
Detecting deadlocks using static
analysis in .NET

Filip Navara

filip.navara@gmail.com

mailto:filip.navara@gmail.com

Week 2: What did I do?

• Studied the following approaches:

– Petri net

– „Intel“ method („Effective Static Deadlock
Detection“ by Mayur et al.)

• Updated code in SVN to include early
prototypes and simple tests

Petri net

• Describe states and transitions, analysis conducted on
state space

• Pros:
– Easy to model guard locks
– Easy to describe unpaired locks spanning multiple methods
– Possible to model more complex locks, such as

ReaderWriterLock (multiple readers or single writer)

• Cons:
– Costly analysis based on deadlock-preserving reductions
– How to get back „counterexamples“ if deadlock is

detected?
– How to represent reentrant locks?

„Intel“ method

• Combination of several static analyses (Call graph, Aliasing
analysis, Thread escape analysis, May happen in parallel
analysis)

• Proves 6 deadlock properties for each (ta,la1,la2,tb,lb1,lb2),
four of these conditions are proved soundly:
– Reachable
– Aliasing
– Escaping
– Parallel
– Non-reentrant
– Non-guarded

• Extensible for different lock types
• Detects only deadlocks between two threads

JChord – Implementation of „Intel“
method

• http://code.google.com/p/jchord/

• Library implemention in C / Java / Datalog

• Open source, new BSD license

• Possible use for prototyping

• As many other analyses works on three
address code

– Needs implementation of stack to TAC conversion

http://code.google.com/p/jchord/

Code in SVN

• https://svn.assembla.com/svn/nodeadlock/
• Tests

– Simple programs showing deadlocks

• Mono.Cecil
– External library for parsing .NET assemblies

• StaticAnalysis library
– Implementation of Control-Flow Graph
– Place for reusable static analysis blocks (call graph, may-alias)

• LovePrototype
– Implementation of original tool that detects strongly connected

components in combined call / lock graph\
– Updated to use the control-flow analysis in the library

One more thing...

Week 2: What do I plan to do?

• Implement simple call graph construction
using Class Hiearchy Analysis

• Further study the Petri net and „Intel“
approaches

• Comprehend the „Automated deadlock
detection in synchronized reentrant
multithreaded call-graphs“ paper by Frank S.
de Boer and Immo Grabe

