
Detecting deadlocks using static
analysis in .NET

Filip Navara

filip.navara@gmail.com

mailto:filip.navara@gmail.com

What did I do last week?

• Investigated current implementations and
papers about data-flow analyses

– Frameworks

– Applications

– Interprocedural analysis

Intraprocedural data-flow analyses

• Liveness analysis
– Determines for each statement which variables

are used beyond that statement

– Start with an empty set of live variables

– Walks the control-flow graph backwards, mark
every used variable as live for the given statement
and propagate the information to next statement

– When two disjoint control-flow graph paths reach
a common node do an union of the live variable
sets

Intraprocedural data-flow analyses

• Reaching definitions

– Determines for each assignment statement up to
which statement the assigned definition is
unchanged (used for constant propagation, loop
invariant motion)

– Walks the control-flow graph forward

Intraprocedural data-flow analyses

• The above two algorithms can be solved using
the same method!

• Both walk the control-flow graph, one in
forward direction, the other in backward
direction

• Both operate in a specific domain with a set of
flow values in the given domain

• Both specify a merge operation over two
paths

Work-List Algorithm for IDFA

for each node n
 in[n] = υ; out[n] = υ
worklist = {entry node}
while worklist not empty
 Remove some node n from worklist
 out’ = out*n+
 in*n+ = ∩ out*p+
 out[n] = transfer(in[n], n)
 if out*n+ ≠ out’
 for each s ∈ succ[n]
 if s ∉ worklist, add s to worklist

May vs. Must

• May identifies possibilities

– Initial guess

• Empty set

– Transfer function

• Add everything that might be true

• Remove only facts that are guaranteed to be false

– Merge function

• Union

• Must implies a guarantee

Generalization of the IDFA

• Forward vs. Backward

• Transfer function (also called flow function)

• Meet operator (also called merge operator)

• Flow values (also called „facts“)

• If the domain is finite and the transfer function is
monotonic then the work-list algorithm is
guaranteed to reach a fix-point and finish

• Called „lattice framework“ or „monotone
framework“ in literature

Interprocedural analysis

• Flow-sensitive vs. flow-insensitive

• Context-sensitive vs. context-insensitive

• Path-sensitive vs. path-insensitive

• Top-down vs. bottom-up

Flow sensitivity

• Flow-sensitive analysis

– Computes one answer for every statement

– Requires iterative data-flow analysis

• Flow-insensitive analysis

– Ignores control flow

– Computes one answer for every method

– Can be computed in linear time

– Less accurate than flow-sensitive

Context sensitivity

• Context-sensitive analysis (also called
polyvariant analysis)

– Re-analyzes callee for each caller

• Context-insensitive analysis (also called
monovariant analysis)

– Perform one analysis or method independent of
callers

Path sensitivity

• Path-sensitive analysis

– Computes one answer for every execution path

– Practically a model checking approach

• Path-insensitive analysis

– Much faster

Top-down vs. Bottom-up

• Top-down

– Summarizes information from caller for callees

• Bottom-up

– Summarizes information form calles for callers

Solving IPA: Supergraphs

• Combine control-flow graphs of all methods
using a call graph and produce a control-flow
supergraph

• Work-list algorithm works unchanged

• Context-insensitive

• Flow-sensitive

• Potentially slow, each call creates a cycle

Solving IPA: Brute force

• Use an invocation graph, which distinguishes
all calling chains

• Re-analyze callee for all distinct calling paths

• Pro: precise

• Cons: exponentially expensive, recursion is
tricky

Solving IPA: Call Graph + IDFA

• Summarize effect of called method for callers (eg.
compute IDFA for called method and use out[exit
node])

• Use work-list algorithm on the call graph
• Context-insensitive, flow-sensitive
• Walking the call graph:

– Recurisive method calls form strongly connected
components

– All other methods can be analyzed individually in a
topological order (top-down) or reverse topological
order (bottom-up)

How is this all related to deadlocks?!

• May-alias, must-alias, escape analyses can be defined
as IPA
– http://www.cis.upenn.edu/~cis570/slides/lecture10.pdf

– http://www.cis.upenn.edu/~cis570/slides/lecture12.pdf

– http://www.cis.upenn.edu/~cis570/slides/lecture13.pdf

– http://www.cis.upenn.edu/~cis570/slides/lecture17.pdf

• „Static Deadlock Detection for Java Libraries“ (ECOOP
2005) uses IPA to detect deadlocks:
– Context-insensitive, flow-sensitive

– Defined in the terms of „lattice framework“

http://www.cis.upenn.edu/~cis570/slides/lecture10.pdf
http://www.cis.upenn.edu/~cis570/slides/lecture12.pdf
http://www.cis.upenn.edu/~cis570/slides/lecture13.pdf
http://www.cis.upenn.edu/~cis570/slides/lecture17.pdf

Obligatory comic strip

What do I plan for next week(s)?

• Write down a draft of thesis text that
describes the basic concepts of static analyses
(control-flow graph, data-flow analysis,
interprocedural analysis)

• Define what is needed for interprocedural
analysis framework and design an interface for
defining such analyses

