
Detecting deadlocks using
static analysis in .NET

Filip Navara
filip.navara@gmail.com

mailto:filip.navara@gmail.com

What did I do last week?
Interprocedural analysis using callee summaries and
work list approach for recomputing recursive chains

Implemented the basic algorithm
Fixed several test cases and tested the underlying
analysis on subset of the .NET Framework

Fixed bugs in emulation of stack behavior
Fixed bugs in instruction interpretation (casting,
array handling)

Williams vs. my program
Intraprocedural data-flow analysis

Several instructions probably still have incorrect
implementation
Comparing of states is incomplete, ie. each cycle is
processed only twice instead of reaching an
endpoint (~ 1 week)

Interprocedutal data-flow analysis
Basic framework is in place
Incomplete implementation of merging callee lock
order graph into caller's lock order graph (~ 1 week)

Postprocessing
Not done, but easy enough (~ 1 week)

Williams vs. my program (cont.)
Optimizations leading to less false positives

Detecting unaliased fields (~ 1 - 2 weeks)
Detecting readonly fields (~ 1 week)
Callee/caller type optimization (not investigated yet)

.NET 4 construct problem
.NET 4 introduced a new "lock" construct

lock (a) { ... } translates to
try {
 Monitor.Enter(a, out acquiredA);
 ...
}
finally {
 if (acquiredA) Monitor.Exit(a);
}
Requires path-sensitive data-flow analysis for proper
handling of the construct. Current workaround is to
assume that when merging branches the one with
least locks is the correct one.

What do I plan to do next week
(s)?

Get the interprocedural analysis in the "L.O.V.E."
prototype to generate first lock order graph form
the William's structures.

