
Detecting deadlocks using 
static analysis in .NET

Filip Navara 
filip.navara@gmail.com

mailto:filip.navara@gmail.com


What did I do last week?
Replace the ad-hoc state structures with the HeapObjects and 
state structure resambling the ones defined by Amy Williams

Partially done, the code using the new structure can be 
compiled and executed, but the computed results are not 
used yet

Use data-flow work list algorithm to compute the per-method 
lock graphs

Same as above. Tested on the basic tests and several bugs 
in static analysis code were fixed, particularly in the control-
flow graph computation and processing of data-flow 
equations

Implemented exception block reconstruction in control-flow 
graph and iteration over finally blocks

Required for proper treatment of Monitor.Exit calls, which 
the compiler puts inside finally blocks



What do I plan to do next week
(s)?

Start adapting the „L.O.V.E.“ prototype
Replace the ad-hoc state structures with the HeapObjects 
and state structure resambling the ones defined by Amy 
Williams
Use data-flow work list algorithm to compute the per-
method lock graphs
Implement better resolution of virtual methods using Class 
Hieararchy Graph (currently the type of the called object is 
not considered in the implementation, but it can 
significantly reduce the number of possible called methods 
for eg. System.Object.ToString)
Long term: Use the above building block to compute 
interprocedural lock order graph that takes reentrancy into 
account


