Chunker Example

Abstract

This example shows how to use invariants to explicate implicit as-
sumptions in data structures and how they allow one to satisfy contracts
on other APIs, such as System.String.

1 Adding the Contract Library Reference

If you are using Visual Studio 2008, or if you for some reason want to target a
pre-v4d .NET runtime, then you need to:

e Change the target framework of the project.
e Manually add a reference to Microsoft.Contracts.dll

Otherwise, you may skip this section and go directly the next section!

To add the reference, open the Chunker solution and right-click on References
in the Chunker project and select Add Reference. Find the Microsoft.Contracts
library in the .NET tab as shown below and click OK.

@5 Add Reference @Iﬂ_hr
NET | COoM | Projects | Browse | Recent|

Component Name Version Runtime Path o
Microsoft.Build.Engine 3500 w2.0.50727 CM\Pregram
Microsoft.Build.Framework 2.0.0.0 v2.0.50727 C:\Windows’l—l
Micresoft.Build.Framework 3,500 v2.0.50727 C\Program
Microsoft.Build. Tasks 2000 v2.0.50727 ChWindows'
Microsoft.Build. Utilities 2000 v2.0.50727 CAWindows'
Microsoft.Build. Utilitiesv3.5 3.5.00 v2.0.50727 C\Program

: Microsoft.Contracts Library 10,00 w2.0.50727 c\Program f
Microsoft.Deployment.Co... 3.0.0.0 w2.0.50727 C\Pregram
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Res... 3.0.0.0 w2.0.50727 CM\Program =
4 il | 3

0K] [Cancel

2 Enabling Static Checking

After adding the proper reference, go to the Properties of project Chunker, select
the Code Contracts pane (at the bottom), and enable static checking by clicking
on the static checking box. Also enable non-null checking if you wish.

Application
Configuration: | Active (Debug) - Platform: | Active (Any CPU) -
Build
Build Events Assembly Mode [Etandard Contract Requires vl
T Runtime Checking 1.450313.0
= [E] Petfomn Runtime Contract Checking | Full
Resources Custom Rewriter Methods
Services
Settings Static Checking
Perform Static Contract Checking Check in Background [Show squigglies
Reference Paths
Implicit Mon-Null Obligations [Implicit Arithmetic Obligations [~] Cache Results
Signing [] Implicit Amay Bounds Obligations [] Redundant Assumptions [] Show Assumptions
Code Analysis [T] Implicit Enum Writes Obligations [T] Implicit Pointer Usage Obligations
[T] Infer Requires Suggest Requires [T] Disjunctive Requires
Code Contracts 7] Infer Ensurss 7] Sugest Ensurss
[T Infer Invariarts for readonly [7] Suggest Invariarts for readonly
low hi
[Baseine Warming Level: {J

3 Overview

The Chunker class provides a way to split a string into equal size sub-strings,
each holding a fixed number (chunkSize) of characters. The chunks are obtained
by repeated calls to NextChunk

A chunker object holds on to the original string in stringData. This value
is never modified. The size of each chunk is stored in chunkSize and also does
not vary over the running time. Finally, returnedCount holds the number of
characters returned from stringData so far. Alternatively, we can think of it as
the index into stringData at which to return the next chunk.

4 First Attempt

Build the example. The build should succeed. After a moment!, the static
checker should warn about the call to Substring in NextChunk.

Error List
@ 0Emors | 1\ 5 Wamings | (i) 1 Message

Description = File Line Column Project
6 CodeContracts: Checked 16 assertions: 11 correct 5 unknown Chunkerdll 1 1 Chunker
42 CodeContracts: Passibly calling a method on s null reference this.stringData’ Chunkercs 30 7 Chunker
45 CodeContracts: requires unpraven: 0 <= length Chunkercs 30 7 Chunker
41 CodeContracts: requires unproven: 0 <= startindex Chunkercs 30 7 Chunker
43 CodeContracts: requires unproven: startindex <= this.Length Chunkercs 30 7 Chunker
44 CodeContracts: requires unproven: startlndex <= this.Length - length Chunkercs 30 7 Chunker

IThe static checker runs in the background after the regular build.

The documentation (and our corresponding contracts) on String . Substring(int, int)
state that startlndex + length must be within the string extent. Furthermore,
startindex and length must be non-negative.

The Chunker code written so far does not guarantee these conditions. E.g.,
the caller to the constructor could provide a non-positive chunkSize. Similarly,
nothing is known about the relation between stringData.Length and returnedData.

5 Writing the Object Invariant

Let’s write an object invariant that makes these relations explicit. In the Chun-
ker class, at the member level, type cim TAB TAB to get an emtpy object invari-
ant declaration:

At ract InrariantMaethod

vold CbhjectInvariant() {
Contract.Invariant |::| H

Now fill in the first invariant, stating that chunkSize is positive (we don’t want
0, as there are an infinite number of 0 length chunks we could extract).

Contract. Invariant (chunkSize > 0);

Under this invariant, write ci TAB TAB to get another empty invariant and fill
it in to specify that returnedCount is similarly non-negative.

Contract. Invariant (returnedCount >= 0);

Add one more invariant, specifying that returnedCount is never more than the
string length.

Contract. Invariant (returnedCount <= stringData.Length);

Finally, for good measure, let’s also add the invariant that stringData should
never be null.

Contract. Invariant (stringData ! = null);

In fact, you should add this invariant before the invariant accessing stringData . Length,
otherwise the checker will complain, and you might get a runtime null reference
exception. Your object invariant should now look as follows:

ContractInvariantMethod]

void ObjectInvariant() {

Invariant (chunkSize > 0);

.Invariant (returnedCount >= 0);

a3l ct.Invariant (stringData '= null);
ontract.Invariant (returnedCount <= stringData.Length):

[I

6 Establishing the Object Invariant

If you build again, you see that the checker emits a new set of warnings:

@ OEmors | 1\ 5Wamings | (i) 3 Messages

Description ° File Line Column Project
£ 4+ location related to previous warning Chunkercs 28 7 Chunker
46 =+ location related to previcus warning Chunkercs 30 7 Chunker
)8 CodeContracts: Checked 24 assertions: 21 correct 3 unknown Chunkerdll 1 1 Chunker
&3 CodeContracts: invariant unproven: chunkSize > 0 Chunkercs 41 5 Chunker
45 CodeContracts: invariant unproven: stringData |= nul Chunkercs 47 5 Chunker
47 CodeContracts: requires unproven: startlndex <= this.Length - length Chunkercs 31 7 Chunker
)1 CodeContracts: Suggested requires: Contract Requires(chunkSize » D); Chunkercs 42 5 Chunker
2 CodeContracts: Suggested requires: Contract Requires(source '= null; Chunkercs 42 5 Chunker

The two pre-conditions that length and startlndex must be non-negative are now
satisfied in NextChunk. Before focusing on the remaining issue calling Substring,
let’s look at the constructor of Chunker. The checker warns that we may not
establish the object invariant by the end of the constructor. In fact the first two
messages suggest how to make sure we do, by adding the following pre-conditions
to the Chunker constructor:

Contract. Requires(chunkSize > 0);
Contract.Requires(source ! = null);

Remember to use the shortcuts (cr TAB TAB for a general requires and crn
TAB TAB for non-null requires).

7 Handling Border Cases

If you rebuild the project after adding the requires to the constructor, we should
see the following remaining problem in NextChunk:

@ 0Emors | 1\ 1Warming | (i) 1 Message

Description File Line Column Project
()2 CodeContracts: Checked 24 assertions: 23 correct 1 unknown Chunkerdll 1 1 Chunker
41 CodeContracts: requires unproven: startindex <= this.Length - length Chunker.cs 37 7 Chunker

The checker is complaining that returnedCount might be bigger than stringData.Length — chunkSize.
Of course, this situation may arise when we get near the end of the string. In

that case, there may not be enough characters left. To fix this problem, we can

change the code as follows:

public string NextChunk()
{

string s;
if (returnedCount <= stringData.Length — chunkSize)

{

s = stringData. Substring (returnedCount, chunkSize);

}

else

{
s = stringData. Substring (returnedCount);
}
returnedCount += s.Length;
return s;

}

Now the checker should not issue any further warnings.
The solution contains the file ChunkerFinal.cs (not compiled) that contains
the final code and contracts.

