Detecting deadlocks using static
analysis in .NET

filip.navara@gmail.com



mailto:filip.navara@gmail.com

What did | do last week(s)?

* Focused on implementation:
— Learned basics of QuickGraph
— Class Hiearchy Graph
— Virtual method resolution
— CHA-based call graph
— Tested MoonWalker

 Skimmed over the , Bensalem® and
,CalFuzzer” papers



QuickGraph

C# library, MS-PL license

Principles borrowed from Boost.Graph in C++
Data structures

Algorithms

Serialization

Visualization

Generic — algorithm can work on graphs
represented by different data structures



QuickGraph (contd.)

* Graph data structures
— Traditional - Adjacency list, Incidence matrix, ...
— Dynamic - Callbacks generate edges on the fly
— Compressed sparse row
— Mutable, Immutable

* Graph algorithms

— Search, Shortest path, Connected components,
Strongly connected components, Eulerian trails,
Page Rank and many others



Class Hierarchy Graph

* Graph showing type inheritence of a program

* Generated from single root method and
recursively for all referenced classes and thier
methods (a weak form of rapid type analysis)

* Class hierarchy graph for t
itself generates the graph
vertices, mostly framewor

ne program that
nas about 4700

K classes



Class Hierarchy Graph

e Difficult to visualize and
thus verify




Virtual method resolution

* Objective: Given a virtual method reference and
class hierarchy graph, return all the possible
overrides of the given method

* Turns out to be a bit harder than | expected due
to some CIL byte code features that | wasnt
aware of (overriding method with different
name)

 Canyield alist as large as the CH graph for
methods such as System.Object.ToString or
System.Object.GetType



CHA-based call graph

 Static call graph generated from a root
method with the help of CH graph and virtual
method resolution

* Generating the graph in advance is very time-
consuming due to methods such as ToString

* Generating the edges on the fly is feasible and
may be adaquate for some of the graph
algorithms, needs to be evaluated



Moonwalker

Model checker for Mono (,,the other .NET
implementation)

Very incomplete, depends on the Mono
runtime

Fails badly even on the simplest programs

Bugs in both implementation of the threading
constructs as well as in the instruction
interpretation (eg. type cast of a delegate
vields incorrect results or crashes the tool)



CalFuzzer

* Adjusting thread schedules to simulate
deadlocks or data race conditions

* Adready implemented for .NET and still
subject of research

— http://research.microsoft.com/en-
us/projects/chess/



http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/

What do | plan for next week(s)?

* Finish the bits of implementation | didn‘t
manage to complete this week, ie.
encapsulate the call graph implementation

e Study the algorithms used for aliasing analysis

* Rewrite L.O.V.E. to take advantage of the
virtual method resolution and test the speed
and bottlenecks



