Created: (Microsoft Corporation Confidential

File Name: Originator: Last saved: by: Printed:

Page 1 of 1

MSBee Installer - Design Document
Page 1 of 3

MSBee Installer - Design Document
Abstract

This document provides design and implementation information regarding the installer for the MSBuild Extras – Toolkit for .NET 1.1 (henceforth referred to as “MSBee” in this document).
Author(s)
Craig Lichtenstein
Related Documents
	Purpose
	Document Location

	Functional Specification
	MSBee_Installer.doc

	WiX Tutorial
	http://www.tramontana.co.hu/wix/

1. High Level Design
The installer requires the creation of an MSI file and possibly a bootstrapper. The MSI file is a database that contains the information and logic required for the install. Additionally, it can behave as an executable to start an installation. The bootstrapper is an executable which checks for additional requirements prior to executing the MSI and allows a user to install those requirements before proceeding with the installation.
For the MSBee Installer, we are creating an MSI that works with Windows Installer 3.01. There are many tools available for creating an MSI file, two of which are WiX and Visual Studio Setup Projects. The MSBee installer will be created using WiX. WiX is now available on http://www.sourceforge.net. This allows anyone who wants to rebuild our installer to obtain the WiX binaries. Investigation showed that WiX is a respected tool in the developer community and commonly used. Additionally, it’s a powerful tool that can be extended as necessary so, while MSBee currently has a simple install scenario, it’s capable of handling complex installs.
Currently, the MSBee installer does not require a bootstrapper. There are examples of WiX files verifying .NET Framework requirements and it should be possible to extend those to verify that the .NET 1.1 SDK is present. Additionally, the installer spec does not require that we install the redists if they’re not present; only that we provide a URL for downloading (see URLs for MSBee Prerequisites for a possible caveat). Finally, MSBee is targeted at managed code developers who likely have these components installed anyway so a bootstrapper is overkill.
The installer UI will leverage one of the WiX provided UI’s. See the WiX Tutorial link above for an explanation of the UI choices. Because we don’t need a setup-type screen for the installer, we can use either the FeatureTree or Minimal UIs. The FeatureTree UI removes the setup-type screen and always assumes a Custom setup. The Minimal UI provides a single dialog that combines the welcome and licensing pages. I have chosen the Minimal UI to keep the UI simple and since adding a dialog seems easier than skipping over the setup-type dialog. Thus, once the EULA is accepted, the user will see a dialog allowing him to install a StartMenu shortcut to the ReadMe (see Shortcut Installation).
2. Detailed Design

2.1. Windows Installer (MSI) Design
Windows Installers are implemented in WiX using the concepts of products, packages, features, and components. For this installer, the product is identified as ‘MSBee’, with a version number matching the assembly version of the MSBee DLL, and the manufacturer being “Microsoft Corporation”. The package manufacturer is also “Microsoft Corporation” and its comments field matches the description field in the MSBee functional specification. There is one feature, named ‘MSBee’, with a description matching the package’s comments field. This feature has one component, named ‘MSBee’, which contains the targets files, the MSBee DLL, and the MSBee Read-Me along with its Start Menu shortcut.

2.2. WiX GUIDs
WiX installer files (which use a .wxs suffix) require unique GUIDs for the package ID, the product ID, and each MSI component ID. WiX auto-generates the GUID for the package ID; this functionality is provided since the package GUID needs to be different for each package you create. The product GUID and component GUIDs, however, should remain consistent for each build of the installer and thus must be generated once using the uuidgen.exe tool that comes with Visual Studio 2005 (under Common7\tools). Since we don’t intend to patch our installation, we do not need to specify an update GUID. Note that in WiX files, the letters in a GUID should all be uppercase.
2.2.1. MSBee Installer GUIDs:

Product GUID is: 5DD465DE-5024-4716-ACE9-F912385CD19F
Component GUID [for Id=‘MSBee Files’] is: 38AD3462-E99A-4F72-8511-40468136BB75
2.3. Shortcut Installation
The current design allows the user to install a Start menu shortcut to the MSBee ReadMe after accepting the EULA. A dialog appears with a checkbox that describes this option. The default is that the checkbox is checked, so the shortcut is installed. This makes shortcut installation on silent installs easy since both scenarios (UI and non-UI) can use the same property to control the installation.
2.4. Automatic Installer Behaviors

Because we’re using WiX and Windows Installer, certain install behaviors and capabilities don’t need to be manually implemented. These include MSBee removal, ARP changes for installation and removal, installer logs, silent installs, and not installing MSBee over a previous installation. Not installing over a previous install works without an update GUID.
2.5. URLs for MSBee Prerequisites

If an MSBee prerequisite a missing, a dialog box will appear telling the user that the missing component is not present. Additionally, the message instructs the user to go to either http://msdn.microsoft.com/netframework/downloads/framework1_1/default.aspx or http://msdn.microsoft.com/netframework/downloads/updates, depending on what’s missing, to obtain the component.

3. Test/Build support
There will be two types of testing for the installer. Manual testing will occur during development and automated testing will occur upon check-in.

3.1. Manual Testing:

Expected installer screens appear during installation

Files were placed correctly post installation

MSBee was added to ARP

Installation fails if the necessary requisites aren’t installed

Installation fails if MSBee is already installed

The ReadMe shortcut is only installed when selected

Installation works via the UI and the command line

Validate the MSI using the MsiVal2 tool, which comes in the WindowsInstaller SDK.
3.2. Automated Testing:
Successfully building the MSBee project (in the MSBee solution) will trigger building the installer, uninstalling MSBee if already present, and then running the installer. Once building and installing the MSBee solution is complete, the scenario tests can be run. Since the scenario tests are dependent on the presence of the MSBee files, they will fail if the files aren’t installed.
3.3. Installer Integration with the MSBee solution
Because the installer will be released with the MSBee source code, it should be integrated into the MSBee solution. Currently, when an MSBee build is successful, a post build event occurs where the MSBee DLL and targets files are copied to the %ProgramFiles%\MSBuild\MSBee directory. This event will be replaced with a batch script that builds the installer, silently uninstalls MSBee (if it’s currently installed), and then silently installs MSBee using the newly built files. After uninstalling, the script should confirm the files have been removed and fail otherwise. The script should also confirm the files are present after installation and fail otherwise.
4. Change History
5/5/06 - Document completed for 1.0 release

MSBee Installer Design Document.doc created by Craig Lichtenstein.

