
FOM - V1.1 - Concorde Release - 07/2013

1

Please preserve cute trees! Don't print this document unless necessary!

FluentOMapper (FOM) – Reference V1.1

Presentation... 3

History... 3

Features ... 3

What does it not cover?... 4

Reference FOM in your project .. 5

Usings ... 5

Instantiate the manager ... 5

Standard instantiation.. 5

Using Unity (IoC) ... 5

Register "myFirstMapping" .. 5

Starting the mapping description .. 6

Simple property mapping.. 6

The two concepts of mappings: .. 6

Can I map multiple times the same path? ... 8

GoTo: Navigate into the model paths ... 8

Create a new instance.. 9

Reconnect children of original object ... 10

Type overriding... 13

Execute the mapping... 14

Path Exclusions... 14

Reverse your mapping .. 15

Extends with your own converters.. 17

Arrays/List/Dictionnary/Hashset .. 18

Map on Array/List/Dictionnary: Copy reference or content?... 18

Reference Copy... 18

Content copy ... 19

Conditional mapping... 20

How to use a condition?.. 20

Does condition applies to children?.. 20

Embedded conditions.. 21

Extends with your own condition ... 21

Reusing already processed objects from cache... 21

Description.. 21

What happens if I mix? ... 23

Is it possible to choose the instance to re-use? ... 23

� The only liberty is on the true/false parameter that may imply some interesting
behavior.Does it apply to converters? ... 23

Does it apply to converters?.. 24

What about mixing cache reuse + condition and/or converters? .. 24

Execution stack ... 25

What's that?... 25

FOM - V1.1 - Concorde Release - 07/2013

2

Can we override stack? ... 25

Can I put a condition before AND after?.. 25

Case studying 1: cloning 1-n relationship composition,... 26

Presentation... 26

Solution-step by step... 27

Performance considerations .. 30

Absurd cases ... 31

Root mapping on value type (or string) .. 31

Multiple mapping on the same target.. 31

Chained stupid mappings.. 31

Reference and the ultra compact syntax ... 32

Manager: ... 32

Mapping Node: ... 32

Some examples?.. 33

Multithread consideration ... 33

Performances considerations .. 33

Are there some worms or viruses in this API? ... 33

Bug report ... 33

About the author ... 33

FOM - V1.1 - Concorde Release - 07/2013

3

Presentation
 Basically, FluentOMapper (FOM) is a framework to describe an execute mappings
from objects to others using their properties:

• Fluent: Using chained method calls to describe the mapping.
• O' for Object and like old "O'Matic" expression.
• Mapper: Because you map objects to others

 FOM is strongly typed and uses lambda expression to describe mapping, so you can
use refactoring of Visual (or other tool).

A typical use would be for writing DTOs, but not only ;-)

 This document is a full reference for using FOM, with tons of drawings to help
understanding the concepts.

History
 I've been working in Java many years, and now as an expert. I've met many
interesting concepts, like DTO mappers. Now, I'm working in dotnet for a few years, and I've
met the same needs than in Java: Mapping objects to others according to some rules.

 The power of C# (lambda expressions, good management of generics), more than
Java (no troll, I love Java and J2EE), opens some possibilities that I've tried to share via
FOM.

 Well, other "kind of" API like FOM exist. Some may fit developper needs.

 While writing this API, I tried to make "simple things to do � simple to describe", by
applying the nice sentence: Convention over configuration.
 But the more I studied cases, the more complex situations appear. So I implemented
advanced capabilities with tuning methods, keeping in mind that using FOM must not be
more complicated that making your own bunch of code (in most cases I mean).
 My ultimate goal was using the FOM tools to clone an object tree, whatever this can
be. (Ex: cloning read only collection or interfaces). I think that it's now possible (see cases
in this doc).
 So my work has led to a kind of extendable conversion framework, which the most
basis case is the object property mapping! But some pieces of brain may be consumed
understanding tricky cases.
 But with FOM, because a same need follows the same patterns, it's useless to think
twice a problem, this will avoid tons of coding to maintain that would lead to some mistakes,
by delegating it to a (reliable? I hope!) framework.

Features
- Map an objet tree to another: taking each described properties from a source and set

it into an existing target. If not target specified, FOM will create a new set when
required by the mapping. This distinction is very important because FOM may
behave differently according to an existing target or not.

- Create new instance of a mapped property instead of using the existing one. Used to
do partial or total replacement.

FOM - V1.1 - Concorde Release - 07/2013

4

- Override source and/or target type. Useful when mapping from/to interfaces or
abstract, or to convert from type to another.

- Map arrays/list … to another (using embedded converter), and map inner objects of
the array to ensure continuity.

- Use embedded converters, or create yours, to achieve complex / specific mappings.
- Use condition (or extend yours) to apply mapping or not.
- Cache your mapped objects for advanced capabilities
- Tune some behaviors to match your needs.
- Reverse your mapping simply calling .. reverse (Since V1.1)

What does it not cover?
 The first thing to say: FOM can't cover all the needs of the entire world. Basically,
FOM was design to copy a property to another, with some tuning options.
 Time running, FOM expanded to support more features you can meet in you
developments (array, over-typing, etc …).
 Specific models will require a specific coding. Even if you can model your need with
FOM, it would be prettier to do it yourself instead of twisting your brain with FOM.
 For example, in a massive DTO environment, FOM helps you saving time.
I like to imagine that 90% of the cases can be solved by FOM. Let me know!

FOM - V1.1 - Concorde Release - 07/2013

5

Reference FOM in your project
Simply add a reference to FluentOMapper.dll. Nothing else required. No log API.

Usings
Basic usings (basic programming)
using FOM.Impl;
using FOM.Interfaces;

If you plan to use embedded converters (advanced programming):
using FOM.Impl.Converters

For catching FOM Exceptions:
using FOM.Impl.Exceptions

And to use some utility classes (expert programming):
using FOM.Utils

Instantiate the manager
 The manager is the "start" object, used to register mappings and get a hook on each
one.

Standard instantiation
IManager mngr = new ManagerImpl();

Using Unity (IoC)
_UnityContainer.RegisterType<IManager, ManagerImpl>(new ContainerControlledLifetimeManager());

Register "myFirstMapping"
Mappings are registered by name in FOM. To create one:
IMappingNode<ObjectA, ObjectB> rootmap = mngr.RegisterMapping<ObjectA,ObjectB>("myFirstMapping");

� This tells FOM that you have a mapping named myFirstMapping that will be from an
object ObjectA to object ObjectB.
� rootmap: You get the root node of your mapping. From this one, you can go on
describing your properties and child-object mappings.

FOM - V1.1 - Concorde Release - 07/2013

6

Starting the mapping description
 Surprise! Via the previous mapping registration, you already have created a
mapping. That's what I call object mapping (object to object). The other mapping type (and
mainly used) is the simple property mapping:

Simple property mapping
Consider the following object model:

So, you will write
rootmap.Map(a => a.i, b => b.w.j);
rootmap.Map(a => a.v.s, b => b.t);
rootmap.Map(a => a.v, b => b.c.w);

� That's all :-). The default behavior is copying reference for object, and value for value
types.

The two concepts of mappings:
I previously said that two kinds of mappings exist:

� Simple Property mapping: Map(src => src.x, dst => dst.y). The widely used.
This means that property x in src object will replace property y in dst object:

o If the prop is value type or string � value is copied
o If the prop is Object � reference is replaced.

Example:

FOM - V1.1 - Concorde Release - 07/2013

7

Map(a=>a.x, b=>b.y) does the following:

� Object mapping: Map(src=>src, dst=>dst . This is used in special cases, like root
mapping (always existing when creating your mapping), some array mappings,
conversions and GoTo instruction. We will see some use cases later.
But let's imagine the the result of such a call is like a new "root" start point, so that
the existing target object (if given to the mapping engine) is now available as it (and
can be used for next mapping), instead of being replaced by the source like a
standard mapping pointing at the object (houla, that's complex):

mngr.RegisterMapping<ObjectA, ObjectA>("o2o") // declare it
 .GoTo(a => a.x, a2 => a2.y) // move cursor to target type V (no mapping)
 .Map(s => s, d => d); // map V on target as "itself"

� Like the previous example on property mapping, It's "x � y" which is globally
addressed. But the GoTo just seek the object navigation directly to x and y (no property
mapping, just a seek), and the Map says that a new kind of "root" start point for mapping is
defined on two objects. By itself, it seems useless, but don't forget: it's a mapping node
anyway. So from this point, you can apply the altering methods like newInstance,
OverridingType, and moreover UseConverter (c.f. this document).

FOM - V1.1 - Concorde Release - 07/2013

8

Can I map multiple times the same path?
Yes.
In this case, the declaration order is used. This allows subdividing treatments, but would not
be used every time.

GoTo: Navigate into the model paths
GotTo is used to navigate to a source and target object, and then, to go on mapping from
this new point.
Let's consider the following object set:

You want to map the D properties (on another D object), root from A. You can write:
rootmap.Map(s=>s.objectB.objectC.objectD.i, d=>d.objectB.objectC.objectD.i);
rootmap.Map(s=>s.objectB.objectC.objectD.str, d=>d.objectB.objectC.objectD.str);
rootmap.Map(s=>s.objectB.objectC.objectD.d, d=>d.objectB.objectC.objectD.d);
etc …

Or use GoTo to point at D object before mapping:
var tmp=rootmap.GoTo(s=>s.objectB.objectC.objectD, d=>d.objectB.objectC.objectD);
tmp.map(s=>s.i, s=>s.i);
tmp.map(s=>s.str, s=>s.str);
tmp.map(s=>s.d, s=>s.d);
etc …

 As previously said, GoTo do not create mapping, so NewInstance(), UseConverter(),
MapFromCache() and UseCondition() can't be called after a GoTo (you will get an
exception). But other functionality can be called (Map, Exclude, GoTo, Override source and
target types).

FOM - V1.1 - Concorde Release - 07/2013

9

Create a new instance
 You can create new instance for the target instead of taking the existing one in the
source.
Note: This behavior is valid either from a property mapping or an object mapping.
Let's imagine the following:

And you want to map A � B, and A.v to B.v by creating new instance of V, and finally, map V.a to V.a
("a" only, not "i")

So you write:
mngr.RegisterMapping<ObjectA, ObjectA>("MyNewInstanceMapping") // declare it
 .Map(a=>a.x, b=>b.y).NewInstance() // y will be replaced by new instance
 .Map(vsrc=>vsrc.a, vdst=>vdst.a); // copy "a" value

FOM - V1.1 - Concorde Release - 07/2013

10

Reconnect children of original object
 As seen in previous examples (with or without NewInstance()), when replacing a
reference in the target object, all children of the original (i.e. replaced) object are lost. This is
logic, that's the principle of C# or even Java reference notion.
 But using the IConverter mechanism is a way to replace just a part of the object set.
The embedded converter that can do that is ReconnectOriginalChildrenConv.

IMPORTANT NOTE: IT ONLY WORKS WITH NEWINSTANCE(). OTHERWISE, SOURCE
OBJECT WOULD BE ALTERED!!! LOOK AT THE EXAMPLE TO UNDERSTAND.

 We want to replace C object of the target source into the one in target, but we want
to maintain the original target children objects "D" and "E" instead of source C children.
 Bonus, for the fun, we want to copy the int value in source D (=5) to the target D.
rootmap.Map(source=>source.a.b.c, target=>target.x.y.c) // adress c prop
 .NewInstance() // Mandatory when using ReconnectOriginalChildrenConv
 .UseConverter(new ReconnectOriginalChildrenConv()); // it's here!
 .Map(ds=>ds.d.i); // Bonus: copy the source D value for property "i"

This will produce the following behavior:

FOM - V1.1 - Concorde Release - 07/2013

11

FOM - V1.1 - Concorde Release - 07/2013

12

� Now, you understand why only newInstance() is eligible for
ReconnectOriginalChildrenConv. The original source object would have been altered with
children target object. And the concept of FOM is to map from source to target, not the
inverse ;-)
� It looks like something very tricky, but, I use to say: "You will understand this case as
soon as you meet the need".

FOM - V1.1 - Concorde Release - 07/2013

13

Type overriding
You use the type overriding in two cases:

- When the property (source or target) is an interface
- When the target property is not the same as the source, and (generally), you apply a

converter.

To do that:
map.OverrideSourceType<MyobjImpl1>(); // overriding source type
map.OverrideTargetType<MyobjImpl2>(); // overriding target type

Overriding type is useful because object type continuity is maintained (i.e. children mapping
from overridden type goes on using overriding type, and not the original type).

FOM is not magic: To make an overridden type to be applied, there must be a way to do so:

- By implicit sub typing (of interface, inheritance, boxing, etc …)
- By a converter that knows how to deal with the types (f.ex a string to an int).

FOM - V1.1 - Concorde Release - 07/2013

14

Execute the mapping
Short solution: Just call:
var res=(ObjectB)mngr.ApplyMapping("myFirstMapping ", srcA, srcDest);

� srcDest is the receiving object (for example a DTO)

But if you call:
var res=(ObjectB)mngr.ApplyMapping("myFirstMapping ", srcA); // no target!

� FOM will create the resulting tree for you. Nice?

 So the question is: Why do not use the second syntax only, it's automatic? Because
you can merge objects. Imagine srcDest already contains some fields, and you just want to
copy some others � Use the first syntax (It's what I call a surgical strike!).

Path Exclusions
 The question: Why excluding paths? I, me, personally, decide what to map!

 And you are right! If you set a mapping and then exclude it, the mapping is ignored
(exclusion takes precedence to mapping).
� Told like this, you think: "Path Exclusion is just useless!"

 In fact, exclusion paths are mainly used for Converters, but also when you invert a
mapping. For example, FOM embeds a converter (see below) called PropertyCopierConv
that copies all object properties to another object.
 Combined with exclusion path, you can say "I want to copy all properties, except…"

 So imagine an object "A" with 10 properties a,b,c,d,e,f,g,h,i,j, and you want to map
all of those on another A object, excepted the "g" property.

You can write:
var rootmap = mngr.RegisterMapping<ObjectA>("NoGMapping");
rootmap.map(s=>s.a);
rootmap.map(s=>s.b);
rootmap.map(s=>s.c);
rootmap.map(s=>s.d);
rootmap.map(s=>s.e);
rootmap.map(s=>s.f);
// no "g" prop
rootmap.map(s=>s.h);
rootmap.map(s=>s.i);

Or you can write:
var rootmap = mngr.RegisterMapping<ObjectA>("NoGMapping")
.UseConverter(new PropertyCopierConv ())
.Exclude(s=>s.g);

� The converter will map all properties, AND will ignore the excluded paths. Well .. This
works this way because the converter knows how to deal with the exclusion paths. This is
not magic.

FOM - V1.1 - Concorde Release - 07/2013

15

Reverse your mapping
Since V1.1

 When you have created a mapping from an objet A to another object B, you may want to

create the same, but from B to A. But you will not rewrite it!

FOM has evolved to support this (so V1.0 user code may not compile)

On you mapping, you need:

1 - Create it
var rootmap = mngr.RegisterMapping<ObjectA>("MyMapping")
.UseConverter(new PropertyCopierConv ())
.Exclude(s=>s.g);

2 - Reverse it
var revmap = rootmap.Reverse();

3 - Register it
RegisterMapping.Reverse(revmap, "MyReversedMapping");

4 - Call it normally
var res = (ObjectA)mngr.ApplyMapping("MyReversedMapping", source);

 Every element is Reversable. It means the ICondition and IConverter implementation

must provide a way to inverse itself (cf this document)

FOM - V1.1 - Concorde Release - 07/2013

16

Embedded converters

 I have thought about some converters that I found useful. So, they are embedded in
the library. But you can create yours (see below).

• StringToValueTypesConv: It can take a string as source, and convert it on value
type (int, float, double, long, boolean, enum and string). Useful for string only DTOs.

• ValueToStringConv: Take any source object, and returns the ToString() call. Useful
for string only DTO.

• PropertyCopierConv: This converter takes properties of the source object, and set
it to target object. Property matching is done by name:

o If the name does not exist in the target, it's ignored.
o This converter is useful for auto-mapping. It takes path exclusion in account.

• ListCrossConv: Convenient! Use this converter to:
o Convert from object "IEnumerable" to another object "List". By List, I mean

HashSet, IDictionnary, IList or fixed Array.
o To submap objects in the list and ensure continuity in the mapping objects

set. Submappings are provided to converter at the new. If the object of the list
is an instance of a source sub-mapping type, the mapping is called on the
object. Priority is: First match, first taken.

o Supports object caching.
• ReconnectOriginalChildrenConv: This converter does not apply from source to

target object, but from original object in target to the new object that will be set in the
target. It copies each child (references and value types) of the original object to the
replacement object. Matching is done on property names. It takes path exclusion in
account. To avoid source alteration, this is only possible on new instance created for
target (NewInstance() call).

�Note that you can enrich your mapping, even after a converter.

FOM - V1.1 - Concorde Release - 07/2013

17

Extends with your own converters

IMPORTANT: Because IConverter interface give you the hand to all the objects, you can
write destructive code on your objects or put the mess in the engine. That's said.

You can imagine complex converters, to match special cases. To do this, you need to
implement the IConverter interface, which have two method:

object Convert(MappingContext ctx);

The mapping context is given by the engine, and this object contains:

• Type Tsrc: the expected source type. That's not the type of the real source object,
but the Type declared (or overridden) in the mapping description.

• Type Tdst: the expected destination type. That's not the type of the real target
object, but the type declared (or overridden) in the mapping description.

• object ObjectSrc: the source object to convert from.
• object ObjectDst: the destination object to convert to.
• object OriginalObjectDst: This is the object that will be replaced in the target. So

it can be null.
• IPathLink PathLink: The source and target path (as string dot separated, and

array). These paths are absolute paths (i.e. from the root object).
• List<IPathLink> ExcludedNodes: The node declared as excluded from the mapping

via the Exclude instruction. It can be null if no node defined.
• IConverter Converter: The converter used (if any)
• ICondition Condition: The condition on this node (if any)
• object TopSourceObject: The source object given to the method ApplyMapping.
• object ToptargetObject: The target object (if any) given to the method

ApplyMapping.

� As a return of the method, you can have … well … whatever! But in most of the cases,
returning the source object itself, after conversion operations, is a good start point.
� Look at the existing converters code to have an idea on how to begin.

IConverter Reverse();

 The Reverse() method is used to return a condition that will be called when you
create a new reverse mapping.

FOM - V1.1 - Concorde Release - 07/2013

18

Arrays/List/Dictionnary/Hashset
FOM allows powerful processing for array. It can:

• Convert from one type of array to another (using embedded converter mechanism)
• Start a sub mapping on inner object of the array

To do that, FOM provides a converter called ListCrossConv.

Map on Array/List/Dictionnary: Copy reference or content?

 Rapid answer is: Reference copy of the array, like any other object. So, why a
special chapter?
Because here are some considerations to know about the word "mapping" for array:

Reference Copy

Imagine the following object tree:

We want to "copy" field "x" to "y". Naturally, we think to write:
Map(A � A.x, B � B.y)

 But x and y are both objects (In our example, a List<V>). But in FOM definition,
mapping this way (by field) means that object reference is copied. So the result of such a
mapping is like any other basic field mapping:

� A and B hold the same List<V> reference. This is the default behavior.

B

List<V> y

A

List<V> x

V

some props..

V

some props..

Source Target

B

List<V> y

A

List<V> x

V

some props..

V

some props..

Source Target

B

List<V> y

A

List<V> x

V

some props..

Source Target

result

V

FOM - V1.1 - Concorde Release - 07/2013

19

Content copy

 But when writing the mapping, you probably mean: "I want to copy the array content
to the other existing (or new) array". But how FOM can do this?

 The best way is to use the "GoTo" to target the List Object, and use the object
mapping:
GoTo(A � A.x, B � B.y) // seek to x and y list props

 .Map(s�s, d�d) // map object to object to be able to use a converter
 .UseConverter(new ListConverter())

This tells FOM to:

• GoTo: Point to the source and destination object directly. It does not Map the
property (And that's what we want here), but set the dept cursor to the properties.

• Map: We map an object on one another. So, this is not a property reference copy,
but an object to another object mapping. (Like a root object mapping f.ex).

• UseConverter: To use our embedded converter that can convert any array into
another. This leads to multiple possibilities:

• If the destination array already exists in the target object tree, it will use it. So,
objects will be added to existing list. This is a kind of Merge. If you want to override
this, use the NewInstance().

• If not, it will be created according to the declared target array type. If the target array
type is an interface, the TargetType should be provided the following ways:

mngr.RegisterMapping<A, B>("testArray1")

 .GoTo(A � A.x, B � B.y) // seek to x and y
 .OverrideTargetType<List<V>>() // specify the type for new object

 .Map(s�s, d�d) // map object to object to be able to use a converter
 .UseConverter(new ListConverter());
// Or //
mngr.RegisterMapping<A, B>("testArray2")

 .GoTo(A � A.x, B � B.y) // seek to x and y

 .Map(s�s, d�d) // map object to object to be able to use a converter
 .OverrideTargetType<List<V>>() // specify the type for new object
 .UseConverter(new ListConverter());
// Both have the same meaning //

If not mentioned, FOM will use the source instantiated type.

FOM - V1.1 - Concorde Release - 07/2013

20

Conditional mapping

How to use a condition?
 Shortly, apply method UseCondition(IConverter converter) on a mapping node.

• If the condition is true, the mapping is realized according to the they various options.
• If the condition is false, the target object is left "as is" (i.e. if not target object provided

� null or defautlValue for value types).

 The condition is tested at the end of the other option (NewInstance, UseConverter,
etc …). So even if the condition is false, some processing may occur.

Does condition applies to children?
Choose it!

In the ICondition, the property IgnoreChildMappings can be set.

• If false, the child-path are processed, even if parent path were false
• If true, all the child-paths starting from the conditioned path are not processed if

conditioned path did not apply.

Example
root.Map(a=>a.b).UseCondition(xxx); // with condition xxx returning "false"
root.Map(a=>a.b.c).Map(x=>x.z);
root.Map(a=>a.b.f);
root.Map(a=>a.c);

If IgnoreChildMappings is false � Map(a=>a.b) will not be executed, but other are.
 � The resulting behavior is like Map(a=>a.b) has never been declared.

If IgnoreChildMappings is true � Map(a=>a.b) will not be executed, and other under a.b
are not, but a.c is executed (because not under a.b)
 � The resulting behavior is like Map(a=>a.c) has been the only mapping.

Q: Is it possible to force a specific childpath to be executed even if parent is not?
� No: Use another new mapping over the previous. There is a time we must stop …

FOM - V1.1 - Concorde Release - 07/2013

21

Embedded conditions

• IsNumberEqualsCond(double testNum): Returns true if the field is a source field is a
number AND equals to a specified testNum. Child mapping are ignored if true
(supposed to be value type, so ...)

• IsObjectCond: Returns true if the source field is an object. If false, child mapping are
ignored, because if it's not an object, how could child mapping can exist?

• NotInCacheCond: Returns true if the source object is not in the cache. It's useful to
"break" some duplicate behavior while preserving references.

Extends with your own condition

IMPORTANT: Because ICondition interface give you the hand to all the objects, you can
write destructive code on your objects or set the mess in the engine. That's said.

Just implement the two following method:
object CanApplyMapping(MappingContext ctx);

The mapping context is given by the engine, and is the same as the one provided for
IConverter. Please see IConverter for detail.

ICondition Reverse();

The condition must provide an reverse IConditin, that will be used when calling Reverse()
method on a mapping.

You must implement the following property:
bool IgnoreChildMappings { get; }

If IgnoreChildMappings is true, children mapping are not applied.

Reusing already processed objects from cache

Description
 If, in the source tree, two mapped properties with NewInstance (no other way) point
at the same reference, you can tell the engine to remap on the same newly instantiated
target property. It's to preserve references.

To use this possibility, use the NewInstance method like:
map.NewInstance(bool reuseCached)

reuseCached parameter tells the following behavior to the engine:

- If the source reference has already been processed (so a new instance has been
created for this source reference somewhere in the object tree), it will be reused
instead of creating a new one again. This allows relinking objects.

- If not already processed, new instance is created and associated with the source
reference to become available to next NewInstance(true).

- All the NewInstance() implied in the process have to be set to true. Otherwise, the
newly created instance is not stored in cache and can't be reused later.

Example:
Imagine the following objects tree (we talk about "instances" as usual):

FOM - V1.1 - Concorde Release - 07/2013

22

c2 and c3 point to the same instance of C (having i=5), c1 on another one (with i=9).
Now, basically, we want to create the following mapping and create new instances of C:
root.Map(x=>x.a.c1).NewInstance();
root.Map(x=>x.a.c2).NewInstance();
root.Map(x=>x.b.c3).NewInstance();

This will produce the following instance tree:

The first thing we can see is that the resulting tree does not look like original tree. How to
tell the mapping to use the same instance?
� By providing "true" to reuseCached parameter of NewInstance();
root.Map(x=>x.a.c1).NewInstance(true);
root.Map(x=>x.a.c2).NewInstance(true);
root.Map(x=>x.b.c3).NewInstance(true);

This will produce:

FOM - V1.1 - Concorde Release - 07/2013

23

� That's the same as the original, except that C instances are freshly created.
� By extension, if you use NewInstance(true) on every object on every property, you get:

 As we say in France: "Cerise sur le gâteau": You have deeply cloned you object tree,
and preserved the object references like in the source.

 Note: It's not magic: It's because ListCrossConv do some job on cache. Refers to
code for more information.

What happens if I mix?
What did you expect? A non-newInstance will keep the source. So the mapping:
root.Map(x=>x.a.c1).NewInstance(true);
root.Map(x=>x.a.c2); //no new instance here
root.Map(x=>x.b.c3).NewInstance(true);

Will produce:

Is it possible to choose the instance to re-use?
No.
� Sometime, I just stop! Exotic behaviors require a specific converter (that gives you
access to the mapping context), or a specific code. It's not possible to cover all the cases in
a FOM.

� � � � The only liberty is on the true/false parameter that may imply some interesting
behavior.

FOM - V1.1 - Concorde Release - 07/2013

24

Does it apply to converters?
Not automatically.
� Because converters are your own code, it's not automatic. Converters are given the
mapping context, containing the cached objects.
 So, the ListCrossConv supports this, because I coded it, and the object cache
created by the mapper is propagated to sub-mappings.
 If you zoom on the ListCrossConv converter, "mapper" is called for each object of
the list, and the top mapping object cache is given as an argument. And when the object
cache is provided (a IDictionary<object,object> in fact), it will use this one provided
instead of creating its own.
 Moreover, cache is not filled before converter (which is logical, see below). If
converter is recursive (ex: the ListCrossConv), you may miss the currently processed
object, and process it again, leading to duplication of the same object. ListCrossConv has
solved this problem by adding the current working node in the cache at the beginning of the
conversion, and then remove it at the end, letting the engine cache do its job by storing the
resulting object.

What about mixing cache reuse + condition and/or converters?
It works!
� Condition validation and converter are called after the cached object has been retrieve
from cache. So, no problem!

FOM - V1.1 - Concorde Release - 07/2013

25

Execution stack

What's that?
As you may have understood reading the entire doc before, you can:

- Use a converter
- Use a condition to map or not
- Use the cache

But, a question if rising: In which order all these features are called?
By default, it follows this scheme (if a block is not used, imagine a bypass)

Condition is amongst all. If not true, the rest of the stack is not processed.
The converted value is the value put in cache.

Can we override stack?
Yes. Condition and conversion can be inverted. Other can't, and it would be non sense.
Setting the value is always done after conversion and condition, and caching always occurs
when setting the value, (which is logical).
So, one method is available to inverse the conversion and condition order:

ConvertBeforeTest();

In this case, the conversion is done, and then resulting object is given to the conditional
module.

As a summary, the difference is:

- default case: The condition is applied to the value before conversion, and
conversion is not called if condition is not fulfilled. It's an interesting case when you
want to avoid a time consuming converter.

- Inverted case: The conversion is called, and then, the condition is applied to the
converted object. Original one is lost (sorry). So tests can be done on converted
object.

Can I put a condition before AND after?
No. If someone gives me 200$ or 180E, I can imagine myself working on it ;-)

FOM - V1.1 - Concorde Release - 07/2013

26

Case studying 1: cloning 1-n relationship composition,

attacking the mapping from the "n" side.

Presentation
We want to clone the following object model:

Each R has a reference to S, S have a list of R.

And we consider the following tree instances:

� We want to clone starting from the List<R>
� Norma: White instances are from the source, gray are the new one created.
� Note: We can imagine r3 in another List<R> pointing at a s2. But we don't need to
make the example more complex, but it would work the same way.

 We will present the reflection path to achieve this, step by step. So this leads to a
long example.
 But in fact, the resulting code in minimal and reliable, which is the aim of FOM ;-).
 This example is one of the most complicated for such a "simple" concept. But hard
coding is worst.

Tip:
This example can be found in TestUnits/UsingCacheTest.cs
Method: TestCachePropagationToListConverterSIMPLE

FOM - V1.1 - Concorde Release - 07/2013

27

Solution-step by step

First of all, we create the root mapping for creating a new list and populate it!
var rootmap = mngr.RegisterMapping<List<R>>("test")
 .NewInstance().UseConverter(new ListCrossConv());

- NewInstance: We clone, so NewInstance is recommended ;-)
- UseConverter (…): To copy list content, we use the dedicated converter ListCrossConv

Leaving this will as is only creates a new List<R>, filling it with the source instance of R:

So we must create a sub-mapping for R:
var RSubMap = mngr.RegisterMapping<R>()
 .NewInstance();// Create new instance if R

� We provide NewInstance to have new R instance (because we want to clone)

And provide it to the ListCrossConv:
var rootmap = mngr.RegisterMapping<List<R>>("test")

 .NewInstance().UseConverter(new ListCrossConv(RSubMap)); // sub mapping

As a result:

� So we need to map s:
var RSubMap = mngr.RegisterMapping<R>().NewInstance();

RSubMap.Map(r=>r.s); // this map "s"

FOM - V1.1 - Concorde Release - 07/2013

28

� The reason of that is because mapping to "r.s" do not have new instance, so the old
one is taken and used (FOM is an object mapper). So:
var RSubMap = mngr.RegisterMapping<R>().NewInstance();

 RSubMap.Map(r=>r.s).NewInstance(); // map "s" and create new instance of it

Here is the result:

� To prevent this, we need to use and activate the new instance cache capability for s:
var RSubMap = mngr.RegisterMapping<R>().NewInstance();

RSubMap.Map(r=>r.s).NewInstance(true); // this maps "s" and creates a new instance
of it. Cache is used to prevent recreating a new instance of S if already done for the
same source reference.

� So we need to map, from S, the List<R>:
var RSubMap = mngr.RegisterMapping<R>().NewInstance();
RSubMap.Map(r=>r.s).NewInstance(true)

 .Map(s=>s.rlist); // map the list of R in s

Surprise the result is the following:

FOM - V1.1 - Concorde Release - 07/2013

29

� We need to use the NewInstance() to have a new List<R>…. But wait! We already
have one! It was created at the top of the mapping.
� So we must use here again the cache capability:
var RSubMap = mngr.RegisterMapping<R>().NewInstance();
RSubMap.Map(r=>r.s).NewInstance(true)

 .Map(s=>s.rlist).NewInstance(true); // map the list of R in s

� And we must activate it at the top of the map (this is the spec of cache using: We don't
store new instances unless explicitly specified).
var rootmap = mngr.RegisterMapping<List<R>>("test")

 .NewInstance(true).UseConverter(new ListCrossConv(RSubMap)); // sub mapping

� Finally, to map value types or R and S, just use the converter that can do that:
var RSubMap = mngr.RegisterMapping<R>().NewInstance()

 .UseConverter(new PropertyCopierConv(true));
RSubMap.Map(r=>r.s).NewInstance(true)

 .UseConverter(new PropertyCopierConv(true))
 .Map(s=>s.rlist).NewInstance(true);
var rootmap = mngr.RegisterMapping<List<R>>("test")
 .NewInstance(true).UseConverter(new ListCrossConv(RSubMap));

� Each value types will be copied from source to target.

FOM - V1.1 - Concorde Release - 07/2013

30

Performance considerations

 If you take a better look, each "r" instance will lead to have S and value types inside
S mapped. It's logic because each "r" instance is processed independently from the others:

- r1.s1
o r1.s1.rlist
o r1.s1.(all value types in s1)

- r2.s1
o r2.s1.rlist
o r2.s1.(all value types in s1)

 But because it's the same instance of "S" (s1), it time consuming to remap values
already mapped. How to avoid this useless behavior?
� By taking advantage of cached "s" instances (again) and use a condition that will block
when "s" source instance has already been processed.
var RSubMap = mngr.RegisterMapping<R>().NewInstance()
 .UseConverter(new PropertyCopierConv(true));
RSubMap.Map(r=>r.s).NewInstance(true)
 .UseConverter(new PropertyCopierConv(true))

 .UseCondition(new NotInCacheCond())
 .Map(s=>s.rlist).NewInstance(true);
// overload-mapping to ensure r.s if copied

RSubMap.Map(r => r.s).NewInstance(true);
var rootmap = mngr.RegisterMapping<List<R>>("test")
 .NewInstance(true).UseConverter(new ListCrossConv(RSubMap));
// run it
var ret = (List<R>)mngr.ApplyMapping("test", source);

� The fist time "s1" is processed (from r1 typically), source "s1" is not in cache. So r.s
mapping is done, and then "rlist" mapping AND converter for value types are processed.
� The second time (from r2), the condition is false because source "s1" is already in the
cache.
r.s is not processed. So neither converter nor rlist mapping are called. But the second
r.s mapping ensures that r.s is processed anyway (hey! we must re-link r to s).
� We have gained time (imagine a list of 100 000 R instances with 30 value types to
remap!!!)

� 5 lines: That the final code, the most compact and efficient. Now, try to do a
maintainable code doing the same thing to compare (not an ugly code I mean).
� Other solutions using NotCacheCond can be imagined to have a similar (close to)
behavior.

Tip:
In the case of List<R> containing multiple same references (ex {r1, r2, r1}, just add "true":
var RSubMap = mngr.RegisterMapping<R>().NewInstance(true); // cache reuse

FOM - V1.1 - Concorde Release - 07/2013

31

Absurd cases
 Well, FluentOMapper has a wide syntax and I tried to drive the logic to the end.
There are combinations that may exist and I don't have even thought about.
 For example, if you write a converter that process deep actions, and further, you add
a mapping that scratch your converter work, this is not a bug.
 If you find an interesting case that means something but that doesn't work as expected,

please write me. I will study the case.

Root mapping on value type (or string)
var rootmap=mngr.RegisterMapping<int>("testint");
int i=5;
int res=(int)mngr.ApplyMapping(i);

� That will return … well … res=5
� Only useful if using a converter that may transform your int in a complex object …

Multiple mapping on the same target
rootmap.map(s=>s.val1, d=>d.valX);
rootmap.map(s=>s.val2, d=>d.valX);

� As you can expect, the second one is taken in account.

Chained stupid mappings
So you can write:
Map(a=>a, b=>b).Map(a=>a, b=>b).Map(a=>a, b=>b).Map(a=>a, b=>b)

� I don't think this is really useful, except warming CPU. Ok, you can apply several
behaviors between each, like:
Map(a=>a, b=>b).UseConverter(conv1).UseCondition(xxx).
 .Map(a=>a, b=>b).UseConverter(conv2).Newinstance()
 .Map(a=>a, b=>b).OverrideTargetType<XX>()
 .Map(a=>a, b=>b);

� So, if you have special examples that you found useful, let me know. I will add it to this
doc, trying to explain it.

FOM - V1.1 - Concorde Release - 07/2013

32

Reference and the ultra compact syntax
 As soon as you'll be familiarized read FOM syntax, you will need, like me ;-), to use
compact syntax.
 Compact syntax is a way to present the same methods, but names are short, with 2
cars in fact.

That's all. So here they are!

Manager:

Standard method Compact method Description
RegisterMapping() RM() Register a new mapping.

Start your mapping with
this method.

UnRegisterMapping() UM() Remove a mapping.
GetMapping() GM() Retrieve a mapping by its

name.
ApplyMapping() AM() Apply the mapping

Mapping Node:

Standard method Compact method Description
Map() MP() Create a mapping between

two fields or two
objects.

Exclude() EX() Exclude a path from a
mapping.

NewInstance() NI() Create a new instance of
the target object/field
when the mapping is
realized.

GoTo() GT() Move the mapping cursor
to a field/object without
any mapping realized.

OverrideTargetType() TT() Force the target type
instead the original
type. If the engine can't
convert it (implicit or
with converter), an
exception is thrown.

OverrideSourceType() ST() Force the source type
instead the original
type. If the engine can't
convert it (implicit or
with converter), an
exception is thrown.

UseConverter() CV() Apply a converter to
transform source object
to target.

UseCondition() IF() Use a condition to apply
the mapping or not.

Reverse() RV() Reverse a mapping by
creating all the reversed
node, condition,
converter etc ...

FOM - V1.1 - Concorde Release - 07/2013

33

Some examples?

Yes.
 Over cases studying in this doc, you can find examples in unit test sources. I've
nothing better to offer because unit tests cover more than 30 cases. It would be a heresy to
duplicate them here.
 Some comments exist in the unit test (with tons of orthographic errors).

Multithread consideration
 Yes, a mapping call is multithread. So you can call/create multiple mapping in
multiple threads.
 But note that giving the same source object to multiple mappings in multiple threads
may lead to erratic results, mainly if your getters are not thread safe. For setters, it would be
useless to alter the same property reference in two different threads, isn't it?

Performances considerations
 FOM has been written to reduce the amount of treatments and memory use. But
don't dream. Mapping a 2Go tree object is not a piece of cake.
 Moreover, if you have Types overriding, new instances with cache, and esoteric
array mappings, FOM will not do miracles. It will run as fast as the C# and the computer
can.
 As you can imagine, it make intensive use of c# reflection, not reputed to be the
fastest mechanism.
 If you find it too slow for you job, I have an only answer: Do it yourself to fit your
needs and avoid useless time consuming processing.
 Sometime, using your own converters in FOM may help you to reduce the execution
time.

Are there some worms or viruses in this API?
 Yes! Grabbing your card number and making tons of transactions to my account to
Caiman Islands. I'll soon be rich. Ha Ha Ha Ha ….. Cough … cough
 Her … no. Not under my approved releases. ;-)

Bug report
 Hope there is not so much …. But, in this case, please write to:
fombugs (at) softisis.fr
 I've tried throughout Unit Tests, to cover all cases.

Thx for readind - FFJ – Softisis 12/2011 - 07/2013

About the author
 FFJ (me in fact, but the third person description is more pompous) is a Consulting
Architect in Java and "most recently" Dot.net. He has been working for major French banks
and a few car industries for 13 years.

 He has created the site http://www.piloteo.fr to manage personal finances (French
only for now). This site is a J2EE application using Hibernate, Spring, Struts2, JSP, AOP,
CSS, HTML, JavaScript and AJAX technologies, mobile phone developpements.

