
Detecting deadlocks using static
analysis in .NET

Filip Navara

filip.navara@gmail.com

mailto:filip.navara@gmail.com

What did I do last week?

• Got the spanning tree generation working, so
the graphs can be visualized using Walrus now

• Tested the basic dataflow compution and
roworked some of the helper routines to be
use better representation (ie. the flow
function is now called per instruction instead
of per basic block, ...)

Walrus

• The patological case for generating
spanning tree using BFS:

– The BFS is executed from „roots“,
where „root“ is defined as vertex
with no incomming edges

– The A <-> B cycle on the right was
never considered a „root“ even
though it can‘t be reached by any
edges outside of the cycle

Code plan

What do I plan to do next week(s)?

• Start adapting the „L.O.V.E.“ prototype
– Replace the ad-hoc state structures with the HeapObjects

and state structure resambling the ones defined by Amy
Williams

– Use data-flow work list algorithm to compute the per-
method lock graphs

– Implement better resolution of virtual methods using Class
Hieararchy Graph (currently the type of the called object is
not considered in the implementation, but it can
significantly reduce the number of possible called method
for eg. System.Object.ToString)

– Long term: Use the above building block to compute
interprocedural lock order graph that takes reentrancy into
account

