of
the modelling system LPL. It is only a first overview, the complete language
specification is found in the reference manual manual.pdf.

[This PDF-document (tutor.pdf) was generated automatically from the
Latex file tutor.tex and the LPL source files using LPL’s own documentation
tool. How this is done is explained in the manual (Chap 10.5).]

Contents

1 LPL Tutorial

2 A Simple Model (tutor01)

3 Names and Comments (tutor02)
4 Using Indices (tutor03)

5 Using Units (tutor04)

6 Data Tables (tutor05)

7 Data Tables I (tutor06)

8 Data Tables II (tutor07)

9 Reading Textfiles (tutor08)

10 Writing Masks (tutor09)

11 Sparse Tables (tutor10)

12 Predefined Functions (tutorll)
13 Index Operators (tutorl2)

14 Expression Evaluation (tutor13)
15 Goal Programming (tutor14)

16 Loop Programming (tutorl5)
17 Logical Constraints (tutorl6)
18 Calling Submodels (tutorl7)

19 Link to Database (tutorl8)

20 Create a Database (tutorl9)

21 Write-Format Examples (tutor20)

22 Drawing Library I (tutor21)

11

13

16

18

20

23

25

28

30

33

35

37

39

41

45

47

50

52

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor01
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor02
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor03
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor04
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor05
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor06
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor07
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor08
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor09
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor10
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor11
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor12
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor13
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor14
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor15
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor16
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor17
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor18
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor19
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor20
http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor21

23 Drawing Library II (tutor22)

24 Conclusion

54

57

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor22

1 LPL Tutorial

The following examples start with a simple small production model. Succes-
sively, more features are added to the model to illustrate the syntax of the
language LPL.

This text is an automatically generated text using the documentation
facility of LPL, and illustrates itself an important feature of LPL. Going
through the examples together with loading and running them using Iplw. eze
gives you a first overview of the capacity of the modelling system LPL. The
reader is asked not only to read this tutorial but also to load and run all
models. It is the most efficient way to go into the modelling language. Enjoy
it!

2 A Simple Model (tutor01)

[The problem is briefly explained in this part.] A firm produces two type of
robots called Marie and Jules. Three production steps must be carried out:

1. Production of the components: It takes 5 hours for each robot Marie
and Jules, with a total capacity of 350 hours per week,

2. Mounting (capacity = 480): It takes 4 hours for Marie and 8 hours for
Jules,

3. Testing (capacity = 300): It taks 6 hours for Marie and 2 hours for
Jules.

The profit for Marie is 300 and for Jules 200. There are already 20 robots
of type Marie and 15 Jules ordered. How many robots of each type can be
produced per week, if the firm wants to maximize the selling profit?

Modeling Steps

[This part explains how the problem can be translated into a mathematical
model.|

1. We introduce two variables: x and y for the quantity (per week) of the
two types of robots to be produced.

2. The components-step has a capacity of 350 hours per week. A unit of
robot Marie takes 5 hours, a robot Jules also takes 5 hours. Hence we
have: b5z + 5y < 350, the component capacity per week.

3

Problem

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor01

3. The mounting-step has a capacity of 480 hours per week. A robot Marie
takes 4 hours, a robot Jules takes 8 hours. Therefore: 4z + 8y < 480.

4. The testing-step has a capacity of 300 hours per week. A robot Marie
takes 6 hours, a robot Jules takes 2 hours. Therefore: 6x + 2y < 300.

5. At least 20 of type Marie and 15 of type Jules must be produced, hence:
x > 20,z > 15.

6. Maximizing the profit means to maximize: 300z + 200y.

The problem to solve is then as follows:

max 300z + 200y

subject to Hx 4+ dHy < 350
4x + 8y < 300
6z + 2y < 300
r>20 y>15

In a graphical way, the model represents the solution space as shown in
Figure 1. That is, every (z,y)-point within the gray polygon represents a
possible (feasible) production that fulfills all constraints. All other points in
the two-dimensional space violate at least one of the constraints.

The complete model code in LPL for this model is as follows:

MODEL TUTORO1 "A Simple Model";
VARIABLE x; y;
MAXIMIZE profit: 300*x + 200%*y;
CONSTRAINT
Components: 5*%x + 5%y <= 350;
Mounting: 4xx + 8%y <= 480;

Testing: 6xx + 2xy <= 300;
Orderi: X >= 20;
Order2: y >= 15;
WRITE x,y;
END

Comments

Jules

Testing Optimum at
(40,30}
prafit=18000

Hounting

Drder:s

Components

Drderl
profit

Harie

Figure 1: The Feasible Space

LPL Modeling Steps

[The goal of this tutor is mainly to explain the syntax of LPL. It is done in
this text block.] A LPL coded mathematical model is very close to the usual
mathematical notation.

1. Each model coded in LPL begins with a keyword MODEL and ends with
END. (Keywords can be in lower or uppercase.)

2. The code consists of a sequence of entity declarations and statements.
3. Each entity begins with an keyword and ends with a semicolon.

4. There are four kinds of entities in this model: MODEL, VARIABLE, CONSTRAINT,
and MAXIMIZE. There is no need to repeat the keywords VARIABLE
or CONSTRAINT for consecutive entities of the same type. Therefore
VARIABLE introduces a list of two variables.

5. CONSTRAINT introduces the model constraints. Each constraint then
begins with a name. Then follows a colon which introduces the expres-
sion.

6. The objective function, called profit, begins with MAXIMIZE.

7. Finally, we want to write the solution with WRITE.

[This part of the documentation is intended to gives a short comment about
the solution of the model.] The optimal solution is x = 40 and y = 30,
which can be verified by Figure 1. It means that neither the quantity of x
nor the quantity of y can be increased without violating one of the capac-
ity constraint. On the other hand, a reduction of one of the quantities is
"suboptimal”: it reduces the profit, and hence it is no longer maximized.

Question 1 (Answer to 1)
[To animate the reader to learn actively, some questions are proposed.

Answers are given below.]

1. Verify the solution of this model by running it with 1plw.exe.
2. What happens if we extend the Mounting capacity to 500 ¢

3. We must produces 45 unit of Jules instead of 15. How must the model
be changed?

Answer 1 (Question of 1)

1. Run lplw.exe. Then choose Menu "File/Open” and open the file
tutor01.1pl. Now choose Menu ”Run/Run Model”. Click the tab
"TABLE’, and then click on the red node ’x’ in the left part in the LPL
application. The value 40 is displayed. Now click on the node y’, the
value 30 is displayed.

2. Nothing, the solution is still {x = 40,y = 30}. This can be seen im-
mediately from Figure 1: The Mounting capacity is not the limiting
resource. So, extending it, changes nothing. To calulate it, change 480
to 500 in the model and run it again. Then look at the values of the
variables again.

3. Change the constraint Order2 toy >= 45. Then run the model again.
The solution indicates that 45 units of Jules are produced, but the num-
ber of Marie drops to 25, and the overall profit also drops to 16500.
This can be seen by clicking the blue node profit while "TABLE’ is
the active tab.

Solution

3

Names and Comments (tutor02)

This is exactly the same model as tutor01.1pl. Comments are added.
The complete model code in LPL for this model is as follows:

MODEL TUTORO2 "Names and Comments";

(* First the variable are declared *)
VARIABLE Marie ALIAS x "Number of robots Marie";
Jules ALIAS y "Number of robots Jules';

(* Now follows the constraints *)

CONSTRAINT
Components:5*%x + 5%y <= 300+50 "Capacity of comp per week";
Mounting: 4xx + 8%y <= 500-20 "Capacity of mount per week";

Testing: 6*x + 2xy <= 30%10 "Capacity of test per week";
Orderil: X >= 200/10 "Already ordered of Maries";
Order2: y >= 471.9534 "Already ordered of Jules’";

(* This is maximized *)
MAXIMIZE profit: 300*x + 200%*y;

-— finally we print the results

WRITE profit, x, y;

END

LPL Modeling Steps

One can add comments, blanks or linefeeds everywhere between tokens (words).

Furthermore,

1.

An entity can have more than one name: Variable Marie, e.g., has two
names: Marie and x. A second name is introduced by the keyword
ALIAS.

Multiline comments must be within (* and *). They can be nested.

Short one-line comments begin with a double-dash (--). They end with
an end-of-line.

Problem

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor02

4. Expressions, like 300 + 50, can be used.

5. The 5 operators used here are: + (add), - (minus), * (times), / (divide)
and "~ (power).

6. MAXIMIZE calls a default solver and reads the results back into the LPL.

7. WRITE writes the results to the so called NOM-file (here the filename
is: tutor02.nom). In 1plw.exe this file is loaded automatically after a
run and shown in a new tab.

Question 2 (Answer to 2)

1. What happens if one adds two dashes just before the word Testing?
2. Outcomment the line of Jules ALIAS.... What happens?

3. What happens if we change the name Marie to Mary?

Answer 2 (Question of 2)

1. The constraint Testing is outcommented and does not taking any effect
when resolving the problem. That is, the solution will be now: {x =
55,y = 15}.

2. Running the model will stop at the first occurrence of y and an error
message is output at the status line: Error: 516 Unknown identifier.

3. Nothing! The name is not used elsewhere in the model.

4 Using Indices (tutor03)

[This model now introduces the very fundamental concept of indez.] Problem
Suppose now we have 10 different type of robots (not just 2 like in the
previous models. A way to deal with this is to introduce 10 different variables.
However there is a more economical way: Using indexes. In mathematical
notation we would introduce this as:

z;, with iel={1...10}

in LPL syntax we might use exactly this same notation and we can write:

SET I := /1:10/;
VARIABLE x{i in I};

However, in LPL normally there is not need to make a difference between
the indexname i and the setname I if no confusion arises. Hence we can just
write:

SET i := /1:10/;
VARIABLE x{i};

The complete model code in LPL for this model is as follows:

MODEL TUTORO3 "Using Indices";

SET i :=/ 1:10 / "A set with 10 elements";
VARIABLE x{i} "The number of different type of robots";
PARAMETER HC{i} := [565456 57 8 4 7] "Component time";
HM{i} := [4856 487 6 5 3] "Mounting time";
HT{i} := [6 2 46 345 25 3] "Testing time";
Ordered{i} := [20 15 7 6 5 8 9 8 7 5] "Quantity ordered";
Price{i} := [300 200 100 50 50 100 200 100 400 200 1];

CONSTRAINT

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor03

Components:SUM{i} HC[i] * x[i] <= 3500 "Component building";
Mounting: SUM{i} HM[i] * x[i] <= 4800 "Mounting robots";
Testing: SUM{i} HT[i] * x[i] <= 3000 "Testing robots";
Order{i}: =xI[i] >= Ordered[i] "Ordered";

MAXIMIZE profit: SUM{i} Price[il*x[i] "Maximize the profit";

WRITE profit, x, HC, HM, HT "output the data";
END

LPL Modeling Steps

The new elements in this model are SET and the index-operator SUM.

1.

The SET entity declares an indez-set called . The index-set ¢ has 10
elements.

. VARIABLE introduces a variable list called x, which is indexed over i.

This declares the 10 variables: x[1] ... x[10].

. PARAMETER introduces five data lists, all indexed over i. (For example,

HC[3] (which is 4, the third data in the list) says how many hours it
take to manufacture the components for the third robot type x[3].)

. The data list is directly assigned to the parameters. Hence, we have

Price[1]=300 and Price[6]=100, for example. These data are data
vectors.

. Indexed items can be summed up with the SUM operator. Hence,

HC[1]*x[1] + ... + HC[10]*x[10]

is written as: SUM{i} HC[il*x[i]. This is LPL’s notation for

ie{1...10}

Much like the summation through the SUM operator, whole constraint-
classes can be written as indexed constraints. For example:

10

Order{i}: x[i] >= Ordered[i];

declares 10 constraints:

x[1] >= Ordered[1], x[2] >= Ordered[2],

In mathematical notation, we would write this as follows:
x; > Ordered;, i€ {1...10}

Note again, that no difference is made in LPL’s notation between the
index-name and the set-name.

7. A WRITE instruction can be used to write the results to the NOM-file.
In this case, tables are written to the file tutor03.nom.

Question 3 (Answer to 3)

1. Replace 1:10 by 1:11 in the set definition of i. What happens?

2. Change Price{i} to Price{1} in the price declaration. What happens?

Answer 3 (Question of 3)

1. An error occurs because the data list only contain 10 (not 11!) data
elements. Adding a numerical data to each of the data list then allows
again to run the model.

2. An error occurs, because I is not declared. Note, LPL ise case-sensitive,
hence, i and I are two different names (keywords however can be in
lower or upper-case.)

11

5 Using Units (tutor04)

This is the same model as tutor03.1pl. We added some units of measure- Problem
ments. Expressions using the units of measurement are checked for correct
expressions. Hence, if one adds something measured in meter and something

in kilogram then LPL can detect the error and reports it.

The complete model code in LPL for this model is as follows:

MODEL TUTORO4 "Using Units";

UNIT
piece ALIAS p; —-- number of pieces
dollar ALIAS d; —-- money unit
hour ALIAS h; -- time unit
d100 := 100x%d; -- another compatible money unit
day := 8%*h; -- another time unit
week ALIAS w := 5%day; —— still another time unit
DailyIncome := d/day; -- a compound unit
SET i := /1:10/; -— a set of 10 elements
VARIABLE x{i} UNIT [p/w]; -- number of robots per week

PARAMETER HC{i} UNIT [h/p] [5654565784717;

HM{i} UNIT [h/p] := [4856 487 653 1;

HT{i} UNIT [h/p] [624634525317;

Ordered{i} UNIT [p/day] [160 120 56 48 40 64 72 64 56 40];
Price{i} UNIT [d100/p] [3210.5051214217;

b

CONSTRAINT
Components UNIT [h/w]: SUM{i} HC[il*x[i] <= 140000[h/w];
Mounting UNIT [h/w]: SUM{i} HM[il=*x[i] <= 38400[h/day];
Testing UNIT [h/w]: SUM{i} HT[i]=*x[i] <= 120000 [h/w];
Order{i} UNIT [p/w]: x[i] >= Ordered[i];

MAXIMIZE profit UNIT [d/w]: SUM{i} Price[i]*x[il;

WRITE profit;

WRITE UNIT [d/h] : profit;

WRITE UNIT [DailyIncome] : profit;
WRITE HC, Price;

WRITE x;

12

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor04

WRITE{i} UNIT [p/day] : x;
END

LPL Modeling Steps

A new declaration is introduced: the UNIT statement.

1.

2.

Units can be declared and defined in a Unit entity initiated by UNIT.

Basic units like piece, dollar, or hour are just declared by their
names. ALIAS can be used to give them a second name.

Derived units like day or DailyIncome are defined in terms of other
units. So, for example, a week is 5 days: w := 5x*d;

. A variable, data, or constraint can be declared together with a unit by

adding the reserved word UNIT and a unit expression within brackets.
For example, the variables x are measured in 'pieces per week’, hence
in [p/w].

Numbers in expressions must be extended with a unit expression within
[and] to satisfy the commensurability of expressions.

WRITE statements can be extended with a compatible units, the trans-
formation are done automatically.

Question 4 (Answer to 4)

1.

Change 140000 [h/w] to 100000 [d], then run the model. What do you
see?

Change the identifier hour to Hour. What effect has this on the next
run?

Answer 4 (Question of /)

1.

An error occurs, because the unit of the right hand side of the Conponents
constraint does not correspond to the declared one on the left side.

2. No effect! Since Hour is not used anywhere else in the model.

13

6 Data Tables (tutor05)

This is the same model as tutor03.1pl. The data are represented differently Problem
(more like in a 3-norm database form).
The complete model code in LPL for this model is as follows:

MODEL TUTORO5 "Data Tables";

-- a set i together with five data vectors.
SET i :=/ | HC HM HT Ordered Price |

Robotl 5 4 6 20 300
Robot2 5 8 2 15 200
Robotd 4 5 4 7 100
Robot4 5 6 6 6 50
Robots 6 4 3 5 50
Robot6 5 8 4 8 100
Robot7 7 7 5 9 200
Robot8 8 6 2 8 100
Robot9 4 5 5 7 400
Robot10 7 3 3 5 200 /;

VARIABLE Robots{il};
CONSTRAINT
Components: SUM{i} HC*Robots <= 3500;
Mounting: SUM{i} HM*Robots <= 4800;
Testing: SUM{i} HT*Robots <= 3000;
Order{i}: Robots >= Ordered;
MAXIMIZE profit: SUM{i} Price*Robots;
WRITE profit;

WRITE °
Robots Rob-0rd Price Robots Tot.Hours
%Ts %3d %3d %3d %3d\n”’
ROW{i} (i, Robots-Ordered, Price, Robots, HC+HM+HT) ;
END

LPL Modeling Steps

All data are in a unique ”table” in text-format. The format of this table is
somewhat special and I guess that it is not used very often. But now you
know that it exists! More often, the modeller will store the data in databases.

14

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor05

1. The elements of set i do not need to be integers. The user can give
them names such as Robot1 ... Robot10.

2. The data which are indexed over the same sets can be compiled in a
convenient table format. This format — surrounded by / is called the
format B.

3. The indices in expressions can be dropped, since LPL already knows
that Robots, for example, has been defined over the index-set i. Hence
the two following lines are equivalent for LPL:

SUM{i} HC * Robots <= 3500
SUM{i} HC[i] * Robots[i] <= 3500

4. The WRITE may also be used to write a list of expressions defined by
a format mask. This can write quite complex output format. In this
case, a list of the five following expressions

i, Robots-0Ordered, Price, Robots, HC+HM+HT

is written line by line over all i. The mask is given within apostrophes
(>...”) and the format of the single data is indicated by % followed
by a letter. The syntax is the same as in Java or C. So, %7s means
to fill the first parameter (i) with 7 chars, %3d means to fill in an
integer with 3 positions.

Question 5 (Answer to 5)

1. Modify %3d in the WRITE just below Robots to %6.2f and run
again. What’s the difference?

2. The previous question shows that some number of Robots have a frac-
tional number. This is non-sense. The number of robots must always
be an integer number. Change the the model correspondingly.

3. How much is the profit, if no robot has been ordered in advance?

Answer 5 (Question of 5)

1. The number of Robots are written with 2 decimal places in addition.

15

2. All you need to do is to modify the line VARIABLE Robots{i}; with
INTEGER VARIABLE Robots{i}; .

However, how LPL’s internal solver cannot not solve this problem any-
more. You need an integer solver — the free GNU GLPK solver, for
example. To install it follow the instructions given in the lplcfg.1lpl
file (look for "GLPK solver” in the file).

3. 252000. One just need to outcomment the bounds Order{i}. The data
for Ordered are still in the model but are no used except for the output.

16

7 Data Tables I (tutor06)

We introduce a second index-set j. We now suppose that there are not 3 but

8 production steps. They are collected in the new index-set j.
The complete model code in LPL for this model is as follows:

MODEL TUTORO6 "Data Tables I";

SET i

:= / | Ordered Price |

Robotl 20

Robot3
Robotb
Robot7
Robot9

J
Step

~N © 01 N

300
100

50
200
400

Robot2
Robot4
Robot6
Robot8
Robot10

:= / | Capacity |
Step2 4800

1

3500

Stepb 3000

Step6 3200

PARAMETER Hours{i,j} := /

: Stepl

Robot1
Robot2
Robot3
Robot4
Robotb 1
Robot6
Robot7
Robot8
Robot9
Robot10

VARIABLE
CONSTRAINT

9
5
4
5
0

5
7
8
4
7

9

W oo N 0 oy 010

Robots{i};

9

W O O WO N

9

= O O

15

o1 0 00 O»®

—— data indexed over i

200
50
100
100
200 /;

-- data indexed over j

Step3 3000
Step7 4000

Stepd 3400
Step8 2500 /;

-- data indexed over {i,j}

9

3
5
8

9

Step2 Step3 Step4 Stepb Step6 Step7 Step8:

9
3
5
4

. 6

5 1
2
5

1 4/,

Steps{j}: SUM{i} Hours[i,j] * Robots[i] <= Capacityl[j];
Order{i}: Robots[i]

MAXIMIZE

profit: SUM{i} Price[i] * Robots[i];

WRITE profit, Robots;

>= (Ordered[i];

1

7

Problem

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor06

END

LPL Modeling Steps

The data are now organized differently: All of them are collected in ”tables”.

1. A second index-set (j) is introduced for the production steps. The
previous models use three explicit production steps, resulting in three
constraints. In this model, a generic number of steps — concretely 8 —
is used.

2. The time, which indicates the hours required for each type of robot
i at each production step j, is defined as a two-dimensional table
Hours{i, j}. Undefined (or zero) entries are entered as a dot.

3. The Hours{i,j} matrix is defined using a convenient format (data
format B).

4. Note that the Steps{i} constraint generates 8 different constraints.

One can verify this when generating the EQU-file (in Iplw.exe use
menu ‘tools/EQU-file’).

Question 6 (Answer to 0)

1. Run the model, then click the menu Tools/Create EQU-file.

2. For which constraints the capacity is used at 100%?

Answer 6 (Question of 6)

1. An equation listing is generated. It is stored in the EQU-file. On disk
the file is: tutor06.equ.

2. Run the model then click the tab "TABLE’ and then click the blue cycle
‘Steps’ at the left part of the application. Then click the radio button
'‘Du’ (for dual values, or reduced prices). Only Stepl and Step3 have
a reduced price different from zero. Hence, these two constraints are
"stringent”. All others have superfluous capacities.

18

8 Data Tables II (tutor07)

The same model as tutor06.1pl. The data are in another file
The complete model code in LPL for this model is as follows:

MODEL TUTORO7 "Data Tables II";

—— the data are defined in file ’tutor.inc’
(*$I ’tutor.inc’ *) -— the file is included here

VARIABLE Robots{i};

CONSTRAINT
Steps{j}: SUM{i} Hours * Robots <= Capacity;
Order{i}: Robots >= Ordered;

MAXIMIZE profit: SUM{i} Price * Robots;

WRITE profit, Robots;

WRITE{i}: Robots.dual;

END

The included data file — also specified in LPL syntax — is as follows:
—-- tutor.inc: data file for the tutor models as include-file

—-- data indexed over i

SET i := / | Ordered Price |
Robotl 20 300 Robot2 15 200
Robot3 7 100 Robot4 6 50
Robotb 5 50 Robot6 8 100
Robot7 9 200 Robot8 8 100
Robot9 7 400 Robotl0 5 200 /;

-- data indexed over j
j :=/ | Capacity |
Stepl 3500 Step2 4800 Step3 3000 Step4 3400
Step5 3000 Step6 3200 Step7 4000 Step8 2500 /;

-- data indexed over {i,j} , a two dimensional table
PARAMETER Hours{i,j} ALIAS H := /

: Stepl Step2 Step3 Step4 Step5 Step6 Step7 Step8:
Robot1 9 9 9 9 9 9 . 9

19

Problem

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor07

Robot2 5 8 2 3 3
Robot3 4 5 4 5 6 5
Robot4 5 6 6 8 4
Robotb 10 4 3 5 6
Robot6 5 8 4 . . 5 1
Robot7 7 7 5 5 3 2
Robot8 8 6 2 4 5
Robot9 4 5 5 6 .
Robot10 7 3 3 1 1 1 1 4 /;

LPL Modeling Steps

Physical inclusion of files:

1. At any point, a file can be included using the $I option. Inclusion of
at to level of five is possible.

2. The data are defined in another file (here tutor.inc), which is auto-
matically included at parse time.

3. The second write statement prints the dual values of the Robots vari-
able. The write 'Runs through’ the index i and prints the expression
Robots[i] .dual for each i.

Question 7 (Answer to 7)

1. Change Robots.dual with Robots.lran and execute.

2. Click the 'Files’ tab in Iplw in the left part then click tutor.inc.

Answer 7 (Question of 7)

1. You’'ll get the lower sensitivity bound for the variables (see the theory
of sensitivity analysis).

2. The file tutor.inc opens in a new tabbed window.

20

9 Reading Textfiles (tutor08)

The data are read in from a text-file by an instruction READ.
The complete model code in LPL for this model is as follows:

MODEL TUTORO8 "Reading Textfiles";

SET i; js
PARAMETER Ordered{i}; Price{i}; Capacity{j};
PARAMETER Hours{i,j};
VARIABLE Robots{i};
CONSTRAINT
Steps{j}: SUM{i} Hours * Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

—-- read the data here

READ FROM ’tutor.txt’ ’%1:Table’;

READ ’%1° : ROW{i} (i , Ordered , Price);

READ %2’ : ROW{j} (j , Capacity);

READ ’%3° : COL{j} j , ROW{i} (i , COL{j} Hours);

MAXIMIZE profit: SUM{i} Price*Robots;

WRITE Robots, Hours;
END

The data file read by LPL is:

-- tutor.txt: data file as plain text for the tutor models
-- Data for the tutor examples

Table 1 : reads i, Ordered, and Price (first block)

Robot1 20 300
Robot2 15 200
Robot3 7 100
Robot4 6 50
Robotb 5 50
Robot6 8 100
Robot7 9 200
Robot8 8 100
Robot9 7 400

21

Problem

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor08

Robot10 5 200

Table 2 : reads j, and Capacity (second block)
Stepl 3500
Step2 4800
Step3 3000
Step4d 3400
Stepb 3000
Step6 3200
Step7 4000
Step8 2500

Table 3 : reads Hours (third block)

Stepl Step2 Step3 Step4d Stepb Step6 Step7 Step8

Robotl 9 9 9 9 9 9 . 9
Robot2 5
Robot3 4
Robot4d 5
Robotb 10
Robot6 5
Robot7 7
Robot8 8
4
7

3 .
5 6
8

ol
GO N = O P> 01w

Robot9
Robot10

W oo N0 O 01
W O N O W N
¢y

= o P o

LPL Modeling Steps

The data are separated from the model file and can be read by instruction.

1. One can use the READ statement to read an external data-textfile. The
data must be in a particular row-, columnwise form.

2. The first READ instruction tells us from which file to read and what
the block-delimiter are (here Table). A line in the data file beginning
with this string begins a new block in the file. The blocks are num-
bered beginning with 1. The line containing the block delimiter is not
considered for reading. The reading begins on the following line.

3. Subsequent READ statement will then read from this file. For example:
READ %1’ ... means to read the first block beginning with the string
Table and reading till the next block-delimiter.

22

4. The expression ROW{i} (i,0rdered,Price) means to read three to-
kens per row (line) and assign the data to the three vectors. The
tokens read are separated by a comma within the expression. In the
text file they are separated by a blank, a tab or some other special
characters.

5. ROW and COL are two keywords which instruct to read row- and column-
wise. So, COL{j} j reads on a single line all tokens and assign them
to j. Then ROW{i} (i,COL{j} Hours[i,j]) reads on each row first
one token i and then all tokens over j on that line to assign then to
Hours[i,j].

Question 8 (Answer to 8)

1. Exchange the second and the third READ instruction. What happens?

2. Outcomment the MAXIMIZE instruction then execute. What happens?

Answer 8 (Question of 8)

1. Nothing! The reads can be done here in any order. There is no need to
read the text block in sequential order from a textfile.

2. The model is not solved. However, that data are nevertheless read from
the textfile. This can be seen when adding an instruction WRITE Hours,
for example. Another way to see the data is to click the yellow cycle "M’
above "Tree’ in the left part of the Iplw window. Clicking on it enlarges
the list by green diamond signs (for example). Click on ’Hours’ then
on the "TABLE’ tab and the data of Hours are listed.

23

10 Writing Masks (tutor09)

This is the same model as tutor08.1pl. However, now we use masks for Problem
model reporting using the WRITE statement.
The complete model code in LPL for this model is as follows:

MODEL TUTORO9 "Writing Masks";
(*$I ’tutor.inc’ *) -- read the data

PARAMETER CpH := 5 "Cost per hour";
—-Price{i}:=2%*Price;
VARIABLE Robots{i};
CONSTRAINT
Steps{j}: SUM{i} Hours * Robots <= Capacity;
Order{i}: Robots >= Ordered;
--MAXIMIZE revenue: SUM{i} Price*Robots;
MAXIMIZE profit: SUM{i} PricexRobots -SUM{i,j} CpH*Hours*Robots;

WRITE °
OUTPUT of the TUTORO9 model

type of number of already Price Cost
robot robot ordered /unit /unit
YAE %4d %3d %3d %3d %1bs

Total of revenue : %9 .2f

Total of costs g %9.2f

Total of profit : %9.2f\n’

: ROW{i} (i , Robots , Ordered , Price , SUM{j} CpH*Hours ,
IF (Price<SUM{j}CpH*Hours, ’loosing money’,’ok’)) ,
SUM{i} Pricex*Robots ,
SUM{i,j} CpH*Hours*Robots ,
SUM{i} Price*Robots-SUM{i,j} CpH*Hours*Robots ;
END

24

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor09

LPL Modeling Steps

1. The WRITE statement can be used to print formatted text defined by
the user. The mask is entered between > ... ’ and instructs LPL how
to format the output. Format specifiers begin with a %.

2. The WRITE expression instructs LPL how to fill this mask. ROW{i}
means to write the following expressions as many times as ¢ has ele-
ments each on a horizontal line.

3. The ROW fills 6 mask elements with data: the first format specifier
(%7s) is filled by i, the second %44 is filled by Robots, the third %3d by
Ordered, the fourth by Price the fifth by SUM{j} HourCostxHours[i, j]
(that is, by >=; HoursCost- Hours;;), and the last by loosing money,
whenever the Price is smaller than the fifth element. (IF(a,b,c)
means “return b if a is true, else return c”).

Question 9 (Answer to 9)

1. Double the Price wvector and see what happens.

2. The model mazimizes the total revenue: SUM{i} Pricex*Robots. Hence
the profit (revenue minus cost) will be 141945. How will the profit be if
we maximize the profit.

Answer 9 (Question of 9)

1. To double the prices, we only need to add an instruction before the
declaration of the variables, for example. Hence, add the line

Price{i} := 2*Price;

Then run the model again. The result shows that we loose money on
Robot4 and Robotbh.

2. To mazimize the profit, one only needs to add the cost to the maximizing
function the maximizing function then is as follows:

MAXIMIZE profit: SUM{i} PricexRobots -SUM{i, j} CpH*Hours#*Robots;

Running the model then displays a profit of 146208.

25

11 Sparse Tables (tutor10)

This model shows sparse data tables based on expressions.
The complete model code in LPL for this model is as follows:

MODEL TUTOR10 "Sparse Tables";

SET i; s

PARAMETER Ordered{i}; Price{i}; Capacity{j};
Hours{i,j | i<>10 OR j<>4};

VARIABLE Robots{i | Ordered>6};

-— read the data here

READ FROM ’tutor.txt’ ’%1:Table’;

READ ’%1° : ROW{i} (i , Ordered , Price);

READ °%2° : ROW{j} (j , Capacity);

READ ’%3° : COL{j} j , ROW{i} (i , COL{j} Hoursl[i,j]);

CONSTRAINT
Steps{j}: SUM{i} Hours * Robots <= Capacity;
--Steps{jlj<=3}: SUM{i} Hours * Robots <= Capacity;
Order{i}: Robots >= Ordered;

MAXIMIZE profit: SUM{i} Price * Robots;

WRITE profit, Robots, Steps, Hours;

END

LPL Modeling Steps

Sparsity is a tables is a very important concept, it means that only a subset
of the Cartesian product of table elements are used . A four-dimensional
table of only 1000 elements in each dimension goes beyond every memory
allocation, if considered as full table. It is, therefore, essential to deal with
sparsity. LPL has efficient ways to deal with it.

1. An index-set can be limited by an arbitrary expression, for example.
The following declaration

VARIABLE Robots{i | Ordered >= 5};

26

Problem

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor10

means that a variable Robots is declared for every element in i such
that the order is larger then 5. In mathematical notation:

ri,V{ili e I ={1...n},0; > 5}

In our case it means that the two variables Robot [5] and Robot [10]
are discarded from the model.

2. A tuplelist {1, j} also represents a set and can, therefore also be limited
by expressions. Hence, the declaration:

Hours{i,j | i<>10 OR j<>4};

means that there exists a value within table Hours for each combination
of (i,7) with ¢ € Iandj € J such that i # 10 or j # 4.

3. The condition i<>10 OR j<>4 excludes one tuple: ’'declare Hours for
all tuples (i,j) except for i = 10 and 7 = 4. (The number 10 and 4
indicate the positions of the elements within the sets. Sets are consid-
ered always as ordered in LPL.) (The condition could also be written as
~(i=10 AND j=4). If the expression evaluates to zero, it is interpreted
as 'tuple does not exist’, else as 'tuple does exist’.

4. Any index-list may be followed by a condition. Suppose we want the
maximizing function only summed up over all Robots yielding a price
greater than 100. We could write the maximizing function then as:

MAXIMIZE profit: SUM{i | Price>100} Price * Robots;

Question 10 (Answer to 10)

1. How does the model change, if one modify the condition Ordered>5 to
Ordered>6 in the variable declaration?

2. Change the constraint definition Steps{j}:... to Steps{jlj<=3}....
Analyse the solution.

Answer 10 (Question of 10)

1. The variable Robot4 is removed from the model. Note that it is enough
to remove it at the declaration. Summation over "all” i then discards
them automatically too.

27

2. The solution did not change! Why? This is because all the constraints
step4 to step8 are not "tight”. This can also be seen by showing the
reduced values of the constraints.

28

12 Predefined Functions (tutorll)

In this model, all data afe generated by a random generator. The model Problem
shows and explains several functions used in LPL.
The complete model code in LPL for this model is as follows:

MODEL TUTOR11 "Predefined Functions";
OPTION randSeed:=1;
SET i := /1:10/; j := /1:8/;

PARAMETER
Ordered{i} := TRUNC(RND(3,20));
Price{i} = TRUNC(RND(100,200)) ;
Capacity{j} := TRUNC(RND(3000,5000));
Hours{i,j} := TRUNC(RND(0,9));

VARIABLE Robots{i};
CONSTRAINT

Steps{j}: SUM{i} Hours * Robots <= Capacity;

Order{i}: Robots >= Ordered;
MAXIMIZE profit: SUM{i} (Price?>100) * Robots;

(* another formulation is:

profit: SUM(i) IF(Price<100,100,Price) * Robots; *)
WRITE profit, Robots;
END

LPL Modeling Steps

All data are generated by a random generation procedure.

1. The seed of the random generator is initialized by OPTION randSeed:=....

2. The function RND(a,b) generates a uniform number between a and b.
The function TRUNC(a) truncates the number a to an integer.

3. The 7> operator returns the larger of the two operands. Hence, 127>10
in LPL means 12. The smaller of-operator also exists, it is 7<.

4. The IF function takes at least two arguments. The first is a condition.
The second argument is evaluated if the condition evaluates to non-zero

29

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor11

(true), else the third argument is evaluated. If the third argument is
missing, zero is assumed. The IF can have more than three arguments
which is interpreted like a switch statement in C. For example

IF(a,b,c,d,e,f,g)

means: "if a is true (non-zero) return b, else if c is true return d else
if e is true return f, else return g. Of course, all the parameters a to g
can be arbitrary expressions.

Other functions are available, such as abs(), ceil(), sin(), cos(),
log(), and others.

Question 11 (Answer to 11)

1.

How can the prices be generated as a normal distributed vector with
mean 100 and a deviation of 207

2. Sum all Prices that are larger than 120.

Answer 11 (Question of 11)

1.

The assignment is Price{i} := RNDN(100,20); The function RNDN
returns a normal distributed value.

The expression is SUM{i|Price>120} Price . There is another way to
express the same: SUM{i} IF(Price>120,Price) .

30

13 Index Operators (tutorl2)

Indexed operators are a powerful mean to concisely write large expressions. Problem
In mathematical notation, for example, one can write

>

i€{1...1000}

which is a shortcut for
T1+ To+ X3+ ...+ Tggg + T1000

The operator Y is an indezed operator for summation terms over a set. There
exist other such operators, for example max (returning the largest element
in a list) or argmin (returning the list position of the minimal element). In
LPL, they can be used in the same way.

The complete model code in LPL for this model is as follows:

MODEL TUTOR12 "Index Operators';
OPTION randSeed:=1;
SET i := /1:10/; j := /1:8/;

PARAMETER
Ordered{i} := TRUNC(RND(3,20));
Price{i} = TRUNC(RND(100,200)) ;
Capacity{j} := TRUNC(RND(3000,5000));

Hours{i,j} ALIAS H := TRUNC(RND(0,9));

VARIABLE

Robots{i|SUM{j}H>24 AND (FORALL{j}(H<8) OR EXIST{j}(H=0))};
CONSTRAINT

Steps{j}: SUM{i} Hours * Robots <= Capacity;

Order{i}: Robots >= Ordered;

MAXIMIZE profit: SUM{i} Price * Robots;
WRITE profit, Robots;
WRITE{i}: SUM{j}H>24;
WRITE{i}: FORALL{j}(H<8);
WRITE{i}: EXIST{j} (H=0);
WRITE: ATLEAST(5){i,j} (H>7);
END

31

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor12

LPL Modeling Steps

In various location of the model we use index operators.

1.

The expression SUM{i} Pricex*Robots, for example, means >, Price; -
Robots;.

. Two other operators are used: FORALL and EXIST. We now explain the

expression containing them.

SUM{j} H, calculates the number of hours used to produce each Robot
i (X5, Hyj). It returns a value for each i. SUM{j} H > 24 returns for
each 7 true or false, depending on whether the sum is larger than 24.
(This is the case for all i—10.)

. FORALL{j} (H<8) returns true or false, depending on whether all val-

ues of H;; for a particular ¢ are smaller than 8. This is the case for
in{2,3,7,9,10}.)

. EXIST{j} (H=0) returns true or false, depending on whether there ex-

ists a value of H;; for a particular 7 that is zero. This is the case for
iin{2,3,4,6,7,10}.)

Hence, the expression in the variable declaration Robots{i| ... de-
fines a subset of i, and for each element in that subset a variable
instance is created. In our case, the subset is {2,3,4,6,7,9}. Hence,
six variable instances Robots are created and not 10. It follows that
a subsequent expression SUM{i} Robots[i] only sums over 6 (not 10)
variable instances. The expression is, therefore, equivalent to

Robots[2] +Robots[3] +Robots[4] +Robots[6] +Robots[7] +Robots[9]

Question 12 (Answer to 12)

1.

What is returned by MAX{i} Price?
What is returned by ARGMIN{i} Price?
What means MAX{i} MIN{j} H?

What means ATLEAST (5){i,j} (H>7)?

Answer 12 (Question of 12)

32

. 191. Thus s the largest value in the price list.

. 4. The smallest price value (105) is at the fourth position within the
price list.

. It means "choose the smallest value in each row i of the matriz H{1, j}
and from the obtained list choose the largest value”. It is 3.

. It means that "at least five value in the table H are greater than 77.
This expression returns 1 (one) or 0 (zero) depending on whether it is
true or false. In our case, it is true because 7 elements have value 8.
ATLEAST is also an index operator that needs an additional numerical
parameter (here 5).

33

14 Expression Evaluation (tutorl3)

An LPL model does not need to be an optimisation model. Any sequence of Problem
declarations and instructions can be defined.
The complete model code in LPL for this model is as follows:

MODEL TUTOR13 "Expression Evaluation";
OPTION randSeed:=1;
SET i := /1:10/; j := /1:8/;

PARAMETER
Ordered{i} := TRUNC(RND(3,20));
Price{il} = TRUNC(RND(100,200));

Capacity{j} := TRUNC(RND(3000,5000));
Hours{i,j} ALIAS H := TRUNC(RND(0,9));

PARAMETER

x{i} := MIN{j|H} H;

y{i} := MAX{j} H;

MinCapH{i} := MIN{j|H} Capacity/H;
WRITE °

Maxi(x) Mini(y) Min Capa/Hour
WTs %3d %3d %4d\n’
: ROW{i}(i, x , y , MinCapH);
END

LPL Modeling Steps

This model declares some tables the values in which are randomly generated.

1. MIN and MAX are two index-operators which returns the minimum or
maximum of a list of expressions.

2. The expression MIN{j|H} H returns for each i the smallest value dif-
ferent from zero in H over j. (In this context, ..|H means ..|H<>0.)
Note that the condition is necessary in the definition of MinCapH to
avoid a ”division-by-zero” error.

34

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor13

3. ROW is another index operator in the context of output (using here in
a WRITE). It says to output the four elements (i, x, y MinCapH) line by
line over 1i.

Question 13 (Answer to 13)

1. Simplify the expression MAX{i} MAX{j} Hours[i,j].

2. Run the model and see the output. Then changei:=/1:10/ toi:=/1:100/
and run the model again. What do you notice.

Answer 13 (Question of 15)

1. The two indexes can be combined into one, One can use the alias H,
and the index-list [1i,3j] is not necessary. Hence: MAX{i,j} H.

2. Well, 100 lines instead of just 10 are written.

35

15 Goal Programming (tutorl4)

LPL can be used to model soft constraints using goal programming. Problem
The complete model code in LPL for this model is as follows:

MODEL TUTOR14 "Goal Programming";

VARIABLE Marie; Jules;
PTesting; Nprofit; Pprofit; PComp; --slack variables
PARAMETER dP:=18500 "desired profit";
CONSTRAINT
Components: 5*Marie + 5*xJules <= 350;
Mounting: 4xMarie + 8*Jules <= 480;

Testing: 6*Marie + 2xJules -PTesting <= 300;
Orderi: Marie >= 20;
Order2: Jules >= 15;

profit: 300*Marie + 200*Jules -Pprofit+Nprofit = dP;
--TestBound: PTesting=10;

MINIMIZE deviation: Nprofit + PTesting + Pprofit;
—--MINIMIZE deviation: Nprofit + 200*PTesting + Pprofit;
WRITE deviation, Marie, Jules, Nprofit, PTesting;
WRITE :profit.lhs-Nprofit;

END

LPL Modeling Steps

Let’s return to the simplest model tutor02 with one exception.

1. Suppose we do not know exactly the capacity of Testing, but we know
that it is about 300.

2. Furthermore, we will be happy with a profit of ’about’ 18500.

3. This problem would be infeasible as we know from problem tutor02
(since the maximizing profit is 18000).

4. Hence, we add a positive slack variable (PTesting) in order to see
how much the capacity of Testing has to be expanded to attain our
objective.

36

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor14

5. In the profit constraint, we add two slack variables to cover a positive
or negative deviation (Pprofit and Nprofit).

6. We do not maximize profit, as before, but we minimize a deviation
measure.

7. The deviation of the positive PTesting and the negative Nprofit slacks
is minimized.

8. As can be seen from the solution, the optimum 18500 can be attained
if we allow the Testing constraint to exceed its capacity of 300 by 20
units.

9. If we add an upper bound of 10 to PTesting (TestBound)then we can
still attain a profit of 18250.

Question 14 (Answer to 14)

1. Modify the value of AP from 18500 to 20500 by steps of 200. What do
you notice when solving each time?

2. Change the model in a way as to make TPesting as small as possible.

Answer 14 (Question of 14)

1. The profit cannot be augmented over 19500, even if the "desired profit”
dP gets higher. This is because of the Components constraint is at 100%
percent of its capacity and the number of Jules cannot be lowered below
15, because of the bound imposed by Order2 and consequently the num-
ber of Marie cannot be higher than 55. The next model tutorl5.1lpl
shows how these calculations can be implemented in a single LPL model
code.

2. We could replace the minimizing function to MINIMIZE dev: PTesting;.
Another way is to leave the minimizing function, but to impose a higher
"penalty” to the term PTesting by adding a factor, for example: 200¥PTesting.
Penalising is a general method to formulate multiple objectives.

37

16 Loop Programming (tutorl5)

This model is the answer to the first question in the model tutor14.1pl: Problem
How to implement a sequence of optimisation. We call this also ”parameter-

ized optimisation”.

The complete model code in LPL for this model is as follows:

MODEL TUTOR15 "Loop Programming";

VARIABLE Marie; Jules;
PTesting; Nprofit; Pprofit; --slack variables
PARAMETER dP:=18500 "desired profit";

CONSTRAINT
Components: 5*Marie + b5xJules <= 350;
Mounting: 4xMarie + 8xJules <= 480;
Testing: 6xMarie + 2*Jules -PTesting <= 300;
Orderi: Marie >= 20;
Order2: Jules >= 15;

profit: 300*Marie + 200*Jules -Pprofit+Nprofit = dP;
--TestBound: PTesting=10;

SET i :=/1:9/; --loop set
FOR{i} DO --begin loop
MINIMIZE deviation: Nprofit + PTesting + Pprofit;
WRITE TO i&’.sns’;
dP := dP+200;
—--dP:= TRUNC(1.1%dP);
END --end loop

--reading all snapshot files automatically
FOR{i} DO READ FROM+ i&’.sns’; END
WRITE dP, Marie, Jules TO ’tutorl5.nom’;
END

LPL Modeling Steps

The only modification takes place at the MINIMIZE function. It is embedded
in a loop.

38

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor15

. First we add a set i the cardinality of this set (here 9) the number of

optimisations.

. FOR is another index operator that can be used to loop through a set,

In our case over 1i.

. Within the loop, we MINIMIZE to deviation in the same way as in the

single case.

. Then we save the complete data store together with the solution in a

snapshot file. Snapshot file contain (in a readable form) all data. After
each optimisation the data are stored in the files 1.sns, 2.sns , ...
9.suns using the instruction

WRITE TO i&’.sns’;

The expression i&’ .sns’ defines a string concatenating i and ’.sns”’.
Since the file names have extension "sns”, LPL interprets this as a
"write a snapshot”.

. After the WRITE-instruction the desired profit dP is modified and the

loop is repeated.

. After the first loop, a second loop is executed, which reads all snapshot

file at once. The last WRITE shows three tables dP, Marie and Jules.
The values are acumulated and shown the ”progress” of the result in
the optimization loop.

Question 15 (Answer to 15)

1.

What happens if the capacity of Mounting is extended? Can we make
more profit?

2. We would like to rise dP by 10% within the loop. How can we do this?

Answer 15 (Question of 15)

1.

Nothing happens, the profit is the same. This is because Mounting is
never the limiting constraint.

Replace the instruction dP:=dP+200; with dP:= TRUNC(1.1*dP); and
TUN again.

39

17 Logical Constraints (tutorl6)

We include some logical constraints. Problem
The complete model code in LPL for this model is as follows:

MODEL TUTOR16 "Logical Constraints";

SET i :=/ 1:10 /;
INTEGER VARIABLE Robots{i} [0,500];
PARAMETER HC{i} := [6545657 8471;

HM{i} (= [4856 487653 1];

HT{i} (= [6 246 34525 3 1];

Ordered{i} :=[20157 658 987 5 1;

Price{i} = [300 200 100 50 50 100 200 100 400 200];

CONSTRAINT
Components: SUM{i} HC[i]*Robots[i] <= 3500;
Mounting: SUM{i} HM[i]*Robots[i] <= 4800;

Testing: SUM{i} HT[i]*Robots[i] <= 3000;
Logl: Robots[2]>=150 -> Robots[6]>=30;
Log2: ATLEAST(5){i} (Robots[i]>=20);
--Log3: Robots[1]>=10 and Robots[3]>=15;
--Log4: NOR{i} (Robots>100) ;

MAXIMIZE profit: SUM{i} Pricel[i]*Robots[i];
WRITE profit, Robots, HC, HM, HT;
END

LPL Modeling Steps

The two additional logical constraints are Logl and Log2. Removing both
constraints and solving the model produces the following solution: Robotsy =
300, Robotsg = 480 the profit is profit = 252000. Let’s call this the basis
solution.

1. Add the Logl constraint now. It says that if Robots[2] is equal or
larger than 150 (this is the case in the basis solution) then Robots [6]
must be larger or equal to 30 (this is not the case in the basis solution).
Solving the problem with the additional constraint Logl says that the

40

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor16

profit drops to 244600 and Robots [6] goes up to 30 as required by the
constraint.

2. The constraint Log2 imposes that at least 5 different types of Robots
must be produced with at least the quantity of 20 pieces. Solving the
problem imposes now that 5 types of Robots are produced as can be
verified.

Question 16 (Answer to 16)

1. Add the constraint Log3. How does the solution change.

2. Formulate the constraint that none of the Robots type can exceed 100
preces.

Answer 16 (Question of 16)

1. Robots[1] and Robots[3] enter the solution as required. However
Robots[2] drops to 149. Therefore, Logl has no effect anymore and
Robots[6] now is zero. Log3 is not — strictly speaking — a logical
constraint, it just impose two lower bounds. On the other side, this
means that a list of constraints can be expressed by a single constraint
linking them together with AND.

2. CONTRAINT Log4{i}: Robots<=100; another way to formulate it is
CONSTRAINT Log4: NOR{i} (Robots>100);
NOR is another index operator which formulate the logical "none”. Do
not confound it with the operator NAND. NAND means “not all”. By the

way, LPL translates the "logical” constraint automatically into ordinary
variable bounds (see EQU-file).

41

18 Calling Submodels (tutorl?7)

This model shows how a larger model can be broken down into logical units. Problem
A model can be subdivided hierarchically into submodels. They can be

executed separately by calling them. In our case, we use submodels to define

various data sets for the same main model.

The complete model code in LPL for this model is as follows:

MODEL TUTOR17 "Calling Submodels";
-——- main LP model
SET i; js
PARAMETER Ordered{i}; Price{il}; Capacity{j}; Hours{i,jl};
VARIABLE Robots{i};
CONSTRAINT
Steps{j}: SUM{i} Hours*Robots <= Capacity;
Order{i}: Robots >= Ordered;
profit FREEZE: SUM{i} Price*Robots;

—-——— execution block
PARAMETER x:=0;

WRITE ’---run myDatall\n’;
myDatal; -- call submodel
WHILE x<4 DO -- loop (4 times)

MAXIMIZE obj: profit;
WRITE ’profit: %8d\n’: profit;

lowerPrice; —-— call submodel
X:=x+1;
END
WRITE ’---run myData2\n’;
EMPTY TUTOR17; —- clear the data store
IF profit<160000 THEN
myDatal;

MAXIMIZE objl: profit;

WRITE ’(myDatal) profit: ¥%8d\n’: profit;
ELSE

myData2;

MAXIMIZE obj2: profit;

WRITE °’ (myData2) profit: %8d\n’: profit;
END;

42

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor17

WRITE ’---run myData3\n’;

EMPTY TUTOR17;

myData3;

MAXIMIZE obj3: profit;

WRITE °’ (myData3) profit: %8d\n’: profit;

WRITE ’---run DBdata\n’;
EMPTY TUTOR17;
DBdata;

MAXIMIZE obj4: profit;
WRITE ’(DBdata) profit: %8d\n’: profit;

—————— submodel declarations —-—--—-—-—-—
MODEL myDatal "First Data Set";

READ FROM ’tutor.txt’ ’%1:Table’;

READ °%1’: ROW{i} (i , Ordered , Price);

READ ’%2’: ROW{j} (j , Capacity);

READ ’%3°: COL{j} j, ROW{i} (i,COL{j} Hours);
END

MODEL myData2 "Second Data Set';

READ FROM ’tutorl.txt’ ’%1:Table’;

READ °%1’: ROW{i} (i , Ordered , Price);

READ ’%2’: ROW{j} (j , Capacity);

READ °%3’: COL{j} j , ROW{i} (i,COL{j} Hours);
END

MODEL myData3 "Randomly Generated Data Set";
OPTION randomSeed := 1;

i = /1:100/; -- 100 products
Ordered{i} := RND(0,10);
Price{i} = RND(100,300) ;
j := /1:20/; —-- 20 processes
Capacity{j}:= RND(5000,20000) ;
Hours{i,j} := IF(RND(0,1)<=0.3,RND(1,15));

END

MODEL DBdata "Read Data from a DB";
STRING PARAMETER DB:=’tutorl18a.mdb’;
READ{i} FROM ’DB,Robot’:
i=’robot’, Ordered=’ordered’, Price=’price’;

43

READ{j} FROM ’DB,Process’:
j=’processes’ , Capacity=’capacity’;
READ{i, j} FROM ’DB,Hours’:
i="rID’, j=’pID’, Hours=’hours’;
END

MODEL lowerPrice "a lower price scenario";
Price{i} := 0.9%*Price;
—--Capacity{j} := 1.1%Capacity; --2nd question
END

END

LPL Modeling Steps

There is a main model is just an LP model without a objective function and
without data. It consists of the first 8 code lines. Then follows an execution
block. Finally, several submodels are declared. Note that the submodels
are declared after they are used (called) in the execution block of the main
model. Normally, an identifier must be declared before its use. But submodels
can also be declared after their use (call). This allows the modeller to write
the code in a clean top-down fashion, by refining the ”calls” afterwards.

1.

The execution block first declare a parameter x which is used as loop
parameter. Then a string is written to the output.

. The next instruction myDatal; calls the submodel myData which is

executed at this point. It assigns the data to the model by reading
them from a file tutor.txt.

Next the WHILE-loop is entered and the main model is solved. (Note
that because of the FREEZE keyword profit is not considered as a
constraint. It is activated as expression of the objective function.)

Next the profit is written to the output and the price vector is lowered
by 10% by calling the submodel lowerPrice. x is advance and the loop
is repeated (4 times).

Next we clear all data of the model by the EMPTY instruction.

Then profit<160000 is checked. This is not the case, so the ELSE-part
is executed.

44

7. The ELSE-part calls the model MyData2, that is, it reads the data from
another file (tutorl.txt).

8. Next the profit is maximized by solving the model and the result is
written to the NOM-file.

9. After that the data store of LPL is cleared again another data set is
read by executing myData3 and the model is solved again.

10. This is repeated again, this time by reading the data from a database
(running DBdata).

Question 17 (Answer to 17)

1. Place an END just before the submodel declarations. What happens when
the code is executed?

2. In the first loop the price are lowered by 10% and consequently the profit
falls by 10%. How could this be compensated?

Answer 17 (Question of 17)

1. An 7Unresolved forward reference” error occurs. The submodels called
in the main model are not declared. (remove the added END).

2. By expanding the capacity by 10%. Add the instruction

Capacity{j} := 1.1*Capacity;

in the model lowerPrice and run the model. The profit is stable and
keeps its value around 230000.

45

19 Link to Database (tutorl8)

This models shows how the data can be read from and write to a database. Problem
The complete model code in LPL for this model is as follows:

MODEL Tutor18 "Link to Database";

PARAMETER para := 5;
STRING DB := ’tutorl8a.mdb’ "My ACCESS database";

SET i; j; hi{i,j}; ii{i};
PARAMETER a{i}; c{j}; h{hi};
STRING PARAMETER b{i};

p{j}; nII{ii};

READ{i} FROM °’DB,SELECT * FROM Robot WHERE ID<=:para’
i=’ID’, b=’Robot’, a=’Price’;
READ{j} FROM ’DB,Process’
j=’1ID’, p=’Processes’, c=’capacity’;
READ{i,j} FROM °’DB,Hours’
i = ’rID’, j=’pID’,
hi= (°rID’,’pID’), h=’Hours’;
READ{i} FROM ’DB,Rob’
i= ’ID’, ii=’ID’ , nII=’Robot’;

WRITE i,a,b , j,c,p , hli,h , ii,nIT;
WRITE{j} TO- °DB,NEW’: ’ID’=j, ’aa’=p, ’num’=c, ’xx’=j;

END

LPL Modeling Steps

Data can be read from and written to databases using READ and WRITE in-
structions.

1. The FROM string contains a database name or a STRING PARAMETER
name (here DB) to identify the database, followed by a table name,
a query name or a parameterized SQL SELECT statement. Database
name and table name must be separated by a comma.

46

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor18

2. The parameter para in the SQL statement must begin with a colon
(:). LPL replaces it with the content of the parameter (here :para is
replaced by 5). Hence, the query in the first READ statement will be:

SELECT * FROM Robot WHERE ID<=5

3. The expression following : contains a list of mapping: i=’ID’, for
example, means that the field ID in the database table must be read
and assigned to the set i in LPL.

4. The WRITE contains a TO attribute. It also contains the database name
and a table name. (Here the database name is DB and the table name
is NEW.)

5. The minus after TO means that the content of the table must be cleared
before the first record is written.

One can also easily create a database using 1lplw.exe. This can be done as
follows:

1. Load the model tutor18.1pl into 1plw.exe. Run the model.

2. Then click the menu ”Tools/Create SQL-files”. This creates two files:
(1) tutor18.sql: This is a SQL-script that can be executed by a
database server. (2) tutor18.sq2: This file is a LPL DATA model
which contains all READ/WRITE instructions to read/write from the
database.

3. The click the menu ”Tools/Create ACCESS DB”. A database file
tutor18.mdb will be created. A message box indicates the creation.

4. Open then database tutor18.mdb using MS Access. It has created the
tables according to the SQL script generated in the previous step.

Question 18 (Answer to 18)

1. Change the string ’tutor18a.mdb’ to ’tutor.mdb’ and run again.
What happens?

Answer 18 (Question of 18)

1. An error is produced: 7434 Database file not found” and the run is
aborted.

47

Comments

20 Create a Database (tutorl19)

This models shows how an LPL code can create a complete database. Problem
[To understand this example you need to know database technology.]
The complete model code in LPL for this model is as follows:

MODEL Tutorl19 "Create a Database";
STRING PARAMETER DB:=’tutorl9a.mdb’ "database name";

SET i := /1:9/; j := /A B C D E/;
ij{i,j» = /1 B, 2C, 4 E, 5 A, 6 D, 3B, 7 D/;
PARAMETER a{j} := j*j; d{j} := [3 2 4 5 1];
b{i,jt := ix*j;
STRING c{j} := [’AA’>, ’BB’>, ’CC’, ’DD’, ’EE’];

WRITE TO*x* °’DB,tablel’ : ’fieldA’ = ’linel’ , ’f2’ = 234.78;
WRITE TO+ ’DB,tablel’ : ’fieldA’ = ’1line2’ , ’f2’ = 23.709;
WRITE{j} TO* ’DB,table2’ : ’j’ = j , ’a’ =a , ’c’ = c;
WRITE{i} TO* ’°DB,table3’ : ’ID’ =i , ’j’=COL{j} b;

WRITE{j} TO* ’DB,table4’ : ’ID’ = j , ’d’=d;

WRITE{j} TO* ’°DB,tableb’ : ’>_d’=d , ’j’ = j , ’a’=a;

WRITE{ij[i,j]} TO* ’DB,table6’
>ID_table3_ID’=i, ’ID_table4_ID’=j;
END

LPL Modeling Steps

This LPL code creates a complete database. The database name is defined
in parameter DB ("tutor19a.mdb’).

1. The WRITE TOx* create the database, if it exists already it will be
deleted. At the same time a table tablel within DB is created.

2. The fields in tablel are named fieldA and £2. One record is added
to the table.

48

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor19

. The TO+ will add records to an already created table (tablel). The
fields must correspond. Hence, the second WRITE add another record
to tha table.

. The third WRITE creates a second table (table2) within the database.
This is forced by the TO* (one star after the keyword T0). In this way
we can add any table to an existing database, provided that the table
does not exist already.

. The fields are j, a, and c. Since the statement is indexed over j, five
records will be added to the table.

. The fourth WRITE instruction creates a third table: table3, with the
field names ID and j1 to j5. The COL{j} keyword has a special meaning
in this context: create as many fields as j has elements (5), and name
the fileds by concatenating ’j’ with the numbers 1’ to ’5’. Since the
statement is indexed, 9 records are added and the matrix b{i,j} is
stored in table table3.

. There is a particularity about the field ID. The translator interprets
a fieldname beginning with a capital I (which does not contain a _
character, see below) as a primary key field. Hence a primary key on
field the ID is created in addition. The same is valid for the creation
of table table4. Again a primary key is generated on field ID.

. The sixth WRITE statement adds the table tableb. It is similar to table
table2. However, it contains a field _d. A fieldname beginning with
the character _ instructs the translator to generate also an INDEX on
this field. Indeed, opening the table table4 with the database server
reveals that the records are sorted according to d{i}.

. The last WRITE-statement creates the table table6 with two fields
named ID_table3_ID and ID_table4_ID. A field beginning with a
character I and having two _ character — hence having the syntax
Ix_y_z , where x, y, and z are arbitary strings without an underscore
char — are interpreted as foreign keys fields. In this case y is interpreted
as the foreign table and z as the foreign primary key field. In SQL syn-
tax, the translator will execute the following statement while creating
the table table6:

49

CREATE TABLE table6(
ID_table3_ID VARCHAR(150),
FOREIGN KEY (ID_table3_ID) REFERENCES table3(ID),
ID_table4_ID VARCHAR(150),
FOREIGN KEY (ID_table4_ID) REFERENCES table4(ID));

There is another simplified way to create a database from an LPL model.
(Only possible with LPL’s Enterprise Package.) As an exercise — if you have
LPL Entreprise Package:

1. Open 1lplw.exe with the model tutor08.1pl. Then run the model
(Menu: 'Run/Run Model’).

2. Now choose menu: ’Tools/Create SQL files’. This menu point will
generate two files: tutor08.sql and tutor08.sq2. The firts is an
SQL-script that can be executed by most database server to create a
complete database. The second file is a list of LPL instructions that
can be included into the LPL-model code to read the data from this
database.

3. Then chosse menu: 'Tools/Create ACCESS DB’. This will automati-
cally run the script generated before and create a complete Microsoft
ACCESS database.

50

Comments

21 Write-Format Examples (tutor20)

This model shows all output formatting with the WRITE statement as ex- Problem
plained in the reference manual in Chap. 9.2.2.
The complete model code in LPL for this model is as follows:

MODEL tutorl9 "Write-Format Examples";

PARAMETER a := 1234.56;

INTEGER i := 1234;

STRING b := ’abcdefg’;

DATE d := ©2004-11-13T10:30:15;
write ’d (integer) : %d\n’ =il ¢
write ’u (unsigned) : %u\n’ i;
write ’h (hexadeci) : %x\n’ i;
write ’o (octal) : %o\n’ ig
write ’f (float) : %hf\n’ a;
write ’f (width 5, 1 dec): %5.1f\n’ a;
write ’f (right adjusted): %-15.3f\n’: a;
write ’f (left adjusted) : %15.3f\n’ : a;
write ’e (e-notation) : %h.2e\n’ a;
write ’e (e-notation) : %16.7e\n’ a;
write ’g (same as e or f): %16.7g\n’ : a;
write ’n (with 1000 sep) : %n\n’ a;
write ’n (4 decimals) : %.4n\n’ a;
write ’n (1 decimal) : %7.1n\n’ a;
write ’m (currency) : Jm\n’ a;
write ’m (7:3 width) : %7.3m\n’ : a;
write ’b (boolean true) : %b\n’ 9 dg
write ’b (boolean false) : %b\n’ : 0;
write ’s (string) : %s\n’ : b;
write ’s (width 10,5) : %$10.5s\n’ : b;
write ’z (fraction) : %z\n’ : .75;
write ’z (fraction) : %z\n’ 6.125;
write ’z (fraction) : %z\n’ 6.875;
write ’\n-- date now——\n’;

—-- All date/time format specifiers

write ’tH (Hour)

: %tH\n’

. d;

o1

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor20

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
END

’tk
’tI
’tl
’tM
’£S
’tL
)tp
’tB
’tb
’th
’tm
’tA
’ta
’tY
)ty
’td
’te
’tR
’tT
‘tr
’tD
’tR
’tc

(Hour)
(Hour)
(Hour)
(Min)
(Secs)
(mSecs)
(ampm)
(month)
(month)
(month)
(month)
(month)
(month)
(month)
(month)
(day)
(day)
(h:m)
(h:m:s)
(h:m:s)
(y-m-d)
(y-m-d)
(all)

: %tk\n’
: %tI\n’
: %tl\n’
: %tM\n’
: %tS\n’
: %tL\n’
: htp\n’
: %tB\n’
: %tb\n’
: %th\n’
: %tm\n’
: %tA\n’
: %ta\n’
: AtY\n’
: hty\n’
: J%td\n’
: %te\n’
: %tR\n’
: %tT\n’
: %tr\n’
: %tD\n’
: %tF\n’
: %tc\n’

[T o T & T O T T P & T T S T T O T O T o T T N o T o T e o Tl o7

we Wwe We We We Wwe we we we we

o e

we Wwe We Wwe we We we we we we

-

52

22 Drawing Library I (tutor21)

This model shows how to use the graphic library of LPL. The complete model
code in LPL for this model is as follows:

model draw "Drawing Library I";
Draw.Ratio(3,3,480);
Draw.Rect(0,0,150,150,2);
Draw.Line(5,5,5,150,0) ;
Draw.Line(5,5,150,5,0);
Draw.Line(5,75,75,5,0) ;
Draw.Line(5,150,50,5,0);
Draw.Text(’A’,2,2,0);
Draw.Text(’B’,2,75,0);
Draw.Text(’C’,40,42,0);
Draw.Text(’D’,51,6,0);
Draw.Text(’y’,2,145,0);
Draw.Text(’x’,145,0.9,0);
Draw.Ellipse(37.5,39.5,40.5,42.5,0);
Draw.Text (’6x+2y = 300°,27,100,-75,16,0);
Draw.Text (’5x+by = 350’,50,35,-45,16,0);

end

1. All instructions to draw a picture begin with ’Draw.’. They draw
sequentially into the same picture, which then is stored automatically
to the file abc. jpg at the end of a model run.

2. Draw.Ratio stretches all x- and y-coordinates by a multiplier. For
example, Draw.Ratio(3,3) ; instructs the drawing library to interpret
each subsequent (z,y)-coordinate as (3-z,3 - y).

Normally, the coordinate point (0,0) is the left-top of the picture. A
third parameter in the Ratio function, sets the (0,0) point at the left-
bottom. Hence Draw.Ratio(3,3,160); put the point (0,0) at (0, 480).

3. Draw.Rect(0,0,150,150,2) ; draws a rectangle from (0, 0) (left-bottom)
to (300, 300) (right-top) with color code 2 (light blue).

4. Draw.Line(5,5,5,150,0) ; draws a line from (15, 15) to (15,450) with
color code 0 (black).

5. Draw.Text(’A’,2,2,0); draws the text A’ at point (6,6).

33

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor21

6. Draw.E11ipse(37.5,39.5,40.5,42.5,0) ; draws an ellipse in the rect-
angle from (112.5,118.5) to (121.5,127.5) with color-fill code 0 (black).

7. Draw.Text (’6x+2y = 300°’,27,100,-75,16,0) ; draws the text '6x+2y
= 300’ at point (81,300)) at an angle of —75° with height 16 and color
code 0.

The result is stored in file abc.jpg. The picture format is jpeg. It is
displayed in Figure 2.

Figure 2: The Picture

54

23 Drawing Library II (tutor22)

Like tutor21.1pl, this model shows how to use the graphic library of LPL.
The complete model code in LPL for this model is as follows:

model colors "Drawing Library II";
if 1 then FirstExample; else SecondExample; end

model FirstExample;
set y:=/1:8/ "Eight color tables";
x:=/1:32/ "32 darkness in gradients";
integer parameter a{y,x}:= 32*(y-1)+x-1;
integer parameter b{y,x}:= 32*(y-1)+32-x;
Draw.Ratio(20,20);
for{y,x} do Draw.Rect(x,y,x+1,y+1,a); end
-—— using RGB function for collos.
for{i={1:256}} do
Draw.Rect((i-1)/8,10,i/8,12,RGB(0,0,i-1)); end
for{i={1:256}} do
Draw.Rect((i-1)/8,13,i/8,15,RGB(i-1,i-1,255)); end
end

model SecondExample;
Draw.Ratio(2,2);
set i alias j := /1:100/;
--integer parameter c{i,j} := (i"2+2xj)%32+64;
--integer parameter c{i,j} := ((i/10)°2+2xj)%32+64;
integer parameter c{i,j} := (sqrt(10xixj))%32+128;
for{i,j} do Draw.Rect(i,j,i+1,j+1,c); end

end

end

1. The model executes the submodel FirstExample or SecondExample
depending on whether the if is true or false (here FirstExample is
executed only by default.

2. for{y,x} means to excecute Draw.Rect (x,y,x+1,y+1,a); 8-32 times
with the corresponding parameters.

3. Using the RGB(r,g,b) function, one can generate a RGB color with
the red (r), green (g), and blue (b) part.

95

http://diuflx71.unifr.ch/lpl/GetModel?name=/tutor/tutor22

Figure 3: The Picture drawn by FirstExample

The pictures of the two models are shown in Figure 3 and 4

56

@

Figure 4: The Picture drawn by SecondExample

57

24 Conclusion

This ends the tutorial of LPL. Other introductional papers as well as the
reference manual can be found at LLPL. Documentation.

References

1] HURLIMANN T., Reference Manual for the LPL Modelling Language,
(see www-virtual-optima.com).

58

file:www.virtual-optima.com/en/papers.html

	LPL Tutorial
	A Simple Model (tutor01)
	Names and Comments (tutor02)
	Using Indices (tutor03)
	Using Units (tutor04)
	Data Tables (tutor05)
	Data Tables I (tutor06)
	Data Tables II (tutor07)
	Reading Textfiles (tutor08)
	Writing Masks (tutor09)
	Sparse Tables (tutor10)
	Predefined Functions (tutor11)
	Index Operators (tutor12)
	Expression Evaluation (tutor13)
	Goal Programming (tutor14)
	Loop Programming (tutor15)
	Logical Constraints (tutor16)
	Calling Submodels (tutor17)
	Link to Database (tutor18)
	Create a Database (tutor19)
	Write-Format Examples (tutor20)
	Drawing Library I (tutor21)
	Drawing Library II (tutor22)
	Conclusion

