
Detecting deadlocks using static
analysis in .NET

Filip Navara

filip.navara@gmail.com

mailto:filip.navara@gmail.com

What did I do last week(s)?

• Focused on implementation:

– Learned basics of QuickGraph

– Class Hiearchy Graph

– Virtual method resolution

– CHA-based call graph

– Tested MoonWalker

• Skimmed over the „Bensalem“ and
„CalFuzzer“ papers

QuickGraph

• C# library, MS-PL license

• Principles borrowed from Boost.Graph in C++

• Data structures

• Algorithms

• Serialization

• Visualization

• Generic – algorithm can work on graphs
represented by different data structures

QuickGraph (contd.)

• Graph data structures
– Traditional - Adjacency list, Incidence matrix, ...

– Dynamic - Callbacks generate edges on the fly

– Compressed sparse row

– Mutable, Immutable

• Graph algorithms
– Search, Shortest path, Connected components,

Strongly connected components, Eulerian trails,
Page Rank and many others

Class Hierarchy Graph

• Graph showing type inheritence of a program

• Generated from single root method and
recursively for all referenced classes and thier
methods (a weak form of rapid type analysis)

• Class hierarchy graph for the program that
itself generates the graph has about 4700
vertices, mostly framework classes

Class Hierarchy Graph

• Difficult to visualize and
thus verify

Virtual method resolution

• Objective: Given a virtual method reference and
class hierarchy graph, return all the possible
overrides of the given method

• Turns out to be a bit harder than I expected due
to some CIL byte code features that I wasn‘t
aware of (overriding method with different
name)

• Can yield a list as large as the CH graph for
methods such as System.Object.ToString or
System.Object.GetType

CHA-based call graph

• Static call graph generated from a root
method with the help of CH graph and virtual
method resolution

• Generating the graph in advance is very time-
consuming due to methods such as ToString

• Generating the edges on the fly is feasible and
may be adaquate for some of the graph
algorithms, needs to be evaluated

Moonwalker

• Model checker for Mono („the other .NET
implementation“)

• Very incomplete, depends on the Mono
runtime

• Fails badly even on the simplest programs

• Bugs in both implementation of the threading
constructs as well as in the instruction
interpretation (eg. type cast of a delegate
yields incorrect results or crashes the tool)

CalFuzzer

• Adjusting thread schedules to simulate
deadlocks or data race conditions

• Adready implemented for .NET and still
subject of research

– http://research.microsoft.com/en-
us/projects/chess/

http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/

What do I plan for next week(s)?

• Finish the bits of implementation I didn‘t
manage to complete this week, ie.
encapsulate the call graph implementation

• Study the algorithms used for aliasing analysis

• Rewrite L.O.V.E. to take advantage of the
virtual method resolution and test the speed
and bottlenecks

