
Microsoft Health Connection Engine 2.1
Architecture and Design Guide

11/1/2006
Microsoft

Table of Contents
Preamble: History and Terminology	1
What is the Connected Health Framework (CHF)?	1
What is the Canadian Connected Health Platform (CHP)?	1
What is the Health Connection Engine (HCE)?	1
Overview	2
Health Connection Engine (HCE) Background	2
The Strategic Challenge for Connected Health	2
HCE Description	3
Design Principles	3
What HCE is not	4
Health Connection Engine Service Blocks	4
Connection Engine Message	8
Message Structure	8
Message Schema	10
Message Management Services	12
Routing Service	12
Implementation Overview	13
Message Flow	14
BizTalk Configuration	17
Adapters	18
Purpose and Design Principles	18
Overview	18
Implementing an Adapter	19
Adapter Base Class	19
Adapter Classes	21
Adapter Web Service	23
Adapter Message Flow	24
SystemAdapterBase – Instantiating an Adapter	24
SendConnectionEngineMessage – Sending a Message	25
ReceiveConnectionEngineMessage – Receiving a Message	25
GetInteractiveSessionInformation -- Generating an Interactive Session URL	27
Configuration Parameters	27
Exception Handling	28
Registers and Associated Services	29
Overview	29
HCE Registers	30
Service Provider Register	31
Invocation Register	38
Purpose	38
Design Principles	38
Workflow	38
Infrastructure Services	39
Security Envelope	39
Exception Management, Logging and Auditing Services	39
Purpose	39
Design Principles	39
Change Notification Service	41
Purpose	41
Design Principles	41
Additional Design Patterns	42
Overview	42
Health Domain Registers Overview	42
Data Models	42
Patient, Practitioner, and ServiceProvider	43
Patient Register	43
Practitioner Register	45
Asynchronous Messaging, Store and Forward and Conversation Chaining	47
Purpose	47
Design Principles	47
“Pull” Functionality	48
Configuration	48
Connection Engine Adapter	49
Purpose	49
Design Principles	49
Connection Engine Message Translation Service	50
Purpose	50
Design Principles	50
Appendix 1 – Connection Engine Message XML Schema	51
Appendix 2 – Health Connection Engine Service Index	63
Appendix 3 – Message Types	65
Summary of support message types	65
Appendix 4 – Routing Service BizTalk Implementation	69
Appendix 5 – Adapter Base Class Diagram	76
Appendix 6 – ProcessMessage source code	77

Microsoft Health Connection Engine 2.1

Architecture and Design Guide	Page i
[bookmark: _Toc151809748]Preamble: History and Terminology
[bookmark: _Toc151809749]What is the Connected Health Framework (CHF)?
The Microsoft Connected Health Framework (CHF) Architecture and Design Blueprint provides generic and scenario-specific recommendations illustrating how to design, develop, deploy, and operate an architecturally sound application portfolio and interoperability infrastructure in a Healthcare environment. It offers deep technical guidance based on real-world experience that goes far beyond typical white papers.
As such it provides a conceptual framework for the Health Connection Engine (HCE) that addresses specific connectivity issues in particular domains. CHF thus provides potential guidance in areas not addressed by HCE.
[bookmark: _Toc151809750]What is the Canadian Connected Health Platform (CHP)?
This is a planned version of HCE specifically focused on the needs of the Canadian Federal Government Infoway program, establishing inter alia the Health Information Access Layer (HIAL) which seeks to enable longitudinal patient records across a number of Healthcare Domains in each Province.
[bookmark: _Toc151809751]What is the Health Connection Engine (HCE)?
HCE was originally conceived as a demonstration environment to show Microsoft clients how collaborative and connected health could be achieved. That was HCE 1.0, connecting the health applications of 6 vendors.
Subsequently, as HCE 2.0 it was enhanced to be production ready for implementation in a New Zealand regional community setting to connect applications, and in three specialist care facilities.
At the same time work has been undertaken to identify potential requirements for demonstration in Canada (in a HIAL context) and elsewhere. As particular Health Connectivity challenges are identified, potential design approaches have been considered, and where appropriate have been incorporated in this document.
This document and the accompanying code is thus a mix of:
· Production ready design and code that can be tailored to the user’s requirements
· Demonstration ready design and code that can provide a base for extension (mainly Section 7).
· Design patterns (mainly in Section 8) that can be considered for adoption when considering similar issues. In that regard, reference should also be made to the Connected Health Framework as that may provide different approaches for consideration. The Design Principles in Section 1.4 also provide an important context for why HCE approaches particular design issues in the way it does.
As far as possible, sections of this document have been marked to clarify the maturity of the material in terms of production readiness.
[bookmark: _Toc144565411][bookmark: _Toc151809752]Overview
[bookmark: _Toc137445313][bookmark: _Toc145306762][bookmark: _Toc151809753]Health Connection Engine (HCE) Background
The efficient transfer of health information between and amongst healthcare providers is one of the greatest challenges the health sector faces. Healthcare provider information systems vary considerably in terms of modernity and sophistication, from paper-based systems to highly sophisticated web-based integrated information management tools. Information needs vary from practice to practice.
HCE was developed as a consequence of a project to demonstrate how Microsoft’s Collaborative Health strategy could be brought to life. The project involved the integration of applications from 6 NZ Microsoft ISV’s, in such as way as to also provide the means for plug-and-play of applications from other Microsoft partners around the world. It followed the journey of a Type 2 Diabetic patient through primary, secondary and tertiary settings of care.
[bookmark: _Toc137445314][bookmark: _Toc145306763][bookmark: _Toc151809754]The Strategic Challenge for Connected Health
One of the most significant IT challenges facing larger organizations today is determining how to address evolution of the application architecture.
This applies both to those that selected integrated enterprise applications in the expectation they would cover the full functionality required, and would be readily upgradeable over time, and those who have gone for integration of “best of breed”.
To their dismay, the purchasers of enterprise applications have found that upgrading the whole suite is such a major, costly and disruptive project, that they avoid doing so unless absolutely necessary. Consequently, best of breed and other point solutions start to appear to address urgent needs, and need to be integrated with the enterprise application. Meanwhile, those who purchased best of breed solutions initially have found the complexity of the application integration increasing. Whilst in most cases they have used integration middleware, rather than the hand crafted interfaces used historically, the mapping is still necessarily individual application focused, and with complex changes needed for changed applications.
For these reasons, a number of the major enterprise application vendors have recognized they need to adopt a component approach to their applications, allowing the connectivity to work in such a way that organizations can upgrade individual components, rather than the whole suite. Their approach to this has generally been to adopt a service orientated architecture based on web services. In parallel with that, application integration architects have been considering similar approaches to reduce the integration complexity.
With the range of clinical support systems in the Health sector, the integration challenges are magnified, despite the positioning of some major vendors as “the” answer.
[bookmark: _Toc137445315]Although service orientated architectures have their own complexity, they are based on standards. The major opportunity for Health Application Integration is that health informatics is substantially standards based. The goal therefore is to develop a standards based set of web services that together with an integration orchestration allow applications to collaborate in an ecosystem based solely on the nature of the events being described, without having to be aware of the nature of the applications using those services.
The HCE offers the opportunity to start developing a “next generation” approach to application connection, allowing existing systems to participate in the ecosystem (whether through existing middleware tools or HCE) and over time allowing more flexible connection of both existing and new applications.
[bookmark: _Toc145306764][bookmark: _Toc151809755]HCE Description
[bookmark: _Toc137445316]HCE is a standards-based set of web services enabling health point of service applications to connect with other applications to support clinical collaborations delivering more efficient and knowledge based healthcare.
[bookmark: _Toc145306765][bookmark: _Ref145737680][bookmark: _Toc151809756]Design Principles
The following are key overarching design principles for the HCE
· A Service Oriented Architecture approach has applied
· Consequently, the objective is for connected systems to be “Plug and Play” – provided they can supply or use data in schema compliant form through adapters.
· The adapters used internally are reference implementations of the structure required for connected system adapters.
· Messages represent clinical events not data items within individual point of service systems (known as service providers within an HCE solution)
· Translating messages at the edge of the solution - Semantic / data translation of messages should be where it is most easily handled – whether that is in the point of service system, or closer to the edge of the HCE within the adapter
· EHR information should as far as possible be federated, with pull-based messaging to assemble information where it is needed, when it is needed
· All messaging is synchronous, with those connected systems requiring asynchronous messaging being handled through a store and forward service provided by the adapter
· Service blocks should be self contained (in accordance with SOA principles) providing flexibility for physical deployment
· Connected systems (service providers) should not have to know the details of systems receiving or supplying data i.e. they should not have to map that data to the requirements of the other system, but rather abstract it to be consistent with standards based XML schemas appropriate for the particular clinical (and administrative) events being supported.
· Where an interactive session is needed (such as use of decision support tools within a clinical workflow) this will be undertaken by the originating connected system (source service provider) invoking the decision support system, not via the use of HCE messaging.
· Unless decided otherwise in a particular implementation, the clinical payloads should not be visible to the HCE i.e. they are encrypted / decrypted by the adapters and thus only visible within each service provider.
· HCE should allow implementing organizations to leverage existing, legacy applications and infrastructure investment. The use of adapters and the HCE provides translation from legacy applications to a Service Oriented Architecture based solution
· The overall design of the HCE should support connection of HCE with existing messaging infrastructures – e.g. HCE to HealthLink in the New Zealand context
· The introduction of a HCE-based solution should minimize disruption to existing clinical workflow. Where ever possible, information distributed via the HCE should be presented in a user’s existing application, without introducing yet another application for users to access information available within an HCE-based solution
· Specialized knowledge and logic within each point of service or connected system should be leveraged wherever possible – e.g. ordering of laboratory tests should be completed using the interface provided by Laboratory Information Systems (LIS) directly instead of replicating functionality within a practice management system
· The HCE should leverage the Microsoft technology stack throughout the solution from server products (e.g. BizTalk, SQL Server, and Active Directory) through to code (Patterns & Practices Application Blocks and Enterprise Library). This approach maximizes use of existing components, minimizes custom coding, allows solution to evolve in-line with Microsoft product roadmaps and reduces the technical risk by reusing widely used components
[bookmark: _Toc137445317][bookmark: _Toc145306766][bookmark: _Toc151809757]What HCE is not
HCE is not a
· Clinical Data Repository (CDR) – although it could optionally support consolidation of clinical information into such a CDR (whether some form of consolidated information store or a partial information set to support, for example, “out of hours” emergency care when source systems may not be available for recent treatment history, current meds and allergies)
· Clinical Portal – this is assumed to be provided by an appropriate point of service system (even if that was only a viewing portal)
· Point of Service system
[bookmark: _Toc144565417][bookmark: _Ref144608169][bookmark: _Toc151809758]Health Connection Engine Service Blocks
The functionality within the Health Connection Engine (HCE) is provided by a series of self contained, loosely coupled service blocks.
[image:]The components within each service block expose and consume Web Services. The service blocks provided by the HCE are illustrated in Figure 1.
[bookmark: _Ref137091651]Figure 1 - HCE service blocks
The following table provides a high level description of each service block provided by the HCE:
	Service Block
	Description

	Message Management Services
	A series of services associated with the processing of routing requests from Service Providers, Registers and Administration Services participating in a solution enabled by the HCE.
Services provided by this block include routing, logging and monitoring of Connection Engine messages.

	Health Connection Engine (HCE) Registers
	A series of discrete registers which store data needed to support the HCE configuration.
Primarily this service block consists of the Service Provider Register which holds Service provider, Pool, Message Type and Schema information. Each register provides access to its data store by accepting Connection Engine Messages routed to the register by the Message Management Services.
This block also contains other registers, such as the Invocation Register and Schema Repository which are required to ensure Service Provider communication within an HCE enabled solution.
The interface exposed by each register takes the form of a standard Adapter which accepts; processes and returns Connection Engine Messages.

	Health Domain Registers
	A series of discrete registers that contain Health Domain specific information, that typically in production implementations will be either supplied by third party / in existence systems or will need to be extended to meet the requirements of a particular implementation.
Health Domain Registers will include
Patient Register – providing an authoritative source of Patient Identifier and basic demographic information within a HCE solution
Practitioner Register - providing an authoritative source of Practitioner Identifier and basic demographic information within a HCE solution
Consent Register – providing the ability to place role-based privacy constraints over the information available within a HCE solution
Event Register – providing an authoritative index of clinical event information which is available within the context of a HCE solution
Each register provides access to its data store by accepting Connection Engine Messages routed to the register by the Message Management Services.
The interface exposed by each register takes the form of a standard Adapter which accepts; processes and returns Connection Engine Messages.
Note: For version 2.1 of the HCE, a reference implementation of the Patient Register has been implemented. This reference implementation is intended to provide a sample application architecture and code implementation which can be used to construct production implementations required for a particular HCE solution.

	Health Connection Engine (HCE) Administration Services
	A set of data administration services which provide the ability to maintain data stored within each HCE Services Register.
The administration service components serve as a kind of “super adapter”, which translates requests from the HCE Administration Portal into Connection Engine Message routing requests. Each service component provides the business logic to complete this translation as well as the functionality associated with validation of the maintenance operations from both a content and security perspective.

	Health Domain Administration Services
	A set of data administration services which provide the ability to maintain data stored within each Health Domain Services Register.
The administration service components serve as a kind of “super adapter”, which translates requests from the Health Domain Administration Portal into Connection Engine Message routing requests. Each service component provides the business logic to complete this translation as well as the functionality associated with validation of the maintenance operations from both a content and security perspective.
Note: For version 2.1 of the HCE, limited reference implementations have been provided. It is expected that definition of the administration services required to support a production implementation will be based on requirements within each production environment.

	Health Connection Engine (HCE) Administration Portal
	A reference implementation of a browser-based user interface which provides user access to the web service interfaces exposed by the Health Service Directory Administration Services.
This portal, in association with the Health Domain Services Administration Services, provides the ability for administrators of the HCE to maintain the data held within the Health Domain Services Registers.

	Health Domain Administration Portal
	A reference implementation of a browser-based user interface which provides user access to the web service interfaces exposed by the HCE Services Administration Services.
This portal, in association with the Health Domain Services Administration Services, provides the ability for administrators of the HCE to maintain the data held within the HCE Services Registers.
Note: For version 2.1 of the HCE, a Health Domain Administration Portal has not been implemented. It is expected that definition of the administration portal required to support a production implementation will be based on the same architecture and design of the HCE Administration Portal and will be tailored based on the requirements within each production environment.

	Infrastructure Services
	Includes Security Envelope, Exception Management Logging and Auditing Services, and Change Management Services.
Security ensures that all Connection Engine Messages interaction between the HCE Services, Health Domain Services, Service Providers and Message Management Services are completed by identified and authorized entities.
This security is based on positive identification and authorization of Adapters, either those exposed within the HCE (by the HCE Services or Health Domain Services) or by the Connected System within a particular Service Providers.
Any exceptions that are raised during the processing of Connection Messages between systems and services via the HCE Routing Service, are handled and logged by the Adapters of those various systems and services
The Change Notification Service is part of the functionality provided by the Service Provider Register. The main goal of this service is to guarantee that changes within the Register that would affect the operation of an Adapter are notified to all affected Adapters within a HCE-enabled solution. This allows the Adapters to invalidate all affected cache data, forcing a reload during the next operation.

Within the Service Provider Register, each Service Provider is configured within a Pool. Pools provide the ability to assign a Service Provider into one or more logical groups within an HCE solution.
Service Providers must exist within the same pool in order to successfully send or receive a Connection Engine Message to one another. The Routing Service validates that the source and destination Service Providers are in the same pool during the routing of a Connection Engine Message.
The use of Pools to separate Service Providers into groups allows a single physical instance of the HCE to support several logical implementations, with Service Providers being placed into the one or more Pools which represent the logical connection network within which they can communicate.
HCE provides the ability for Pools to be applied based on different factors (such as security, commercial relationships and/or organization boundaries) as the business rules and business process used to determine and configure Pools are applied outside the core functionality provided by the Service Provider Register.
In addition to the service blocks provided within the HCE, the HCE platform defines the way in which Connected Systems installed within a Service Provider should communicate with the HCE. Communication between the HCE and Service Providers is facilitated by the [image:]implementation of an Adapter which is developed in a tightly coupled fashion with each Connected System. Each Adapter exposes a standard web services interface which means all Connected Systems present a uniform interface to the HCE.
Figure 2 - Service Provider and Health Connection Engine communication
[bookmark: _Toc144565418][bookmark: _Toc151809759]Connection Engine Message
All messages passed between Adapters within the HCE platform take the form of a Connection Engine Message.
The Connection Engine Message provides the common, XML-based document structure used for all messages where routing is coordinated by the Message Management Services. Connection Engine Messages are produced by and consumed by Adapters implemented by each Service Provider and by the internal services provided by the Registers and Administration Services.
[bookmark: _Toc144565419][bookmark: _Toc151809760]Message Structure
Appendix 1 – Connection Engine Message XML Schema shows the components of the Connection Engine Message and the following table provides an overview of the structure and purpose of each message component.

[image:]
Figure 3 - Connection Engine Message structure

	Message Component
	Description

	Header
	Each message contains a standard header. Items within the header identify parameters such as the
Unique Identifier allowing separate messages to be related
Service Provider sending the message
Intended recipient Service Provider for the message
Type of the message
Message Status code and description
The elements within the header are not encrypted and are available for interrogation and modification by the Message Management Services and Adapters during the routing process.

	Body / Payload
	The body of each message contains the payload associated with the message type. The payload conforms to the schema defined for the each message type held within the Service Provider Register.
The payload of each message is encrypted by the source Service Provider and can only be decrypted by the destination Service Provider. The body contains this encrypted payload along with the details needed to decrypt the payload, such as the type of encryption used.

[bookmark: _Toc144565420][bookmark: _Toc151809761]Message Schema
Each Connection Engine Messages conforms to the XML Schema displayed in Appendix 1 – Connection Engine Message XML Schema. Further information about the definition and use of types within the schema can be found in Appendix 3 – Message Types.
[image: ConnectionEngineMessage]
Figure 4 - Connection Engine Message XML Schema
[bookmark: _Toc144565421][bookmark: _Toc151809762]Message Management Services
The Message Management Services provide a series of services associated with the processing of routing requests from Service Providers, HCE Services and Health Domain Services participating in a solution enabled by the HCE.
Services provided by this block include routing, logging and monitoring of all Connection Engine messages.
[image:]
Figure 5 - Message Management Services
The following table provides a high level description of each service block provided within the Message Management Services:
	Service Block
	Description

	Routing Service
	Provides routing of Connection Engine Messages from the Adapter implemented by a source Service Provider to the Adapter implemented by a destination Service Provider.
Validation of each routing request is completed to ensure that source Service Provider is allowed to send the Connection Engine Message (defined by the Message Type) to the destination Service Provider.

	Monitoring Service
	Provides logging of all Connection Engine Messages submitted to the Message Management Services.
All elements within each Connection Engine Message header are logged and functionality is provided to view logged information for monitoring and auditing purposes.

[bookmark: _Toc144565422][bookmark: _Toc151809763]Routing Service
	Purpose
	Provides routing of Connection Engine Messages from the Adapter implemented by a source Service Provider to the Adapter implemented by a destination Service Provider.
Validation of each routing request is completed to ensure that source Service Provider is allowed to send the Connection Engine Message (defined by the Message Type) to the destination Service Provider.

	Design Principles
	This service has been designed and implemented to conform to the following principles:
All interactions with the service must be loosely coupled with other services within the Health Connection Engine
Connection Engine Messages are passed in, modified within orchestrations and returned by the service
Components within the service should be implemented in a modular manner, allowing the functionality provided by the service to be extended with the minimal impact on other components, both within the service and within other service provided by the Health Connection Engine
All interaction should be assumed to be synchronous, end-to-end from source Service Provider to destination Service Provider
The Routing Service should only rely on access to the header information within the Connection Engine Message. The payload should be considered “opaque” to the service as it is encrypted with the destination Service Provider’s public key and can only be decrypted using the destination Service Provider’s private key

[bookmark: _Toc145306773][bookmark: _Toc151809764]Implementation Overview
The Routing Service consists of 3 BizTalk Orchestrations and a Web Service interface, generated by BizTalk, which provide the ability:
· for the Adapter associated with the source Service Provider to submit a Connection Engine Message routing request and to receive feedback about the status of that request
· for the Adapter associated with the destination Service provider to receive a validated Connection Engine Message via its Adapter web service interface
The components within this service are represented in Figure 6 and described briefly in the following table:
[image:]
[bookmark: _Ref137188260]Figure 6 - Routing Service components
	[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Service Component
	Description
	Implementation details

	Web Service
	Provides the web service exposed by the Routing Service which is called by a source Service Provider to submit a Connection Engine Message routing request
	Implemented as an ASP.Net 2.0 Web Service.
Site name: ConnectionEngine
Web Service: ConnectionEngineAdapter.asmx
Web Method: ReceiveConnectionEngineMessage

	Receive Message
	Receives the Connection Engine Message from the Web Service and co-ordinates the processing of the routing request. Also provides feedback to the source Service Provider about the status of the routing request
	Implemented as an Orchestration within BizTalk 2006
Orchestration name: ReceiveMessage

	Validate Message
	Called during the routing process to validate that the routing instructions within the Connection Engine Message header are valid, based on the Message Type, source Service Provider and destination Service Provider.
	Implemented as an Orchestration within BizTalk 2006
Orchestration name: ValidateMessage

	Process Message
	Performs the duty of forwarding the Connection Engine Message to the destination Service Provider (if routing validation succeeds)
	Implemented as an Orchestration within BizTalk 2006
Orchestration name: ProcessMessage

[bookmark: _Toc145306774][bookmark: _Toc151809765]Message Flow
The following steps are completed whenever a Service Provider (the source Service Provider) wishes to send a Connection Engine Message to another Service Provider (the destination Service Provider). This message flow is illustrated in Figure 7.
[bookmark: _Ref137189751][image:]
[bookmark: _Ref145738546][bookmark: _Ref145738524]Figure 7 - Connection Engine Message routing request message flow
1. The Adapter in use at the source Service Provider submits a routing request to the Routing Service (see section 5 for further details on the process completed by an Adapter to submit a routing request). This request results in a Connection Engine Message being submitted to the ReceiveConnectionMessage web method exposed by the Routing Service Web Service component
2. The Routing Web Service in turn passes the Connection Engine Message to the Receive Port (port name: prtConnectionEngineInbound) of the Receive Message orchestration.
3. The Receive Message orchestration calls the Validate Message orchestration. This call passes the Connection Engine Message as an input parameter (parameter called: MessageToValidate) to the Validate Message orchestration
4. The Validate Message orchestration dynamically determines the location of the validation web service exposed by the Service Provider Register based on a configuration setting (appSetting name: ServiceProviderRegister.Validation.WebServiceURL) held in the BizTalk configuration file (filename: BTSNTSvc.exe.config) and constructs the message expected by the Service Provider Validation web service
5. The Validate Message orchestration calls the Service Provider Validation web service, by passing the Connection Engine Message to the Send Port (port name: prtConnectionEngineValidation).
6. The Service Provider Register validates the routing request based on parameters within the header of the Connection Engine Message. The validation consists of the following steps:
a. The routing request is valid if the source and destination Service Providers are in the same Pool (as defined by rows within the ServiceProviderPool table within the Service Provider Register database
b. The routing request is valid if the Message Type of the Connection Engine Message can be sent from the source Service Provider type to the destination Service Provider type (as defined by rows within the PoolServiceProviderType table within the Service Provider Register database
7. If the routing request is valid, then
a. The Status Code and Description contained within the Connection Engine Message is set to the code associated with successful validation (e.g. the Header.Status.Code element is set to “0” and the Header.Status.Description element is set to “Ok”)
b. The Service Provider Register also updates the location of the destination Service Provider Adapter web service contained within the Connection Engine Message (element: Header.Receiver.URI), based on the ID of the destination Service Provider (element: Header.Receiver.OrganisationID). This ensures that the Connection Engine Message will be routed to the correct destination Service Provider and means that the source Service Provider does not need to know the physical address of the destination Service Provider Adapter web service.
8. Once the result of the validation has been determined, the Service Provider Validation web service returns the Connection Engine Message with an updated status code and description to the Validate Message orchestration, via the Send Port (port name: prtConnectionEngineValidate) of the Validate Message orchestration.
9. The Validate Message orchestration in turn returns this Connection Engine Message as an output parameter (parameter called: ValidatedMessage) to the Receive Message orchestration.
10. The Receive Message orchestration determines if the validation was successful, based on the Status Code) element name: Header.Status.Code) contained within the Connection Engine Message.
11. If the validation was successful (Header.Status.Code = 0), then
a. The Receive Message orchestration assigns a new Conversation ID (element name: Header.Conversation.ConversationID) to the Connection Engine Message if the Connection Engine Message is the first message in a conversation (e.g. if the Connection Engine Message didn’t previously contain a Conversation ID)
b. The Receive Message orchestration then calls the Process Message orchestration. This call passes the Connection Engine Message as an input parameter (parameter called: MessageToProcess) to the Process Message orchestration
c. The Process Message orchestration dynamically determines the location of the Adapter web service exposed by the destination Service Provider based on value of the Header.Receiver.URI element within the Connection Engine Message and constructs the message expected by the destination Service Provider Adapter web service
d. The Process Message orchestration passes the Connection Engine Message to the Send Port (port name: prtConnectionEngineProcess) which results in a call to the ReceiveConnectionEngine web method exposed by the destination Service Provider Adapter web service
e. The destination Service Provider processes the message (see section 10 for further details of the processing completed by the destination Service Provider)
f. Once the Connection Engine Message has been processed by the destination Service Provider, a response message (also a Connection Engine Message) is passed back to the Process Message orchestration, via the Send Port (port name: prtConnectionEngineProcess). Success or failure of the processing completed by the destination Service Provider is contained within the Header.Status.Code, Header.Status.Description and Header.Status.Details elements of the returned Connection Engine Message
g. The Process Message orchestration in turn returns this Connection Engine Message as an output parameter (parameter called: ProcessResult) to the Receive Message orchestration.
12. If the validation was not successful (Status Code does not equal 0), then:
a. The Receive Message orchestration constructs the Connection Engine Message to return to the source Service Provider. This message contains the Header.Status.Code, Header.Status.Description and Header.Status.Details elements returned by the Validate Message orchestration.
13. The Receive Message orchestration returns the Connection Message Engine message to the source Service Provider, via the Receive Port (port name: prtConnectionEngineInbound) and the Routing Service Web Service component
14. The source Service Provider determines the success or failure of the routing request, based on the status information contained within the returned Connection Engine Message (see section 0 for further details of the processing completed by the source Service Provider).
[bookmark: _Toc145306775][bookmark: _Toc151809766]BizTalk Configuration
The following entries are required within the <appSettings> section of the BizTalk Server Configuration file (BTSNTSvc.exe.config) in order to support the Routing Service:
	Configuration Entries
	Description

	SystemAdapter.AuthenticationMethod
	Identifies the type of authentication used by the destination Adapters.

	ConnectionEngine.GeneralException.Code
	Defines the message status code for unhandled errors that occurred within the Routing Service boundaries.

	ConnectionEngine.GeneralException.Description
	Defines the message status description for unhandled errors that occurred within the Routing Service boundaries.

	ConnectionEngine.SystemAdapterException.Code
	Define message status code for connection errors with the destination Adapter

	ConnectionEngine.SystemAdapterException.Description
	Define message status description for connection errors with the destination Adapter

	ConnectionEngine.ClientCertificateThumbPrint
	Defines the thumbprint of the client certificate that uniquely identifies the Routing Service for connection with destination Adapters through a secure channel.

	ServiceProviderRegister.Validation.WebServiceURL

	Defines the URL for the Service Provider Register’s Validation Web Service, used by the Routing Service.

The following section provides an example of the <appSettings> section within the BizTalk Server configuration file:
<appSettings>
<add key="SystemAdapter.AuthenticationMethod" value="NTLM" />
<add key="ConnectionEngine.GeneralException.Code" value="99"/>
<add key="ConnectionEngine.GeneralException.Description"
 value="An Unhandled exception occurred"/>
<add key="ConnectionEngine.SystemAdapterException.Code" value="18"/>
<add key="ConnectionEngine.SystemAdapterException.Description"
 value="Error connecting to destination adapter"/>
<add key="ConnectionEngine.ClientCertificateThumbPrint" value="e8 33 06 57 9f 36 bc e6 6f fc 30 4d b1 eb 3d 5b 84 e5 74 88"/>
<add key="ServiceProviderRegister.Validation.WebServiceURL" value=http://hce21dev.simpl.co.nz/ServiceProviderRegisterWS/ConnectionEngineValidation.asmx”/>
</appSettings>
[bookmark: _Ref143057603][bookmark: _Toc145306776][bookmark: _Toc151809767]Adapters
[bookmark: _Toc151809768]Purpose and Design Principles
The Adapters provide a bridge between a Connected System and the Health Connection Engine, providing message translation, encryption and submission services.
This service has been designed and implemented to conform to the following principles:
· Create a framework that provides the minimum amount of implementation effort possible in order to have a new Adapter up and running.
· Isolate activities that require tight coupling with the associated Connected System from the common activities which must be performed by all Adapters. This allows the addition of new message types to the Service Provider without any major refactoring of the common activities.
[bookmark: _Toc137361057][bookmark: _Toc145306777][bookmark: _Toc151809769]Overview
Adapters provide a bridge between Connected Systems and the Health Connection Engine by providing two basic services:
· Generating Health Connection Engine Messages based on data sent from the associated Connected system
· Extracting data from Health Connection Engine messages to allow process by the associated Connected System.
In order to achieve this goal, they perform a series of activities as displayed in Figure 8.
[image:]

[bookmark: _Ref138045422]Figure 8 - Adapter Activity Flow
[bookmark: _Toc137361058]The activities in Figure 8 can be divided into two main categories:
· Activities which are particular to each Adapter. Those activities are tightly coupled to the Connected System, and should be implemented for each new Adapter.
· Common activities to all Adapters (validation, encryption/decryption, message submission/reception). Those activities can be implemented within a base framework and be used by the implementation of each Adapter.
Activities that are particular to each Adapter can be implemented in a way that doesn’t impact the existing functionality of an Adapter. Additional activities are usually message type based, meaning that the addition of new message types to the pool of messages a Service Provider can accept/generate can be implemented without any major refactoring within the Adapter code.
[bookmark: _Toc145306778][bookmark: _Toc151809770]Implementing an Adapter
[bookmark: _Toc145306779][bookmark: _Toc151809771][bookmark: _Toc137361059]Adapter Base Class
[bookmark: _Ref137554865]The Adapter Base class defines a foundation class for the creation of Adapters, implementing all the common activities, as well as implementing the activity flows for both sending and receiving messages.
The class also defines virtual or abstract methods that implement the interface with the associated Connected System and the acquisition of reference data. One of these methods, ProcessMessage, defines a pattern for a scalable interaction with Connected Systems through the use of reflection and delegates, allowing new message types to be dynamically added to the pool of messages processed by the Adapter without the need to recompile the Adapter. The diagram in Figure 9 represents the class structure of the foundation class, called Microsoft.ConnectionEngine.Adapters.SystemAdapterBase[footnoteRef:2]: [2: An expanded version of this diagram can be found in Appendix 5 – Adapter Base Class Diagram]

[image: SstemAdapterBase]
[bookmark: _Ref138045458]Figure 9 - Adapter Base Class Structure
The following table provides a description of each entity within the Adapter Base class.

	
Class
	Description

	SystemAdapterBase
	Defines the foundation class for Adapters.

	MessageTypeHandler
	Message Type Handler is a data object class used in conjunction with Message Handler delegate to define a pattern for generically handling the processing associated with each message type.

	ServiceProvider
	Service provider is a data object class that represents a Service Provider entity.

	Pool
	Pool is a data object class that represents a logical grouping of Service Providers.

	ServiceProviderList
	Service Provider list is a data object class that represents a collection of pools, which in turn represent collections of Service Providers.

	ReferenceData
	Reference Data is data object class that groups collections of HCE related metadata, including message statuses, message types and Service Provider types.

	MessageStatus
	Message Status is a data object class that represents a status indicating success or reason for failure within a Health Connection Engine Message.

	MessageType
	Message Type is a data object class that represents information related to message type, including the message type id, description and xml schema location. This schema location is used during the validation process.

	ServiceProviderType
	Service Provider Type is a data object class that represents a logical grouping of Service Providers that have the same functionality, including message type that each type of Service Provider should be able to send and receive.

[bookmark: _Toc145306780][bookmark: _Toc151809772][bookmark: _Toc137361060][bookmark: _Ref137193370]Adapter Classes
Adapter classes should be implemented for each Connected System in use within a Service Provider, as each implementation of an Adapter should manage the block of activities that is particular for each adapter, leveraging from the common activities already implemented in Adapter Base. This implies that each Adapter should implement the AssembleMessage abstract class, and the ProcessMessage method, if the Adapter needs to handle incoming message processing in a different way than the default implementation of ProcessMessage provided within the Adapter Base class.
In order to leverage from the common functionality already existing in Adapter base, the new Adapter classes, should be inherited from the Adapter Base class and then implement or overload any method as required.
The class diagram in Figure 10 presents an example of an Adapter class (SystemAdaptersSample) that is inherited from Adapter Base.
[image: SystemAdapterSample]
[bookmark: _Ref137555354]Figure 10 – Example Adapter class inherited from the Adapter Base class
As shown in the class diagram in Figure 10, the Adapter Base class exposes a series of methods that can be accessed externally or within the inherited Adapter. There are basically two types of accessible methods: Public Methods and Protected Methods.
Public Methods
Public methods are used by either the Connected System or the Health Connection Engine to interact with the Adapter. The public methods are:
	Method
	Description

	SystemAdapterBase
	The SystemAdapterBase constructor

	SendConnectionEngineMessage
	Sends a Connection Engine Message to another Service Provider by submitting a routing request to the Message Management Services within the HCE.

	ReceiveConnectionEngineMessage
	Receives a Connection Engine Message from another Service Provider, as routed by the Message Management Services within the HCE.

	GetInteractiveSessionInformation
	Gets the URL for an HTTP Interactive Session with a Destination Service Provider, based on a messagetype and a list of arguments.

Section 5.4 presents the message flow for each of these public methods.
Protected Methods
Protected methods are methods exposed only to the Adapter class being implemented. These are either abstract methods that should be implemented, like Assemble Message, or virtual methods that can be overloaded if the ISV or SI implementing an Adapter wants more control over certain aspects of the Adapter.
	Method
	Inheritance Modifier
	Description

	AssembleMessage
	Abstract
	Creates a new Connection Engine Message compatible Payload based on data supplied by a Connected System and a Message Type.

	GetAllowedProviderList
	Virtual
	Load a list of providers this Adapter is able to contact.
The implementation provided by the Adapter Base retrieves the list of providers through a message exchange with the Service Provider Register, but this approach can be changed by overloading this method and providing a different implementation.

	GetReferenceData
	Virtual
	Gathers the common data needed by the Adapter to perform its activities.
The implementation provided by the Adapter Base retrieves the list of providers through a message exchange with the Service Provider Register, but this approach can be changed by overloading this method and providing a different implementation.

	LoadMessageHandlerList
	Virtual
	Loads a list of Adapter Message Handlers, based on a xml document defined within the Adapter’s configuration file

	ProcessMessage
	Virtual
	Process a Connection Engine Message compatible Payload based on its Message Type.

	GetInteractiveSessionList
	Virtual
	Gets a list of Interactive Session URI the Adapter is allowed to generate.

[bookmark: _Toc145306781][bookmark: _Toc151809773][bookmark: _Ref137551291][bookmark: _Toc137361061]Adapter Web Service
[bookmark: _Ref138045501]The Adapter Web Service provides a loosely coupled communication interface between the Adapter and both the Connected System and HCE.
From the Connected System point of view, it guarantees that the Adapter can be easily updated or replaced, as long as the contract interface remains the same.
From the HCE point of view it provides an interface that allows the Routing Service orchestrations to dynamically point to an Adapter by just setting up the correct web service URL. It also guarantees that each Adapter can have only one end point where HCE internal services, like the Change Notification, need to access in order to publish or update information.
As part of the Adapter contract with the Connected System and HCE, the following rules should be observed when implementing Adapter Web Services:
· This web service should have http://Microsoft.ConnectionEngine.Services as its XML Namespace;
· Each web service implementation must expose a set of web methods that proxy their public methods:
· SendConnectionEngineMessage
· ReceiveConnectionEngineMessage
· GetInteractiveSessionURL

The following snippet shows the source code of a typical Adapter Web Service:
using System;
using System.Web;
using System.Collections;
using System.Web.Services;
using System.Web.Services.Protocols;
using Microsoft.ConnectionEngine.Adapters.Samples;
using Microsoft.ConnectionEngine.Common;

[WebService(Namespace = "http://Microsoft.ConnectionEngine.Services")]
public class ConnectionEngineAdapter : System.Web.Services.WebService
{
 static private ServiceProviderSampleSystemAdapter systemAdapter;

 public ConnectionEngineAdapter()
 {
 if (systemAdapter == null)
 systemAdapter = new ServiceProviderSampleSystemAdapter();
 }

 [WebMethod]
 public ConnectionEngineMessage ReceiveConnectionEngineMessage(ConnectionEngineMessage connectionEngineMessageRequest)
 {
 ConnectionEngineMessage result = systemAdapter.ReceiveConnectionEngineMessage(connectionEngineMessageRequest);
 return result;
 }

 [WebMethod]
 public ConnectionEngineMessage SendConnectionEngineMessage(object objmessage, int messagetype, Guid conversationid, string destinationid)
 {
 ConnectionEngineMessage result = systemAdapter.SendConnectionEngineMessage(objmessage, messagetype, conversationid, destinationid);
 return result;
 }

 [WebMethod]
 public string GetInteractiveSessionInformation(string serviceproviderid, int messagetypeid, System.Collections.Generic.List<System.Collections.Generic.KeyValuePair<string,string>> args)
 {
 string result = systemAdapter.GetInteractiveSessionInformation(serviceproviderid, messagetypeid, args);
 return result;
 }
}
[bookmark: _Toc145306782][bookmark: _Ref145307270][bookmark: _Toc151809774]Adapter Message Flow
[bookmark: _Toc137361065]The message flow within the Adapter is centered on the activities implemented by its public methods. There are exchanges of messages with HCE during the Adapter Instantiation, through the communication with Service Provider Register, and later on during the sending or receiving of Connection Engine Messages routed by the Message Management Services.
[bookmark: _Toc145306783][bookmark: _Toc151809775]SystemAdapterBase – Instantiating an Adapter
The following steps are completed when an Adapter is being instantiated:
1. Populate information about Service Provider based on configuration parameters within the Adapter configuration file.
2. Populate Private Key Information based on configuration parameters within the Adapter configuration file.
3. Get Allowed Provider List Information from the Service Provider Register, through the use of the GetAllowedProviderList protected method.
4. Get Reference Data Information from the Service Provider Register, through the use of the GetReferenceDate protected method.
[bookmark: _Ref137556454][bookmark: _Ref137556565]Reference Data Caching:
The cache of data needed by the Adapter is populated within the Adapter Constructor. The data stored during this step includes:
· ProviderList – A list of providers this Adapter is allowed to contact;
· RefData – A collection of metadata used to help the Adapter to perform its activities. The collection includes Message Status List, and Message Type List
The only other piece of data that is cached within the Adapter is the MessageHandlerList, that represents the list of methods within the Adapter that should handle each one of the message types the Service Provider should be able to process. MessageHandlerList is loaded the first time the property is used.
Each one of these data collections is stored within the Adapter and loaded on instantiation and after a notification message has been received from the HCE. The HCE notification message clears down the required cache of data to facilitate the reload of reference data.
[bookmark: _Toc145306784][bookmark: _Toc151809776]SendConnectionEngineMessage – Sending a Message
The following steps are completed when a Connection Engine Message is submitted by an Adapter to the HCE:
1. Translate the native content provided by the associated Connected System into a Connection Engine Message Payload that conforms to a specific message type, using the AssembleMessage method.
2. Validate the generated payload by completing schema validation based on Message Type, using the ValidatePayloadSchema internal method.
3. Encrypt the generated Payload based on the public key of the destination Service Provider, using the EncryptPayload internal method.
4. Submit the routing request by calling ReceiveConnectionEngine web method exposed by HCE Routing Service.
5. Receive the result message back from the HCE Routing Service. This result message is a full Connection Engine Message
6. [bookmark: _Ref137556410]Assess if the result message is an acknowledgement or a new message
a. [bookmark: OLE_LINK3][bookmark: OLE_LINK4]If the result is a new message, decrypt the payload and assign it back to Result Message. This is performed by the DecryptPayload internal method.
b. If acknowledgement, assume payload hasn’t changed
7. Return Result Message, which is a Connection Engine Message with a decrypted payload. This result message also holds the message status which communicates an error condition to the associated Connected System
[bookmark: _Toc145306785][bookmark: _Toc151809777]ReceiveConnectionEngineMessage – Receiving a Message
[bookmark: _Toc137361062]The following steps are completed when a Connection Engine Message is received by an Adapter (e.g. when a Connection Engine Message is sent to the Adapter from the HCE Routing Service):
1. Receive Connection Engine Message from HCE in a call to ReceiveConnectionEngineMessage, which is exposed by the Adapter as the web method ReceiveConnectionEngineMessage in the web service ConnectionEngineAdapter.asmx
2. Decrypt the payload using the Service Provider’s own private key. This is performed by the DecryptPayload internal method.
3. Validate Payload against the schema for message type, using the ValidatePayloadSchema internal method.
4. Access if the received Connection Engine Message is a notification message
a. If it is a notification message, empty the Reference Data Cache. This is done by the ProcessNotificaton method, which determines the changed element of the payload and clears down the required cache of data. ProcessNotification message returns a new payload and the related message type
b. Otherwise, hand over the validated payload to the associated Connected System for processing. This is done by the ProcessMessage method, which uses delegates and reflection to identify the right method to be called based on the message type of the message received. ProcessMessage returns a new payload and the related message type
5. Assess if the processed message is an acknowledgement or new message
6. If the processed message is a new message
a. Validate the processed message payload
b. Encrypt Payload using public key of source service provider
c. Assign the encrypted payload to processed message
7. If the processed message is an acknowledgement, just go to step 8
8. Return the processed message to the HCE Routing Service. The HCE in turn passes the message back to the source Service Provider as the result message
ProcessMessage and MessageHandlerDelegate
In order to have the Adapter loosely coupled from the Connected System when receiving messages, the default implementation of ProcessMessage method uses reflection and delegation to dynamically communicate with the Connected System’s Business Processes. To achieve this goal, the following steps must be executed:
1. The Connected System must create a set of static proxy methods that implement the MessageHandlerDelegate Signature. Ideally, each message type processed by this Connected System will have its own associated proxy method.
2. The MessageHandlerList.xml file should be updated to store the following information for each one of the message types processed:
a. MessageType – the id for the message type being handled
b. AssemblyName – the assembly that must be loaded in order to get the proxy method.
c. ClassName – the class within the assembly where the proxy method should be found
d. MethodName – the proxy method name to be dynamically executed in order to process the Message Type.
If the ISV or SI implementing an Adapter wants more control over how the messages are processed or how the Message Handlers are loaded, both ProcessMessage and LoadMessageHandlerList methods are virtual and can be easily overloaded.
Example of the MessageHandler section within the MessageHandler.xml file:
	<MessageTypeHandler>
		<MessageType>1000</MessageType>
	 <AssemblyName>Microsoft.ConnectionEngine.Registers.Core.
 ServiceProvider.Facade.dll
 </AssemblyName>
	 <ClassName>Microsoft.ConnectionEngine.Registers.Core.
 ServiceProvider.Facade.ServiceProviderManager
 </ClassName>
	 <MethodName>GetAllowedProviders</MethodName>
 </MessageTypeHandler>
The source code for the ProcessMethod is provided in section 0 and could be used to define a similar approach for the AssembleMessage abstract method which is used to assemble message payloads prior to them being sent to the HCE.
[bookmark: _Toc145306786][bookmark: _Toc151809778]GetInteractiveSessionInformation -- Generating an Interactive Session URL
The following steps are completed to create an interactive session compatible message, when the GetInteractiveSessionInformation is invoked:
1. Validate the received parameters by generating an XML document
a. Service Provider Identification – unique identifier for a Service Provider
b. Message Type Identification - the message type used to generate the arguments of the interactive session
c. Arguments List – a collection of key value pairs needed to generate the interactive session
If validation is successful
2. Get the Destination Provider information based upon the Service Provider Identification
3. Assemble a new URL based on the Service Provider Identification, Message Type Identification and Arguments List
4. Return the assembled URL
If validation is not successful
2. Raise a Creating Iteractive Session Payload exception
[bookmark: _Toc137361063][bookmark: _Toc145306787][bookmark: _Toc151809779]Configuration Parameters
The following is a list of configuration parameters used during the initialization of an Adapter and during the Sending and Receiving Messages activities. The configuration parameters add a layer of maintainability, allowing environmental variables to change without the need to recompile the Adapter code.
	Configuration Entries
	Description

	ConnectionEngine.WebServiceURL
	The URI of the web service exposed by the HCE Routing Service.

	ConnectionEngine.UserName
	Credentials used to connect to the Routing Service within the HCE (optional – these credentials can substitute Client certification as authentication method in deployments that don’t require SSL tunnelling).

	ConnectionEngine.Password
	

	ServiceProviderRegister.ServiceProviderID
	The unique identifier (Service Provider ID) of the Service Provider Register.

	ServiceProviderRegister.PublicKey
	The public key used to encrypt payloads sent to the Service Provider Register during initialization.

	ServiceProviderRegister.EncryptionType
	The encryption type used by the Service Provider Register.

	SystemAdapter.ServiceProviderID
	Unique Identifier of the Service Provider associated within this Adapter

	SystemAdapter.WebServiceURL
	A URI identifying the Adapter’s Connection Engine Adapter Web Service

	SystemAdapter.EncryptionType
	The Encryption Type used by this Adapter. This value should match the value recorded for the Service Provider within the Service Provider Register.

	SystemAdapter.PublicKey
	The public key used by this Service Provider.

	SystemAdapter.PrivateKey
	The private key used by this Service Provider.

	SystemAdapter.MessageHandlerList
	The location of MessageHanderList Xml file.

	SystemAdapter.ClientCertificateName
	This Adapter’s Client Certificate. Required for systems that use SSL as the authentication method.

[bookmark: _Toc137361068]
Example Adapter settings:

<appSettings>
 <add key="ConnectionEngine.WebServiceURL"
 value="http://hcebiztalk.simpl.co.nz/CollaborationEngine/
 CollaborationEngineAdapter.asmx"/>
 <add key="ConnectionEngine.UserName" value="CS1"/>
 <add key="ConnectionEngine.Password" value="password1"/>
 <add key="ServiceProviderRegister.ServiceProviderID" value="101"/>
 <add key="ServiceProviderRegister.PublicKey" value="C:\HSD Keys\PublicKey.xml"/>
 <add key="ServiceProviderRegister.EncryptionType" value="TripleDES"/>
 <add key="SystemAdapter.ServiceProviderID" value="107"/>
 <add key="SystemAdapter.EncryptionType" value="TripleDES"/>
 <add key="SystemAdapter.PublicKey" value="C:\HSD Keys\PublicKey.xml"/>
 <add key="SystemAdapter.PrivateKey" value="C:\HSD Keys\PrivateKey.xml"/>
 <add key="SystemAdapter.ClientCertificateName" value=""/>
</appSettings>
[bookmark: _Toc145306788][bookmark: _Toc151809780]Exception Handling
For all Message Flows, a failure in any of the steps generates a SystemAdapterException that will translate into a Message Status.
Each of the values in the following table represents a SystemAdapterExceptionCause enumeration value. These values map to MessageStatus in the Service Provider Register metadata and represent the final status of a message. Any status value different from 0 (zero) indicates a failure:
	Exception
	Code
	Description

	SourceAndDestinationNotInTheSamePool
	3
	Raised when a Service Provider is not within the list of Allowed Providers based on the provider ID

	PayloadFormatNotValid
	5
	Raised when the format of the message payload is invalid according to its message type

	PayloadContentNotValid
	6
	Raised when an error occurred processing the payload

	PayloadDecryption
	7
	Raised when a problem occurred during decryption of the payload

	PayloadEncryption
	8
	Raised when a problem occurred during encryption of the payload

	Hl7PlayloadCreation
	9
	Raised when an error occurred when creating an iteractive session Payload

	CreatingConnectionEngineMessage
	11
	Raised when a problem occurred creating a Connection Engine message

	Unknown
	99
	Raised when an unknown error occurred

[bookmark: _Toc151809781]Registers and Associated Services
[bookmark: _Toc151809782]Overview
[image:] (
Figure
11
: Registers and associated services
)HCE Registers, with the associated administration services and portal to exercise those services, provide the means to manage the core HCE services. The Health Domain Registers and administration services conceptually provide the same functions for areas such as patient, practitioner, and consents. Potential approaches to those are set out elsewhere in this document.
[bookmark: _Toc151809783]HCE Registers
Each HCE Register is a separate self-contained Connected System that interacts with other Connected Systems by means of messages managed by the HCE Routing Service.
The HCE regards each Register as a Service Provider, and deals with it in the same way as it deals with all other Service Providers including external clinical Point of Service systems.
Registers exhibit the following characteristics that are not typical of Service Providers in general:
1. Each instance of the HCE expects to be associated with exactly one instance of each type of Register.
2. The HCE, and Registers associated with it, are mutually interdependent, in that they all expect each Register to fulfill a standard service contract defined for its Register type. Except for this requirement, different implementations of HCE may be associated with different implementations of each Register.
3. Each Register publishes identifiers for each instance of each entity that it persists (service provider, patient, practitioner, etc). Each identifier may be relied on to unambiguously reference the entity instance for all time, although, over time, multiple identifiers may be published for the same entity instance.
4. Registers always respond synchronously to incoming messages via a single web service interface.
5. Registers do not send messages to external Service Providers although, in preparing a response to an incoming message, they may send a message to another internal Register (associated with the same instance of HCE), whereupon they will expect a synchronous response.
The HCE Registers are reference implementations of Registers in general. Their designs all follow a standard software design pattern that includes the following component layers:
Adapter
This exposes a single web service that accepts standard HCE messages containing a header and an encrypted payload.
The Adapter is configured to support a range of message types by a configuration file that defines the message types, and for each message type specifies the method exposed by the Façade layer (see below) to handle that message type.
The façade methods all accept and return XmlDocument objects that contain a standard set of data including the encrypted message payload.
This architecture allows the Adapter code to be highly standardized, but to offer full flexibility in supporting an extensible set of message types.
Façade
As described above, this interfaces with the Adapter using XmlDocument objects and methods tailored to each message that can be accepted from the HCE.
The primary task of the façade is to invoke the appropriate set of business layer functions to process each message. The façade exchanges data with the business layer functions using instances of business objects that are defined in the Common layer (see below). Data conversion between XmlDocuments and business objects is carried out within the façade.
Business
All of the business logic that defines how messages are interpreted and handled is embodied in the business layer. This logic operates on instances of business objects that are exchanged with the façade layer (above) and instances of typed datasets that are exchanged with the data access layer (below).
Data Access
The Data Access layer is responsible for all database access at the request of the business layer. It reads from and writes to the database using native SQL Server data access methods, filling or reading from typed datasets that are defined in the Common layer.
Common
The Common layer defines all business object classes and all typed data sets that are used to exchange data among the Data Access, Business and Façade layers. Some common static utility functions are also contained in the Common layer.
[bookmark: _Toc151809784]Service Provider Register
This has 2 web services – standard Adapter Web Service (used to process requests from other Service Providers for information contained within the register) and Validation Web Service (used exclusively by the Validate Message component within the Routing Service to validate the parameters of each routing request)
[image:]

	Web Service
	ASMX file
	Web Method

	Adapter Web Service
	ConnectionEngineAdapter.asmx
	Name: ReceiveConnectionMessage
Input Parameters: ConnectionEngineMessage
Output Parameters:
ConnectionEngineMessage

	Validation Web Service
	ConnectionEngineValidation.asmx
	Name: ValidateConnectionEngine
Input Parameters: ConnectionEngineMessage
Output Parameters:
ConnectionEngineMessage

Supported Message Types
Pattern to Message Types supported:
· Information Requests from Adapters
· Maintenance requests from HCE Administration Services
· Entities
· Message Type Manager
· Pool Manager
· Pool Service Provider Type Manager
· Service Provider Manager
· Service Provider Pool Manager
· Service Provider Type Manager
· Service Provider Type Message Type Manager
· For each Entity
· Search Request, Search Response
· Select Request, Select Response
· Lock Request. Lock Result
· Unlock, Unlock All
· Insert Request, Insert Response
· Update Request, Update Response
· Delete
General messages send from Service Providers:
	Message Type ID
	Message Type Name

	1000
	Service Provider Search Request

	1001
	Service Provider Search Result

	1002
	Health Service Directory Reference Data Request

	1003
	Health Service Directory Reference Data Result

	1004
	Healthcare User Identifier Request

	1005
	Healthcare User Identifier Result

	1201
	Invocation Registry Item

	1200
	Invocation Registry Item Request

Message types associated with authentication of users. Used by the HCE Administration Service:
	Message Type ID
	Message Type Name

	2000
	Validate User Request

	2001
	Validate User Response

Message types associated with maintenance of Service Provider. Used by HCE Administration Service:
	Message Type ID
	Message Type Name

	1014
	Service Provider Search Request

	1015
	Service Provider Search Response

	1070
	ServiceProvider Select Request

	1071
	ServiceProvider Select Result

	1008
	Service Provider Lock

	1013
	Service Provider Check- Out Response

	1007
	Service Provider UnLock

	1040
	ServiceProvider Unlock All

	1010
	Service Provider Insert

	1011
	Service Provider Insert Response

	1009
	Service Provider Update

	1012
	Service Provider Update Result

	1006
	Service Provider Delete

Message types associated with maintenance of Pools. Used by HCE Administration Service:
	Message Type ID
	Message Type Code

	1024
	Pool Search Request

	1025
	Pool Search Response

	1066
	Pool SelectItem Request

	1067
	Pool SelectItem Result

	1018
	Pool Check-Out

	1023
	Pool Check-Out Response

	1017
	Pool Check-In

	1038
	Pool Check-In All

	1020
	Pool Insert

	1021
	Pool Insert Response

	1016
	Pool Delete

	1019
	Pool Update

	1022
	Pool Update Response

	1026
	Remove ServiceProvider From Pool

	1027
	Add ServiceProvider To Pool

	9003
	ServiceProviderPool Delete List Request

	9004
	ServiceProviderPool Insert List Request

	1028
	Remover ServiceProviderType From Pool

	1029
	Add ServiceProviderType To Pool

	1063
	PoolServiceProviderTypes Insert List Request

	1061
	Pool ServiceProviderType Search Request

	1062
	Pool ServiceProviderType Search Result

	1068
	Pool ServiceProviderType Delete List

Message types associated with maintenance of Service Provider Types. Used by HCE Administration Service:
	Message Type ID
	Message Type Code

	1041
	ServiceProviderType Search Request

	1042
	ServiceProviderType Search Response

	1064
	ServiceProviderType SelectItem Request

	1065
	ServiceProviderType SelectItem Result

	1032
	ServiceProviderType Check-Out

	1037
	ServiceProviderType Check-Out Response

	1031
	ServiceProviderType Check-In

	1039
	ServiceProviderType Check-In All

	1034
	ServiceProviderType Insert

	1035
	ServiceProviderType Insert Response

	1033
	ServiceProviderType Update

	1036
	ServiceProviderType Update Response

	1030
	ServiceProviderType Delete

	1054
	Add Service Provider Types to MessageType

	1055
	Remove Service Provider Types from Message Type

Message types associated with maintenance of Service Provider Types. Used by HCE Administration Service:
	Message Type ID
	Message Type Code

	1043
	MessageType Search Request

	1044
	MessageType Search Response

	1056
	MessageType SelectItem Request

	1057
	MessageType SelectItem Result

	1045
	MessageType Check-In

	1046
	MessageType Check-Out

	1047
	MessageType Check-Out Response

	1048
	MessageType Check-In All

	1049
	MessageType Insert

	1050
	MessageType Insert Result

	1051
	MessageType Update

	1052
	MessageType Update Result

	1053
	MessageType Delete

	1058
	ServiceProviderType MessageType Insert List

	1059
	ServiceProviderTypeMessageType Search Request

	1060
	ServiceProviderTypeMessageType Search Result

	1069
	ServiceProviderType MessageType Delete List

[bookmark: _Ref137192062][bookmark: _Ref137192083]Data Model
[image:]

	Entity
	Description

	ServiceProvider
	Service provider is a data object class that represents a Service Provider entity

	ServiceProviderType
	Service Provider Type is a data object class that represents a logical grouping of Service Providers that have the same functionality, including message type that each type of Service Provider should be able to send and receive.

	MessageType
	Message Type is a data object class that represents information related to message type, including the message type id, description and xml schema location. This schema location is used during the validation process.

	Pool
	Pool is a data object class that represents the logical connection network within which they can communicate.

	ServiceProviderPool
	Service Provider Pool is a data object class that represents a logical grouping of Service Providers that form a communicating network...

[bookmark: _Toc151809785]Invocation Register
[bookmark: _Toc151809786]Purpose
The Invocation Register stores and provides the information needed to enable Point of Service (PoS) systems to invoke services of other PoS systems directly, rather than via the HCE.
The purpose of this is that not all interactions are most efficiently handled by messages, as some require an interactive session to be most effective. As such, the service needs to invoke the other PoS system, passing it appropriate clinical context and authorization credentials.
Services of such type that operate outside of the messaging services are termed “out of band” services.
[image:]
[bookmark: _Toc151809787]Design Principles
This register has been designed and implemented to conform to the following principles:
· An Invocation Register administration service (similar to those for the Patient Register and the Consent Register) allows a Point of Service system to publish information about its out-of-band services in the Invocation Register.
· “List” capability allows a PoS system to request the Invocation Register to enumerate available out-of-band services.
· “Get” capability allows a PoS system to request the Invocation Register to provide details of a nominated out-of-band service, including:
· The service type (http, https, SMS, FTP, etc)
· The service location (e.g. URL)
· The definition of any required or optional parameters to be provided by the invoking system. These would normally be in the form of name-value pairs.
[bookmark: _Toc151809788]Workflow
From the perspective of the HCE Routing Service, the Invocation Register behaves like any other connected system, being the destination ServiceProvider for List and Get messages from other connected systems.
A typical workflow would be as follows:
· PoS system B uses Invocation Register Administration Services to record the out-of-band services it provides, and the invocation details for each.
· PoS system A access the information in the Invocation Register using standard Connected messages sent to the Invocation Register via the HCE Routing Service.
· PoS system A uses this information to access the required service provided by PoS system B directly.
[bookmark: _Ref145833137][bookmark: _Toc151809789]Infrastructure Services
These include Security Envelope, Exception Management Logging and Auditing Services, and Change Notification Services.
Because any actual production versions of these services will depend on the environment they are to be implemented in, these services should be considered demonstration ready rather than production ready at this point.
[bookmark: _Toc151809790]Security Envelope
Security ensures that all Connection Engine Message interaction between the HCE Services, Health Domain Services, Service Providers and Message Management Services are completed by identified and authorized entities.
This security is based on positive identification and authorization of System Adapters, either those exposed within the HCE (by the HCE Services or Health Domain Services) or by the Collaboration System within a particular Service Providers.
[bookmark: _Toc137457971][bookmark: _Toc151809791]Exception Management, Logging and Auditing Services
[bookmark: _Toc151809792]Purpose
These services provide a standardized approach to managing system exceptions that occur within the HCE and its services, registers and Adapters.
[bookmark: _Toc151809793]Design Principles
This service has been designed and implemented to conform to the following principles:
Adapters
Any exceptions that are raised during the processing of Connected Messages between systems and services via the HCE Routing Service are handled and logged by the Adapters of those various systems and services.
Incoming Messages
· Adapters always handle incoming messages synchronously, with both the Web Method call argument and the return value taking the form of a standard Connected Message (header + payload).
· When the processing of an incoming message is completed successfully, the return message will be of a different type, appropriate to the nature of the incoming message. (E.g. incoming query messages, successfully processed, may give rise to a returned query result message.)
· When the processing of an incoming message causes an exception to be raised, the returned message will be of the same type as the incoming message, and will carry the same payload. However the header of the returned message will specify the type of exception that occurred, expressed as an “Adapter Exception” type.
· A system exception raised during message processing is trapped within the Adapter at a point where the processing step can be most sensibly identified. At this point the general exception is translated into the appropriate Adapter exception, logged, and used to assemble the return message for the Web Method.
Outgoing Messages
· Adapters always provide some response back to the Point of Service system as a result of a message request.
· If an outgoing message is transmitted to the destination PoS Adapter via the HCE Routing Service and an exception is raised by the destination adapter as described above under “Incoming Messages”, the returned message will carry the error status indicator. The source Adapter will deal with the returned error status message close to its interface with its PoS system, or indeed may pass it back to be handled by the PoS system itself.
· In an analogous way, an exception raised during outgoing message processing is trapped at a point where the processing step can be most sensibly identified, is translated into the appropriate Adapter exception, is logged, and is passed back to be handled close to, or within, the PoS system. In such cases the message never reaches the HCE or the destination system, but nevertheless the exception is recognized, logged and handled in much the same way as if it had.
HCE Administration Services
As described earlier in this document, the HCE Administration Services service block is co-hosted with a Point of Service (PoS) system to facilitate its access to Registers.
It exposes multiple Web Service methods that do not use standard Connected messages for arguments and return values, so the exception handling and logging approach described above for Service Adapters is not applicable.
Instead, the following approach is used:
· An exception raised during processing within an Administration Services block, or an error status messages returned from a Register Adapter, is trapped at a point where the processing step can be most sensibly identified, is translated into the appropriate “HCE Admin Services” exception, is logged, and is passed back to the user interface (aspx) that has invoked the service.
· Because standardized return messages are not available to pass back a status message, and because web services cannot easily propagate system exceptions, the approach taken is to use SOAP exceptions to pass the HCE Admin Services exception back to the user interface layer.
· SOAP exceptions expose a Detail property, which is an XML element that can store any well formed XML snippet. The value of the Detail property is set to an XML representation of the HCE Admin Services error message, prior to raising the SOAP exception.
· When the SOAP exception is caught on the user interface, the value of the Detail property is used to generate a useful error message for the user.
· The schema used to encode the Detail property of the SOAP exception is as follows:
[image:]
· Entity: defines which entity was being processed when the exception was raised.
· Operation: defines which operation was being executed on the entity when the exception was raised.
· ErrorMessage: is an additional error message to be displayed.
· Details: is an optional element that allows for extra information to be transferred in accordance with any appropriate XML schema.
[bookmark: _Toc151809794]Change Notification Service
[bookmark: _Toc151809795]Purpose
The need for this service has arisen from the expectation the PoS systems (or their associated Adapters) will maintain caches of information about Service Providers with whom they frequently exchange messages.
Caches are used to improve the responsiveness of the PoS system from the user’s perspective, by reducing the need to access the Service Provider Register.
The Change Notification Service is a service of the Service Provider Register that
· recognizes when significant changes have been made to Service Provider information in the Register, and
· sends unsolicited messages to all other Service Providers to enable them to update their cache.
[bookmark: _Toc151809796]Design Principles
This service has been designed and implemented to conform to the following principles:
· Each Service Provider system (PoS systems and HCE-related services and registers) incorporates a Service Provider Register administration tool (utilizing the HCE Administration Services service block) to maintain its own data in the HCE Service Provider Register.
· The Service Provider Register (of course) contains a full inventory of the Service Providers configured to connect via the HCE Routing Service to other Service Providers.
· Whenever any item of information about a Service Provider (services offered, message types supported, etc) is changed in the Service Provider Register, a notification message is routed to every other Service Provider, identifying the Service Provider whose information has been changed, and the new value of each element of data.
[bookmark: _Ref145833207][bookmark: _Toc151809797]Additional Design Patterns
[bookmark: _Toc151809798]Overview
In the course of addressing certain potential implementations, a number of other areas have been considered and the following design patterns are offered as an indication of the HCE Design Team’s thinking in these particular areas
[bookmark: _Toc151809799]Health Domain Registers Overview
[image:]

	Service Component
	Description

	Patient Register
	A Patient is a person playing the role of a healthcare consumer. The patient register is an entity which is responsible for storing patient details.

	Practitioner Register
	A Practitioner is a person playing the role of a healthcare provider. The practitioner register is an entity which is responsible for storing practitioner details.

[bookmark: _Toc151809800]Data Models
As far as practicable, data design follows the principles of the Health Level 7 Reference Information Model.
The RIM specifies a common model for representing actions or events (Acts) and the relationships between them (ActRelationships). It also specifies a way to represent information about people, animals, organizations and things (Entities), the roles these entities play (Roles) and the ways in which these roles are involved in different action or events (Participations).
The RIM is conceptually applicable to any information domain involving entities playing roles and participating in acts.
[bookmark: _Toc151809801]Patient, Practitioner, and ServiceProvider
Using a blend of the terminology of the RIM and the terminology of HCE:
· A Patient is a person playing the role of a healthcare consumer
· A Practitioner is a person playing the role of a healthcare provider
· A ServiceProvider is a system within an organization playing the role of a healthcare information provider or healthcare information consumer. Information is exchanged between one ServiceProvider and another by using Messages that contain information about Patients and/or Practitioners.
In RIM terms
· Person and Organization are subclasses of Entity.
· Patient, Practitioner and ServiceProvider are subclasses of Role.
It is important to recognize that a “Role” is an instance of a Patient, Practitioner or Service Provider, not a type - Roles participate in Acts.
The NZ NHI contains data about a patient. This data can find its home in the RIM classes Entity, LivingSubject (a subclass of Entity), Person (a subclass of LivingSubject), Role and Patient.
[bookmark: _Toc151809802]Patient Register
Supported Message Types
Nil in HCE 2.1
Data Model
[image:]

	Entity
	Description

	Patient
	A person playing the role of a healthcare consumer

	Person
	The person table exists to align with the RIM principle that Patient is a role that is played by a Person, and that Person is an Entity in its own right independent of the patient role. The columns in the Person table and in the PersonName table are properties of the Person rather than of the Patient.

	PersonName
	Over time, a Person’s name may change, but at any point in time one name (usually the most recent one) is primary. The various names that have ever been associated with a person are termed “aliases” of that person.
The admin user interface should not allow aliases to be deleted. All updates should be handled by creating a new alias and flagging it as primary. If the new alias matches a previous alias in all respects (i.e. familyName, all givenNames and preferredGivenNameIndex), the existing ailias should be retained and should be flagged as primary. There is no need to provide explicitly for alias insert because update provides it implicitly.

	MergedPatientID
	As described above, patientID is the unique identifier that is used to identify a patient in messages that pass between connected systems via the HCE.
If, through error, two different patientID’s have been assigned to the same patient, a “merge” process is carried out in which one of the patientID’s is deemed to be the primary one, and use of the other is discontinued.
The merge process assumes that the correct patient details are already recorded against the primary patientID. Merging involves the following steps:
All patient references that previously used the discontinued patientID are changed to use the primary one.
A row is added to table MergedPatientID to cross-reference the two patientID’s. In the new row, patientID is the primary patientID and mergedPatientID is the discontinued patientID.
The row in table Patient that contains the discontinued patientID is physically deleted.

[bookmark: _Toc151809803]Practitioner Register
Supported Message Types
Nil in HCE 2.1
Business Logic
The patient register provides patient search functionality using any available data columns: patientID, address (whole or part), dateOfBirth, dateOfDeath, gender and/or name (whole or part).
If the search criteria includes a name element and/or a patientID, the search is carried out giving due consideration to all aliases and to both primary and merged patientID’s. However, results returned by the patient register to the calling system include only the primary alias and/or the primary patientID.
The intention is to implement the same patient search algorithm as used in the Connected Showcase.

Data Model
[image:]

	Entity
	Description

	Practitioner
	The individual playing the role of healthcare provider.

	Person
	(As in patient register)

	PersonName
	(As in patient register)

	MergedPractitionerID
	(As in patient register)

[bookmark: _Toc137457966][bookmark: _Toc151809804]Asynchronous Messaging, Store and Forward and Conversation Chaining
[bookmark: _Toc151809805]Purpose
“Store and Forward” provides the capability for asynchronous messaging between two collaborating Service Providers.
In conjunction with the Connected System and Adapter in use within a Service Provider, it also manages the chaining of related messages using a conversation identifier.
[image:]
Figure 12 - Asynchronous Messaging and Store and Forward conceptual design
[bookmark: _Toc151809806]Design Principles
This service has been designed to conform to the following principles:
· Each collaborating system is directly interfaced to its adapter using procedure calls in either direction.
· All Adapters support both:
· message sending to a web service exposed by the HCE Routing Service
· message receiving via a web service exposed by the Adapter.
· Adapters store messages that are to be sent until contact can be established with the HCE Routing Service.
· The HCE Routing Service provides header validation of Connection Engine Messages received from sending Adapters, and responds synchronously with an acknowledgement and/or error response as appropriate.
· The HCE Routing Service uses the Store & Forward Service to store messages that have been received from a sending adapter until contact can be established with the receiving adapter.
· Like the Service Provider Register, the HCE Store & Forward Service responds synchronously to requests from the Routing Service.
· Receiving adapters provide payload validation of messages received from HCE, and respond synchronously with an acknowledgement and/or error response as appropriate. Error messages from Receiving adapters are routed back to the Sending adapter asynchronously for action.
· Responding PoS systems respond (synchronously or asynchronously) to their sending adapter with application-level acknowledgement of each message. The sending adapter associates the acknowledgement message with the conversation identifier of the received message, before sending it asynchronously to the HCE.
· An adapter receiving an application-level acknowledgement message recognizes it as such, and does not generate a reply. (Note that HCE processes received application-level acknowledgement messages in exactly the same way as any other message.)
· It is the responsibility of the responding PoS system, in conjunction with its adapter, to associate any future message with the same conversation identifier where appropriate. Any such subsequent messages are handled by a receiving adapter in the same manner as new messages (responses etc), even though they may contain the same conversation identifier.
[bookmark: _Toc151809807]“Pull” Functionality
· A collaborating PoS system may wish to issue a request to the HCE to forward messages stored by the HCE Store & Forward Service. This situation may occur if the PoS system has been off-line for a period, or if it is normally off-line and it comes on-line for a period.
· It is not necessary for an Adapter Message Store to provide pull functionality.
· The HCE Store & Forward Service provides this capability by accepting a “Poll for pending messages” message, which the Store & Forward Service synchronously responds to with an indication of whether or not messages are queued for the calling PoS system.
· Having received such a message, the Store & Forward Service connects to the PoS system’s web service, sends the stored messages one at a time in the normal way, and then sends a “Pending messages complete” message to the PoS adapter to indicate that it contains no further messages for that PoS system.
[bookmark: _Toc151809808]Configuration
Each PoS system should be configured with one of the following asynchronous messaging attributes:
· Always receives asynchronously (HCE never transmits without first receiving a “poll for pending messages” message.)
· May receive asynchronously (HCE always attempts to transmit messages and, if unable to connect, stores messages and retries periodically. Also HCE responds to “poll for pending messages” messages.)
· Never receives asynchronously (HCE always attempts to transmit messages and, if unable to connect, sends “failed to deliver” messages to the initiating PoS system.)
The following timeouts should be configured for each message type for each PoS system
· Period between retries to send (for systems configured as “may receive asynchronously”)
· Maximum period to store a message (for systems configured as “always receives asynchronously” or “may receive asynchronously”) When this period expires, the message is deleted from the queue and HCE sends a “failed to deliver” message to the initiating PoS system.
[bookmark: _Toc137457968][bookmark: _Toc151809809]Connection Engine Adapter
[bookmark: _Toc151809810]Purpose
The Connection Engine Adapter (CEA) provides an approach to interconnecting multiple instances of the HCE and other integration eco-systems, in the expectation that these will conform to diverse standards and will be operated within diverse jurisdictions.
[image:]
Figure 13 - Connection Engine Adapter Context
[bookmark: _Toc151809811]Design Principles
This component has been designed to conform to the following principles:
· It supports an arbitrary network topology interconnecting multiple integration eco-systems.
· It represents a true federation model, with peer-to-peer relationship between all engines.
· An instance of the CEA is used to interconnect any pair of engines and to manage all aspects of message flow between the two engines.
· Each PoS system is associated with its “home” instance of the HCE (or equivalent).
· A PoS Locator Service allows the Service Provider Register in each HCE to be aware of PoS systems associated with all HCE instances, and also to understand the network topology to the extent that it can route messages via CEA’s to any PoS system associated with any HCE instance.
· When a message is routed between PoS systems anywhere in the network, the message retains its meaning from link to link, irrespective of the extent to which it undergoes identifier or coding translations within one or more CEA’s.
· Each CEA that is connected to a source HCE is registered in the HCE’s Service Provider Register, along with all PoS systems that are accessed through it. The following payload encryption mechanism allows a CEA to decrypt message payloads so that they can be translated into the form required by the destination HCE:
· Each CEA registers its public key with the source HCE.
· All destination PoS systems that are accessed through that CEA are registered in the source HCE’s Provider Register, and each such system is registered with the CEA’s public key. In effect, the CEA is trusted as a proxy for every PoS system that is accessed through it.
· The source PoS system, in dispatching a message to a destination PoS system via the CEA, uses the CEA’s public key to encrypt the message. It obtains this public key from the destination PoS system’s record in the HCE’s Service Provider Register.
· This enables the CEA to decrypt the payload, translate it as required, and re-encrypt it with the real public key of the destination PoS system before forwarding it through the destination jurisdiction’s HCE to the final destination.
· The CEA is implemented as two standard Adapters (CSAs) each connected to one of the integration engines, together with a “Message Translator” that interfaces the two of CSA’s.
· A summary of the functions of each of the components of the CEA is depicted in the following diagram.
 (
Figure
14
- CEA Components
) (
HCE
1
HCE
2
Collaboration System
Adaptor
1
Message direction
Operates synchronously
with HCE
1
Receives message from
HCE
1
Decrypts using
destination public key
from HCE
1
jurisdiction
Unpacks clinical payload
Sends message to
Message Translator
Collaboration System
Adaptor
2
Operates synchronously
with HCE
2
Receives message from
Message Translator
Packs clinical payload
Encrypts using
destination public key
from HCE
2
jurisdiction
Sends message to HCE
2
Message Translator
May operate fully
asynchronously, or may
operate synchronously with
either CSA
1
or CSA
2
Receives message from CSA
1
Translates source and
destination addresses from
HCE
1
to HCE
2
standards
Translates clinical context and
semantics of message from
HCE
1
to HCE
2
standards
Sends message to CSA
2
HCE
1
HCE
2
Connection System
Adaptor
1
Message direction
Operates synchronously
with HCE
1
Receives message from
HCE
1
Decrypts using
destination public key
from HCE
1
jurisdiction
Unpacks clinical payload
Sends message to
Message Translator
Connection System
Adaptor
2
Operates synchronously
with HCE
2
Receives message from
Message Translator
Packs clinical payload
Encrypts using
destination public key
from HCE
2
jurisdiction
Sends message to HCE
2
Message Translator
May operate fully
asynchronously, or may
operate synchronously with
either CSA
1
or CSA
2
Receives message from CSA
1
Translates source and
destination addresses from
HCE
1
to HCE
2
standards
Translates clinical context and
semantics of message from
HCE
1
to HCE
2
standards
Sends message to CSA
2
Connection Engine Adapter
)
[bookmark: _Toc137457969]
[bookmark: _Toc137457970][bookmark: _Toc151809812]Connection Engine Message Translation Service
[bookmark: _Toc151809813]Purpose
The need for this service has arisen from the expectation that changes will occur over time to the schema of the Connected Message itself.
Accordingly there may exist at the same time, Service Provider systems that use different versions of the Connected Message.
[bookmark: _Toc151809814]Design Principles
This service has been designed to conform to the following principles:
· Each implementation of HCE must continue to support both incoming and outgoing messages that conform to all Connected message schemas used by any of the connected Service Provider systems.
· The HCE must expose a separate web service for each supported version of the Connected message schema.
· Each Service Provider system must be configured to access the HCE web service that supports the message version it uses.
· The HCE Service Provider Register must maintain a record of which message schema is supported by the incoming message Web Service of each Service Provider.
· Outgoing messages from the HCE Routing Service to the destination Service Provider must generate the message conformant with the message schema that is supported by the destination Service Provider.
[bookmark: _Ref137101014][bookmark: _Toc144565439][bookmark: _Toc151809815]Appendix 1 – Connection Engine Message XML Schema
The following tables provide a definition of each element and complex type within the Connection Engine Message XML schema:

	Element
	ConnectionEngineMessage

	Notes
	

	Diagram
	[image: tmp0000]

	Namespace
	http://Microsoft.ConnectionEngine.Messaging	

	[bookmark: Link0384B700]Element
	ConnectionEngineMessage/Header

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	HeaderType

[bookmark: Link0388FA48]
	Element
	ConnectionEngineMessage/Body

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	BodyType

	Complex Type
	BodyType

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Element
	BodyType/Payload

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	PayloadType

	Complex Type
	ConversationType

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Element
	ConversationType/ConversationID

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

[bookmark: Link01FAF690]
	Element
	ConversationType/OriginalMessageID

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	Complex Type
	HeaderType

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Element
	HeaderType/ID

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

[bookmark: Link01E596B0]
	Element
	HeaderType/CreationTime

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:dateTime

	[bookmark: Link01FCDF18]Element
	HeaderType/SessionToken

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	Element
	HeaderType/InteractionClass

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

[bookmark: Link01F93378]
	Element
	HeaderType/InteractionType

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	[bookmark: Link01FDD080]Element
	HeaderType/Conversation

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	ConversationType

	[bookmark: Link01FC32E0]Element
	HeaderType/Sender

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	POSType

	[bookmark: Link01FC37B8]Element
	HeaderType/Receiver

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	POSType

[bookmark: Link01FC3418]
	Element
	HeaderType/Status

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	StatusType

	Complex Type
	PayloadType

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	[bookmark: Link038691C0]Element
	PayloadType/EncryptionType

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

[bookmark: Link01FBBE58]
	Element
	PayloadType/Key

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	[bookmark: Link03867270]Element
	PayloadType/IV

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	[bookmark: Link01FC8D10]Element
	PayloadType/Content

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	Complex Type
	POSType

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Element
	POSType/OrganisationID

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	[bookmark: Link03848B78]Element
	POSType/ColnnectionEngineUserID

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	[bookmark: Link03847C90]Element
	POSType/OrganisationUserID

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	[bookmark: Link0384A2A8]Element
	POSType/URI

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:anyURI

	[bookmark: Link01FAA040][bookmark: Link01F5D2C0][bookmark: Link038C1D88][bookmark: Link03848758][bookmark: Link01F93188][bookmark: Link01D4B680][bookmark: Link03841E58][bookmark: Link01FD9108][bookmark: Link01CE1A10][bookmark: Link03888680]Complex Type
	StatusType

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	[bookmark: Link01F5D038]Element
	StatusType/Code

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	[bookmark: Link038665B8]Element
	StatusType/Description

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

	[bookmark: Link03861D30]Element
	StatusType/Details

	Namespace
	http://Microsoft.ConnectionEngine.Messaging

	Diagram
	[image: tmp0000]

	Type
	xs:string

[bookmark: _Toc151809816]Appendix 2 – Health Connection Engine Service Index
Services delivered in HCE version 2.1:
· Message Management Services
· Web Service Facade
· Routing Service
· Validation
· Monitoring Service
· Connected Adapter
· Adapter Base Class
· Adapter Reference Implementation(s)
· Adapter Software Development Kit (SDK)
· Health Services Directory Registers
· HCE Registry Services
· Service Provider Register
· Invocation Register
· Change Notification Service
· Health Domain Registry Services
· Patient Register
· Practitioner Register
· Consents Register
· Health Services Directory Administration Services
· Service Provider Administration Services
· Patient Administration Services
· Practitioner Administration Services
· Consents Administration Services
· Administration Portal
· Portal Desktop
· Service Provider Administration Portal
· Patient Administration Portal
· Practitioner Administration Portal
· Consents Administration Portal
· Security Envelope
· Service Provider

[bookmark: _Ref144608470][bookmark: _Toc151809817]Appendix 3 – Message Types
[bookmark: _Toc151809818]Summary of support message types
	ID
	Description
	XML Schema File

	1
	Patient Referral
	EMR.xsd

	2
	Laboratories Order Data
	EMR.xsd

	3
	Laboratory Order Result
	report_v3.xsd

	4
	Clinical Decision Support Result
	XMLschema.xml

	5
	Pharmacy Dispensing Status
	HPPharmacyPatient.xsd

	6
	ServiceProvider Select Result
	serviceprovider.xsd

	7
	Patient Record Request
	EMRRequest.xsd

	8
	Patient Record Summary
	EMR.xsd

	1000
	Service Provider Search Request
	ServiceProviderID.xsd

	1001
	Service Provider Search Result
	serviceproviderlist.xsd

	1002
	Health Service Directory Reference Data Request
	hsdreferencedatarequest.xsd

	1003
	Health Service Directory Reference Data Result
	hsdreferencedata.xsd

	1004
	Healthcare User Identifier Request
	hcuidentifierrequest.xsd

	1005
	Healthcare User Identifier Result
	hcuidentifier.xsd

	1201
	Invocation Registry Item
	InvocationRegistryItem.xsd

	1200
	Invocation Registry Item Request
	InvocationRegistryItemRequest.xsd

	1014
	Service Provider Search Request
	ServiceProviderSearchRequest.xsd

	1008
	Service Provider Lock
	serviceprovideridrequest.xsd

	1006
	Service Provider Delete
	serviceprovideridrequest.xsd

	1007
	Service Provider UnLock
	serviceprovideridrequest.xsd

	1009
	Service Provider Update
	serviceprovidereditrequest.xsd

	1010
	Service Provider Insert
	serviceprovidereditrequest.xsd

	1012
	Service Provider Update Result
	serviceprovider.xsd

	1013
	Service Provider Check- Out Response
	serviceprovideredit.xsd

	1016
	Pool Delete
	poolidrequest.xsd

	1017
	Pool Check-In
	poolidrequest.xsd

	1018
	Pool Check-Out
	poolidrequest.xsd

	1019
	Pool Update
	pooleditrequest.xsd

	1020
	Pool Insert
	pooleditrequest.xsd

	1021
	Pool Insert Response
	pool.xsd

	1022
	Pool Update Response
	pool.xsd

	1023
	Pool Check-Out Response
	pool.xsd

	1026
	Remove ServiceProvider From Pool
	ServiceProviderPoolInsertDelete.xsd

	1027
	Add ServiceProvider To Pool
	ServiceProviderPoolInsertDelete.xsd

	1015
	Service Provider Search Response
	ServiceProviders.xsd

	1024
	Pool Search Request
	poolsearchrequest.xsd

	1025
	Pool Search Response
	pools.xsd

	1028
	Remover ServiceProviderType From Pool
	poolserviceprovidertypeeditrequest.xsd

	1029
	Add ServiceProviderType To Pool
	poolserviceprovidertypeeditrequest.xsd

	1030
	ServiceProviderType Delete
	serviceprovidertypeidrequest.xsd

	1031
	ServiceProviderType Check-In
	serviceprovidertypeidrequest.xsd

	1032
	ServiceProviderType Check-Out
	serviceprovidertypeidrequest.xsd

	1033
	ServiceProviderType Update
	serviceprovidertypeeditrequest.xsd

	1034
	ServiceProviderType Insert
	serviceprovidertypeeditrequest.xsd

	1035
	ServiceProviderType Insert Response
	serviceprovidertype.xsd

	1036
	ServiceProviderType Update Response
	serviceprovidertype.xsd

	1037
	ServiceProviderType Check-Out Response
	serviceprovidertype.xsd

	1011
	Service Provider Insert Response
	serviceprovider.xsd

	1038
	Pool Check-In All
	poolunlockall.xsd

	1039
	ServiceProviderType Check-In All
	serviceprovidertypeunlockall.xsd

	1040
	ServiceProvider Unlock All
	serviceproviderunlockall.xsd

	1041
	ServiceProviderType Search Request
	serviceprovidertypesearchrequest.xsd

	1042
	ServiceProviderType Search Response
	serviceprovidertypes.xsd

	1054
	Add Service Provider Types to MessageType
	ServiceProviderTypeMessageTypeLinkEditRequest.xsd

	1055
	Remove Service Provider Types from Message Type
	ServiceProviderTypeMessageTypeIDRequest.xsd

	1064
	ServiceProviderType SelectItem Request
	serviceprovidertypeidrequest.xsd

	1065
	ServiceProviderType SelectItem Result
	serviceprovidertype.xsd

	1063
	PoolServiceProviderTypes Insert List Request
	poolserviceprovidertypelinkListEdit.xsd

	2000
	Validate User Request
	usercredentials.xsd

	2001
	Validate User Response
	hsdprincipal.xsd

	1043
	MessageType Search Request
	messagetypesearchrequest.xsd

	1044
	MessageType Search Response
	messagetypelist.xsd

	1045
	MessageType Check-In
	messagetypeidrequest.xsd

	1046
	MessageType Check-Out
	messagetypeidrequest.xsd

	1047
	MessageType Check-Out Response
	messagetype.xsd

	1048
	MessageType Check-In All
	messagetypeunlockall.xsd

	1049
	MessageType Insert
	messagetypeeditrequest.xsd

	1050
	MessageType Insert Result
	messagetype.xsd

	1051
	MessageType Update
	messagetypeeditrequest.xsd

	1052
	MessageType Update Result
	messagetype.xsd

	1053
	MessageType Delete
	messagetypeidrequest.xsd

	1058
	ServiceProviderType MessageType Insert List
	ServiceProviderTypeMessageTypeLinkListEdit.xsd

	1059
	ServiceProviderTypeMessageType Search Request
	ServiceProviderTypeMessageTypeSearchRequest.xsd

	1060
	ServiceProviderTypeMessageType Search Result
	ServiceProviderTypeMessageTypeList.xsd

	1056
	MessageType SelectItem Request
	messagetypeidrequest.xsd

	1057
	MessageType SelectItem Result
	messagetype.xsd

	1066
	Pool SelectItem Request
	poolidrequest.xsd

	1067
	Pool SelectItem Result
	pool.xsd

	1061
	Pool ServiceProviderType Search Request
	poolServiceProviderTypeSearchRequest.xsd

	1062
	Pool ServiceProviderType Search Result
	poolServiceProviderTypelist.xsd

	1068
	Pool ServiceProviderType Delete List
	poolserviceprovidertypelinkListEdit.xsd

	1069
	ServiceProviderType MessageType Delete List
	ServiceProviderTypeMessageTypeLinkListEdit.xsd

	1070
	ServiceProvider Select Request
	serviceprovideridrequest.xsd

	1071
	ServiceProvider Select Result
	serviceprovider.xsd

	9003
	ServiceProviderPool Delete List Request
	serviceproviderpoollinkListEdit.xsd

	9004
	ServiceProviderPool Insert List Request
	serviceproviderpoollinkListEdit.xsd

[bookmark: _Ref137375103][bookmark: _Toc151809819]Appendix 4 – Routing Service BizTalk Implementation
This section contains logical and physical implementation details for the ReceiveMessage, ValidateMessage and ProcessMessage orchestrations implemented within the Routing Service.
The diagrams in this section have been generated based on the BizTalk Server 2006 implementation for each orchestration.
 (
Begin
)ReceiveMessage Orchestration
 (
Receive InboundMessage from prtConnectionEngineInbound:
Receives Connection Engine Message
.
Send returnMessage to prtConnectionEngineInbound
:
End
Call Orchestrations.ConnectionEngineValidateMessage
sub-process:
.
Decide
Construct message returnMessage
:
ConstructReturnMessage
Is Empty : Inbound Message. Head…
Construct message msgConnectionEngine
:
InitializeMsgConnectionEngine
Perform ConversationID = System.Guid.NewGuid();:
Construct message returnMessage
:
SetTimeoutStatusCode
Construct message returnMessage
:
SetGeneralErrorStatusCode
Else
Else
Message Is Valid: InboundMess…
Decide
Decide
Construct message msgConnectionEngine:
Initialize MsgConnectionEngine
Call Orchestrations.ConnectionEngineProcessMessage
sub-process:
Catch System.Net.WebException: CatchTimeout
Catch System.Exception: CatchGeneral
)
Figure 15 - ReceiveMessage logical implementation
[image: untitled]
Figure 16 - ReceiveMessage physical implementation

ValidateMessage Orchestration
 (
Construct message msgValidateRequest:
Construct msgValidateRequest
Send msgValidateRequest to prtConnectionEngineValidation:
Receive msgValidateResponse from prtConnectionEngineValidation:
Construct message ValidatedMessage:
:
Construct Validated Message
End
Perform prtConnectionEngineValidation(Microsoft XLANGs.BaseTypes.Address)
=System.Configuration.ConfigurationSettings.AppSettings.Get(“HSD.Validation.DestinationURL”);:
Begin
)
Figure 17 - ValidateMessage logical implementation
[image: ValidateMessage orchestration]
Figure 18 - ValidateMessage physical implementation

ProcessMessage Orchestration
 (
 - MessageToProcess.Header.Receiver.URI
) (
Construct message msgProcessRequest
Construct msgProcessRequest
Send msgProcessRequest to prtConnectionEngineProcess
Receive msgProcessResponse from prtConnectionEngineProcess
Construct message ProcessResult:Construct
ProcessResult
End
Perform prtConnectionEngineProcess (Microsoft.XLANGs.BaseTypes.Address)
Begin
)
Figure 19 - ProcessMessage logical implementation
[image: ProcessMEssage orchestration]
Figure 20 - ProcessMessage physical implementation

[bookmark: _Ref137555251][bookmark: _Toc151809820]Appendix 5 – Adapter Base Class Diagram
[image: SstemAdapterBase]
Figure 21 - Adapter Base Class Diagram

[bookmark: _Ref137555572][bookmark: _Toc151809821]Appendix 6 – ProcessMessage source code
 /// <summary>
 /// Process a Collaboration Engine compatible Payload based on its Message Type.
 /// </summary>
 /// <param name="xmlMessage">Collaboration Engine compatible Payload to be processed</param>
 /// <param name="msgType">The Message Type that defines the Payload to be processed.</param>
 /// <param name="resultXmlMessage">An XML representation of the returning payload.</param>
 /// <param name="resultMsgType">A representation of the Message Type for the returning payload.</param>
 /// <returns>Return a boolean indicating if the Process generated a new message type or only an acknowledgment.</returns>
 protected virtual void ProcessMessage(System.Xml.XmlDocument xmlMessage, int msgType, out System.Xml.XmlDocument resultXmlMessage, out int resultMsgType)
 {
 resultXmlMessage = new System.Xml.XmlDocument();
 try
 {
 // Finds the MessageTypeHandler using an anonymous method inside the Find predicate.
 common.MessageTypeHandler msgHandler = MessageHandlerList.Find(delegate(common.MessageTypeHandler node)
 {
 if (node.MessageType == msgType)
 return true;
 else
 return false;
 });

 System.Reflection.Assembly assembly = Assembly.LoadFrom(System.AppDomain.CurrentDomain.RelativeSearchPath + @"\" + msgHandler.AssemblyName);
 Type t = assembly.GetType(msgHandler.ClassName);

 MessageHandlerDelegate dlgt = (MessageHandlerDelegate)
 Delegate.CreateDelegate(
 typeof(MessageHandlerDelegate),
 t, msgHandler.MethodName);

 dlgt.Invoke(xmlMessage, out resultXmlMessage, out resultMsgType);
 }

 catch (System.Exception ex)
 {
 common.SystemAdapterException sysEx = new common.SystemAdapterException(
 common.SystemAdapterExceptionCause.PayloadContentNotValid,
 "An error occurred processing the payload.",
 ex);
 throw sysEx;
 }
 }
image1.emf
H

e

a

l

t

h

C

o

n

n

e

c

t

i

o

n

E

n

g

i

n

e

I

n

f

r

a

s

t

r

u

c

t

u

r

e

S

e

r

v

i

c

e

s

HCE Administration Portal

R

e

g

i

s

t

e

r

s

Message Management Services

A

d

m

i

n

S

e

r

v

i

c

e

s

Health Domain

Administration

Services

Health Domain

Registers

Health Domain

Administration Portal

HCE

Administration

Services

HCE Registers

image2.emf
Service Provider

Send Connection Engine

 Message

Connected System

Adapter

Receive Connection Engine

Message

Health Connection

Engine

image3.emf
Message Header

Clinical Payload

To:

From:

Type:

etc…

Message Envelope

image4.png
—
HeaderType

[0
[z sty
Osfrer e 10 o

[InteractionType
[z [xsistng

| conversationType

| [Feonversationin
| [0z [xsising

Header

[(o= reacerrype T

[OrganisationID
| [[ssisting

| [sender 1
[oc[FoSTYPe
e

Forgansationd
| [[ssisting

| [Receiver 1
[oc[FoSTYPE

e StatusType

BodyType.

| Fencryptiontype
[z [xsstng

|

|
1
[5< [PayioadType

|
| [FContent
| DR

‘Generated by XmiSpy www.altova.com

image5.emf
M

e

s

s

a

g

e

M

a

n

a

g

e

m

e

n

t

S

e

r

v

i

c

e

s

Monitoring Service Routing Service

image6.emf
Routing Service

Web Service

Receive

Message

Validate

Message

Process

Message

image7.emf
Destination Service

Provider

Routing Service

Web Service

Receive

Message

Validate

Message

Service

Provider

Register

Process

Message

Connected

System

Source Service

Provider

Connected

System

image8.emf
Particular to each

Adapter

Common

to all

Adapters

Connected

System

A

d

a

p

t

e

r

Connected

System

Send Message to Health

Connection Engine

Encrypt Generated

Payload

Data Flow

through Adapters

Translate Native

Content into Connected

Engine Payload

Adapter

Health Connection

Engine

Validate Generated

Payload

Generate Connection

Engine Message

Receive Message from

Health Connection

Engine

Validate Submitted

Payload

Hand over Payload to

be processed by

Connected System

Decrypt Submitted

Payload

image9.png
DisplayName :string

MessageStatus()(+ Loverload)
MessagestatusID :int

Desciption :string
DestinationDisplayName string
MessageType() (+ 1 overload)
MessageTypelD int
SenviceProviderTypeMessageTypelD :int

5 MessageTypes: List<MessageType>

ServiceProviderType ®
ey

o

@ public A SenviceProviderTypes : List<ServiceProviderType>

DisplayName :string

ServiceProviderTypel) (+ 1 overoac)

 SenviceProviderTypeCode: sting
ServiceProviderTypelD : it

GetinteractiveSessioninformation(): string
ReceiveComnectionEngineMessage(): ComnectiorE
‘SendConnectionEngineMessage(): Connectiontngi
SystemadapterBase()(+ 1 overload)
& protected
§9 Assemblettessage(): mDoamert
3% GethllowedProviderList): ServiceProvidetist
3% GetlnteractiveSessionList(): NameVelueCollection

% GetReferenceData() : ReferenceData

InteractiveSessionList: NameValueCollecton
3% LoadMessageHandlerList(): List<MessageTypetien.
59 ProcessMessage() :void

& intemal

ConstructComnectionEngineMessage(): Connecton
ConstructiebServiceMessage(): Comnectionngi.
CreateConnectionAdapterMessage(): ConnectrE.
CreateConnectionEngineProxy(): ConnectionEngin.
DecryptPaylozd() : string

Encryptpayload) : EncyptedDatalnfo
‘GetCECryptoType(): CryptoTypes
GetCryptaType(): CyptoTypes
GetStatusDescription(): string
messagetanderLst: List<MessageTypeHander>
SendMessage(): ComnectionEngineMessage

5% ConvertwSMessageToCammoniessage): Comne
¢ GENERAL_ERROR_CANT_LOAD_PROVIDER : string
' GENERALERROR_MESSAGE_CREATION :strng
5% GetDestinationProvider(): ServiceProvider
¥ mitialize() : void
5 iteractveSessionList: NameValueCollecion
59 IsNotficationMessage): bool
5 messageHandlerLisrile: strng
a‘ privateKey : string

PrivateKey : string
ProcessNotification() : void
9 providertist: SenviceProvidertt

refData : ReferenceData
SenviceProviderRegisterEncriptionType : sting
‘serviceProviderRegisterPublicKey : string
SenviceProviderRegisterSeniceproviderDD : stng

3 systemadapterClentCertficate strng

S systemProvider:ServiceProvider
 Nested Types

Delegate

%% %% %%

Contact: Contact
DisplayName :string
 Encryptionalgorithm string

2 systenprovide

Publickey :string
SenviceProvider(
5 SenviceProviderID :string
SenviceProviderType :SenviceProviderType
Systemiame : string
3 WebServiceURL : string

(' ServiceProviders :List<ServiceProvider>

Pool()(+ 1 overload)
PoolID : int
B PoolName : string

A PoolList:List<pool>

2 proudertit

2 MessageHandlerLst: List<MessageTypeHander>

AssemblyName :string

Classiame : string

5 MessageType int
MessageTypeHandler() (+ 1 overload)
Methodame : string

image10.png
rnmhﬂuﬁm* ® { SystemAdapterfase

+ SystamadspterBase

5 @ Propertes
Ellshody InteractiveSessionList
9 AssembleMessoge MessageHandlenst
39 Frocessiessage Provderst
RefData
Systemprovider
& methods
3 Assemblevisssge
39 Getllowederovidetst
Getitersctivesessionrformstin
5% Getintersctvesessiontst
9 Geteferencepats
5% LosdMessageHandiatit
39 Frocessiessage
ReceiveComnectionEngineMessage
‘SendConnectionEngineMessage (+2 overloads)
0 SystemAdspterBase (+ 1 overiosd)
@ Nested Types

image11.emf
HCE Administration Portal

R

e

g

i

s

t

e

r

s

A

d

m

i

n

S

e

r

v

i

c

e

s

Health Domain

Administration

Services

Health Domain

Registers

HCE

Administration

Services

HCE Registers

image12.emf
Service

Provider

Register

Validation

Web Service

System Adapter Web Service

image13.emf
MessageType

messageTypeID

description

xmlSchema

version

lockedUserID

lockedDate

status

ServiceProviderPool

FK2 serviceProviderID

FK1 poolID

Pool

poolID

poolName

lockedUserID

lockedDate

status

ServiceProviderType

serviceProviderTypeID

displayName

serviceProviderTypeCode

lockedUserID

lockedDate

status

PoolServiceProviderType

FK2 serviceProviderTypeID

FK1 poolID

ServiceProviderTypeMessageType

serviceProviderTypeMessageTypeID

FK1 messageTypeID

FK2 sourceServiceProviderTypeID

FK3 destinationServiceProviderTypeID

ServiceProvider

serviceProviderID

displayName

FK1 serviceProviderTypeID

systemName

publicKey

webServiceURL

adminContactName

adminContactAddress1

adminContactAddress2

adminContactCity

adminContactProvince

adminContactPostalCode

adminContactCountry

adminContactPhone

adminContactFax

adminContactEmail

encryptionType

lockedUserID

lockedDate

status

image14.wmf
Adaptor

PoS

System

A

PoS

System

B

Adaptor

HCE

Routing Service

Invocation

Register

Service Provider

Register

Out

-

of

-

band service provision

Invocation Register

List/Get

Invocation Register

Admin

Adaptor

PoS

System

A

PoS

System

B

Adaptor

HCE

Routing Service

Invocation

Register

Service Provider

Register

HCE

Routing Service

Invocation

Register

Service Provider

Register

Out

-

of

-

band service provision

Invocation Register

List/Get

Invocation Register

Admin

image15.png

image16.emf
H

e

a

l

t

h

D

o

m

a

i

n

R

e

g

i

s

t

e

r

s

Consent

Register

Practitioner

Register

Patient

Register

image17.emf
MergedPatientID

FK1 patientID

mergedPatientID

lastUpdated

updateUserID

dateCreated

Patient

patientID

FK1 personID

donorFlag

addressLine1

addressLine2

addressSuburb

addressTownCity

addressCountry

addressCode

lastUpdated

updateUserID

dateCreated

lockedUserID

lockedDate

Person

personID

dateOfBirth

dateOfDeath

gender

lastUpdated

updateUserID

dateCreated

PersonName

personNameID

FK1 personID

primaryAliasIndicator

title

familyName

givenName1

givenName2

givenName3

preferredGivenNameIndex

lastUpdated

updateUserID

dateCreated

image18.emf
MergedPractitionerID

FK1 practitionerID

mergedPractitionerID

lastUpdated

updateUserID

dateCreated

Practitioner

practitionerID

FK1 personID

addressLine1

addressLine2

addressSuburb

addressTownCity

addressCountry

addressCode

lastUpdated

updateUserID

dateCreated

lockedUserID

lockedDate

Person

personID

dateOfBirth

dateOfDeath

gender

lastUpdated

updateUserID

dateCreated

PersonName

personNameID

FK1 personID

primaryAliasIndicator

title

familyName

givenName1

givenName2

givenName3

preferredGivenNameIndex

lastUpdated

updateUserID

dateCreated

image19.wmf
Message

Store

Adaptor

(send)

Adaptor

(receive)

Adaptor

(receive)

Initiating

PoS

System

Responding

PoS

System

Adaptor

(send)

Message

Store

HCE

Routing Service

Store & Forward

Service

Service Provider

Register

Message

Store

Message

Store

Adaptor

(send)

Adaptor

(receive)

Adaptor

(receive)

Initiating

PoS

System

Responding

PoS

System

Adaptor

(send)

Message

Store

Message

Store

HCE

Routing Service

Store & Forward

Service

Service Provider

Register

HCE

Routing Service

Store & Forward

Service

Service Provider

Register

image20.wmf
HCE Jurisdiction

HCE

PoS

PoS

PoS

PoS

PoS

PoS

HCE Jurisdiction

HCE

PoS

PoS

PoS

PoS

PoS

PoS

HCE Jurisdiction

HCE

PoS

PoS

PoS

PoS

PoS

PoS

CEA

CEA

CEA

HCE Jurisdiction

HCE

PoS

PoS

PoS

PoS

PoS

PoS

HCE Jurisdiction

HCE

PoS

PoS

PoS

PoS

PoS

PoS

HCE Jurisdiction

HCE

PoS

PoS

PoS

PoS

PoS

PoS

HCE Jurisdiction

HCE

PoS

PoS

PoS

PoS

PoS

PoS

HCE Jurisdiction

HCE

PoS

PoS

PoS

PoS

PoS

PoS

HCE

PoS

PoS

PoS

PoS

PoS

PoS

CEA

CEA

CEA

image21.png
Header
[vo¢ [Reaserrype

ineMessage (3—{==
ConnectionEngi
[vo=TodyTvpe

image22.png
[0 [Resdertyoe
[InteractionType
[z [xsistng
i o 1

image23.png
|
|
il

image24.png
Payload
PayioadType

image25.png
Payload 1
[0 [PayioadType.

| Fencryptiontype
[z [xsstng

| Content

image26.png
[Feonversationip
[0z [xsisirng

e—
e

T)] reed messages o
Fove 2 convesnD
assgned

ConversationType [J

1 ths masage s ey
2 revious massage, s il

e whn e s
reared o

image27.png
“Conversationid
[0 [sistring
e—
e
reltad messages shod
Fove 2 convesnD
sssgnec,

image28.png
s sa e
2 revious massage, s
e whn e s
reared o

image29.png
(oo sty
Defnes s e 1D o e
e S e
TSN
e e
foctristin=u

TimeSiamp of e messzge

Secton Token 5 sesi o
S e e
i s e
Sening. as ong 25 e
o e
message s vaide the
message canbe

Tty Fom Cop Arcn
St IRty b o
e ki of mchanem 5
e e,

Ieraon Gty
e ey
Caiees COp: L G
Pt e Rt Proaty nex
At on N2 Resy.

[InteractionType
[z [xsistng

[—
bang crosed. Replaces
MesSageTypelD.

[—

Sender
[voeTPoSType |
[P —
Replsces he
SciraserveaprovdenD,
giingthe dament 3 more
Gerere rame.

Receiver

[voeTPoSType |
[
Replaces he
e

D, giving the clomerc 2
more s rame,

Status.

yoe]

image30.png

image31.png
TimeSiamp of e messzge

image32.png

image33.png

image34.png
InteractionType.
[z xsstng
P pm—

bang crosed. Replaces
MessageTypeID.

image35.png
[ConversationlD
[0z [xsising

image36.png
Trostype

[Forganisationid
[voc xsistring

|
|
ey W
[oeTPosTyee
S

image37.png
Trostype

[Forganisationid
[voc xsistring

Receiver 1.
[voc[FoSTYPE

image38.png
Status. 1
[p=[StatusType.

image39.png
PayloadType L~

image40.png
[vo¢ [xsistring

image41.png

image42.png

image43.png

image44.png
POSType B}

image45.png

image46.png

image47.png

image48.png

image49.png
StatusType £}

' piace holdr o dd 0
formetin sook e St
T con for e bt
formetin shod o

Excapion that riggered the
ot code

image50.png
Code.

[z [xsising

image51.png

image52.png

image53.png
®
=

Recelve Message.
S
i
General Enor Handing Scope

r—e,
&

ValidateMessage

E

Valdatiorfiesult

*

Message s Viald

E

Walidate ConversationlD { ConstuctRetumMessage
S — 4
I+ Enpty Y
Iniisiz Retu
o
9

vt B InialzehsqConnectionEngine

EY

{7 IiisizeMsgConnectiontngine Messagessign

EY

et New Conver.

ProcessMessage

*

———
e
Catch General

el
- ..

¢ SelGeneraErorStatusCode

EY

Set Values

e
CachTineaut

EY

Set Values

SendMessage

image54.png
Constuct msg/aidateRequest

Y

Inifalze Request

o
Fpl
Initiaize Valda

Validation Requ.

Validation Respo.

El

netruct Valdated Mess:

Y

Initiaze Vaidate

image55.png
Constuct msgProcessRequest

Y

Inifalze Request

o
Fpl
Initkze Pt

Process Request

Prosess Respon,

Constuct PracessResult

Y

Inifalze Request

Microsoft Health Connection Engine 2.1

Architecture and Design Guide

Page

i

Microsoft Health Connection

Engine 2.1

Architecture and Design Guide

11/1/2006

Microsoft

