

GOBLIN XNA USER MANUAL

VERSION 4.0

Ohan Oda

Colin MacAllister

Steven K. Feiner

Columbia University

Department of Computer Science

New York, NY 10027

February 2, 2012

i

CONTENTS

Introduction ... 1

Getting Started .. 2

Using a Project Template ... 2

From Scratch .. 3

Hello, World ... 4

Initializing your project ... 4

The Default Environment (XNA’s DNA) ... 5

Basic Elements of an XNA GAME STUDIO APPLICATION 6

Basic application Methods .. 7

Coding “Hello World” ... 8

Class Objects .. 8

Initialize .. 9

Graphical Objects ... 10

Shape .. 10

Transformations.. 11

Creating the ObjectS ... 11

Lighting .. 12

Camera ... 13

Update and Draw ... 14

Dispose ... 15

Running the Application ... 15

Scene Graph .. 16

Node Types .. 16

Geometry .. 16

ii

Transform ... 18

Light ... 19

Camera ... 20

Particle .. 21

Marker .. 21

Sound .. 22

Switch ... 23

LOD .. 23

Tracker .. 23

Scene.. 24

Stereoscopic Graphics .. 24

6DOF and 3DOF Tracking and Input Device Abstraction .. 26

6DOF Input Devices .. 26

Intersense Hybrid Trackers .. 26

Vuzix IWear VR920 and Wrap Tracker 6TC Orientation Tracker 27

Simulated 6DOF input using the mouse (GenericInput) 27

Non-6DOF Input Device ... 28

Mouse ... 28

Keyboard .. 28

GPS (Global Positioning System) .. 28

Augmented Reality .. 29

Capturing Video Images ... 29

Optical Marker Tracking ... 31

Improving optical marker tracking performance... 32

Optical Marker Tracking with Multiple Capture Devices 32

iii

Stereoscopic Augmented Reality ... 33

Physics Engine ... 36

Physics Engine Interface ... 36

Physical Properties ... 37

Newton Material Properties ... 37

Newton Physics Library .. 38

havok physics library .. 41

User Interface .. 43

2D GUI .. 43

Base 2D GUI Component... 44

Panel (Container) .. 44

Label ... 44

Button ... 44

Radio Button ... 45

Check Box ... 45

Slider ... 45

Text Field .. 46

Progress Bar .. 46

List .. 46

Spinner ... 46

More complex components ... 47

Event Handling ... 47

Shape drawing .. 47

GUI Rendering .. 47

3D text rendering .. 48

iv

Sound .. 49

ShaderS ... 50

Simple Effect Shader .. 50

DirectX Shader ... 51

Other Shaders .. 51

Networking .. 52

Server ... 52

Client .. 53

Network Object .. 53

Debugging ... 55

Screen Printing ... 55

Logging to a File ... 55

Model Bounding Box and Physics Axis-Aligned Bounding Box 56

Miscellaneous .. 57

Setting Variables and Goblin XNA Configuration File 57

Performance ... 57

1

INTRODUCTION

Goblin XNA is an open-source platform for building 3D user interfaces, including

mobile augmented reality and virtual reality, with an emphasis on games. It is

available for free download at http://goblinxna.codeplex.com under a BSD license,

and is written in C# on top of Microsoft XNA Game Studio 4.0. Goblin XNA includes a

scene graph to support 3D scene manipulation and rendering, mixing real and virtual

imagery. 3DOF (three-degrees-of-freedom) orientation tracking and 6DOF (six-

degrees-of-freedom) position and orientation tracking is accomplished using the VTT

Research Centre ALVAR 6DOF marker-based camera tracking package with

DirectShow, OpenCV or PGRFly (for Point Grey cameras), 3DOF and 6DOF InterSense

hybrid trackers, and the 3DOF Vuzix iWear VR920 and Wrap Tracker 6TC (currently for

3DOF only) orientation trackers. Physics is supported through the Newton Game

Dynamics 1.53 library and Havok Physics, and networking through the Lidgren library.

Goblin XNA also includes a 2D GUI system to allow the creation of classical 2D

interaction components.

Like all programs written using XNA Game Studio, Goblin XNA programs are

developed with Microsoft Visual Studio.

Development of Goblin XNA was funded in part by a generous gift from Microsoft

Research.

This material is also based in part upon work supported by the National Science

Foundation under Grant No. 0905569. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

Licensing information for Goblin XNA is detailed in Goblin XNA License.rtf, included in

the Goblin XNA release.

http://graphics.cs.columbia.edu/projects/goblin/
http://goblinxna.codeplex.com/
http://www.xna.com/
http://www.microsoft.com/download/en/details.aspx?id=23714
http://virtual.vtt.fi/virtual/proj2/multimedia/alvar.html
http://msdn2.microsoft.com/en-us/library/ms783323.aspx
http://opencv.willowgarage.com/wiki/
http://www.ptgrey.com/
http://www.intersense.com/
http://www.newtondynamics.com/
http://www.newtondynamics.com/
http://www.newtondynamics.com/
http://www.havok.com/
http://code.google.com/p/lidgren-library-network/

2

GETTING STARTED

Begin by downloading all necessary dependencies and Goblin XNA itself, as described

in the separate Installation Guide (Installation Guide.pdf), and set up everything as

instructed. Once the development environment is properly installed, you can start

either from one of the project templates in the tutorials folder or from scratch. First,

we will describe how to start using the Tutorial 1 project, and then how to start from

scratch by creating a new project.

USING A PROJECT TEMPLATE

1. Open up the Tutorials.sln file in the GoblinXNAv4.0\tutorials directory by

double-clicking it.

2. You will see fourteen tutorials. If ‘Tutorial1—Getting Started’ is not selected as

a startup project, then right click on the ‘Tutorial1—Getting Started’ project

file in the Solution Explorer pane, and select ‘Set as StartUp Project’.

3. Build the solution by clicking the ‘Build’ toolbar button on the top, or by

pressing the F6 key.1

4. If the build succeeds, you will see a ‘Build Successful’ message on the status

bar at the bottom of the window. Now you are ready to run the project!

5. Run the project by clicking on the ‘Debug’ toolbar button on the top, and

select either ‘Start Debugging’ (F5) or ‘Start Without Debugging’ (Ctrl + F5),

depending on whether you want to see debugging information.

6. You should see a window pop up, inside of which will be a shaded 3D sphere

model overlaid with the string “Hello World”.

7. Double-click Tutorial1.cs in the Solution Explorer pane to view its code.

1 You may notice that Visual Studio tries to build all of the projects in your solution,
which slows down program start up when you run the project. This will not be very
noticeable if you have only one project in your solution; however, if you have multiple
projects in your solution, which is the case for the GoblinXNA tutorials, it will take
some time before you see the program start.

One way to make your program start up faster (in Visual Studio 2010 Professional

Edition, but not in Visual C# Express Edition) is to change one of the build and run

options. Select the ‘Tool’ toolbar button, and select ‘Options’ at the bottom from the

drop-down list. Expand the ‘Projects and Solutions’ section, and select ‘Build and Run’.

Make sure that the checkbox ‘Only build startup projects and dependencies on Run’ is

checked.

Also, note that you do not need to execute ‘Build’ whenever you change your code.

You can simply ‘Run’ or ‘Start Without Debugging’ your modified program, and Visual

Studio will automatically build it for you before it runs.

3

FROM SCRATCH

1. Open Visual Studio 2010, and create a new project (select the ‘New’ menu

item from the ‘File’ menu, and then select ‘Project…’).

2. Under the ‘Visual C#’ project type, select ‘XNA Game Studio 4.0’. Then select

‘Windows Game (4.0)’. Click the ‘OK’ button after specifying the project name

and project folder.

3. You should see that the project has been created. The automatically created

source code and other files will appear in the solution explorer window. Right-

click on the ‘References’ section, and select ‘Add Reference…’ Change the

selected tab to ‘Browse’, and then locate the GoblinXNA.dll you generated in

the GoblinXNAv4.0\bin directory, as instructed in Installation Guide.pdf. Since

managed dlls referenced by GoblinXNA will be automatically copied to the

GoblinXNAv4.0\bin directory, you do not need to add them to your

‘References’ section unless you need to access specific APIs implemented in

those managed dlls. If other managed dlls are not in the same directory as

GoblinXNA.dll, then you will need to add them to your ‘References’ section.

4. Now, you are ready to use the Goblin XNA framework in your project. Note

that if you want to use the physics engine, you will need to either copy

Newton.dll (or HavokWrapper.dll) to your bin directory or add Newton.dll (or

HavokWrapper.dll) to your project and set the property option ‘Copy to Output

Directory’ to ‘Copy if newer’. If you want to use the ALVAR marker tracker

library, you will need to do the same steps for ALVARWrapper.dll, alvar150.dll,

alvarplatform150.dll, cv100.dll, cvaux100.dll, cvcam100.dll, cxcore100.dll, and

highgui100.dll, and the marker configuration file (a .txt or .xml file for ALVAR).

These dlls cannot be added to the ‘References’ section because they are not

managed.

4

HELLO, WORLD

To illustrate the basic setup of a Goblin XNA project we will walk through a simple

“Hello, World” example. The code for this example can also be found in Tutorial 1. The

following information pertains to Microsoft Visual Studio 2010 and XNA Game Studio

4.0. However, Microsoft Visual C# 2010 Express Edition uses procedures that are very

similar or identical to our example setup.

INITIALIZING YOUR PROJECT

1. Launch Visual Studio and choose ‘File’… ‘New’… ‘Project’.

2. In the left-hand ‘Project Types’ list, under ‘Visual C#’ choose ‘XNA Game Studio

4.0’.

3. To the right is the ‘Templates’ area. Choose ‘Windows Game (4.0)’.

4. In the ‘Name’ field enter a name for your project (e.g., “HelloWorld”).

5. Your projects ‘Location’ can be anywhere you decide. The default is C:\Documents

and Settings\YourUserName\My Documents\Visual Studio 2010\Projects (on a

Windows XP machine); most modern operating systems also recommend user-

specific locations. This is fine, especially if you work with Visual Studio often and

store your projects here. Alternatively, you might wish to save your Goblin

projects to the GoblinXNAv4.0\projects directory that was created when you

downloaded Goblin XNA.

6. Click ‘OK’.

http://www.microsoft.com/visualstudio/en-us/products/2010-editions
http://www.microsoft.com/download/en/details.aspx?id=23714
http://www.microsoft.com/download/en/details.aspx?id=23714
http://www.microsoft.com/express/vcsharp/

5

THE DEFAULT ENVIRONMENT (XNA’S DNA)

After project creation, Visual Studio opens your project in the default view:

Figure 1: The default project view.

Your main code file will be created with the name Game1.cs. You can change this at

any time by selecting the file in the Solution Explorer, then clicking it once (the same

way you would change a filename in the Windows File Explorer.) You will then receive

a message asking you if you wish to change all references to this file. Most likely, you

Figure 2: Enlarged view

6

will wish to do this.

BASIC ELEMENTS OF AN XNA GAME STUDIO APPLICATION

In your main code window, you will see that XNA Game Studio set up a number of

using includes at the top of the file, which were created when your project was first

initialized from the ‘XNA Game Studio’ template:

using System;

using System.Collections.Generic;

using System.Linq;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Audio;

using Microsoft.Xna.Framework.Content;

using Microsoft.Xna.Framework.GamerServices;

using Microsoft.Xna.Framework.Graphics;

using Microsoft.Xna.Framework.Input;

using Microsoft.Xna.Framework.Media;

In addition to a constructor method, five required methods were declared:

Initialize()

LoadContent()

UnloadContent()

Update()

Draw()

Two class objects were automatically declared before the constructor: the

GraphicsDeviceManager and the SpriteBatch. Microsoft describes the

GraphicsDeviceManager as the class that “handles the configuration and

management of the graphics device.” It allows your application to interact with and

set the features of your graphics hardware. Often it is the GraphicsDevice

property of the class that is queried or manipulated. More information about what this

class does can be found at http://msdn.microsoft.com/en-

us/library/bb194916.aspx#GraphicsDevice.

To handle 2D graphics, such as heads-up displays and scores, XNA Game Studio

provides the SpriteBatch class. More information about this class and its use in

creating 2D graphics can be found on the MSDN site, http://msdn.microsoft.com/en-

us/library/bb203919.aspx.

You will notice that the constructor for your main class (in our example, Game1)

contains the instantiation of GraphicsDeviceManager and sets a new property:

Content.RootDirectory = "Content";

The value of Content refers to the subdirectory of the solution that contains various

assets you will use in your project. For example, you may require fonts for writing text

http://msdn.microsoft.com/en-us/library/bb194916.aspx#GraphicsDevice
http://msdn.microsoft.com/en-us/library/bb194916.aspx#GraphicsDevice
http://msdn.microsoft.com/en-us/library/bb203919.aspx
http://msdn.microsoft.com/en-us/library/bb203919.aspx

7

or sound files for playing audio.2 Files such as these should be kept here, possibly in

appropriately named subdirectories. Visual Studio provides this folder in the Solution

Explorer. As you can see, this Content directory is created with a number of

dynamically linked libraries that XNA Game Studio uses. So, the Content directory can

contain both physical files and links to files located elsewhere in the system.

BASIC APPLICATION METHODS

You will notice that there are a number of methods pre-created by Visual Studio,

including Initialize(), LoadContent(), UnloadContent(), Update(),

and Draw(). These methods fill vital roles in an application, although we will not be

using all of them in our “Hello, World” example. Descriptions of these methods can be

found in comments above their signatures.

The Initialize() method is usually where you put non-graphical initialization

code for your application. It is also where you call base.initialize(), which

initializes other components, creates the GraphicsDevice, and calls the

LoadContent() method. A more in-depth look at the correct order in which to do

things in the Initialize() method can be found at

http://nickgravelyn.com/2008/11/life-of-an-xna-game/.

2 Note that the files included in your Content directory must be in formats that are
recognized by XNA Game Studio.

http://nickgravelyn.com/2008/11/life-of-an-xna-game/

8

CODING “HELLO WORLD”

At this point, we actually have a working application that can be built and run. Our

final “Hello, World” example will be no “World of Warcraft”, but it will be better than

this:

Figure 3: A blank XNA application.

First, to set up our Goblin XNA program, we will need a few more includes:

using GoblinXNA;

using GoblinXNA.Graphics;

using GoblinXNA.SceneGraph;

using Model = GoblinXNA.Graphics.Model;

using GoblinXNA.Graphics.Geometry;

using GoblinXNA.Device.Generic;

using GoblinXNA.UI.UI2D;

(More information about what these packages provide can be found later in this

manual.)

CLASS OBJECTS

First we will create two class objects, one representing the scene graph and one the

font we will use. A scene graph specifies the logical structure of a graphics scene,

conventionally represented as a hierarchical directed acyclic graph (DAG) of scene

graph nodes. A Goblin XNA scene graph contains nodes that represent and organize

the visual and audio components of a scene. More information about the nodes that

9

can be used in a Goblin XNA scene graph can be found later in this manual. The code

we use to create the scene graph is

Scene scene;

To create the text in our application, we need to specify a font. We do that by creating

a SpriteFont object, which can be referenced when we use the UI2DRenderer.

It will be loaded in the LoadContent() method by the following code:

/// LoadContent will be called once per game and is

/// the place to load all of your content.

protected override void LoadContent() {

textFont = Content.Load<SpriteFont>("Sample");

}

In this case, the string "Sample" refers to a file that has been referred to in the

project’s Content directory. By putting a font file named Sample.spritefont (or a

reference to such a file) in the Content directory, it becomes available to us within the

code. If there were many such fonts being loaded, it might be better to create a Fonts

directory within Content and place all fonts there.

Content can be unloaded by using the UnloadContent method, which is inherited

from the Game class.

/// UnloadContent will be called once per game and is

/// the place to unload all content.

protected override void UnloadContent() {

Content.Unload();

}

INITIALIZE

The next few lines perform a variety of tasks, including determining whether or not to

show the mouse cursor, and what color to set the default background. Again,

Initialize() is customarily used to do work other than the loading of external

models.

base.Initialize();

// Display the mouse cursor

this.IsMouseVisible = true;

// Initialize the GoblinXNA framework

State.InitGoblin(graphics, Content, "");

// Initialize the scene graph

scene = new Scene();

10

// Set the background color to CornflowerBlue color.

// GraphicsDevice.Clear(...) is called by

//Scene object with this color.

scene.BackgroundColor = Color.CornflowerBlue;

// Custom method for creating a 3D object

CreateObject();

// Set up the lights used in the scene

CreateLights();

// Set up the camera, which defines the eye location

//and viewing frustum

CreateCamera();

// Show Frames-Per-Second on the screen for debugging

State.ShowFPS = true;

Following this are three private methods we created to better organize the creation of

important scene elements: CreateObject(), CreateLights(), and

CreateCamera().

GRAPHICAL OBJECTS

Our first consideration is our graphical objects, which we will specify in our

CreateObject()method. (Note that this is just one possible way of structuring a

program. Objects could instead be specified in the Initialize() method or

elsewhere.)

We will first specify the geometric shape and geometric transformations associated

with each object.

SHAPE

The shape of an object can be defined by one of the Goblin XNA pre-built simple

geometric models, by a model file created in a 3D modeling application (e.g., an fbx

file), or by creating geometry “from scratch.” In our example, we will be using a simple

geometric model of a sphere defined by Goblin XNA.

In initializing the Sphere object, the first argument specifies the radius of the sphere.

The second argument specifies the number of “slices” around the upright y-axis (think

of the slices as being defined by “lines of longitude” around the sphere). The third

argument specifies the number of “stacks” perpendicular to the y-axis (think of the

stacks as being defined by “lines of latitude” around the sphere). These two

arguments define the resolution of the sphere, which is actually a convex polyhedral

approximation of a sphere; the more slices and stacks that are specified, the closer the

11

resulting shape approximates a true sphere (and the more polygons are used in that

approximation).

TRANSFORMATIONS

A Goblin XNA Sphere is defined to be centered about the origin of the coordinate

system. If we wish to change the location of a shape such as a Sphere, or, for that

matter, its scale or its orientation, we can do that with geometric transformations that

systematically modify the values of the coordinates with which the shapes are

defined. For example, a scale transformation (change in size) can be specified as a

vector of three floats, one for each of the x, y, and z axes. Similarly, a translation

(change in position) can also be specified as a vector of three floats, specifying

displacements parallel to the x, y, and z axes. In the code below, the sphere is

translated zero units along the x-axis and y-axis and –5 units along the z-axis. Note

that XNA Game Studio uses a right-handed coordinate system; that is, the x-axis

increases positively to the right, the y-axis increases positively upwards, and the z-axis

increases out of the screen, towards the viewer.

There is a set of programs (with source code) that can help you gain an understanding

of a variety of aspects of graphics programming at

http://www.xmission.com/~nate/tutors.html. They allow you to control interactively

the parameters that determine what you see, including the parameters to scale,

rotation, and translation transformations. While these programs are written for

OpenGL, there is a document at

http://graphics.cs.columbia.edu/courses/csw4172/usingNateRobinsTutorsWithGoblin

XNA.pdf that provides a mapping between the relevant parts of the OpenGL API and

the Goblin XNA and XNA Game Studio APIs.

If you feel you need to brush up on your vector math, you can find a remedial tutorial

at http://chortle.ccsu.edu/VectorLessons/vectorIndex.html.

CREATING THE OBJECTS

Each object must be inserted in the right place in the scene graph. In this example, we

add the sphere as a child of the sphere transformation node, so that its

transformations affect the sphere. The sphere transformation is then added to the

root node of the scene as a child. Here is the CreateObject()method:

private void CreateObject() {

// Create a transform node to define the

// transformation of this sphere

// (Transformation includes translation, rotation,

// and scaling)

http://www.xmission.com/~nate/tutors.html
http://graphics.cs.columbia.edu/courses/csw4172/usingNateRobinsTutorsWithGoblinXNA.pdf
http://graphics.cs.columbia.edu/courses/csw4172/usingNateRobinsTutorsWithGoblinXNA.pdf
http://chortle.ccsu.edu/VectorLessons/vectorIndex.html

12

TransformNode sphereTransNode = new TransformNode();

// We want to scale the sphere by half in all three

// dimensions and translate the sphere 5 units back

// along the Z axis

sphereTransNode.Scale = new Vector3(0.5f, 0.5f,

0.5f);

sphereTransNode.Translation = new Vector3(0, 0, -5);

// Create a geometry node with a model of a sphere

// NOTE: We strongly recommend you give each geometry

// node a unique name for use with

// the physics engine and networking; if you leave

// out the name, it will be automatically generated

GeometryNode sphereNode = new GeometryNode("Sphere");

sphereNode.Model = new Sphere(3, 60, 60);

// Create a material to apply to the sphere model

Material sphereMaterial = new Material();

sphereMaterial.Diffuse = new Vector4(0.5f, 0, 0, 1);

sphereMaterial.Specular = Color.White.ToVector4();

sphereMaterial.SpecularPower = 10;

// Apply this material to the sphere model

sphereNode.Material = sphereMaterial;

// Child nodes are affected by parent nodes. In this

// case, we want to make

// the sphere node have the transformation, so we add

// the transform node to

// the root node, and then add the sphere node to the

// transform node.

scene.RootNode.AddChild(sphereTransNode);

sphereTransNode.AddChild(sphereNode);

}

LIGHTING

Next we set up the lighting for the scene:

private void CreateLights()

{

// Create a directional light source

LightSource lightSource = new LightSource();

lightSource.Direction = new Vector3(-1, -1, -1);

lightSource.Diffuse = Color.White.ToVector4();

lightSource.Specular = new Vector4(0.6f, 0.6f,

0.6f, 1);

// Create a light node to hold the light source

13

LightNode lightNode = new LightNode();

lightNode.LightSource = lightSource;

// Add this light node to the root node

scene.RootNode.AddChild(lightNode);

}

What we are doing in the above assignments is creating a new LightSource object

and then specifying its properties. The LightNode object allows us to hang our light

source on the tree of nodes that makes up the scene graph. If a LightNode is global

(the default), then the LightSource added to that node can potentially affect every

object in the scene graph; if a LightNode is local, then it can potentially affect only

its sibling nodes and their descendants.

CAMERA

A camera provides a first-person view of a scene, projecting the 3D scene objects onto

a 2D planar view plane. Since it is part of the scene graph, transformations applied to

its parent node will affect it, too.

The camera specifies a view volume that, for a perspective projection, is a truncated

pyramid (frustum) whose apex (center of projection) is at the origin, and whose center

line extends along the –z-axis. The shape of the pyramid is conventionally defined in

terms of a vertical field of view specified in radians along the y-axis, an aspect ratio (of

width/height), and near and far clipping planes that bound the view volume,

preventing objects from being seen that are too close to or too far from the center of

projection. Setting the clipping planes carefully can reduce visual overload and speed

up rendering, since objects outside of the view volume that they bound will not be

rendered, and can often be efficiently eliminated from much of the graphical

processing needed for objects within the frustum.

private void CreateCamera()

{

// Create a camera

Camera camera = new Camera();

// Put the camera at the origin

camera.Translation = new Vector3(0, 0, 0);

// Set the vertical field of view

// to be 60 degrees

camera.FieldOfViewY = MathHelper.ToRadians(60);

// Set the near clipping plane to be

// 0.1f unit away from the camera

camera.ZNearPlane = 0.1f;

// Set the far clipping plane to be

// 1000 units away from the camera

camera.ZFarPlane = 1000;

14

// Now assign this camera to a camera node,

// and add this camera node to our scene graph

CameraNode cameraNode = new CameraNode(camera);

scene.RootNode.AddChild(cameraNode);

// Assign the camera node to be our

// scene graph's current camera node

scene.CameraNode = cameraNode;

}

UPDATE AND DRAW

These two inherited methods allow the application’s logic to be executed and its state

to be updated. Update() is often used to make abstract changes to the application’s

state and to do bookkeeping for the application, whereas Draw() is reserved for

changes that directly affect the on-screen appearance of the application. Normally

these two methods are called one after the other in a continuous loop, but it is

possible to decouple the two so that updates take place more often than screen

redraws:

/// Allows the game to run logic such as updating the

/// world, checking for collisions, gathering input,

/// and playing audio.

protected override void Update(GameTime gameTime) {

scene.Update(gameTime.ElapsedGameTime,

gameTime.IsRunningSlowly, this.IsActive);

}

In the Draw() method, below, we write "Hello, World" in the middle of the screen:

/// This is called when the game should draw itself.

protected override void Draw(GameTime gameTime) {

// Draw a 2D text string at the center of the

// screen.

UI2DRenderer.WriteText(

Vector2.Zero, "Hello World!!",

Color.GreenYellow, textFont,

GoblinEnums.HorizontalAlignment.Center,

GoblinEnums.VerticalAlignment.Center);

 // Draw the scene graph

scene.Draw(gameTime.ElapsedGameTime,

gameTime.IsRunningSlowly);

}

15

DISPOSE

Before the application terminates, you need to release all of the resources allocated in

the scene graph by calling its Dispose() method. Make sure to override the

Game.Dispose(..) function and call Scene.Dispose() in this overridden

method.

 /// This is called when the game terminates.

protected override void Dispose(bool disposing) {

 scene.Dispose()

}

RUNNING THE APPLICATION

If there are no errors, you can run the application by choosing the "Debug" menu and

then either "Start Debugging" or "Start without Debugging". Alternatively, you can hit

the F5 key for a debugging run or Ctrl-F5 for a live run. Or, you can simply choose

"Debug" or "Release" next to the green triangular "play" icon, and then click that icon.

If all goes well, you will see this:

16

SCENE GRAPH

The design of the Goblin XNA scene graph is similar to that of OpenSG. Our scene

graph currently consists of ten node types:

 Geometry

 Transform

 Light

 Camera

 Particle

 Marker

 Sound

 Switch

 LOD (Level Of Detail)

 Tracker

An example scene graph

hierarchy is illustrated in Figure

4. The scene graph is rendered

using preorder tree traversal.

Only the following six node types

can have child nodes: Geometry,

Transform, Marker, Switch, LOD,

and Tracker. (All child-bearing nodes inherit from BranchNode.) Each of these nodes

has a Prune property (false by default), which can be set to true to disable the

traversal of its children. There is a separate (and different) Enabled property (true by

default) that all nodes have, which, when set to false, not only disables the traversal of

a node’s children, but also disables traversal of the node itself. Detailed descriptions of

all node types are provided in the following section. In addition to the specific

information associated with each node type by Goblin XNA, you can also associate

arbitrary user-defined information with a node by setting the UserData property.

NODE TYPES

GEOMETRY

A Geometry node contains a geometric model to be rendered in the scene. For

example, a Geometry node might represent a 3D airplane model in a flight simulator

game. A Geometry node can have only one 3D model associated with it. If you want to

render multiple 3D models, then you will need to create multiple Geometry nodes. A

geometric model can be created by either loading data from an existing model file,

such as an .x or .fbx file (see Tutorial 2), or using a list of custom vertices and indices

Figure 4: Goblin XNA scene graph hierarchy

http://www.opensg.org/

17

(see Tutorial 7). Goblin XNA provides several simple shapes, such as Cube/Box,

Sphere, Cylinder/Cone, ChamferCylinder, Capsule, Torus, and Disk, similar to those in

the OpenGL GLUT library. Billboard and Text3D geometries are also supported

as of v4.0. In addition to the geometric model itself, a Geometry node also contains

other properties associated with the model. Some of the important properties

include:

 Material properties, such as color (diffuse, ambient, emissive, and specular

color), shininess, and texture, which are used for rendering.

 Physical properties, such as shape, mass, and moment of inertia, which are

used for physical simulation. (See the section on Physics for details on the

supported physics engines.)

 Occlusion property, which determines whether the geometry will be used as

an occluder that occludes the virtual scene, typically used in augmented

reality applications. When the geometry is set to be an occluder, the virtual

geometry itself will not be visible, but it will participate in visible-surface

determination, blocking the view of any virtual objects that are behind it

relative to the camera. Occluder geometry is typically transparent because it

corresponds to real objects (visible in the view of the real world in an

augmented reality application) with which the virtual object interacts.

 IgnoreDepth property, which determines whether the geometry should be

rendered in front of all other geometries even if there are geometries closer to

the eye than this geometry by ignoring the depth information. If there are

more than two geometries with IgnoreDepth set to true, then the

rendering order depends on the order the node is traversed in the scene

graph.

Geometry nodes are transformed by physical simulation if AddToPhysics is set to

true, as described in the section on Physics. Since a Geometry node can have children,

those children will also be affected by any transformation that affects a Geometry

node. Consider the following

example: if you are not using

physical simulation, then the two

hierarchies shown in Figure 5

accomplish the same thing: both

the Sound and Geometry nodes

will be influenced by the

Transform node.

However, if physical simulation is

being performed (see the section

on Physics), then the Sound node
Figure 5: (a) Sound is not affected by Geometry node

transformation. (b) Sound is affected by Geometry node

transformation.

http://www.opengl.org/resources/libraries/glut/

18

will be transformed differently in the two hierarchies, since the Geometry node’s

transformation is not only affected by the Transform node, but also by the physical

simulation. For example, in Figure 5(a), if the Sound node is used to play a 3D sound,

then you will hear the sound at the location specified by the Transform node, which is

not affected by the physical simulation. In contrast, in Figure 5(b) you will hear the

sound at the location of the 3D model associated with the Geometry node, because it

is affected by the physical simulation.

As of v3.5, the Network property of the Geometry node has been moved to the

SynchronizedGeometry node, which extends the Geometry node. This makes it

possible for the programmer to determine which Geometry nodes should be

synchronized among multiple networked machines and which should be local.

TRANSFORM

A Transform node modifies the transformation (e.g., translation, rotation, and scale)

of any object beneath it in the hierarchy that contains spatial information. For

example, if you add a Camera node to a Transform node, and modify the

transformation of the Transform node, the spatial information of the Camera node

will also change.

There are two ways to set the transformation of a Transform node. One way is to set

each transformation component (pre-translation, scale, rotation, and (post-)

translation) separately, causing the composite transformation matrix to be computed

automatically from these values. No matter the order in which the components of the

transformation are set, they will be applied such that any child of the Transform node

will first be translated by the pre-translation component, then scaled by the scale

component, next rotated by the rotation component, and finally translated by the

(post-)translation component. An alternative is to directly set the transformation

matrix. Note that the last approach used determines the transformation. For example,

if you set the pre-translation, scale, rotation, and (post-)translation separately, and

then later on assign a new transformation directly, the node’s transformation will be

the newly assigned one. If you want to switch back to using a transformation

determined by the pre-translation, scale, rotation, and (post-)translation, you will

need to assign a value to one of these components, causing the node’s transformation

to once again be composed from the pre-translation, scale, rotation, and (post-

)translation.

Note: Prior to v3.4, scale and rotation were performed in the wrong order. (This would

have caused incorrect behavior only if the x, y, and z scale factors were not identical.)

Starting in v3.4, the PreTranslation property was added, and

PostTranslation was added as an alias for Translation.

19

LIGHT

A Light node contains “light sources” that illuminate the 3D models. Light source

properties differ based on the type of light, except for the diffuse and specular colors,

which apply to all types. There are three types of simplified lights that have typically

been used in “fixed pipeline” real-time computer graphics: directional, point, and spot

lights.

A directional light has a direction, but does not have a position. The position of the

light is assumed to be infinitely distant, so that no matter where the 3D model is

placed in the scene, it will be illuminated from a constant direction. For example, the

sun, as seen from the earth on a bright day, is often conventionally modeled as a

directional light source, since it is so far away.

A point light has a position from which light radiates spherically. The intensity of a

point light source attenuates with increased distance from the position, based on

attenuation coefficients. For example, a small bare light bulb is often conveniently

modeled as a point light.

A spot light is a light that has a position and direction, and a cone-shaped frustum.

Only the 3D models that fall within this cone shaped frustum are illuminated by a spot

light. As its name implies, a spot light can be used to model a simplified theatrical

light.

A Light node can contain

one light source and an

ambient light color, and the

entire node can either be

global or local. A global

Light node illuminates the

entire scene in the scene

graph. In contrast, a local

light node illuminates only a

part of the scene: the Light

node’s sibling nodes and all

their descendant nodes. For

example, in Figure 6, the

global Light node (marked

“Global”) illuminates all

Geometry nodes in the

scene (Geometry nodes I, II,

and III), while the local Light node (marked “Local”) illuminates only Geometry nodes

II, and III (i.e., the siblings of the local Light node and their descendants). Furthermore,

Figure 6: Global and local Light nodes

20

note that if the global Light node in Figure 6 were a local Light node, then it would

illuminate none of the Geometry nodes in the scene graph, because this Light node

has no siblings.

CAMERA

A Camera node defines the position and visible frustum of the viewer (i.e., the view

volume containing what you see on your display). The visible frustum of the viewer is

defined by the vertical field of view, aspect ratio (ratio of frustum width to height),

near clipping plane, and far clipping plane, as shown in Figure 7. The initial view

direction is toward the –z direction with an up vector of +y. The Camera node rotation

property modifies this view direction by applying the given rotation to the initial view

direction. You can create a view frustum that is a regular pyramid by assigning values

to these parameters, causing the view and projection matrices to be computed

automatically. Alternatively (e.g., if you want to create a view frustum that is not a

regular pyramid), you can assign values directly to the view and projection matrices.

See the description of the Scene class to learn how to render the view from a camera.

Figure 7: Camera geometry

http://en.wikipedia.org/wiki/Viewing_frustum

21

PARTICLE

A Particle node contains one or more

particle effects, such as fire, smoke,

explosions (Figure 8), and splashing

water. A particle effect has properties

such as texture, duration before a

particle disappears, start size, end size,

and horizontal and vertical velocities.

Goblin XNA provides a small set of

particle effects, including fire and

smoke. You can also modify the

properties of an existing particle effect

to create your own particle effect.

Please see Tutorial 6 to learn about

using simple particle effects. (Note: to

speed up rendering, make sure to

change the following properties of the content processor of the textures used for

particle effects: Set GenerateMipmaps to true, and TextureFormat to

DxtCompressed.)

MARKER

A Marker node modifies the transformations of its descendant nodes, similar to a

Transform node. However, the transformation is modified based on the 6DOF (six-

degrees-of-freedom) pose matrix computed for an array of one or more fiducial

markers. Fiducial markers are geometric patterns, typically printed out on paper or

cardboard, that are viewed by a video camera. The video is processed interactively by

computer vision algorithms that can find the image of each clearly visible marker and

compute the position and orientation of that marker relative to the camera to

determine its pose matrix. Before you can use a Marker node, you will need to

initialize the marker tracker and video capture devices, as explained in those sections.

You can then create a Marker node to track a single marker or a specific marker array.

Goblin XNA currently supports the ALVAR marker tracker.

You can pass either one or two parameters. If you want to track a single marker, then

you need to pass the ID of the marker as an integer in the first parameter of

markerConfigs with an optional marker size as a double in the second parameter.

If you want to track an array of markers, then you need to pass a file name that

contains the marker configuration file (see below) in the first parameter of

Figure 8: Explosion particle effect (courtesy of the XNA

Creators Club)

22

markerConfigs, and an array of integer marker IDs used in the marker array in the

second parameter.

NOTE: The marker configuration file can be automatically generated by the

MarkerLayout program provided in the tools directory.

A Marker node not only provides a computed pose matrix, but also supports

smoothing out the sequence of pose matrices detected over time if you set the

Smoother property. You can either use the double exponential smoothing

implementation (DESSmoother) supported by Goblin XNA or create your own

smoothing filter by implementing the ISmoother interface.

The DESSmoother smoothing alpha determines how smoothing is performed. The

smoothing alpha ranges between 0 and 1, excluding 0. The larger the value, the more

the smoothed pose matrix is biased toward the more recently tracked poses. (A value

of 0 would indicate that the recently tracked pose matrix would not be taken into

consideration, and is therefore not allowed.) A value of 1 indicates that the previously

tracked pose matrix will not be taken into consideration, so that only the most

recently tracked pose matrix will be used. For a fiducial marker array that is expected

to move quickly, we recommend that you use a higher smoothing alpha, since the

result matrix after smoothing will weight recently tracked pose matrices more heavily

than older ones; for a fiducial marker array that is expected to move slowly, we

recommend that you use a lower smoothing alpha.

To track a larger area with multiple marker arrays that can be rearranged on the fly,

use the MarkerBundle node, which extends the Marker node. The MarkerBundle node

consists of one base marker array and multiple supporting marker arrays. The base

marker array provides the base transform of the node, and the supporting marker

arrays are used to compute the relative transform from the base marker array.

SOUND

A Sound node contains information about a 3D sound source that has a position,

velocity, and forward and up vector. Before you can use a Sound node to play audio,

you will first need to initialize the XNA audio engine. Goblin XNA provides a wrapper

for the XNA audio engine, and the section on Sound describes how you can initialize

the sound wrapper class. Once the audio engine is initialized, you can call the

SoundNode.Play(String cueName) function to play 3D audio (Note: To

produce spatial sound effects, such as the Doppler effect or distance attenuation, you

will need to set these effects properly when you create the XACT project file. Please

see the section on Sound for details.)

23

Alternatively, you can play 3D audio by using the Sound.Play3D(String

cueName, IAudioEmitter emitter) function directly. However, it is much

simpler to attach a Sound node to the scene graph, so that you do not need to worry

about updating the position, velocity, forward and up vector of the 3D sound source.

For example, if you attach a Sound node to a Geometry node, then the 3D sound

follows wherever the Geometry node moves. Otherwise, you will have to create a

class that implements the IAudioEmitter interface, update the position, velocity,

forward and up vector yourself, and then pass the 3D audio cue name and your class

that implements IAudioEmitter to Sound.Play3D(String cueName,

IAudioEmitter emitter).

SWITCH

A Switch node is used to select a single one of its child nodes to traverse. The

SwitchID property denotes the index in the Switch node’s children array (starting

from 0), not the actual ID of a child node. For example, if you add a Geometry node, a

Transform node, and a Particle node to a Switch node, in that order, and set

SwitchID to 1, then only the Transform node will be traversed during scene graph

traversal. The default SwitchID is 0, so the first child node added to a Switch node is

traversed by default.

LOD

An LOD (Level of Detail) node is used to select a single model to be rendered from a

list of models, each of which is assumed to have a different level of detail. The LOD

node extends the Geometry node; however, instead of a single IModel object, it

requires a list of IModel objects. The LevelOfDetail property is used to select

which model to render, assuming the first model in the list has the finest level of detail

and the last model has the coarsest level of detail. Instead of manually modifying the

LevelOfDetail property, you can also make the node automatically compute the

appropriate level of detail to use based on the distances set in the

AutoComputeDistances property by setting AutoComputeLevelOfDetail

to true. Please see the API documentation for a description of how you should set

these distances.

TRACKER

A Tracker node is quite similar to a Marker node. The only parameter you need to set

is the device identifier that specifies which 6DOF tracker to use. Once you set the

device identifier, the world transformation is automatically updated, and any nodes

added below this Tracker node are affected, as well. You can set the Smoother

24

property if you want to apply a smoothing filter to the transformation of the 6DOF

device, as with the Marker node, described above.

SCENE

Scene is the Goblin XNA scene graph class. Once you understand how each node

type is used and how it affects other node types, you can start creating your scene

graph tree by adding nodes to Scene.RootNode. (Scene is not a static class, so

you first need to instantiate the class properly.) Since Scene.RootNode is settable

(and must be non-null), if you have multiple different scene graph structures and want

to switch between them as an atomic action, then you can simply assign the root of

any of your scene graph structures to Scene.RootNode, as desired.

You should have at least one Camera node in your scene graph; otherwise, you will

not see anything on your screen. Once you create a Camera node, you can add it to

the scene graph. Since the scene graph can contain multiple Camera nodes, it is

necessary to specify which Camera node is the active one. This is done by assigning it

to Scene.CameraNode. However, this does not mean that you are restricted to a

single viewport. You can have multiple viewports, with each viewport assigned to a

different camera, as in a two-player game in which each player has a viewport that is

half of the entire screen, with each viewport showing its player’s view. (As described

below, Tutorial 13 demonstrates how you can render two viewports with different

cameras for stereo display to a single user on Vuzix Wrap 920 eyewear.)

As of version 4.0, you need to call Scene.Update(…), Scene.Draw(…), and

Scene.Dispose() in appropriate functions (as mentioned here). This change was

necessary in order to make it possible to integrate Goblin XNA with WPF and

Silverlight.

STEREOSCOPIC GRAPHICS

We support stereoscopy through the StereoCamera class, assuming that an

appropriate stereo device is present. Currently, the only stereo devices supported are

the Vuzix iWear VR920 and Wrap 920 head-worn displays. To render in stereo, you will

need to use the StereoCamera class instead of the Camera class when you create a

CameraNode. StereoCamera is a subclass of Camera: When you are rendering

graphics that is not overlaid on real camera views of the physical world, the only

additional property you will need to set is InterpupillaryDistance (IPD),

which defines the distance between the user’s left and right eyes (cameras). If the

center of the stereo display is not in the middle of the two eyes, you can use

InterpupillaryShift property to shift the center point. You can also modify the

focal length from the eye by modifying the FocalLength property. For Augmented

Reality, in which graphics is rendered over real camera views, you should not set these

25

properties. Instead, you should use our stereo calibration tools to calibrate your

physical cameras’ intrinsic parameters, stereo separation, and field of view

adjustments. Then, you should load the generated calibration file as shown in Tutorial

13. For details, please see the section on Stereoscopic Augmented Reality.

Tutorial 13 shows how to set up stereoscopic rendering correctly for the Vuzix iWear

VR920 and Wrap 920. Once the camera is set to stereo, the Scene class renders the

scene for the left and right eyes, in turn, if the Vuzix iWear VR920 is used. To display

the left and right eye scenes correctly to the corresponding eyes using the Vuzix iWear

VR920, you will need to synchronize the device after rendering each scene. As

demonstrated in Tutorial 13, you will need to set up the stereo rendering yourself for

the Vuzix Wrap 920.

Note that a stereo application should be set to run in full-screen mode for display on

the Vuzix iWear VR920. Otherwise, the synchronization will not work properly and the

left and right eye views will not be assigned correctly to the left and right displays.

26

6DOF AND 3DOF TRACKING AND INPUT DEVICE ABSTRACTION

We currently support 3DOF (three–degrees-of-freedom) orientation tracking and

6DOF (six–degrees-of-freedom) position and orientation tracking using the 6DOF

ALVAR optical marker tracking systems, 3DOF and 6DOF InterSense hybrid trackers,

and the 3DOF Vuzix iWear VR920 and Wrap Tracker 6TC (currently for 3DOF only)

trackers. The ALVAR interface is provided though the Marker node, as described in

the Marker section, as well as the Scene class. In contrast, the InterSense trackers,

GPS, and Vuzix orientation trackers (iWearTracker and Wrap Tracker 6TC) should be

interfaced through the InputMapper class, which provides hardware device

abstractions for various input devices. The other input devices currently supported

through the InputMapper class are mouse, keyboard, and a combination of mouse

and keyboard that simulates a 6DOF input device. All of these device classes are

singleton classes, so you need to use their Instance properties to access them.

6DOF INPUT DEVICES

A 6DOF input device provides position (x, y, z) and orientation (yaw, pitch, roll)

information. Any 6DOF input device implements the InputDevice_6DOF

interface. The position and orientation can be accessed through the

InputMapper.GetWorldTransformation(String identifier) method

if the device is available. For the specific value of identifier, please refer to the

Identifier property of each device classes.

INTERSENSE HYBRID TRACKERS

To use an InterSense hybrid tracker, you will need to get an instance of the

InterSense class under the GoblinXNA.Device.InterSense package. Then

add this instance to the InputMapper class using the

InputMapper.Add6DOFInputDevice(…) method and reenumerate the input

devices by calling InputMapper.Reenumerate(). An InterSense hybrid tracker

can be connected either through a direct serial port connection or a network server

connection. If you want to connect the tracker through a network server, then you will

need to pass the appropriate host name and port number to the Initialize(…)

function. Otherwise, simply call Initialize() to connect through a direct serial

port connection.

The InterSense support software can handle up to eight stations, and you can access

each station by modifying the CurrentStationID property and then passing the

appropriate identifier when you call the

InputMapper.GetWorldTransformation(String identifier)

function. If the station is not available, you will get an identity matrix. If an orientation

27

tracker is used (instead of one that also senses position), then the translation

components of the transformation will always be zeros.

VUZIX IWEAR VR920 AND WRAP TRACKER 6TC ORIENTATION TRACKER

Once you install the appropriate Vuzix SDK, you can use the iWearTracker class

for 3DOF orientation tracking. Similar to the Goblin XNA support for InterSense

trackers, you need to get an instance of iWearTracker and initialize it. Then, add

this instance to the InputMapper class using the

InputMapper.Add6DOFInputDevice(…) method and reenumerate the input

devices by calling InputMapper.Reenumerate(). You can obtain orientation

information either individually by accessing the Yaw, Pitch, or Roll properties or in

combination by accessing the Rotation property.

SIMULATED 6DOF INPUT USING THE MOUSE (GENERICINPUT)

The GenericInput class makes it possible for a mouse to support a simulated

6DOF input device in which mouse dragging and wheeling controls both orientation

and translation relative to the GenericInput.BaseTransformation. This can

be used for transforming objects and cameras.

To modify orientation, hold down the right mouse button and drag the mouse around

the screen to rotate around the x-axis and y-axis of the

GenericInput.BaseTransformation.

To modify translation, hold down the left mouse button and drag the mouse parallel

to the x-axis (of the screen coordinate system) for left and right translation, and

parallel to the y-axis (of the screen coordinate system) for forward and backward

translation. To modify up and down translation, hold the middle mouse button and

drag the mouse parallel to the y-axis (of the screen coordinate system).

An additional interaction is provided for use when a camera is being transformed, and

is based on rolling the mouse wheel forward or backward. This causes translation by a

scaled copy of the vector from the center of the near clipping plane to the projection

of the mouse cursor onto the far clipping plane.

The scale factor used for translation and rotation can be changed. If the object you

want to control has position or rotation other than Vector3.Zero or

Orientation.Identity, then you should set the InitialTranslation

and/or InitialRotation property to be the position and/or orientation of the

object.

28

NON-6DOF INPUT DEVICE

Any input devices that do not support 6DOF input are in this category (e.g., mouse,

keyboard, gamepad, and GPS). Unlike 6DOF input devices, these devices do not

provide the same type of input, so there is no unified method like

GetWorldTransformation(String identifier). Thus, you will need to

access individual input device classes, instead of accessing them through the

InputMapper class. However, all of the non-6DOF input device classes provide

TriggerDelegates(…) methods that can be used to programmatically trigger

some of the callback functions defined in each individual input device class. For

example, even if the actual keyboard key is not pressed, you can use this method in

your program to trigger a key press event.

MOUSE

The MouseInput class supports delegate/callback-based event handling for mouse

events (e.g., mouse press, release, click, drag, move, and wheel move). The

MouseInput class has public event fields, such as

MouseInput.MousePressEvent, and a HandleMousePress delegate can be

added to this event field, just like any other C# event variables. Please see Tutorial 4

to learn about how to add a mouse event delegate.

KEYBOARD

The KeyboardInput class supports delegate/callback-based event handling for

keyboard events (e.g., key press, release, and type). Like the MouseInput class, the

KeyboardInput class also has public event fields, such as

KeyboardInput.KeyPressEvent. Please see Tutorial 2 to learn about how to

add a keyboard event delegate.

GPS (GLOBAL POSITIONING SYSTEM)

The GPS class supports reading GPS receiver data from a serial port (NMEA, GPRMC,

and GPGGA formats are supported) and parses the data into useful coordinates (e.g.,

latitude, longitude, and altitude). The GPS device is assumed to be connected on a

serial port. The class has been tested on GPS devices connected through USB and

Bluetooth. To use the class, create a new instance of GPS and add a GPSListener

delegate using the AddListener(GPSListener listener) method or poll

the individual properties (e.g., Latitude).

29

AUGMENTED REALITY

One of the most

important goals of the

Goblin XNA framework is

to simplify the creation

of augmented reality

applications. Augmented

reality (AR) [Azuma 96,

Feiner 02] refers to

augmenting the user’s

view of the real world

with a virtual world

interactively, such that

the real and virtual

worlds are geometrically

registered with each

other. In many AR applications, the real world is often viewed through a head-worn

display or a hand-held display. In so-called “video see-through” applications, an image

of the real world obtained by a camera is augmented with rendered graphics, as

shown in Figure 9: Virtual dominoes are overlaid on a real video image using Goblin.

XNA. Two important issues that Goblin XNA addresses for video see-through AR are

combining rendered graphics with the real world image and 6DOF pose (position and

orientation) tracking for registration. To support video devices for capturing the real

image, we support three different types of video-capture libraries: DirectShow,

OpenCV, and PGRFly (from Point Grey Research, and used only with Point Grey

cameras).

CAPTURING VIDEO IMAGES

To capture live video images, you will need to instantiate one of the classes that

implements the IVideoCapture interface

(GoblinXNA.Device.Capture.IVideoCapture). Goblin XNA currently

provides four different implementations of the IVideoCapture interface:

DirectShowCapture (and the alternative DirectShowCapture2),

OpenCVCapture, PointGreyCapture, and NullCapture.

If you are using a standard web camera, then DirectShowCapture is suitable.

If you have too many DirectShow filters installed on your computer (e.g., DirectShow

filters are automatically installed by software such as Nero or Adobe Premiere) , the

DirectShowCapture implementation may not work, for reasons we have not yet

Figure 9: Virtual dominoes are overlaid on a real video image using Goblin.

XNA.

30

determined. In those cases, you will need to use the DirectShowCapture2

implementation instead, which is slower than the DirectShowCapture

implementation because of an additional class layer.

If you are using a Point Grey camera (e.g., a Firefly or Dragonfly), then

PointGreyCapture is suitable.

If you plan to use OpenCV with Goblin XNA (Tutorial 15), then it’s best to use

OpenCVCapture. OpenCV caps the rendering speed to 30 FPS, which is the same

speed as the video frame acquisition.

NullCapture is used to render a static image from an image file (e.g., a JPEG file)

for testing purposes.

If you want to use another video decoding library, you will need to create your own

class that implements the IVideoCapture interface. After instantiating one of the

IVideoCapture implementations, you will need to initialize it by calling

IVideoCapture.InitVideoCapture(…) with appropriate parameters, as

demonstrated in Tutorial 8. Once it is initialized, you are ready to start capturing video

images.

There are three different ways to use the Goblin XNA video capture device interface,

depending on your needs. First, if you want to use the captured video as the scene

background, and also pass it to the optical marker tracker for pose tracking, you will

need to add the initialized IVideoCapture implementation to the Scene class by

calling Scene.AddVideoCaptureDevice(…). In this case, make sure to set

Scene.ShowCameraImage to true, so that the video will be displayed in the

background.

Second, if you also want to use the captured video for additional processing, such as

face or gesture recognition, you can access the specific method for each of the

IVideoCapture implementations that retrieves the video image. For example,

once the capture device is added to the Scene and Scene.ShowCameraImage is

set to true, you can set the IVideoCapture. CaptureCallback property,

which is a callback function invoked whenever a new video image is grabbed. The

format of the imagePtr parameter is defined by the ImageFormat parameter

passed in the InitVideoCapture(…) function. The integer array contains ARGB

values of each pixel in each integer value (8 bit for each channel, and the alpha

channel is ignored). Note that if Scene.MarkerTracker is null, then the passed

imagePtr parameter will be IntPtr.Zero, and if Scene.ShowCameraImage is

false, then the passed integer array is null, for optimization purposes. If you want to

force those passed parameters to be valid, you need to set either/both

Scene.NeedsImagePtr or/and Scene.NeedsImageData to true.

http://www.ptgrey.com/

31

Third, if you simply want to acquire the captured image and neither want to use it for

optical marker tracking nor show the video image on the background, then do not add

the IVideoCapture implementation to the Scene class. Instead, simply call

GetTextureImage(…) whenever you need it.

If you do not have a physical web camera, or want to capture video streamed from a

file stored in your local drive (e.g., for overlaying an existing video for regression

testing), then you can use an application such as VCam™ from e2esoft to simulate a

virtual web camera. For example, after capturing a video file containing optical

markers, you can repeatedly use it in developing and testing your program.

OPTICAL MARKER TRACKING

After at least one video capture device is added to the Scene class after initialization,

you should instantiate one of the IMarkerTracker

(GoblinXNA.Device.Vision.Marker.IMarkerTracker) implementations.

Goblin XNA includes marker tracker classes using the ALVAR library. After you

instantiate one of the IMarkerTracker implementations (e.g.,

ALVARMarkerTracker, if you are using ALVAR), you will need to initialize the

tracker by calling InitTracker(…) with appropriate parameters.

For ALVARMarkerTracker, you can pass either four or six parameters to the

InitTracker(…) method. The first and second parameters are the width and

height of the image to be processed by ALVAR. If you’re using one of the

IVideoCapture implementations, you can simply pass the

IVideoCapture.Width and IVideoCapture.Height properties. The third

parameter is the camera calibration file. The ALVAR package provides a sample

project (SampleCamCalib) that automatically calibrates your camera and outputs a

calibration file. (To calibrate your camera, you will need to use the checkerboard

image provided in the Alvar.ppt file under its doc directory.) Alternatively, you can use

the CameraCalibration program under GoblinXNAv4.0\tools, which wraps the ALVAR

calibration program in C#. There is more detailed documentation at the Goblin XNA

codeplex site. The fourth parameter is the size of the marker (in terms of the units

used in the application). The fifth and sixth parameters are optional, and they are the

marker resolution and the margin width, respectively.

Once you initialize the marker tracker, you will need to assign the marker tracker to

the Scene.MarkerTracker property. Then, you are ready to create Marker nodes

that can track a specific marker array defined in the configuration file. Please refer to

the Marker section to learn how to create and use a Marker node.

If you want to use a static image to perform the tracking instead of live video images,

then you will need to use the NullCapture class instead of the

http://www.e2esoft.cn/
http://goblinxna.codeplex.com/documentation

32

DirectShowCapture, OpenCVCapture, or PointGreyCapture

implementations.

IMPROVING OPTICAL MARKER TRACKING PERFORMANCE

Excellent tracking performance can be obtained, even when using a relatively

inexpensive “webcam,” if you follow some basic guidelines:

 Calibrate your camera, as described in the previous section.

 Become familiar with your camera driver’s control panel. Turn off any option

that automatically computes exposure length, and instead set exposure

length manually. Note that a long exposure will produce a blurred image

when the camera and markers move relative to each other (especially if the

motion is fast), resulting in poor tracking. Instead set your exposure length to

be as short as practical.

 Since short exposures make for darker images, you will probably need to

increase image brightness by shining additional light on the real world—either

natural (pull up the shades) or artificial (turn on a bright lamp).

 Do not try to use your camera’s “brightness” control to compensate for the

darker image caused by a shorter exposure. You will instead create a lower

contrast image that will not track as well.

 Focus your camera properly for the distances at which markers will be tracked.

A smaller aperture will focus over a wider range, but admits less light, which is

another reason to shine additional light on the real world.

 Explore your camera’s (and computer’s) tradeoffs between image resolution

and number of frames captured/processed per second. For many recent USB 2

and IEEE 1394 (FireWire) cameras, you will get the best performance at

640×480 resolution.

 Make sure that your markers are as flat, clean, and wrinkle-free as possible.

Print them on the heaviest stock your printer can handle, or attach them to

cardboard or foamboard.

 Be aware of the specific requirements of the marker tracking software that

you are using. For example, ALVAR will not recognize a marker whose border

is not wholly visible (e.g., if even a small portion of the marker’s border is

obscured, it will not be tracked).

OPTICAL MARKER TRACKING WITH MULTIPLE CAPTURE DEVICES

Goblin XNA can use multiple capture devices for marker tracking. You simply need to

add as many IVideoCapture implementations as you would like to the Scene class

in order to capture from different physical cameras. Once you add them, you can

33

switch among the cameras to choose the one used for marker tracking by changing

Scene.TrackerVideoID.

You should use identical video capture devices, since you can use only one calibration

file for initializing ALVAR.

Note that there is also a Scene.OverlayVideoID property, which specifies which

video capture device to use for overlaying the background, whilst

Scene.TrackerVideoID specifies which video capture device to use for marker

tracking. If these two properties are the same, which will typically be true, then the

overlaid background image and the image used for tracking will be identical.

However, there are some cases in which you may want them to be different. For

example, if you want to use one camera only for tracking hand gestures with optical

markers attached to a person’s fingers or hand, and another camera for visualizing the

world, then you can set OverlayVideoID to the camera used for visualizing the

world, and TrackerVideoID to the camera used for tracking hand gestures. These

two properties are set to the same ID when you add an IVideoCapture

implementation to the Scene, and the video device added last is used by default.

These IDs are associated with the order in which you add your IVideoCapture

devices to your scene graph using Scene.AddVideoCaptureDevice(…)

method. This notion applies to the following section as well. Note that prior to v4.0,

these IDs were associated with the video device IDs passed as the first parameter to

Scene.AddVideoCaptureDevice(…) method.

STEREOSCOPIC AUGMENTED REALITY

When the virtual scene is rendered in stereo, the background image seen by each eye

should be different. If you have more than two capture devices connected, then you

can define which video (camera) image to render on the background for the left eye

and which for the right eye by setting the Scene.LeftEyeVideoID and

Scene.RightEyeVideoID properties. If you have only one capture device and

want to simulate a stereo background, then you can set both LeftEyeVideoID and

RightEyeVideoID to the same ID. Please see Tutorial 13 for an example of

stereoscopic augmented reality using either Vuzix iWear VR920 or Wrap 920 head-

worn displays.

For Wrap920 head-worn displays, you will need to calibrate the stereo separation and

adjust the field of view for proper stereoscopic AR experience. First, you need to

calibrate the camera intrinsic parameters for both left and right cameras using the

CameraCalibration tool (see how to use it at codeplex site).

http://goblinxna.codeplex.com/wikipage?title=Calibrating%20the%20Camera&referringTitle=Documentation

34

After the calibration, open the StereoCameraCalibration.sln file in

GoblinXNAv4.0\tools\StereoCameraCalibration. Add the two (left and right) calibrated

files to your project solution, and set their output setting to “Copy if newer”. Open the

Setting.xml file and change the LeftCameraCalibration and RightCameraCalibration

values to be your calibrated file names. Please read the descriptions of other

parameters in the setting file and change them if necessary. Print out the

groundALVAR.pdf located in GoblinXNAv4.0\tutorials\Tutorial8-Optical Marker

Tracking on 8.5”×14” legal paper (if you don’t have 8.5”×14” paper, then print it on

8.5”×11” paper with your printing program’s ‘Actual size’ option). Once everything is

set, run the program.

Bring the printed marker array in the views of both cameras and press the ‘Space’ key

to capture the image. If it succeeds, you will see a message on the screen indicating

the number of valid images captured so far. If it fails, just try capturing from another

angle and distance. Try to capture images from various angles and distances, similar

to the way in which you would calibrate the camera intrinsic parameters.

Once you captured enough images to calculate the stereo separation parameters, the

program will save the calibration file, and you will see five virtual cubes overlaid on top

of the marker array. To make sure that the calibrated separation parameters are

correct, check whether the virtual boxes shown on the left and right image appear at

the same place on the physical marker array. If the calibration went well, you should

see the virtual boxes in stereo without much difficulty.

Next, you will adjust the field of view of each camera to match the field of view of your

corresponding eye. Make sure that you have set the IsFullScreen setting to true before

performing this step. You will make separate adjustments for the left and right

cameras. The goal is to compensate, at least partially, for any mismatch between the

field of view of the camera lens and the field of view of the display. This task is made

more difficult because the camera sensor may be angled relative to the display.

Starting from the left camera (make sure to cover your right eye so that you are

looking through your left eye alone), use the ‘Up’ and ‘Down’ arrow keys to zoom in

and out until the size of a physical object seen through the left eye camera and viewed

on the left display matches the size of that object seen directly by your unaided eye.

This is most easily done by positioning your head relative to an upright rectangular

object such that the object is seen partially through the display, and partially by your

unaided eye. Select an object that is at a distance typical of the distance at which the

majority of object in your scene will appear. Note that the procedure described in this

paragraph sets the size of the object as viewed through the display, but not its

alignment.

35

Once you have adjusted the size, use the ‘Left’ and ‘Right’ arrow keys to set the

horizontal alignment of the same physical object, to line up each of its left and right

edges as seen through the display with the actual edges seen directly with your

unaided eye. Similarly, you can use the ’PageUp’ and ’PageDown’ keys to set the

vertical alignment of the object, to line up each of its top and bottom edges, as seen

through the display with the actual edges seen directly with your unaided eye.

Note that adjusting zoom sets the size of the rectangular portion of each camera

image that will be mapped to the display, and horizontal and vertical alignment

effectively sets the horizontal and vertical position of that rectangle within the camera

image. This means that if you adjust the rectangle so that it is not fully contained

within the camera image, the pixels that fall outside the image will be undefined, and

filled in with black pixels.

At this point, you may iteratively readjust zoom (using the ‘Up’ and ‘Down’ arrow

keys), horizontal alignment (using the ‘Left’ and ‘Right’ arrow keys), and vertical

alignment (using the ’PageUp’ and ;PageDown’ keys).

Once you’re satisfied with the left eye adjustment, press the ‘Enter’ key to adjust the

right eye in a similar fashion. When you’re done with both eyes, press the ‘Space’ key

to save the adjustment parameters.

In stereoscopic rendering, the 2D UI (anything rendered through the UI2DRenderer

class, including all of the 2D GUI components, as described in the 2D GUI section) also

needs to be rendered at different screen coordinates for each eye. You can shift the

2DUI coordinates by setting the Scene.GlobalUIShift (in pixels) property. The

2D UI will be shifted to the right on the left eye image by ⌊Scene.GlobalUIShift/

2⌋ and shifted to the left on the right eye image by ⌊Scene.GlobalUIShift/ 2⌋.

The amount that the 2D UI is shifted affects its apparent depth in the 3D scene. You

may find that the most comfortable setting will place the UI at an apparent depth that

matches the depth of the 3D objects (real and virtual) that you are viewing while using

the 2D UI. Note that this might change from one part of your application to another.

36

PHYSICS ENGINE

A physics engine is required for realistic rigid body physical simulation. Each scene

graph can have a physics engine, which you can assign by setting

Scene.PhysicsEngine to the physics engine implementation you want to use.

Once it is set, the physical simulation is initialized and updated automatically by the

Scene class. A Geometry node can be added to the physics engine by setting

GeometryNode.AddToPhysicsEngine to true. Each Geometry node contains

physical properties for its 3D model, and the physics engine uses these properties to

create an internal representation of the 3D model to perform physical simulation. If a

Geometry node that is added to the physics engine is removed from the scene graph,

then it is automatically removed from the physics engine.

If the transformation of a Geometry node that has been added to the physics engine is

modified by one or more ancestor Transform nodes in the middle of physical

simulation, then the transformation of the Geometry node is reset to the modified

transformation composed of its ancestor Transform nodes. (Note: This assumes the

ModifyPhysicsObject(…) function is implemented in the IPhysics

implementation you are using. Currently, the HavokPhysics implementation does not

implement this function.) However, this may cause unexpected behavior, since the

physics engine will transport the 3D object, rather than applying a proper force to

move the 3D object to the modified transformation.

A Marker node does not affect the Geometry node transformation in the physical

simulation, since this is not the desired behavior in general. However, if you want to

modify the transformation of a Geometry node in the physics engine other than by

modifying the transformation of a Transform node or by the physical simulation, you

can use the NewtonPhysics.SetTransform(…) function.

PHYSICS ENGINE INTERFACE

We define an interface, IPhysics, for any physics engine that will be used by our

scene graph. This makes it possible for a programmer to implement his/her own

physics engine and use it in Goblin XNA, provided that all of the methods required by

the IPhysics interface are implemented. The IPhysics interface contains

properties such as gravity and direction of gravity, and methods to initialize, restart,

and update the physical simulation, and to add and remove objects that contain

physical properties. Goblin XNA provides two default physics engine

implementations, which wrap the Newton Game Dynamics 1.53 library and the Havok

Physics library. Note that we do not support all of the functionality provided by these

physics engines, but just enough to perform basic simulations.

http://www.newtondynamics.com/

37

PHYSICAL PROPERTIES

Before you can add an object that either implements or contains the

IPhysicsObject interface (for example, the GeometryNode.Physics

property contained in a Geometry node is an implementation of the IPhysicsObject),

you must define the following physical properties:

 Mass. The mass of the 3D object.

 Shape. The shape that represents this 3D object (e.g., Box, Sphere, or

Cylinder).

 ShapeData. The detailed information of the specified shape (e.g., each

dimension of a Box shape).

 MomentOfInertia. The moment of inertia of the 3D object. (This can be

computed automatically if not specified, but that will not guarantee the

desired physical behavior.)

 Pickable. Whether the object can be picked through mouse picking.

 Collidable. Whether the object can collide with other 3D objects added to

the physics engine.

 Interactable. Whether the object can be moved by external forces.

 ApplyGravity. Whether gravity should be applied to the object. There are

other physical properties that do not need to be set. However, setting them

can, for example, allow an object to have initial linear or angular velocity when

it is added to the physics engine.

NEWTON MATERIAL PROPERTIES

In addition to the physical properties, a physics object can also have physical material

properties such as elasticity, softness, and static and kinetic friction with another

material (which can be either homogeneous or heterogeneous). Certain physics

engines support material properties, and those that support material properties have

default values for all physics objects added to the engine. If you want to modify the

default material property values for interaction between certain materials, you can

assign a material name to the physics object. For the NewtonPhysics implementation,

the material name of a physics object is required and can be set in the

IPhysicsObject interface (e.g., in a Geometry node, with the

GeometryNode.Physics.MaterialName property). For those physics objects

whose default material property values you do not want to modify, just leave the

material name empty, which it is by default.

Once you have defined the material name, you can register a NewtonMaterial

object to the physics engine by calling the

NewtonPhysics.AddPhysicsMaterial(…) function. (Note: We do not expect

38

all physics engine to support all physics material properties, so we do not specify this

method in the IPhysics interface. You can only add a physical material to a specific

physics engine that supports it. The Newton physics engine supports all physical

material properties, so you can add them.) Please see Tutorial 9 for a demonstration

of how to define and add a NewtonMaterial object.

These are the material properties3:

 Elasticity (0.0f–1.0f): The larger the value, the less the vertical (relative to

the colliding surface) energy is lost when two objects collide. This is the

coefficient of restitution.

o E.g., if elasticity is set to 1.0f, vertical energy loss is 0. If elasticity is set

to 0.0f, all vertical energy is lost.

 Static, which represents static friction (0.0f–1.0f): The larger the value, the

more horizontal (relative to the colliding surface) energy is lost when two

objects collide.

o E.g., if static friction is set to 0.0f, horizontal energy loss is 0. If static

friction is set to 1.0f, all horizontal energy is lost.

 Kinetic, which represents kinetic friction (0.0f–1.0f): This should be less

than the static friction for realistic physical simulation. The larger the value,

the more horizontal energy is lost when two objects are sliding against each

other.

 Softness (0.0f–1.0f): This property is used only when two objects

interpenetrate. The larger the value, the more restoring force is applied to the

interpenetrating objects. Restoring force is a force applied to make both

interpenetrating objects push away from each other, so that they no longer

interpenetrate.

NEWTON PHYSICS LIBRARY

The NewtonPhysics class implements the IPhysics interface using the Newton

Game Dynamics 1.53 library, which is written in C++. We use the C# Newton Dynamics

wrapper created by Flylio, with some bug fixes, in order to interface with the Newton

library. In addition to the methods required by the IPhysics interface, we added

several methods that are specific to the Newton library to perform the following

functions:

 Apply linear velocity, angular velocity, force and torque directly to an

IPhysicsObject.

3 These descriptions are specific to NewtonPhysics, and may not apply if another
IPhysics implementation is used.

http://www.newtondynamics.com/
http://www.newtondynamics.com/
http://pagesperso-orange.fr/flylio/

39

 Specify physical material properties, such as elasticity, static and kinetic

friction, and “softness” (NewtonMaterial).

 Pick objects with ray casting.

 Disable and enable simulation of certain physics objects.

 Provide collision detection callbacks.

 Set size of the simulation world.

 Provide direct access to Newton Game Dynamics library APIs (using

NewtonWorld property and APIs wrapped in NewtonWrapper.dll).

Newton Game Dynamics has a notion of the size of the simulation world, which

defines the volume in which the simulation takes place. The default size is

200×200×200, centered at the origin. If an object leaves the bounds of the simulation

world, then the simulation of the object stops. You can modify the size of the

simulation world by modifying the NewtonPhysics.WorldSize property.

NewtonPhysics automatically calculates some of the necessary properties of a

physics object mentioned in the Physical Properties section if they are not set. If the

IPhysicsObject.ShapeData property is not set, then it is automatically

calculated using the minimum bounding box information associated with the 3D

object. If the IPhysicsObject.MomentOfInertia property is not set, then it is

automatically calculated using the utility function provided by the Newton Game

Dynamics library.

Since the meanings of IPhysicsObject.Collidable and

IPhysicObject.Interactable can be confusing, we list all four combinations

of these two property values, and the meaning of the combinations4:

 Both collidable and interactable are set to true.

The object collides with other collidable objects and reacts in response to

physical simulation when force and/or torque are applied.

 Both collidable and interactable are set to false.

The object still collides with other collidable objects, but does not react in

response to physical simulation. This may seem strange, but once an object is

added to the Newton Game Dynamics physics engine, it becomes collidable

by default, and this cannot be changed except by using

IPhysicsMaterial to specify specific materials that are not collidable

with each other.

 collidable is set to true, but interactable is set to false.

The object collides with other collidable objects, but does not react in

response to physical simulation when force and/or torque are applied.

4 These meanings are specific to NewtonPhysics, and may not apply if another
IPhysics interface is used.

40

 interactable is set to true, but collidable is set to false.

The object behaves as if both collidable and interactable are set to

false. However, once force, torque, linear velocity, or angular velocity is

applied, it starts behaving as if both collidable and interactable

were set to true.

The addition and removal of any physics objects associated with Geometry nodes in

our scene graph is handled automatically, so you should not call

AddPhysicsObject(…) or RemovePhysicsObject(…) in your code for

Geometry nodes added to the scene graph. However, if you decide to create your own

class that implements the IPhysicsObject interface and want to add it to the

physics engine for simulation, then you will need to take care of adding and removing

that physics object in your code.

After a physics object is added to the physics engine, the transformation of the object

is controlled based on the physical simulation. If you want to modify the

transformation of the physics object externally, there are two ways to do so. One way

is to call the NewtonPhysics.SetTransform(…) function if you want to set the

transformation of the object yourself. If the physics object is associated with a

Geometry node, then you can modify the transformation of the Transform node to

which this Geometry node is attached (if any). In either case, this approach will

transport the object instead of moving the object, so you may see unexpected,

discontinuous behavior. An alternative is to call the

NewtonPhysics.AddForce(…) and NewtonPhysics.AddTorque(…)

functions. These functions will properly modify the transformation of the object;

however, you may find it difficult to determine the exact force and torques that are

needed to make the physics object have a specific transformation, if that is what you

want. Nevertheless, we recommend using these two methods to modify the

transformation of a physics object in the simulation externally, rather than setting the

transformation explicitly.

Goblin XNA currently supports most of the capabilities of the original Newton Game

Dynamics 1.53 library in NewtonPhysics. To perform more advanced simulation,

you can directly access the full functionality of the original Newton Game Dynamics

library using the NewtonWorld handler. Please see the API documentation for the

NewtonPhysics class and the documentation of the original Newton library for

details on how to directly access and use it. Most of the functions in the original

Newton Game Dynamics library need a pointer to a NewtonBody instance. To get

the NewtonBody pointer, you can use the NewtonPhysics.GetBody(…)

method to access the pointer associated with the physics object used in Goblin XNA.

41

HAVOK PHYSICS LIBRARY

The HavokPhysics class implements the IPhysics interface using Havok physics

(version hk710r1), which is written in C++. We wrapped important functionality in

managed C (tools/HavokWrapper) and access the managed interfaces through

HavokDllBridge in C#.

Havok requires information about the simulation world at the time of initialization,

such as gravity, gravity direction, simulation type, and collision tolerance, so you need

to pass a HavokPhysics.WorldCinfo structure when you instantiate the

HavokPhysics implementation:

 WorldSize: Similar to Newton Game Dynamics, Havok also has a notion of

the simulation world size, and any physics objects that go beyond the

specified volume will not be simulated. The simulation volume is always a

cube, so if you set WorldSize to be 150, then it means the volume is

150x150x150, centered at the origin. If you want to handle physics objects that

go beyond this volume (e.g., delete them from the scene graph), then you can

set the HavokDllBridge.BodyLeaveWorldCallback delegate

function by calling the

HavokPhysics.SetBodyWorldLeaveCallback(…) method.

 HavokSimulationType: Havok supports several simulation types, among

which are SIMULATION_TYPE_DISCRETE and

SIMULATION_TYPE_CONTINUOUS. For detailed explanations of these

types, please read the original Havok documentation. If you do not want

penetrations to occur, then you should use

SIMULATION_TYPE_CONTINUOUS; otherwise, it is better to use

SIMULATION_TYPE_DISCRETE, which is faster.

 FireCollisionCallbacks: By default, Havok does not fire any callbacks

for collision events. If you want to handle collision events by setting

HavokObject.ContactCallback,

HavokObject.CollisionStartCallback, or

HavokObject.CollisionEndCallback for your physics object, then

you should set FireCollisionCallbacks to true.

For more detailed explanations, please see the original Havok documentation. We do

not cover all of the initialization parameters supported by Havok, so if you need

additional functionality, please modify the appropriate source code (HavokPhysics.cs,

HavokDllBridge.cs, and HavokWrapper.cpp).

In addition to the regular physical properties specified in IPhysicsObject, there are

several additional properties for each rigid body in Havok:

http://www.havok.com/

42

 MotionType: The motion type used to simulate the rigid body.

 QualityType: The quality of the collision result.

 Friction: The friction of the rigid body.

 Restitution: The restitution of the rigid body (identical to Elasticity in

Newton).

 ConvexRadius: Havok creates a layer around each rigid body to prevent

penetration between objects. The larger the convex radius, the less likely it is

that objects will penetrate. However if the convex radius is too big, the gap

between colliding objects will be visually obvious.

 IsPhantom: A phantom object does not collide with other objects, but can

be used to detect whether another object entered or left the volume of the

phantom object. (Make sure you set the PhantomEnterCallback or

PhantomLeaveCallback function if you want to handle enter or leave

events)

These additional properties are implemented in HavokObject, which extends

PhysicsObject, so when you use HavokPhysics, you should assign HavokObject to

GeometryNode.Physics (it will work without the assignment, but you will not be able

to set Havok-specific parameters). The physical material properties in Havok are

specified for each rigid body, rather than for each pair of rigid body types. Again, we

do not cover all of the rigid body properties supported by Havok; therefore, for a

detailed explanation of each property, please see the original Havok documentation.

One advantage of using Havok over Newton Game Dynamics is that one can move a

static object (which, by definition, has infinite mass and does not move, such as the

earth in many simplistic terrestrial simulations), so as to cause proper physical

reactions between other objects in the simulation world, by simply giving the static

object a new position and orientation. To do this, you need to set

HavokObject.MotionType to MotionType.MOTION_KEYFRAMED for the static

object you want to move around. Then use HavokPhysics.ApplyKeyframe(…)

to move the static object to a desired location with the desired orientation. Note that

if you do not call HavokPhysics.StopKeyframe(…), the static object will keep

moving even after it reaches the destination. However, if you keep setting the new

location and orientation through ApplyKeyframe(…) for every frame, then you do

not need to call StopKeyframe(…). Call StopKeyframe(…) once you are done

moving the object.

43

USER INTERFACE

Goblin XNA supports a set of common 2D graphical user interface (GUI) components

that can be overlaid on the scene. All of the 2D UI rendered by Goblin XNA is drawn on

the frontmost layer in the SpriteBatch class (with layerDepth set to 0).

Note: Since there is no well-defined standard set of 3D GUI components, and 3D GUI

component can be implemented using Geometry nodes combined with the physics

engine, we decided not to provide a set at this time. However, we may include a set in a

future release. We are also considering supporting texture-mapped 3D GUI components

that use the texture of a live 2D GUI component.

2D GUI

In Goblin XNA, 2D GUI components are overlaid on the 3D scene. They can be set to

be transparent, so that both the GUI and the 3D scene behind it are visible. The 2D

GUI API is very similar to that of Java.Swing, including component properties and

event handling (e.g., for button press actions). Please see Tutorial 3 for a

demonstration of how to specify a collection of simple 2D GUI components. We

currently support basic 2D GUI components that include panel, label, button, radio

button, check box, slider, text field, and progress bar. (Future releases may include

other components, such as combo box, text area, and spinner.)

Some of the 2D GUI components can display text. However, in order to display text,

you will need to assign the font (SpriteFont) to use by setting the TextFont

property for each component that displays text.

For 2D rendering, we support three layers through two callback functions:

Scene.RenderBeforeUICallback and

Scene.RenderAfterUICallback, and UI2DRenderer class. Our 2D

rendering pipeline uses the following order:

1. RenderBeforeUICallback

2. Any 2D elements including texts, shapes, and textures that are rendered through

the UI2DRenderer class (e.g., UI2DRenderer.WriteText(…),

UI2DRenderer.FillRectangle(…))

3. RenderAfterUICallback

For example (as demonstrated in Tutorial 15), if you want to perform edge-detection

on the video image and add the 2D lines on top of the video, but beneath the 2D UI

elements, then you can implement this overlay functionality in a callback function and

assign it to the Scene.RenderBeforeUICallback property.

44

BASE 2D GUI COMPONENT

All 2D GUI components inherit the properties and methods from the G2DComponent

class, which inherits from the Component class. The individual 2D GUI class then

extends this base class by either adding specific properties and methods or overriding

the properties or methods of the base class. In order to find all of the properties and

methods in the API documentation for a certain 2D GUI class, you will need to see its

base class.

PANEL (CONTAINER)

Unlike Java.Swing, we do not have a “Frame” class, since XNA creates a window to

hold the paintable area. Thus, the UI hierarchy in Goblin XNA starts from “Panel”

instead of “Frame.” Like Java.Swing, our “Panel” class, G2DPanel, is used to hold

and organize other 2D GUI components such as G2DButton. However, we currently

do not support an automatic layout system, so you will need to lay out the G2D

components in the G2DPanel class yourself. Like Java.Swing, the bound (x, y, width,

height) properties of each added G2D component are based on the G2DPanel to

which they are added. Thus, if the G2DPanel has a bound of (50, 50, 100, 100) and its

child G2Dcomponent has a bound of (20, 0, 80, 20), then the child G2D component is

drawn from (70, 50). In addition to the bound property, the transparency, visibility,

and enable properties affect child G2D components; for example, if the visibility

of a G2DPanel is set to false, then all of its child G2D components will be invisible, as

well.

LABEL

Like Java.Swing’s JLabel, G2DLabel places an unmodifiable text label on the overlaid

UI, and no event is associated with this class. The difference is that JLabel hides the

text that exceeds the width of the bound; for example, if the bound is set to have

width of 100, and the text length is 150, then the text part that overflows the bound

(the remaining 50) will not be shown, but abbreviated with an ellipsis (“…”). In

contrast, G2DLabel shows all of the text, even if some portion extends beyond the

width of the bound.

BUTTON

Like Java.Swing’s JButton, G2DButton is used to represent a clickable button.

G2DButton has an action event associated with it, and it is activated when the

button is pressed. You can add an action handler to

G2DButton.ActionPerformedEvent, and the handler will get called whenever

there is a button press action. In addition to directly pressing the button using a

45

mouse click, you can also programmatically press the button by calling the

G2DButton.DoClick() function.

RADIO BUTTON

Like Java.Swing’s JRadioButton, G2DRadioButton is used to represent a two-state

(selected or unselected) radio button. The text associated with G2DRadioButton is

displayed on the right of the radio button. Like the G2DButton class, you can add an

action listener to the G2DRadioButton class, and the listener will get called

whenever the radio button is pressed to switch to either the selected or unselected

state. In addition to directly pressing the button using a mouse click, you can also

programmatically press the button by calling the G2DRadioButton.DoClick()

function.

Radio buttons are usually used in a group of radio buttons, with only one selected at

time for single-choice selection. As in Java.Swing, you can use the RadioGroup class

to do this. Simply add a group of radio buttons to a RadioGroup object, and set one

of the radio buttons to be selected initially.

CHECK BOX

Like Java.Swing’s JCheckBox, G2DCheckBox is used to represent a two-state

(checked or unchecked) check box. Check boxes are very similar to radio buttons. The

only difference is that check boxes are usually used for multiple-choice selection.

SLIDER

Like Java.Swing’s JSlider, G2DSlider is used to select a value by sliding a knob

within a bounded interval. The slider can show both major tick marks and minor tick

marks between them, as well as labels, by setting G2DSlider.PaintTicks or

G2DSlider.PaintLabels, respectively, to true. You will also need to set

G2DSlider.MajorTickSpacing and G2DSlider.MinorTickSpacing,

respectively, to see major tick marks and minor tick marks. You can modify the slider

value either by sliding the knob using the mouse or programmatically setting

G2DSlider.Value. For a label, we recommend that you use a smaller font than the

other UI fonts.

The event handler for G2DSlider is StateChanged, and you can add an

implementation of this delegate function to G2DSlider.StateChangedEvent.

Then, the implemented delegate function will get called whenever the value of the

slider changes.

46

TEXT FIELD

Like Java.Swing’s JTextField, G2DTextField displays a text string from the user’s

keyboard input. The text field needs to be focused in order to receive the key input. In

order to focus on the text field, the user needs to click within the bounds of the text

field using the mouse.

The event handler for G2DTextField is CaretUpdate, and you can add an

implementation of this delegate function to

G2DTextField.CaretUpdateEvent. Then, the implemented delegate function

will get called whenever the caret position changes.

PROGRESS BAR

Like Java.Swing’s JProgressBar, G2DProgressBar displays an integer value within a

bounded interval. A progress bar is typically used to express the progress of some task

by displaying the percentage completed, and optionally, a textual display of the

percentage. In order to show the textual display of the percentage, you need to set

G2DProgressBar.PaintString to true. You can also change the color of the

progress bar or the textual display by setting G2DProgressBar.BarColor or

G2DProgressBar.StringColor, respectively.

In addition to the normal mode that displays the percentage completed,

G2DProgressBar also has a mode called “indeterminate.” Indeterminate mode is

used to indicate that a task of unknown length is running. While the bar is in

indeterminate mode, it animates constantly to show that some tasks are being

executed. You can use indeterminate mode by setting

G2DProgressBar.Indeterminate to true.

LIST

Like Java.Swing’s JList, G2DList displays a list of items within a bounded region, and

each of the listed items is selectable. The selection method can be single, multiple

with single interval, or multiple with multiple intervals. The list data model, selection

model, and cell renderer can be easily replaced with custom implementations. Note

that G2DList renders the entire part of each cell, even if some portion extends

beyond the width or height of the bound.

SPINNER

Like Java.Swing’s JSpinner, G2DSpinner allows the user to select an item defined by

a SpinnerModel from an ordered sequence. G2DSpinner provides a pair of tiny

arrow buttons for stepping through the elements of the sequence. The user can also

47

use keyboard up/down arrow keys to cycle through the elements. The value in the

spinner is not directly editable.

MORE COMPLEX COMPONENTS

There are few more complex components (e.g., G2DMediaControl,

G2DSuggestField, and G2DWaitBar) that combine two or more basic UI

components or extend the original functionalities of other UI components to perform

more advanced user controls. These components demonstrate how you can extend

the existing components to create customized advanced user controls, and can be

found in the GoblinXNA.UI.UI2D.Fancy package.

EVENT HANDLING

Unlike Java.Swing, Goblin XNA handles events using delegate functions and event

properties associated with each G2D class. There are different types of delegate

functions, and you need to implement the right delegate function for a specific event.

Then, you can register the implemented delegate function to a G2D component

through one of its event properties, and when the event occurs, the registered

delegate function will get called.

For example, you can implement a function that has the same parameter set as the

ActionPerformed delegate, and add the implemented function to G2DButton’s

ActionPerformedEvent event property. Then, whenever the button is pressed,

the implemented delegate function will get called.

SHAPE DRAWING

Goblin XNA provides several functions for drawing simple 2D shapes such as line,

rectangle, circle, and convex polygon. Similar to Java2D, there are draw functions and

fill functions. These functions can be found in the

GoblinXNA.UI.UI2D.UI2DRenderer class.

GUI RENDERING

The user interface is rendered by the GoblinXNA.UI.UIRenderer class. In order

to render G2D components, you need to add them to this class by calling

Add2DComponent(…). Even though you can call the RenderWidget(…) method

for each individual G2D components, it is not recommended to do so. You should

simply add them to UIRenderer and let this class take care of the rendering. Also,

you should only add the topmost G2D components to UIRenderer.

48

3D TEXT RENDERING

Goblin XNA supports 3D text rendering in outlined, filled, or extruded style using a

slightly modified version of the Nuclex library. 3D text rendering functions can be

found in the GoblinXNA.UI.UI3D.UI3DRenderer class, and an example is

provided in Tutorial 9. In addition, you can use the Text3D class in the

GoblinXNA.Graphics package that extends PrimitiveModel, and you can

associate the 3D text with a GeometryNode for easier transformation control and

physics simulation.

http://nuclexframework.codeplex.com/

49

SOUND

We created a wrapper for the XNA audio engine to provide an easier interface for

playing 2D and 3D audio. Before you can play audio, you first need to initialize the

audio engine by calling the Sound.Initialize(String xapAssetName)

function. (Sound is a static class, so you do not need to call the constructor.) The XACT

project file (.xap) can be created using the “Microsoft Cross-Platform Audio Creation

Tool” that comes with XNA Game Studio 4.0. To learn how to compile an XACT

project file, see http://msdn.microsoft.com/en-us/library/ee416205(VS.85).aspx. For a

3D sound effect, you will need to create proper XACT Runtime Parameter Controls

(RPC), such as volume attenuation based on distance or the Doppler effect, and

associate them to the 3D sound effect using the audio creation tool. If these RPCs are

not attached to the sound, the sound will be 2D. Please see

http://msdn.microsoft.com/en-us/library/ee416009(VS.85).aspx for a description of

how to create and associate sounds with RPCs. Once the XACT project file is created,

add it to your “Content” directory through the solution explorer, and pass the asset

name to this initialization function.

Now, you can play any 2D or 3D audio object by calling Sound.Play(String

cueName) or Sound.Play3D(String cueName, IAudioEmitter

emitter), respectively. The cue name is the one you defined when you created your

XACT project file, but not the actual audio (.wav) filename you want to play. You can

control the audio (e.g., stop, pause, and resume) and get the audio status (e.g.,

whether it is created or playing) using the “Cue” object returned from both of the

“Play” functions. However, if you force the audio to stop or the audio finishes playing,

Goblin XNA automatically disposes of that audio object, so you will not be able to play

the same sound again using the returned “Cue” object. In order to play it again after

either you force it to stop or it finishes playing, you should call the “Play” function

again to get a new “Cue” object to control it.

http://msdn.microsoft.com/en-us/library/ee416205(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ee416009(VS.85).aspx

50

SHADERS

Instead of using a set of fixed-pipeline functions to render the 3D object and the

scene, XNA Game Studio uses a programmable 3D graphics pipeline with the ability to

create customized vertex shaders and pixel shaders. Even though this gives the

programmer more power and flexibility in determining how the 3D objects in the

scene are rendered, it means that you will need to create your own shader to draw

even a single triangle. Since many programmers new to the idea of a shader language

do not want to spend time learning how to write shaders, we provide a set of shaders

in Goblin XNA, including a simple effect shader that can render many kinds of simple

objects, a more advanced general shader, a particle shader, and a shadow mapping

shader.

If you wish to create your own shader or use another shader, you will need to

implement the IShader interface. (Tutorial 11 shows you how to create your own

shader and incorporate it into Goblin XNA.) Goblin XNA stores global and local Light

nodes in the order in which they are encountered in the preorder tree traversal of the

scene graph. The implementer of the shader interface determines which of the light

sources in these Light nodes are passed to the shader. This will typically be important

if the shader has a limit on the number of light sources that it supports, and the Goblin

XNA user has created a scene graph that includes more than this number of global

light sources and local light sources that can affect an object being illuminated. The

shader interface code determines which lights take priority. For example, a shader

interface may give priority to global lights over local lights, or local lights over global

lights, if it will not pass all of the lights to the shader.

SIMPLE EFFECT SHADER

The simple effect shader (GoblinXNA.Shaders.SimpleEffectShader) is

used by default for rendering the GoblinXNA.Graphics.Model object in the

Geometry node and bounding boxes. However, you can always replace it with a

different shader if you prefer by setting the Model.Shader property. The simple

effect shader uses the BasicEffect class provided by XNA Game Studio with the

material properties and lighting/illumination properties associated with the 3D

models.

One limitation of the BasicEffect class is that it can only use three light

sources, all of which must be directional lights. Thus, if the

SimpleEffectShader is used for rendering an object (which it is by default),

then any lights that are not directional lights are ignored. If there are more than

three light sources, then local light sources take precedence over global light

sources.

51

DIRECTX SHADER

The DirectX shader (GoblinXNA.Shaders.DirectXShader) implements the

fixed-pipeline lighting of DirectX 9. It is capable of rendering point, directional, and

spot light sources, with no limitation on the number of light sources. The exact

equations used for each light type can be found at http://msdn.microsoft.com/en-

us/library/bb174697(VS.85).aspx. To use the DirectX shader, you need to add the

DirectXShader.fx file located in the /data/Shaders directory to your project content.

OTHER SHADERS

In addition to SimpleEffectShader and DirectXShader, we also included

ParticleShader, which is a modified version of the shader used in the Particle 3D

tutorial on the XNA Creator’s Club website; NormalMapShader, which supports

bump maps and environment maps; and ShadowMapShader, which is a modified

version of the shadow-mapping shader provided in the XNA Racing Game Starter Kit.

ParticleShader is used to render particle effects in the Particle nodes. If you want

to use your own particle shader, you can set ParticleEffect.Shader for any

particle effect class that inherits ParticleEffect class. In order to use particle

effects, you will need to add the ParticleEffect.fx file located in the /data/Shaders

directory to your project content.

NormalMapShader is used to render 3D models with bump map textures and

environmental reflections. To assign bump map textures or environmental map

texture for reflections, you need to use NormalMapMaterial instead of the regular

Material class. The shader file, NormalMapping.fx, is located in the /data/Shaders

directory.

MultiLightShadowMap and SimpleShadowShader are used to render

shadows cast on 3D objects in the scene. To display shadows, you need to set

Scene.EnableShadowMapping to true, as well as set

Model.ShadowAttribute for each 3D model you want to cast or receive

shadows. (See Tutorial 8 for an example.) In order to use shadow mapping, you will

need to add the MultiLightShadowMap.fx and SimpleShadowMap.fx files located in

the /data/Shaders directory to your project content. To make the shadow render

properly, you may need to tweak the DepthBias properties of

MultiLightShadowMap for any of the light types (e.g., directional, point, or spot)

you use.

http://msdn.microsoft.com/en-us/library/bb174697(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb174697(VS.85).aspx
http://creators.xna.com/en-us/sample/particle3d
http://creators.xna.com/en-us/sample/particle3d
http://creators.xna.com/
http://www.xnaracinggame.com/

52

NETWORKING

XNA Game Studio supports networking functionality specific to games, but it requires

that the user log in to the XNA Live server, which can only connect to other machines

through the XNA “lobby” system. While this works well for many kinds of games, it

can be cumbersome if the user simply wants to connect a set of machines with known

IP addresses or host names, and communicate efficiently among them, and will be

unreliable if reliable internet access is not available. Therefore, Goblin XNA includes its

own network interfaces that can be used for any application.

To use the Goblin XNA networking facility, you first need to enable networking by

setting State.EnableNetworking to true. Next, you need to specify whether

the application is a server or a client by setting State.IsServer to true or

false. Then, you need to define what implementation of network server (defined by

the IServer interface) or client (defined by the IClient interface) you want to

use. You can either create your own implementation of IServer and IClient

using the network API of your choice, or you can use the Goblin XNA implementations

of IServer and IClient, which use the Lidgren network library (the currently

supported version is gen3 2011-2-19): LidgrenServer and LidgrenClient.

Finally, you need to define what implementation of network handler you want to use

defined by the INetworkHandler interface. We implemented NetworkHandler

class as a default handler.

You will need to assign the IServer or IClient implementation to the

INetworkHandler implementation, and then assign this handler to

Scene.NetworkHandler. When you assign IServer or IClient to

NetworkHandler, the NetworkHandler class will automatically call the

IServer.Initialize() function or the IClient.Connect() function. If you

want to set certain property values (e.g., IClient.WaitForServer for a client) to

take effect before initializing the server or connecting to a server from the client, you

should assign the Scene.NetworkServer or Scene.NetworkClient

properties after setting the IServer or IClient properties. For LidgrenServer

and LidgrenClient implementations, you can set Lidgren-specific configurations

through the NetConfig property. Now, you are ready to send or receive any

implementations of INetworkObject. Please see Tutorial 10 for a demonstration

of a simple client-server example that transmits mouse press information.

SERVER

A server implementation should implement the Goblin XNA IServer interface. Even

though you can call the broadcast or receive functions manually to communicate

between clients, Goblin XNA automates this process through the INetworkObject

http://code.google.com/p/lidgren-library-network/

53

interface. (See the Network Object section for details.) We recommend that you send

or receive messages by implementing the INetworkObject interface and add it to

the scene graph using the Scene.NetworkHandler.AddNetworkObject(…)

function.

If you want to perform certain actions when there is a client connection or

disconnection, you can add HandleClientConnection or

HandleClientDisconnection delegates to the

IServer.ClientConnected or IServer.ClientDisconnected event.

CLIENT

Any client implementation should implement the Goblin XNA IClient interface.

Again, you can manually communicate with the server, but we recommend using the

INetworkObject interface. (See the Network Object section for details.) By

default, if the server is not running at the time the client tries to connect to the server,

the connection will fail and the client will not try to connect again. In order to force the

client to continue trying to connect to the server until it succeeds, you will need to set

IClient.WaitForServer to true. You can also set the timeout for the

connection trial (IClient.ConnectionTrialTimeOut), so that it will not keep

trying forever.

NETWORK OBJECT

The INetworkObject interface defines when or how often certain messages

should be sent over the network, and how the messages should be encoded by the

sender and decoded by the receiver. For any objects that you want to transfer over the

network, you should implement INetworkObject, and add your object to the

scene graph using the Scene.NetworkHandler.AddNetworkObject(…)

function. Make sure you make the INetworkObject.Identifier unique

relative to other network objects you add.

Once it is added to the scene graph, packet transfer is controlled by either

INetworkObject.ReadyToSend or

INetworkObject.SendFrequencyInHertz. The data sent is whatever is

returned from your INetworkObject.GetMessage() function, and the received

data is passed to your INetworkObject.InterpretMessage(…) function. If

you want to send the packet at a specific time, then you should set

INetworkObject.ReadyToSend to true at the specific time, and once the

packet is sent, INetworkObject.ReadyToSend will be automatically set back to

false by the scene graph. If you want to send the packet periodically, then you

should set INetworkObject.SendFrequencyInHertz, which defines how

54

frequently you want to send in Hz (e.g., setting it to 30 Hz means to send 30 times per

second). Message transmitting and receiving is processed during each

Scene.Update(…) call. In case you do not want to have the packet sent for some

period, even if either INetworkObject.ReadyToSend is set to true or

INetworkObject.SendFrequencyInHertz is set to other than 0, you can set

INetworkObject.Hold to true. As soon as you set it back to false, the scene

graph will start processing the packet transfer.

You can also control whether the packets should always be transferred in order or can

be sent out of order, by setting INetoworkObject.Ordered, and whether the

receiver is guaranteed to receive the transferred packets by setting

INetworkObject.Reliable.

Note that messages are transferred as arrays of bytes. Our

GoblinXNA.Helpers.ByteHelper class provides several utility functions to

perform tasks such as concatenating bytes and converting bytes to or from other

primitive types. (The BitConverter class also provides many conversion

functions.)

55

DEBUGGING

We currently support text-based debugging (with text either displayed on the screen

or written to a text file), bounding-box–based graphical debugging, and a graphical

scene graph display (which can be found under the GoblinXNA/tools directory.)

SCREEN PRINTING

Since Goblin XNA is a graphics package, you may want to print debugging information

on the screen, instead of on the console window. We support printing to the screen in

two ways. One general way is to use GoblinXNA.UI.GUI2D.UI2DRenderer to

draw a text string using a specific font on the screen. Another way is to use the

GoblinXNA.UI.Notifier class, which is designed specifically for debugging

purposes. (Please see Tutorial 9 for a demonstration.) Here, we provide information

on how to use GoblinXNA.UI.Notifier:

 To display messages (especially for debugging) on the screen instead of on

the console window, pass text strings to Notifier.AddMessage(…).

 To display messages added to the Notifier class, set

State.ShowNotification to true.

 Display location can be changed by modifying the

Notifier.NotifierPlacement enum. The choices are upper-left

corner, upper-middle, upper-right corner, lower-left corner, lower-middle,

lower-right corner, or custom location. The default location is upper-right. If

custom location is chosen, then you also need to set the

CustomStartLocation and CustomAppearDirection properties.

 Displayed text messages start fading out after Notifier.FadeOutTime

milliseconds, and eventually disappear. The default FadeOutTime is set to 1

(never fade out).

In addition to your custom debugging message, we support printing out FPS (frames-

per-second), and the triangle count of currently visible objects in the frustum. (Note

that the triangle count actually includes objects near the boundary of the frustum

even if they are not visible.) To enable display of this information, set

State.ShowFPS and/or State.ShowTriangleCount to true.

LOGGING TO A FILE

If you prefer to print out debugging messages in a text file, you can use the

GoblinXNA.Helpers.Log class. The Log class can help you write a log file that

contains log, warning, or error information, as well as logged time for simple runtime

error checking. By default, the log file will be created in the same directory as the

56

executable file. (You can change the file location by using the configuration file, as

explained in the section on Configuration Files.) When you pass a text message to the

Log class, you can also define the severity of the message in the second parameter of

the Log.Write(…) method. If you do not set the second parameter, the default is

LogLevel.Log. The Log class has a notion of print level, which defines the level of

severity that should be printed. By default, the print level is set to LogLevel.Log,

which means all of the logged messages will be printed to the log file. There are three

levels, Log, Warning, and Error, in increasing order of severity. The print level is

used to define the lowest severity level to print; severity levels at or above the print

level will be printed; for example, if print level is Warning, then messages with

severity level Warning and Error will be printed. You can modify the print level by

changing State.LogPrintLevel. Logged messages will also be displayed on the

screen if both Log.WriteToNotifier and State.ShowNotification are set

to true.

MODEL BOUNDING BOX AND PHYSICS AXIS-ALIGNED BOUNDING BOX

For a 3D model, we support the capability of displaying its bounding box, as well as its

axis-aligned bounding box acquired from the physics engine (which corresponds to

the physics model used to represent the 3D model). You can use the bounding boxes

to debug unexpected model behavior.

To display the bounding box of a model, set Model.ShowBoundingBox to true.

You can also change the color of the bounding box and the shader used to draw the

bounding box by setting State.BoundingBoxColor and

State.BoundingBoxShader, respectively.

To display the axis-aligned bounding box, set

Scene.RenderAxisAlignedBoundingBox to true. (If you are not using the

physics engine for physical simulation, then there is no reason to display the axis-

aligned bounding box.)

57

MISCELLANEOUS

SETTING VARIABLES AND GOBLIN XNA CONFIGURATION FILE

Setting variables can be loaded at the time of Goblin XNA initialization. The third

parameter of State.InitGoblin(…) specifies an XML file that contains setting

variables. For example, if a model (.fbx) is not added directly under the Content folder,

Goblin XNA does not know where to find it. Thus, you need to specify the directory

that contains the models in the setting file. The same is true for fonts, textures, audio,

and shaders. Goblin XNA will generate a template setting file (template_setting.xml)

that contains all of the setting variables used by Goblin XNA if you leave the third

parameter as an empty string. Please see the generated template file for detailed

descriptions of each setting variable.

You can also add your own setting variable to this XML file, such as:

<var name="SceneFile" value="scene.xml">

You can then retrieve the values associated with these setting variables by using the

State.GetSettingVariable(String name) function. This is useful if you do

not want to hard-code certain values in your program and be able to modify them

from an XML file. As noted in the template setting file, you can also choose to remove

any of the existing setting variables you do not need; for example, if all of the resource

files are directly stored under the “Content” directory, then you do not need any of the

“…Directory” setting variables.

PERFORMANCE

Goblin XNA takes advantage of multi-core CPU machines by multi-threading certain

operations to speed up rendering. However, if your machine has a single-core CPU,

using multi-threading may result in noticeably worse performance than not using

multi-threading. Therefore, you may want to set State.ThreadOption to thread

only specific operations (e.g., marker tracking or physics simulation). Note that if you

try to multi-thread more operations than the number of cores your machine supports,

Goblin XNA may run slower, rather than faster. Also, if you multi-thread marker

tracking, the tracking of the 3D models may lag behind the video image due to the

asynchronous relationship between tracking and rendering.

0

INDEX

A

ActionPerformed, 47

ActionPerformedEvent, 47

Add2DComponent(…), 47

AddListener(GPSListener listener), 28

AddPhysicsObject(…), 40

ALVARMarkerTracker, 31

ApplyGravity, 37

AutoComputeDistances, 23

AutoComputeLevelOfDetail, 23

B

base.initialize(), 7

BasicEffect, 50

BitConverter, 54

BranchNode, 16

C

Camera, 24

CameraNode, 24

collidable, 39, 40

Collidable, 37

Content, 6

CreateObject(), 10

CurrentStationID, 26

CustomAppearDirection, 55

CustomStartLocation, 55

D

DESSmoother, 22

DirectShowCapture, 29

DirectXShader,, 51

Draw(), 7, 14

DxtCompressed, 21

E

Elasticity, 38

Error, 56

F

FadeOutTime, 55

G

G2DButton, 44, 45

G2DButton.ActionPerformedEvent, 44

G2DButton.DoClick(), 45

G2DCheckBox, 45

G2Dcomponent, 44

G2DLabel, 44

G2DList, 46

G2DMediaControl, 47

G2DPanel, 44

G2DProgressBar, 46

G2DProgressBar.BarColor, 46

G2DProgressBar.Indeterminate, 46

G2DProgressBar.PaintString, 46

G2DProgressBar.StringColor, 46

G2DRadioButton, 45

G2DRadioButton.DoClick(), 45

G2DSlider, 45

G2DSlider.MajorTickSpacing, 45

G2DSlider.MinorTickSpacing, 45

G2DSlider.PaintLabels, 45

G2DSlider.PaintTicks, 45

G2DSlider.StateChangedEvent, 45

G2DSlider.Value, 45

G2DSpinner, 46

G2DSuggestField, 47

G2DTextField, 46

G2DWaitBar, 47

Game1, 6

GenerateMipmaps, 21

GenerateMipmaps XE "GenerateMipmaps\, 21

GenericInput, 27

GenericInput.BaseTransformation, 27

GeometryNode.AddToPhysicsEngine, 36

GeometryNode.Physics, 37

GeometryNode.Physics.MaterialName, 37

GetWorldTransformation(String identifier), 28

GoblinXNA.Device.Capture.IVideoCapture, 29

GoblinXNA.Device.InterSense, 26

GoblinXNA.Device.Vision.Marker.IMarkerTracker, 31

GoblinXNA.Graphics.Model, 50

GoblinXNA.Helpers.ByteHelper, 54

GoblinXNA.Helpers.Log, 55

GoblinXNA.Shaders.DirectXShader, 51

GoblinXNA.Shaders.SimpleEffectShader, 50

GoblinXNA.UI.GUI2D.UI2DRenderer, 55

1

GoblinXNA.UI.Notifier, 55

GoblinXNA.UI.UI2D.Fancy, 47

GoblinXNA.UI.UI2D.UI2DRenderer, 47

GoblinXNA.UI.UIRenderer, 47

GPS, 28

GPSListener, 28

GraphicsDevice, 6, 7

GraphicsDeviceManager, 6

GraphicsDeviceManager, 6

H

HandleClientConnection, 53

HandleClientDisconnection, 53

HandleMousePress, 28

I

IAudioEmitter, 23

IClient, 52, 53

IClient,, 52

IClient.Connect(), 52

IClient.ConnectionTrialTimeOut, 53

IClient.WaitForServer, 52, 53

ImageFormat, 30

ImagePtr, 30

IMarkerTracker, 31

IModel, 23

INetoworkObject.Ordered, 54

INetworkObject, 52, 53

INetworkObject., 52

INetworkObject.GetMessage(), 53

INetworkObject.Hold, 54

INetworkObject.Identifier, 53

INetworkObject.InterpretMessage(…), 53

INetworkObject.ReadyToSend, 53, 54

INetworkObject.Reliable, 54

INetworkObject.SendFrequencyInHertz, 53, 54

Initialize(), 7, 9, 10, 26

Initialize(…), 26

InitialRotation, 27

InitialTranslation, 27

InitTracker(…), 31

InitVideoCapture(…), 30

InputDevice_6DOF, 26

InputMapper, 26, 27, 28

InputMapper.Add6DOFInputDevice(…), 26, 27

InputMapper.GetWorldTransformation(String identifier),

26

InputMapper.Reenumerate(), 26, 27

interactable, 39, 40

Interactable, 37

InterpupillaryDistance, 24

InterSense, 26

IPhysicObject.Interactable, 39

IPhysics, 36, 38, 41

IPhysicsMaterial, 37, 38, 39

IPhysicsObject, 37, 38, 40

IPhysicsObject.Collidable, 39

IPhysicsObject.MomentOfInertia, 39

IPhysicsObject.ShapeData, 39

IServer, 52

IServer.ClientConnected, 53

IServer.ClientDisconnected, 53

IServer.Initialize(), 52

IShader, 50

ISmoother, 22

IVideoCapture, 29, 30, 31, 32, 33

IVideoCapture.Height, 31

IVideoCapture.InitVideoCapture(…), 30

IVideoCapture.Width, 31

iWearTracker, 27

K

KeyboardInput, 28

KeyboardInput.KeyPressEvent, 28

Kinetic, 38

L

Latitude, 28

LeftEyeVideoID, 33

LevelOfDetail, 23

LidgrenClient., 52

LidgrenServer, 52

LightNode, 13

LightSource, 13

LoadContent(), 7, 9

Log, 56

Log.Write(…), 56

Log.WriteToNotifier, 56

LogLevel.Log, 56

M

markerConfigs, 21, 22

Mass, 37

Model.Shader, 50

Model.ShowBoundingBox, 56

MomentOfInertia, 37

MouseInput, 28

2

MouseInput.MousePressEvent, 28

N

NewtonBody, 40

NewtonPhysics, 38, 39, 40, 41

NewtonPhysics.AddForce(…), 40

NewtonPhysics.AddPhysicsMaterial(…), 37

NewtonPhysics.AddTorque(…), 40

NewtonPhysics.GetBody(…), 40

NewtonPhysics.SetTransform(…), 36, 40

NewtonPhysics.WorldSize, 39

NewtonWorld, 39, 40

Notifier, 55

Notifier.AddMessage(…), 55

Notifier.FadeOutTime, 55

Notifier.NotifierPlacement, 55

O

Orientation.Identity, 27

OverlayVideoID, 33

P

Panel, 44

ParticleEffect, 51

ParticleEffect.Shader, 51

ParticleShader, 51

ParticleShader,, 51

Physics, 40

Pickable, 37

Pitch, 27

PointGreyCapture, 29, 30

Prune, 16

R

RadioGroup, 45

RemovePhysicsObject(…), 40

RenderWidget(…), 47

RightEyeVideoID, 33

Roll, 27

Rotation, 27

S

Sample, 9

Sample.spritefont, 9

Scene, 24, 25, 31, 36

Scene.AddNetworkObject(…), 53

Scene.AddVideoCaptureDevice(…), 30

Scene.CameraNode, 24

Scene.EnableShadowMapping, 51

Scene.LeftEyeVideoID, 33

Scene.MarkerTracker, 31

Scene.NetworkClient, 52

Scene.NetworkServer, 52

Scene.OverlayVideoID, 33

Scene.PhysicsEngine, 36

Scene.RenderAxisAlignedBoundingBox, 56

Scene.RightEyeVideoID, 33

Scene.RootNode, 24

Scene.ShowCameraImage, 30

Scene.TrackerVideoID, 33

Scene.Update(…), 54

ShadowMapShader,, 51

Shape, 37

ShapeData, 37

SimpleEffectShader, 50, 51

Smoother, 22, 23

Softness, 38

Sound.Initialize(String xapAssetName), 49

Sound.Play(String cueName), 49

Sound.Play3D(String cueName, IAudioEmitter emitter),

23, 49

SoundNode.Play(String cueName), 22

Sphere, 10, 11

SpinnerModel, 46

SpriteBatch, 6

SpriteFont, 9, 43

State.BoundingBoxColor, 56

State.BoundingBoxShader, 56

State.EnableNetworking, 52

State.GetSettingVariable(String name), 57

State.InitGoblin(…), 57

State.IsMultiCore, 57

State.IsServer, 52

State.LogPrintLevel, 56

State.ShowFPS, 55

State.ShowNotification, 55, 56

State.ShowTriangleCount, 55

StateChanged, 45

Static, 38

StereoCamera, 24

SwitchID, 23

T

TextureFormat, 21

TrackerVideoID, 33

TriggerDelegates(…), 28

3

U

UI2DRenderer, 9

UIRenderer, 47

UnloadContent, 9

UnloadContent(), 7

Update(), 7, 14

UserData, 16

using, 6

V

Vector3.Zero, 27

visibility, 44

W

Warning, 56

Y

Yaw, 27

