
Detecting deadlocks using static
analysis in .NET

Filip Navara

filip.navara@gmail.com

mailto:filip.navara@gmail.com

What did I do last week?

• Rewrite the whole merging of caller/callee
lock graphs to be non-recursive.

– Also fix bug where certain edges where ignored
and thus the merged lock graph was incomplete.

– The fixed recursive version was too slow for
merging graphs of 400+ edges, thus the rewrite
was necessary.

What did I do last week?

• Add several aliasing hacks.

– When emulating Monitor.Exit and the top lock is
lock on field make sure that we release the lock
even though the symbolic objects are not
identical.

– Make sure that UnaliasedFieldHeapObject are
really treated as unaliased (hack in
LockAcquisition.Equals).

What did I do last week?

• Do not analyze the methods of
System.Threading.Monitor type, we emulate
them anyway.

• Rewrite the Tarjan implementation to report
locks instead of edges since the older
algorithm didn't work correctly and reported
loops where there were none.

What did I do last week?

• Started writing the section on deadlocks for
thesis paper...

• Updated the implementation to track more
information that can help with understanding
the results

– Not commited yet

– Raises the memory usage about 2x

Lock Analysis: Real-world application

What do I plan to do next week?

• Analyze the results on a large scale application
and try to pin-point / fix mistakes in the
implementation

• Finish the summary that covers up what are
locks, deadlocks, their representation in .NET
and what we are trying to find

