Detecting deadlocks using
static analysis in .NET

filip.navara@gmail.com



mailto:filip.navara@gmail.com

What did | do last week?

o Implemented the basic algorithm
o Fixed several test cases and tested the underlying
analysis on subset of the .NET Framework
m Fixed bugs in emulation of stack behavior
m Fixed bugs in instruction interpretation (casting,
array handling)



Willilams vs. my program

e Intraprocedural data-flow analysis
o Several instructions probably still have incorrect
Implementation
o Comparing of states is incomplete, ie. each cycle is
processed only twice instead of reaching an
endpoint (~ 1 week)
e Interprocedutal data-flow analysis
o Basic framework is in place
o Incomplete implementation of merging callee lock
order graph into caller's lock order graph (~ 1 week)
e Postprocessing
o Not done, but easy enough (~ 1 week)



Williams vs. my program (cont.)

e Optimizations leading to less false positives
o Detecting unaliased fields (~ 1 - 2 weeks)
o Detecting readonly fields (~ 1 week)
o Callee/caller type optimization (not investigated yet)



NET 4 construct problem

e .NET 4 introduced a new "lock" construct
o lock (a) { ... } translates to

o try {
Monitor.Enter(a, out acquiredA);

e
finally {

if (acquiredA) Monitor.Exit(a);
}

o Requires path-sensitive data-flow analysis for proper
handling of the construct. Current workaround is to
assume that when merging branches the one with
least locks is the correct one.



What do | plan to do next week
(8)7

e Get the interprocedural analysis in the "L.O.V.E."
prototype to generate first lock order graph form
the William's structures.



