
ApiProtocols Example

Abstract

This example shows how contracts allow you to make the often implicit
API protocol on a class explicit. API protocols are rules about what states
an object goes through and when it is okay to call particular methods and
properties. Clients are supposed to follow these rules, but often clients
have to discover these rules by trial-and-error.

The example consists of a library exposing a class that has to be used
in a certain way. A separate client application makes use of this class.

In this sample, you will learn how to write contracts that describe
protocols on your classes and how such protocols are enforced on clients.

1 Adding the Contract Library Reference

If you are using Visual Studio 2008, or if you for some reason want to target a
pre-v4 .NET runtime, then you need to:

• Change the target framework of the project.

• Manually add a reference to Microsoft.Contracts.dll

Otherwise, you may skip this section and go directly the next section!
To add the reference, open the ApiProtocols solution and right-click on Ref-

erences in the ApiProtocols project and select Add Reference. Find the Mi-
crosoft.Contracts library in the .NET tab as shown below and click OK.

1



2 A Simple Protocol: Nullable

Let’s start by running the project with contract checking enabled. Go to the
Properties of both projects Client and ApiProtocols, select the Code Contracts
pane (at the bottom), and enable runtime and static checking by clicking on the
appropriate boxes, as shown in this screenshot:

Then build the solution and run it (or hit F5). You should get an InvalidOp-
eration exception in method Sum because we are trying to get the Value of an
optional int which has no value.

You are probably familiar with nullable types in C#. Here, we are using
nullable ints. A nullable int can hold an integer value or no value. The method

2



Value on nullables throws an exception if called on nullables that have no value.
Thus this type has a very simple protocol:

To call optX.Value, optX.HasValue must be true.

Stop the execution and look at the warning list (if no warnings are displayed,
rebuild Client). You should see the static checker warn about the misuse of the
nullable optX:

Double click on the warning stating that the requires HasValue is unproven.
This should take you to the the spot we just hit in the debugger.

We specified this contract for the Nullable type (we’ll show you in a minute
how to specify such contracts). The code here is trying to use a nullable ar-
gument optX without knowing if optX.HasValue is true. The checker complains
about this. Note that the access on the second nullable value optY is correct, as
it tests for HasValue first.

Fix the code so it won’t bother us in future, e.g., mimicking the test around
the access to optY.Value.

if (optX.HasValue) result += optX.Value;

3 A Class with a Protocol

Now let’s take a look at class ClassWithProtocol. Objects of this type go through
different phases. After construction, an object of this type must be initialized
by calling Initialize before any other operation can be meaningfully performed.
E.g., property Data returns the data passed to Initialize and thus should not
be called prior to Initialize . Similarly, property ComputedData is only available
after additionally calling Compute.

Such a protocol can be described by thinking of the object as being in one
of three different states: NotReady, Initialized , Computed. The following table
shows what operations are available in each state and how the object’s state
changes according to the operations:

State Allowed Operations New state(s)

- Constructor NotReady
NotReady Initialize Initialized
Initialized Data, Compute unchanged after Data, Computed

(after Compute)
Computed Data, ComputedData unchanged

3



To save you some typing, we already wrote the contracts for this protocol.
You can find them in the file ClassWithProtocolFinal. Feel free to copy-paste from
there as we go through adding contracts in the rest of this sample.

4 Adding the State

There are many ways we could make the state of the object explicit, e.g., through
multiple properties. The simplest way is to use an actual State property and an
enum listing the states as we had in our table above.

Add the following code in ClassWithProtocol to keep track of what state the
object is in:

public enum S {
NotReady, Initialized , Computed

}

private S state ;
public S State
{

get
{
return state ;

}
}

Now it makes sense to update the state in each operation according to our table.
Thus, in the constructor, we set the state to NotReady.

public ClassWithProtocol()
{

state = S.NotReady;
}

Similarly, in Initialize and Compute, we set the state to Initialized and Computed

respectively.

public void Initialize ( string data)
{

this . data = data;
state = S. Initialized ;

}

public void Compute(string prefix )
{

this . computedData = prefix + data;
state = S.Computed;

}

Now, so far all we have done is make the state of our object explicit. That was
the most important step, since now we can actually specify how to use this class.

4



E.g., we can now add pre-conditions to all method to specify what state(s) the
object needs to be in so the operation makes sense.

Let’s first do the two properties. According to our table, the Data property
is accessible in all states but the NotReady state. We can easily specify this by
the following contract:

public string Data
{

get
{

Contract.Requires(State ! = S.NotReady);

return data ;
}

}

An important thing to note here is that we used the publicly visible property
State and not our private backing field state . It is important that contracts
that callers must observe are visible to callers!

For the ComputedData property, the state must be equal to Computed. So we
add the following:

public string ComputedData
{

get
{

Contract.Requires(State == S.Computed);

return computedData;
}

}

Now let’s add the appropriate pre-conditions to the two remaining methods:
Initialize requires NotReady, and Compute requires Initialized .

public void Initialize ( string data)
{

Contract.Requires(State == S.NotReady);

this . data = data;
state = S. Initialized ;

}

public void Compute(string prefix )
{

Contract.Requires(State == S. Initialized );

this . computedData = prefix + data;
state = S.Computed;

}

5



At this point, we have enough contracts for runtime checking the protocol
on clients. Hit F5 to compile and run. The execution should stop with the
following message:

If you look at the call stack, you see that the execution is stopped at the
point where we access the ComputedData property, but the state of our object is

Initialized .

5 Making Static Checking Work

The specifications in the previous section are enough to catch errors at runtime
made by the client. In order to catch errors in the implementation, we need
contracts that specify how the methods change the state, in particular, what
state is ensured by each method. These same contracts also allow the static
checker to catch these errors at build time.

Properties are assumed to be pure and thus don’t change the state. We
therefore don’t need to specify a post state for them. According to our table,
we add the following post-condition to the constructor:

Contract.Ensures(this .State == S.NotReady);

Similarly, we add the following to Initialize :

Contract.Ensures(this .State == S. Initialized );

and the following to Compute:

Contract.Ensures(this .State == S.Computed);

These contracts make sure that the implementation actually matches our table
of state transitions. Suppose we forgot to update the state variable in one of
our methods. These specifications will catch that.

If you rebuild the solution now, you should get the following warning from
the static contract checker:

6



Double-clicking on the warning takes you to the access of ComputedData that
failed with the runtime check as expected. We can now fix the client code by
calling Compute before accessing ComputedData.

c.Compute(”whatever”);
var data = c.ComputedData;

Now running the code produces no runtime error, and the static checker will
produce the following output:

6 Taking Advantage of State Invariants

Now that we have our protocol setup, we can strengthen the post conditions on
our properties. It would be nice to guarantee that the properties always return
non-null strings. Let’s start by turning on non-null checking by selecting the
Properties on each project by selecting the implicit non-null checkbox.

Building should produce a warning that data (the result of ComputedData)
might be null in the Main method. Let’s look at the ClassWithProtocol code
again. If we require the argument to Compute to be non-null, then clearly, if
we are in the Computed state, the field computedData should be non-null. We
add the following contracts to make this explicit. On Compute, let’s add the
following requires (recall that you can use the crn TAB TAB snippet):

Contract.Requires( prefix ! = null);

We also add the following ensures on the ComputedData getter (the cen TAB TAB

snippet will do it):

Contract.Ensures(Contract.Result<string>() != null);

If you build now, you should get the following output:

The checker is now happy with the client code and can guarantee that the
ComputedData value is non-null. However, it cannot yet prove the ensures of
that getter in the implementation. The reason is that the invariant relating the

state and the non-nullness of computedData is not evident to the checker. We
can help it by specifying the following object invariant in ClassWithProtocol.

7



[ContractInvariantMethod]
protected void ObjectInvariant ()
{

Contract. Invariant( state ! = S.Computed || computedData != null);
}

The invariant specifies that either we are not in the Computed state, or field
computedData is non-null. Building now should return no more warnings, as the

checker can make sure that every method actually satisfies this invariant.
As an exercise, you can try adding a similar invariant that specifies that

data is non-null in all states but the NotReady state.

7 Conditional Transitions

Not all protocols are as straight-forward as the one we have seen so far. Often,
methods may have multiple outcomes. For example, suppose Compute had to
access the file system and could only compute the proper value if a particular
file was there. Thus, the method would not transition the state to Computed in
all cases.

To examine this possibility, let’s modify Compute so it returns a bool to
indicate whether it succeeded in the computation. Otherwise, the state of the
object remains Initialized , so the computation could be attempted again. To
specify this, we modify the existing ensures contract to the following one:

public bool Compute(string prefix )
{

Contract.Requires( prefix ! = null);
Contract.Requires(State == S. Initialized );
Contract.Ensures(Contract.Result<bool>() && State == S.Computed ||

! Contract.Result<bool>() && State == S.Initialized);

Don’t forget to also return a boolean value. Since we haven’t implemented
the failing case, let’s just return true. Building now should produce a warning
in the client code that State == S.Computed might be false at the call to the
ComputedData getter. In order for the client to satisfy the protocol, it must
check the return value of Compute.

If we modify the client as follows:

if (c.Compute(”whatever”))
{

var data = c.ComputedData;

Console.WriteLine(data.ToString ());
}

the warning disappears. We have thus successfully refined the protocol of our
class and automatically found client code that needed to be adjusted to our
change.

8


