GCD Static Checking FExample

Abstract

This example shows how to use contracts to prove some arithmetic
properties of the greatest common denominator computation.

1 Adding the Contract Library Reference

If you are using Visual Studio 2008, or if you for some reason want to target a
pre-v4d .NET runtime, then you need to:

e Change the target framework of the project.

e Manually add a reference to Microsoft.Contracts.dll

Otherwise, you may skip this section and go directly the next section!

To add the reference, open the BinarySearch solution and right-click on Ref-
erences in the BinarySearch project and select Add Reference. Find the Mi-
crosoft.Contracts library in the .NET tab as shown below and click OK.

@ Add Reference @l&]‘
NET | COM | Projects | Browse | Recent|

Component Name Version Runtime Path o
Micresoft.Build.Engine 3500 v2.0.50727 Ch\Program
Microsoft.Build.Framework 2.0.0.0 V2050727 CAWindows—
Microsoft.Build. Framework 3.5.0.0 v2.0.50727 C\Program
Microsoft.Build. Tasks 2000 v2.0.50727 Ch\Windows
Microsoft.Build. Utilities 2.0.0.0 v2.0.50727 Ch\Windows
Microsoft.Build. Utilities.v3.5 3.5.00 v2,0.50727 C\Program

{ Microsoft.Contracts Library 1.0.0.0 w2,0.50727 c\Program |
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Micresoft.Deployment.Co... 3000 v2.0.50727 C\Program
Micresoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Res... 3.0.0.0 v2.0.50727 CM\Pregram =
4| [| 2

0K] ’ Cancel

2 Sample Walkthrough

After adding the proper reference, go to the Properties of project GCD, select
the Code Contracts pane (at the bottom), and enable static checking by clicking
on the checkbox as shown in this screenshot:

[cleV I Source Control Explorer Pending Changes...ARNETT-LAP2-cci-1

Application
Configuration: | Active (Debug) ~| Platform: |Active (Any CPU) -

Build
Build Events Assembly Mode: [Standard Contract Requires v]
Runtime Checking PRI I
Debug
[] Perform Runtime Contract Checking | Full
Resources Custom Rewriter Methods
Services
Settings Static Checking
Perform Static Contract Checking Check in Background [Show squigglies
Reference Paths
[T Implicit Non-Null Obligations [7] Implicit Arthmetic Obligations [~] Cache Resufts
g [7] Implict Aay Bounds Obligations [7] Redundant Assumptions ~ [] Show Assumptions
Code Analysis [Z] Implicit Enum Writes Obligations [Z] Implicit Pointer Usage Cbligations
[T Infer Requires Suggest Requires [Disjunctive Requires
Code Contracts
[] Infer Ensures [] Suggest Ensures
[] Infer Invariants for readonly [] Suggest Invariants for readonly
low hi
[Baseine Waring Level: 1)

Then build the example. There should be no warnings or errors at this point.
To get static checking of arithmetic properties, such as division by zero, we
need to enable that explicitly by checking the “Implicit Arithmetic Obligations”
checkbox as shown in the following screen shot:

Static Checking
Perform Static Cortract Checking Check in Background [7] Show squiaglies
[T] Implicit Non-Mull Obligations Implicit Arithmetic Obligations [~| Cache Resuits
[Z] Implicit Amay Bounds Obligations [T Redundant Assumptions [Z] Show Assumptions
[T Implicit Enum Wiites Obligations [] Implicit Poirtter Usage Obligations
[7] Infer Requires Suggest Requires [7] Disjunctive Requires
[7] Infer Ensurss [] Suggest Ensures
[Ifer Invariants for readorly [] Sugagest Invariants for readony
low hi
] Baseine Waring Lovel: ()

Go ahead and add this option, then build again. The warning list should now
display three warnings about possible division by zero:

@ 0Emors | f\3Wamings | (i) 1 Message

Description File Line Column Project
i) 4 CodeContracts: Checked 6 assertions: 1 correct 3 unknown (2 masked) GCD.dll 1 1 GCD
51 CodeContracts: Possible division by zero GCD.cs 4 1 GCD
4 2 CodeContracts: Possible division by zero GCD.cs 16 11 GCD
3 CodeContracts: Possible division by zero GCD.cs a7 GCD

Let’s try to write some contracts to make sure we won’t run into these division
by zero problems. Double click on the first warning. To avoid the division by
zero of the code x %=y, we can add the following precondition to method GCD

Contract.Requires(y > 0);

The second warning is about the similar division by x, so we add a similar
precondition for it:

Contract.Requires(x > 0);

Add those two preconditions and build again. You should now get the following
warnings:

@ OErors | 1\ 1Waning | (i) 1 Message

Description File Line Column Project

)2 CodeContracts: Checked 8 assertions: 5 correct 1 unknown (2 masked) GCD.dI 1 1 GCD
& 1 CodeContracts: Possible division by zero GCD.cs 48 7 GCD

The possible division by zero remaining is in the NormalizedRational method,
when dividing by the ged value. The GCD should never be zero, and in fact due
to our preconditions on the GCD method, our GCD will always be positive. So
let’s write a postcondition on GCD that makes this explicit. The contracts on
GCD should now look as follows:

public static int GCD(int x, int y)
{
Contract.Requires(x > 0);
Contract.Requires(y > 0);
Contract. Ensures(Contract.Result<int>() > 0);

Write the Ensures and rebuild. The checker should issue no more warnings.

