

Environment Settings Manager

Usage Guide

Version 1.6

 Updated July 7, 2010

Hosted on CodePlex at http://EnvSettingsManager.codeplex.com

Copyright © 2007-10 Thomas F. Abraham. All Rights Reserved.

Subject to the Microsoft Public License (Ms-PL);

See http://www.microsoft.com/resources/sharedsource/licensingbasics/publiclicense.mspx.

 Page 2 7/7/2010 12:43:00 PM

1. Introduction
The best way to introduce the Environment Settings Manager is to explain the

motivations behind its creation:

1. Most software projects have dynamic configuration settings, and their values

usually vary per deployment environment (development, test, production, etc.).

2. Maintaining the values of many settings across many environments is a difficult,

error-prone task.

3. Configuration settings and their values must be understood and communicated

across departmental boundaries, for instance from development to IT support.

4. It is common to store configuration settings in XML, whether they exist as an

XML file in the file system or as XML stored in a database column.

5. Configuration settings must be synchronized with ever-changing program code,

usually in a source control/versioning tool.

The Environment Settings Manager consists of an Excel spreadsheet and an associated

command-line export utility. Here’s how the Environment Settings Manager’s

spreadsheet and exporter can help with the issues described above:

1. Settings are maintained with a well-known, user-friendly tool – Microsoft Excel

2003 or newer.

2. The spreadsheet can store hundreds of settings and their values for dozens of

environments in an easy-to-read tabular format.

3. Cell comments allow descriptions to be entered along with the setting name,

which can provide helpful context and meaning to the setting name itself.

4. Settings may be saved in either XML or native Excel binary format – the editing

experience in Excel is identical either way.

5. The settings spreadsheet (in XML or binary format) can be easily shared between

interested parties.

6. Excel’s cell locking allows selected setting values or names to be easily protected

from editing by other users.

7. The command-line exporter tool makes it easy to export the settings and their

values to a number of different XML formats, ready for consumption by a .NET

configuration file, Windows Installer XML (WiX) project or Loren Halvorson’s

XmlPreprocess (http://xmlpreprocess.sourceforge.net/) tool.

Please be sure to read the Credits section for more on Loren Halvorson and the

inspiration behind this project!

2. Software Requirements
The settings spreadsheet simply requires Microsoft Excel 2003 or newer.

The exporter utility requires the Microsoft .NET Framework 2.0 or greater. If you are

exporting from a binary Excel 2003 XLS file, then you also need to install the Microsoft

 Page 3 7/7/2010 12:43:00 PM

JET OLEDB 4.0 driver. If you are exporting from a binary Excel 2007+ XLSX file, then

you also need to install the Microsoft Office 2007 or 2010 Data Connectivity

Components.

The exporter’s solution and project files are in Visual Studio 2008 format.

3. The Spreadsheet
This section includes a review of the structure of the spreadsheet and explains how to get

started with your own copy.

3.1. Spreadsheet Elements
Let’s take a look at the spreadsheet, shown below in Excel 2007.

Figure 1 - Sample Settings Spreadsheet

The layout is purposefully very straightforward. Let’s walk through the components.

Starting with column C, the columns correspond to your deployment environments, one

per column. In the picture, column C corresponds to the local development workstation,

column D corresponds to the shared/integration development environment, and column E

corresponds to the QA testing environment. You can continue to use as many columns as

you need for each of your environments.

Down the left side, starting at row 7, you’ll find the names of various runtime

configuration settings. Each row from row 7 down corresponds to one particular setting,

so combined with the columns defining deployment environments, we have a simple

matrix of setting values to deployment environments.

Column B is a special column that defines default values for each setting. Values may be

entered from row 7 down. In a particular row corresponding to one setting, if no value is

provided in an environment-specific column, then the default value in column B will be

used instead. In the picture, the default value at B7 will be used for the setting

 Page 4 7/7/2010 12:43:00 PM

“FileSendLocation” for the environments Local Development (column C) and Shared

Development (column D), because the cells C7 and D7 do not contain values.

Rows 2-4 provide information to the settings exporter utility. The exporter will read

these values to determine how many XML files to create and what to name them.

For the .NET <appSettings> and XmlPreprocess output formats, the exporter generates

one XML file per environment (columns C and above) where “Generate File?” is set to

“Yes” in row 3. It uses the filenames defined in row 4. In the picture, the exporter would

generate three XML files named local_settings.xml, DEVL_settings.xml and

QA_settings.xml (columns C-E). Each XML file would contain values for seven settings

(rows 7-9 and 11-14).

For the WiX CustomTable output format, the exporter generates a single XML file

named EnvironmentSettings.wxi. It will contain the settings from all environments

where “Generate File?” is set to “Yes”.

In the picture, cells A7, A11 and A12 have tiny red triangles in the upper-right corners of

the cells. These are standard Excel cell comments. The settings exporter utility will

write cell comments found in column A to the XML files along with the setting values

(XML format workbooks only).

3.2. Starting a New Spreadsheet
The only choice required before you begin creating a new settings spreadsheet is which

file format you prefer: Excel binary or Excel XML (SpreadsheetML). In most cases,

XML is recommended because it provides virtually the same functionality as the binary

format, can be used with common file-comparison tools and is branch/merge friendly in

source control systems.

The Environment Settings Manager includes two templates that correspond to the two file

formats: EnvironmentSettingsTemplate.xml and EnvironmentSettingsTemplate.xls.

Simply make a copy of the template file of the format you prefer.

It is a good idea to customize the environment columns first. Open the workbook file in

Excel and delete any environment-specific columns that you do not need. To add

additional environments, make a copy of one of the existing environment-specific

columns and paste it in a blank column to the right side of the existing columns.

Next, you’ll probably want to delete the sample setting and values and begin adding your

own setting names down the left side, starting at row 7.

4. The Exporter
The settings exporter is a command-line program that can read the settings spreadsheet in

either Excel Binary or Excel SpreadsheetML XML format and export the configuration

settings and values to one or more XML files.

 Page 5 7/7/2010 12:43:00 PM

The exporter can export to three different XML formats:

1. XmlPreprocess format

2. .NET <appSettings> format

3. WiX include format with a <CustomTable> definition

Here’s an example of the XmlPreprocess XML format. This example corresponds to the

“Local Development” environment shown in the picture of the spreadsheet above.

<?xml version="1.0" encoding="utf-8"?>
...
<settings>
 <property name="FileSendLocation">C:\temp\BizTalkSample_OutDir</property>
 <property name="ssoAppUserGroup">BizTalk Application Users</property>
 <property name="ssoAppAdminGroup">BizTalk Server Administrators</property>
 <property name="SomeAppConfigItem">LocalData</property>
 <property name="AnotherAppConfigItem">ConfigValue</property>
 <property name="NestedName.One">Foo</property>
 <property name="NestedName.Two">Baz</property>
</settings>

The format is very simple and easy to consume by your own utility programs or by the

XmlPreprocess utility mentioned earlier.

Here’s an example of the .NET <appSettings> XML format. This example again

corresponds to the “Local Development” environment shown in the picture of the

spreadsheet above.

<?xml version="1.0" encoding="utf-8"?>
...
<appSettings>
 <add key="FileSendLocation" value="C:\temp\BizTalkSample_OutDir" />
 <add key="ssoAppUserGroup" value="BizTalk Application Users" />
 <add key="ssoAppAdminGroup" value="BizTalk Server Administrators" />
 <add key="SomeAppConfigItem" value="DevlData" />
 <add key="AnotherAppConfigItem" value="ConfigValue" />
 <add key="NestedName.One" value="Foo" />
 <add key="NestedName.Two" value="Baz" />
</appSettings>

This format can be included directly into a parent .NET configuration file by using the

<appSettings> element’s file attribute:

<appSettings file="QA_settings.xml" />

Here’s an example of the WiX CustomTable XML format. The WiX format includes all

environments in one XML file, so this example includes the settings from all

environments shown in the spreadsheet above.

<?xml version="1.0" encoding="utf-8"?>
...
<include>
 <CustomTable Id="EnvironmentSettings">

 Page 6 7/7/2010 12:43:00 PM

 <Column Id="Id" Category="Identifier" PrimaryKey="yes" Type="int" Width="4"
/>
 <Column Id="Environment" Category="Text" Type="string" PrimaryKey="no" />
 <Column Id="Key" Category="Text" Type="string" PrimaryKey="no" />
 <Column Id="Value" Category="Text" Type="string" PrimaryKey="no"
Nullable="yes" />
 <!--Environment: Local Development-->
 <!--Cell comments will be exported to the output XML files-->
 <Row>
 <Data Column="Id">1</Data>
 <Data Column="Environment">Local Development</Data>
 <Data Column="Key">SampleSetting</Data>
 <Data Column="Value">LocalDevValue</Data>
 </Row>
 <!--Environment: Shared Development-->
 ...
 <!--Environment: QA-->
 ...
 <!--Environment: Production-->
 ...
 </CustomTable>
</include>

The great thing about this model is that the spreadsheet consolidates the setting values for

many environments into one place, with a familiar GUI editor in Excel. That same

spreadsheet can be directly consumed by scripts or automated build processes to create

simple XML files that can then be merged into a configuration file template, loaded into a

database, etc.

The exporter command-line utility, EnvironmentSettingsExporter.exe, is very simple to

use:

EnvironmentSettingsExporter.exe <ExcelFile.xls or ExcelFile.xml> <OutputPath>
[/F:<XmlPreprocess/AppSettings/WixCustomTable>]

The first parameter is the full path to the configuration settings spreadsheet, either in

binary or XML format. Remember to surround the path in double-quotes if it contains

spaces.

The second parameter is the full path to a folder that will hold the exported XML files.

The third, optional, parameter specifies the output XML format: XmlPreprocess,

AppSettings or WixCustomTable. The default is XmlPreprocess.

The exporter looks at the “Generate File?” and “Settings File Name” values in the

spreadsheet to determine whether or not to export each environment, and what to name

each exported XML file.

5. Examples
Here are a few ways to use the Environment Settings Manager. Keep in mind that the

spreadsheet and exporter can be used in a variety of situations, so these are just examples.

 Page 7 7/7/2010 12:43:00 PM

5.1. Simple Settings Management
The most basic way to use the Environment Settings Manager is simply to use the

spreadsheet by itself. Even if you don’t use the exporter utility, the spreadsheet by itself

is a great way to keep track of your environments and configuration settings. Depending

on how your organization works, the IT staff could manage the spreadsheet, the

development staff could manage it, or they could share the responsibility.

5.2. .NET Application Configuration #1
Another way to use the Environment Settings Manager is to keep track of your settings

and environments in the spreadsheet and merge the values directly into a single

configuration file template. Have you tried maintaining a separate copy of your

configuration file for every environment? It is extremely hard to keep all of the copies in

sync and not make mistakes. A much better approach is to create one configuration file

as a template, and automatically populate the template for each environment.

This is quite easy to do. First, copy the settings spreadsheet in your choice of binary or

XML format and populate it with your environments, settings and values. Second, set up

a script that takes an environment name as a parameter. The script will first execute the

exporter utility to generate environment-specific XML files from the spreadsheet. Next,

the script can use the XmlPreprocess utility (see Credits) to merge the settings from one

of those XML files into a template configuration file, resulting in a complete,

environment-specific copy of the configuration file.

I highly recommend using XmlPreprocess in conjunction with the Environment Settings

Manager. It comes with simple documentation that describes how to set up your

configuration file (any XML file) as a template.

5.3. .NET Application Configuration #2
An alternative method for using the Environment Settings Manager with .NET

applications is to export the settings into <appSettings> format with the /F switch, and

then include the generated file directly into your existing app/web.config. The .NET

configuration schema allows you to place the entire contents of your <appSettings>

section in a separate file, and simply specify a file path in the <appSettings> element’s

file attribute.

5.4. BizTalk Server Application Configuration
BizTalk Server is built in part on the .NET Framework, and BizTalk applications also

have the need for dynamic configuration settings.

The Deployment Framework for BizTalk, also hosted on CodePlex, tightly integrates the

Environment Settings Manager’s Excel workbook and exporter. The Deployment

Framework can automatically merge setting values from the spreadsheet into a BizTalk

binding file template, and provides access to the spreadsheet values at runtime.

 Page 8 7/7/2010 12:43:00 PM

5.5. Windows Installer XML Configuration
Windows Installer XML (WiX) is an open-source toolkit that makes it easy to

declaratively create MSI installers using XML files. You may want your MSI to

dynamically update web.config or app.config XML files at install time using your

settings spreadsheet as the configuration source.

You can easily create a WiX <include> file using the /F:WixCustomTable switch with

the exporter. The settings from all environments will be exported into a single file:

EnvironmentSettings.wxi. You can include this file directly into your WiX project.

At install time, you can read the values from the CustomTable, load them into properties

and use the <util:XmlFile> task to push the values into any XML files that need to be

updated.

For the specifics on how to implement this, please see this blog:

http://blogs.technet.com/alexshev/archive/2008/02/14/from-msi-to-wix-part-6-

customizing-installation-using-custom-tables.aspx

6. Credits
The Environment Settings spreadsheet was inspired by one that was originally created by

Loren Halvorson (http://weblogs.asp.net/lorenh/), who also created the XmlPreprocess

tool (http://xmlpreprocess.sourceforge.net/) mentioned above.

I first encountered XmlPreprocess and the original settings spreadsheet in the

Deployment Framework for BizTalk (http://biztalkdeployment.codeplex.com). In that

implementation, the script loads one of the exported environment-specific XML files into

the BizTalk SSO database, an encrypted configuration store, from which the settings can

be accessed at runtime inside BizTalk.

I initially created a spreadsheet that looked a bit different from Loren’s original layout,

but I didn’t want to create a bunch of rework for those currently using it with BizTalk.

As a result, the layout is basically Loren’s original format, which allows an easy copy

and paste from an existing spreadsheet into my version. However, the new spreadsheet

has no macros or embedded scripting as did the original. The default output XML format

used by the exporter is also identical to Loren’s original structure, which was done

specifically to ensure that the files would work with XmlPreprocess.

So, many thanks to Loren for the inspiration of his original spreadsheet, and for his

XmlPreprocess utility!

 Page 9 7/7/2010 12:43:00 PM

7. The Author
As Enterprise Consultant for Digineer, Inc.'s Technology Solutions Group, Thomas

Abraham helps a wide array of firms address their most challenging business software

issues. Thomas has an extensive background in software development, architecture,

configuration management and systems engineering, helping to build high-performance,

mission-critical applications for companies including Nasdaq, Best Buy and Wells Fargo.

Over the last 13+ years, Thomas has worked with software technologies ranging from

C/C++ to BizTalk Server to Exchange and .NET, was the lead author of the book "Visual

Basic .NET Solutions Toolkit" from Wrox Press and a presenter at the 2006 SOA &

Business Process Conference in Redmond, WA. Thomas holds a number of Microsoft

certifications, including MCSD, TS for both BizTalk 2004 and 2006, TS for .NET 2.0,

MCPD and MCT.

Thomas maintains a blog at http://www.tfabraham.com.

