
Detecting deadlocks using static
analysis in .NET

Filip Navara

filip.navara@gmail.com

mailto:filip.navara@gmail.com

Week 1: What did I do?

• Collected papers that caught my interest and may
provide valuable information for further study

– Published at http://goo.gl/jSudL

– To be considered: Move to SVN ?

• Created code repository for experimental work

– Accessible at
https://svn.assembla.com/svn/nodeadlock/

• Experiment with extracting thread entrypoints
from larger .NET program

http://goo.gl/jSudL
https://svn.assembla.com/svn/nodeadlock/

References: Exception handling in
control-flow graph

• Analysis and Testing of Programs With Exception-
Handling Constructs, Saurabh Sinha and Mary
Jean Harrold

• Constructing Control Flow Graph for Java by
Decoupling Exception Flow from Normal Flow,
Jang-Wu Jo and Byeong-Mo Chang

• May be possible to decouple the exception
handling from normal flow for the purpose of our
analysis and thus make the function control flow
graphs smaller and easier to walk through

References: .NET Platform

• ECMA 335: Common Language Infrastructure
(CLI)

– Byte code specification, type system, overload
resolution, ...

• Threading in C#, Joseph Albahari

– Description of locking primitives in the .NET
framework

References: Static analysis in .NET
[MoonWalker, csLint]

• MMC: the Mono Model Checker, Theo et al.

• MoonWalker: verification of .NET programs, Neils
et al.

• Software Model Checking for Mono, Niels

• Optimising Techniques for Model Checkers, Viet

• Memoised Garbage Collection for Software
Model Checking

• csLint: http://www.garret.ru/csharp.html

http://www.garret.ru/csharp.html

References: Deadlock detection using
static analysis

• Detecting Potential Deadlocks with Static
Analysis and Run-Time Monitoring, Rahul et
al.

• Effective Static Deadlock Detection, Mayur et
al.

• Potential Deadlock Detection (GoodLock),
Havelund et al.

• Static Deadlock Detection for Java Libraries,
Williams et al.

References: Uncategorized (so far)

• Extracting a Petri Net Representation of Java
Concurrency, Bateman and Pouarz

• Variably Interprocedural Program Analysis for
Runtime Error Detection

• Practical Virtual Method Call Resolution for Java
– Useful for reducing call graphs and thus also reducing

search space and improving accuracy at expense of
additional time needed for determining the reduced
call graph

– Techniques presented in this paper could possibly be
applied to resolve C# delegate call trees

Problem: C# delegates

• event EventHandler Click;

if (Click != null)
 Click(this, EventArgs.Empty);

button1.Click += button1_Click;

public void button1_Click(object sender,
 EventArgs e)
{
 ...
}

• When delegate is called, which method could be invoked?

Problem: C# delegates, contd.

• Naive approach
– For each delegate type T (eg. EventHandler,

Action, Action<T>, etc.):
• Detect all invocations of new T(m)

• Consider all invocations of T() to call all possible
methods m

– Pro: Easy to implement, low memory footprint

– Con: Adds plenty of edges to call graph that
cannot happen at run-time and thus are likely to
cause false positives

Problem: C# delegates, contd.

• Graph approach
– Contruct a graph

• Each node represents a delegate variable (static, field, local or
parameter [stack location?]) and there are nodes for all delegate
variables in the analyzed program

• Each edge represents an assignment to variable in the program, either
implicit (a = b) or explicit (eg. method call created edges between local
variables and parameters)

• Virtual method invocations have to be resolved using overload
resolution [?]

– Each invocation of delegate variable could be traced back by DFS
to all possible assigned values

– Pros: Low false positive rates, sparser call graph
– Cons: Memory footprint [?], analysis time [?]
– How to handle arrays? What about aliasing?

Week 1: What do I plan to do?

• Create test cases that exercise various edge
cases in call graph extraction

– Calling using delegates, events

– Virtual method calls

– Thread static variables

• Read the „Effective Static Deadlock Detection“
paper and presentation by Mayur et al.

