MSBee Test Plan.doc

	[image: image1.png]
	MSBuild Extras - Toolkit for .NET 1.1 “MSBee”: Test Plan

	
	
	
	Last updated: 5/3/2006 4:38 PM

	

	author
	John D’Addamio
	Released date
	5/5/2006

	Project location
	MSBee Homepage

11. Overview

1.1 What’s being covered
1
1.2 What’s not being covered
1
1.3 Required testing tools
1
2. Area breakout
1
2.1 MSBee Unit Tests
1
2.2 MSBee Functional Tests
1
2.2.1 Automated Functional Test Infrastructure
2
2.2.1.1 Scenario Test Driver
2
2.2.1.2 Test Configuration File
2
2.2.1.3 Distributed Test Projects and Solutions
3
2.2.1.4 Additional Test Projects and Solutions
3
2.2.1.5 Test Failures
3
2.2.1.6 Adding or Editing Tests
3
2.2.2 General Build Functionality
4
2.2.3 Generating Resources
4
2.2.4 Resolving COM References
4
2.2.5 Resolving Assembly References
5
3. Running build and test scripts
5
3.1 Build Verification
5
3.2 Test Verification
5
3.3 Running the Tests Through the Debugger (Optional)
6
4. Change History
6

1. Overview
This test plan addresses test coverage for the 1.0 Release of MSBuild Extras - Toolkit for .NET 1.1 “MSBee”.

1.1 What’s being covered
This test plan covers the following areas:
· MSBee Unit Tests

· MSBee Functional tests

· Automated Functional Test Infrastructure

· General MSBee Functionality
· Generating Resources

· Resolving COM References

· Resolving Assembly References

1.2 What’s not being covered
This test plan does not cover MSBuild testing.
1.3 Required testing tools
In order to enable developers with any edition of Visual Studio 2005 to contribute to projects developed by the Developer Solutions Team, we are using NUnit 2.2.7 for testing MSBee. You can download NUnit from http://sourceforge.net/projects/nunit. Additionally, there are many tools available online that can integrate NUnit within the Visual Studio IDE. If you are not familiar with NUnit, read the relevant documentation that is installed during the download. You can find that documentation at <NUnit installation directory>\NUnit 2.2.7\doc\index.html.
2. Area breakout
This section describes verifications for the key feature set listed in section 1.1 along with their sub-feature sets.

2.1 MSBee Unit Tests
The MSBee unit tests are fully automated and are included in the MSBee solution under the MSBeeUnitTests project. The unit tests cover the methods in various MSBee tasks, including:

1. GenerateResource

2. GetFrameworkPath

3. GetFrameworkSDKPath

4. GetRegistryValue

5. ResolveComReference (interface to MSBee’s RCRFX1_1.exe)
2.2 MSBee Functional Tests
Most MSBee functional testing is fully automated. There are some scenarios that test MSBee with only its minimal set of requirements installed. Since Visual Studio 2005 is not a requirement for using MSBee, although we assume that you are using Visual Studio 2005 as a development vehicle, we have not included these scenarios in the automated tests. Therefore, these tests should be performed manually on machines where Visual Studio 2005 is not installed. These scenarios have been labeled with (manual test).

2.2.1 Automated Functional Test Infrastructure
These tests are included in the MSBee solution under the MSBeeScenarioTests project. The scenario tests currently cover end to end testing of MSBee including: general build functionality, generating resources, resolving COM references, and resolving assembly references.
2.2.1.1 Scenario Test Driver

A simple test driver was implemented. The basis of this driver is the MSBeeScenarioTests class. This class is designed to work with the NUnit test execution harness.

The InvokeScenarioTests method is the engine of the test driver. It takes a test project name and a build configuration name as its parameters. It builds the specified configuration of the test project and then performs various checks on the build behavior using the ScenarioTest class.
Most of the MSBeeScenarioTests class consists of methods tagged with the NUnit [Test] tag. This tag tells the NUnit test execution harness which methods to invoke as tests. Each of these test methods call the MSBeeScenarioTests class’s InvokeScenarioTests method using a string which represents a test named in the test configuration file. InvokeScenarioTests() is usually called multiple times per test method to build different configurations (i.e. Debug, Release, or Custom configurations).

The ScenarioTest class constructor loads the test configuration file. The RunTest method of that class is invoked by MSBeeScenarioTests.InvokeScenarioTests() and takes a test name and a build configuration name as parameters. The method uses the test name and information from the test configuration file to determine which test project or test solution to build. The ScenarioTest class also contains many methods that validate the build behavior specified by the test configuration file. These methods test for: MSBuild’s exit code, number of build errors, number of build warnings, files expected to be generated, files that should not be generated, which .Net Framework version’s compilers were used, resources that should be linked, references that should be passed to the compilers, etc.

2.2.1.2 Test Configuration File

The MSBee Scenario test driver uses a test configuration file (ScenarioTestsConfig.xml) to determine which test projects or test solutions are built and which post-build checks are performed. The test configuration file allows you to specify default build parameters that are applied to all tests and specify individual information for tests. The test information includes some information which is configuration dependent (e.g. files to be generated in Release configuration may not include .pdb files). So, the XML schema collects all configuration dependent information under Configuration tags. Other information is configuration independent (e.g. solution or project to be built) and those tags are only used once per test.

The ScenarioTestsConfig.xml is part of the MSBeeScenarioTests project and contains details about the use of its various tags as well as the existing test cases which can be used as examples.

2.2.1.3 Distributed Test Projects and Solutions

The MSBee solution does not actually incorporate test projects and solutions. However, the test projects and solutions are included in MSBee’s source control tree. The test projects and solutions can be found under the MSBee\Test\Projects\PU\Converted directory of the source control tree. Each of the test solutions are used in one or more of the tests defined by the test configuration file and the MSBeeScenarioTests class.

2.2.1.4 Additional Test Projects and Solutions

All the test projects distributed with MSBee are relatively simple and were developed either as test vehicles or tutorial examples. We encourage you to increase the depth of testing by adding real test projects to the suite when testing MSBee, especially if you have modified MSBee!

You can use your own applications (e.g. the one that made you want to add a feature to MSBee or the one that caused you to try MSBee) or download free software source code from the internet. Some real (and free) applications that were used during MSBee’s pre-release testing are shown in the table below:

	Application Name
	Downloaded from:

	BKNetStat
	GotDotNet User Sample: netstat in C#

	TetrisNet
	GotDotNet User Sample: Tetris game

	ErrorLogger
	GotDotNet User Sample: Error Logger

2.2.1.5 Test Failures

The ScenarioTest class (described above in the Scenario Test Driver section) uses NUnit’s Framerwork.Assert() to test conditions. When an Assert() fails, a stack trace will appear in the build output stream. The stack trace will identify the test name that failed and include an error message from ScenarioTest class which describes the error detected (e.g. the expected exit code is 0 but the actual exit code was 1.). The test name will be in the format Microsoft.Build.Extras.FX1_1.ScenarioTests.MSBeeScenarioTests.FailingTestName and will be the name of a method tagged [Test] in the MSBeeScenarioTests class. When you see such a failure, find the test method in MSBeeScenarioTests and get the test name used to call InvokeScenarioTests. Use that test name to search the ScenarioTestsConfig.xml file for the relevant XML information.
If you are running tests using the runtests.cmd script (described below in the Test Verification section) or using NUnit’s command line tool (nunit-console.exe), you will see these stack traces at the end of the build output in a list entitled Failures.

If are running tests using NUnit’s GUI interface (nunit-gui.exe), the output from failures will be under “Errors and Failures” tab. In this situation, the test identification and the error message from ScenarioTest class will be displayed in one pane and the stack trace will be displayed in a lower pane.

2.2.1.6 Adding or Editing Tests

To add a new test, you will have to add a new method to the MSBeeScenarioTests class and then mark your method with the NUnit [Test] attribute. Your method should execute MSBeeScenarioTests.InvokeScenarioTests once for each configuration you want built in your test.

You will also have to add XML information to the test configuration file (ScenarioTestsConfig.xml) which defines the test name, the path to the solution or project which should be built, the build configurations you will use and their relevant data, and any post-build checks you want to have performed.

If you want to modify an existing test, you can add new configurations to the appropriate test method by adding calls to MSBeeScenarioTests.InvokeScenarioTests. If the configurations are not already defined by the relevant section of the test configuration file, you will have to add them there too. If you want to stop testing with a configuration, delete the call to InvokeScenarioTests from the test’s method.

You can change the post-build checks or other information used for an existing test by editing the test configuration file.

2.2.2 General Build Functionality
Scenarios to verify
These tests are partially automated. Manual tests are noted. The following scenarios test basic features of MSBee:
1. Verify that MSBee can successfully build projects for .NET Framework v1.1 and uses the correct version of the .NET Framework assemblies.

2. Verify that MSBee can successfully build projects for all configuration modes (Debug, Release, and Custom) and can build all the supported build targets (i.e. Clean and Rebuild).
3. Verify that setting MSBee’s BaseFX1_1OutputPath property causes OutputPath and OutDir to be changed.
4. Verify that the FX1_1 constant is being set by MSBuildExtras.FX1_1.VisualBasic.targets and MSBuildExtras.FX1_1.CSharp.targets and that setting the constant produces the expected behavior from the compilers.
5. Verify that applications built by MSBee can be run in an environment with only the targeted version of .NET FX installed. (manual test)
6. Verify that MSBee can successfully build solutions or projects with only .NET FX 2.0, .NET FX 1.1, and .NET SDK 1.1 installed. (manual test)
2.2.3 Generating Resources
Scenarios to verify
These fully automated tests verify that MSBee’s GenerateResource task succeeds with:
1. Individual resources

2. Resource libraries generated by the assembly linker

2.2.4 Resolving COM References
Scenarios to verify
These fully automated tests verify that, while building a solution, MSBee’s ResolveCOMReference task can successfully resolve:
1. Direct COM references (e.g. a project references a COM object)

2. Indirect COM references (e.g. a project references a DLL which references a COM object)

3. Multiple COM references from the same project

2.2.5 Resolving Assembly References
Scenarios to verify
MSBee sets the AssemblySearchPaths property in the same set of directories and in the same order that .NET v1.1 used. Since .NET v2.0 and MSBuild use a different set of directories and a different order, we need to demonstrate that MSBuild has honored MSBee’s override of the AssemblySearchPaths property. These fully automated tests verify that:
1. MSBee can successfully build solutions which make cross project assembly references to projects in the same solution (same language and cross language references)

2. MSBee can successfully build solutions which make assembly references as file references to projects that are not in the same solution

3. The directories specified by MSBee’s AssemblySearchPaths property are searched and that they are searched in the specified order.

3. Running build and test scripts

Prior to checking in or submitting a code review request, you can use build and test verification scripts to ensure any modifications result in a successful build and pass both unit and scenario tests.

Build and test scripts are provided with the MSBee project in the Verification Scripts directory.

3.1 Build Verification

To perform a build, run the build.cmd script from a command prompt. This script takes two parameters: the first parameter specifies a build target and the second parameter specifies the build configuration. The usage of build.cmd is:

build.cmd [clean | rebuild] [debug | release | fxcop-debug | fxcop-release]

When attempting a debug or release MSBee build, a successful build triggers a post build event which builds the MSBee installer and then runs the installer. This is necessary for the functional tests, which rely on MSBee being installed.
The fxcop-debug and fxcop-release configurations produce debug and release builds, respectively, of MSBee and also run FxCop 1.35 as a post build event. If any FxCop violations are found, the build fails. Note that the MSBee installer is not produced for FxCop builds.
3.2 Test Verification

To run a MSBee test pass, run the runtests.cmd script from a command prompt. This script takes one parameter that specifies the build configuration to test. The usage of runtests.cmd is:

runtests.cmd [debug | release]

When a test run completes, all the scenario test output is written to a file named scenarioOutput.txt.
3.3 Running the Tests Through the Debugger (Optional)

If you would like to be able to step through your tests using the Visual Studio debugger, follow the steps below, being sure that you have already built the tool given the configuration you wish to test (debug or release):

1. In Visual Studio, select File->Open->Project/Solution

2. Navigate to your NUnit install directory, and select nunit-console.exe.

3. The executable will load in the Solution Explorer. From the Solution Explorer, right-click on nunit-console.exe and select “Properties”.

4. To set up the tool for your test environment, change the following options:

Command Arguments (be sure to surround path with quotes):
For Unit Tests:

“<Path to MSBee>\MSBeeUnitTests\bin\<configuration>\MSBeeUnitTests.dll”

For Scenario Tests:

“<Path to MSBee>\MSBeeScenarioTests\bin\<configuration>\MSBeeScenarioTests.dll”

Debugger Type: “Managed Only”

5. Open a file from the unit tests and set a breakpoint where you would like to start stepping through the tests.

6. Press F5 to Start debugging.
4. Change History

	Change
	Changed By
	Date

	Created
	John D’Addamio
	5/5/2006

Microsoft Confidential. © 2006 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Any use, distribution or public discussion of, and any feedback to, these materials is subject to the terms of the attached license. By providing any feedback on these materials to Microsoft, you agree to the terms of that license.
ii
Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2006

IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

