
Detecting deadlocks using static
analysis in .NET

Filip Navara

filip.navara@gmail.com

mailto:filip.navara@gmail.com

What did I do last week?

• Wired-up all the bits of the interprocedural
analysis and modified the prototype to
produce lock order graph using the William‘s
approach

• Save the resulting lock order graph to file for
manual inspection using yEd

• Use Tarjan‘s strongly connected components
algorithm to find and report cycles

Results (so far)

• Analyzing basic example takes about 6
seconds, most of the time is spent in analyzing
.NET framework internals

• Missing aliasing information causes
misinterpreted Monitor.Exit calls, which is
partially fixable by hacks described in the
ECOOP 2005 paper

• Not enough information is recorded to
pinpoint where the error actually happened

Lock Analysis: Basic example
public class Deadlock
{
 static readonly object a = new object();
 static readonly object b = new object();

 public static void FunctionA()
 {
 lock (b)
 {
 lock (a)
 {
 }
 }
 }

 public static void FunctionB()
 {
 lock (a)
 {
 lock (b)
 {
 }
 }
 }

 public static void Main()
 {
 Thread thread1 = new Thread(FunctionA);
 Thread thread2 = new Thread(FunctionB);
 thread1.Start();
 thread2.Start();
 }
}

Lock Analysis: Basic example (cont.)

Lock Analysis: Basic example (cont.)

Lock Analysis: Real-world application

What do I plan to do next week?

• Analyze the results on a large scale application
and try to pin-point / fix mistakes in the
implementation

• Write up a summary that covers up what are
locks, deadlocks, their representation in .NET
and what we are trying to find

