Created: (Microsoft Corporation Confidential

File Name: Originator: Last saved: by: Printed:

Page 1 of 1

MSBee ResolveComReference - Design Document
Page 2 of 5

MSBee ResolveComReference - Design Document

Abstract

This document provides design and implementation information regarding the ResolveComReference task for the MSBuild Extras – Toolkit for .NET 1.1 (henceforth referred to as “MSBee” in this document).
Author(s)
Craig Lichtenstein

Related Documents/Links
	Purpose
	Document Location

	Solution Name
	MSBee

	Solution Home Page
	http://go.microsoft.com/fwlink/?LinkId=59384

1. High Level Design
COM references are commonly used in Windows programming and must be resolved like any other assembly being referenced by the compiler. In this case, resolving a COM reference doesn’t just include finding its location, but also generating interop assemblies if they’re not already present. This latter requirement affects MSBee since any interop assemblies generated through MSBuild will be .NET 2.0 assemblies, which are not compatible with the .NET 1.1 compilers. Therefore, MSBee requires its own version of the ResolveComReference (RCR) task.
Our approach is to rebuild the necessary MSBuild code, for resolving a COM reference, into a .NET 1.1 executable. An additional class creates and executes a RCR task object that resolves the COM references. Since the application is executed in the 1.1 runtime, .NET 1.1 interop assemblies are produced. An app.config file, present with the executable, ensures that it only runs with the 1.1 runtime.
To run the executable, MSBee has its own RCR task. This task starts the executable, reads the executable’s output file, and passes the data back to MSBuild.
Before proceeding with this plan, we considered rewriting the RCR task ourselves. That was quickly abandoned since the RCR task integrates the already complex chore of resolving a reference with programmatically generating interop assemblies as necessary, as opposed to explicitly invoking tlbimp or aximp. Further review led to the conclusion that leveraging the MSBuild team’s work is simpler and far cheaper since development and testing were already completed.
Another alternative was to leverage the COM reference code in the VS 2003 IDE. A review of that code quickly demonstrated that it was very complex and intertwined with the standard assembly resolution methods. Thus, identifying the parts we need and extracting them correctly would be more challenging and more time consuming than our current approach.
A third alternative was building the MSBuild code as a .NET 1.1 DLL. The issue here is that when a DLL is loaded by msbuild, it’s run with the .NET 2.0 CLR. Thus, .NET 2.0 interop is produced, which can’t be referenced by a 1.1 compiler.

2. Detailed Design
2.1. RCR Executable Interface
The RCR executable is a command line application named RCRFX1_1.exe. We expect the executable to only be invoked by the RCR task and we won’t support a user directly running it from the command line. Consequently, no usage message will be provided if switches or their inputs are incorrect. If a failure occurs due to missing switches or an improperly formatted or non-existent response file, the executable will display a reminder that it should not be invoked from the command line and is only intended to be run from MSBee. If a runtime error occurs that’s not directly related to invalid input, the executable will display the MSBuild error messages it employed as a task. However, the messages will be written to the console since the MSBuild logging facility won’t work within the executable.

2.2. Installer
RCRFX1_1.exe and its app.config file will be deployed by the MSBee installer into the MSBee directory.
2.3. RCR Task Design
The RCR task is an MSBuild ToolTask
 that invokes the RCR executable. The task mirrors the actual MSBuild RCR task in terms of its input and output properties. The contents of the input properties need to be passed to the executable so the real RCR task can function. Additionally, the output properties need to be populated with output from the executable.

2.3.1. Sending Data to the Executable

The RCR task starts the executable via the ExecuteTool method, which is inherited from the ToolTask class. This method has parameters to specify command line arguments and contents for a temporary response file. String properties are passed via the command line. The task’s GetFormattedMetadata method converts any MSBuild TaskItems
 to a string which contains the TaskItem’s name and its metadata. In the ExecuteTool method, MSBuild writes the string of TaskItem data to the response file. Using the response file avoids overloading the command line with data. MSBuild provides a path to that file as a command line parameter and is responsible for creating and deleting the response file.
Note that we cannot use serialization to convert the TaskItem objects to strings. TaskItems are not marked as Serializable and do not implement the ISerializable interface. Thus, the RCR task has private methods to convert TaskItems to formatted strings and to construct TaskItems from properly formatted strings.
2.3.2. Retrieving Data from the Executable

When the executable returns, the RCR task uses the exit code from ExecuteTool to determine if it succeeded or failed. On success, the task attempts to read the executable’s output file by invoking its ReadOutputFile method. The file contains TaskItem data for the now resolved COM references. The class’s SetItemMetadata method reconstructs the TaskItem objects from the file data, and then they’re added to the appropriate output arrays. If the executable fails, the RCR task’s Execute method simply returns false.
2.4. RCR Executable Design
The RCR executable is invoked by the MSBee ResolveComReference task and will do the real work of resolving COM references and generating interop assemblies. The executable consists of two parts: the MSBuild code that was migrated to .NET 1.1 and an added class that contains the main method.

2.4.1. List of Code Changes

To make the RCR executable build for .NET 1.1, changes needed to be made to the MSBuild code.
2.4.2. ResolveComReferenceExecutable Class

The ResolveComReferenceExecutable class houses the application’s main method. The main method constructs a RCR task object that will do the actual work.
2.4.2.1. Retrieving Data from the Task

The ParseCommandLine method is invoked to parse the executable’s command line. The command line arguments are assigned to the matching properties of the RCR object. The ReadResponseFile method is used to read the temporary response file. The data in the response file is passed to the SetItemMetadata method which rebuilds each TaskItem object. Each TaskItem is then added to the appropriate RCR object’s input array.
2.4.2.2. Sending Data to the Executable

Once all the data is inputted, the RCR object’s Execute method is invoked. If it succeeds, the RCR object’s output properties will contain TaskItems representing the now resolved COM references. The WriteTempFile method is invoked to generate an output file, and it uses the aforementioned GetFormattedMetadata method to convert the TaskItems to formatted strings. These strings are written to the output file and are parsed by the RCR task. If the Execute method fails, the executable returns -1. This indicates to the RCR task that resolving COM references failed.
3. Test/Build support
3.1. Unit tests

3.1.1. The RCR Task

· Execute

· Graceful error handling if the RCR properties aren’t set as expected

· Graceful error handling if the executable returns true but the file doesn’t exist (for reading and deleting)
· ReadOutputFile

· Graceful error handling when the file isn’t present, it’s improperly formatted, or contains unexpected fields

· Constructed TaskItems match the file’s content
· GetFormattedMetadata

· Returned string matches an inputted TaskItem

· No metadata with null values appears in the returned string

· SetItemMetadata

· Returned TaskItem’s metadata matches inputted values

· Bad string arrays (wrong size, null) are handled

If time permits, it may be possible to construct a unit test that executes the entire MSBee RCR task.

3.1.2. The RCR Executable

For the RCR executable, we may be able to use VS 8.0 unit tests if we’re validating .NET 1.1 specific behaviors. Unit tests are needed for:

· main

· Gracefully fail if the command line is empty

· ParseCommandLine

· Graceful error handling if the command line arguments are unexpected or improperly formatted

· Values for RCR object’s properties match the command line’s input
· ReadResponseFile

· Graceful error handling when the file isn’t present, it’s improperly formatted, or contains unexpected fields
· Constructed TaskItems match the file’s content

· WriteTempFile
· Creates the output file where expected

· File data matches the passed in TaskItems
The executable also uses the GetFormattedMetadata and SetItemMetadata methods that the RCR task uses so their unit tests can be duplicated.
3.2. Building the RCR Executable
To build the RCR executable, we dogfood MSBee since the RCR executable doesn’t need to resolve COM references. Dogfooding MSBee requires the MSBee DLL to be built prior to building the executable.

The RCR Executable is contained in its own solution and consists of three projects: Microsoft.Build.Framework.FX1_1, Microsoft.Build.Utilities.FX1_1, and ResolveComReference.FX1_1. The Framework and Utilities DLL’s are subsets of the Microsoft.Build.Framework and Microsoft.Build.Utilities assemblies, respectively. The executable contains a subset of the Microsoft.Build.Tasks assembly. The Framework assembly is built first since the Utilities assembly references it. The RCR executable is built last since it references both assemblies.

The RCR executable is stored in its own solution due to its dependency on MSBee. When these projects were part of the MSBee solution, they prevented the MSBee project from updating its own DLL in the installer staging directory since the DLL was in-use by the executable’s projects. This stopped the MSBee DLL from being updated prior to the installer being built. Now, a batch script runs during the MSBee project’s post-build event that invokes msbuild on the RCR executable solution file. This occurs after the MSBee DLL is copied to the staging directory but before the installer is built.

Because we don’t intend for people to use our .NET 1.1 versions of the MSBuild Framework and Utilities DLLs, we only want to provide the executable on installation. To avoid needing to distribute the DLLs, ilmerge.exe is run as a post-build event. ilmerge can merge multiple .NET assemblies together into one; in this case, we merge the DLLs with the executable so the application doesn’t need the DLLs to be present when running.
4. Change history

	Date
	Changed by
	Change

	3/7/2006
	Craig Lichtenstein
	Created

� A ToolTask, when overridden in a derived form, provides functionality for a task that wraps a command line tool.

� A TaskItem defines a single item of an MSBuild project as it’s passed into a task. For the RCR task, inputted TaskItems represent COM references that need to be resolved or already resolved .NET assembly references.

3 March 2006 Microsoft Corporation.

