Interface Contracts Static Checking Example

Abstract

This example shows how to use contracts on interfaces.

1 Adding the Contract Library Reference

If you are using Visual Studio 2008, or if you for some reason want to target a
pre-v4 .NET runtime, then you need to:

e Change the target framework of the project.
e Manually add a reference to Microsoft.Contracts.dll

Otherwise, you may skip this section and go directly the next section!

To add the reference, open the InterfaceContracts solution and right-click on
References in the InterfaceContracts project and select Add Reference. Find the
Microsoft.Contracts library in the .NET tab as shown below and click OK.

& Add Reference @Iﬂ_hr
NET | oM | Projects | Browse | Recent|

Component I“jame Version Runtime Path o
Micresoft.Build.Engine 3500 v2.0.50727 CMProgram
Microsoft.Build.Framework ~ 2.00.0 V2050727 CAWindows'—|
Microsoft.Build.Framework 3.5.0.0 v2.0.50727 C\Program
Microsoft.Build. Tasks 2000 w2.0.50727 ChWWindows'
Microsoft.Build. Utilities 2000 w2.0.50727 Ch\Windows'
Microsoft.Build Utilitiesv3.5 3.5.00 v2.0.50727 C:\Pregram

{ Microsoft.Contracts Library 1000 w2.0.50727 c\Program f
Micresoft.Deployment.Co... 30,00 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3000 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Res... 3.0.0.0 v2.0.50727 CM\Program =
4 | (] | 3

0K] ’ Cancel

2 Sample Walkthrough

After adding the proper reference, go to the Properties of project Interface-
Contracts, select the Code Contracts pane (at the bottom), and enable static
checking by clicking on the checkbox as shown in this screenshot:

e

Application
Configuration: | Active (Debug) v| Platform: [Active (Any CPU] -
Build
Build Events Assembly Mode: [Standard Contract Requires v]
. Runtime Checking ARSI
S] Perforn Rurtime Cortract Checking | Ful
- Custom Rewnter Methods
Services
Settings Static Checking
Perform Static Contract Checking Check in Background [=] Show squigglies
Reference Paths
[] Implict Non-Mull Obligations [T] Implicit Arithmetic Obligations [~ Cache Resutts
Signing [Implicit Amay Bounds Obligations [] Redundant Assumptions [Show Assumptions
Searii [Implicit Enum Writes Obligations [Implicit Pointer Usage Obligations
[C] Infer Requires Suggest Requires [7] Disjunctive Requires
PubEh] Infer Ensures] Suggest Ensures
Erfointies [Infer Invariants for readoniy [Suggest Invariarts for readorty
low hi
Code Contract:
ode tomracks [Baseine Waming Level 8

Then build the example. The static checker should warn about two problems:

Error List
@ 0Erors | £\ 4 Warnings | (i) 1 Message

Description File Line Column Project
42+ location related to previous warning Program.cs 33 7 InterfaceContracts
& 4+ location related te previous warning Program.cs 34 7 InterfaceContracts
5 CodeContracts: Checked 5 assertions: 1 correct 1 unknown 2 unreached 1 false InterfaceContrad 1 1 InterfaceContracts
& 3 CodeContracts: ensures unproven: Contract Result<int>() > 0 Program.cs 55 7 InterfaceContracts
41 CodeContracts: requires is false: x > 0 Program.cs 14 7 InterfaceCantracts

The last problem in the list is in the call f1.Foo(0). Given that Foolmplementationl
implements interface IFoo and IFoo has a contract written in the IFooContract
class, the Foo method of Foolmplementationl automatically inherits these con-
tracts, namely:

Contract.Requires(x > 0);
Contract. Ensures(Contract.Result<int>() > 0);

At the call site flagged by the checker, we are passing a value of 0, which is
clearly not positive.

Note how contracts are associated with an interface: take a look at the
interface declaration for IFoo. You see the attribute

[ContractClass(typeof(IFooContract))]

This attribute informs the contract tools that the contract for interface IFoo
is to be found in the IFooContract dummy class. Now look at the IFooContract
class: it similarly has an attribute stating what interface it annotates. This is
for consistency and documentation.

[ContractClassFor (typeof(IFoo))]

The return value can be anything, or the methods can throw NotlmplementedException.
Now take a look at the second error: it warns that the implementation of

Foo in class Foolmplementation2 is not conforming to the IFoo contracts. Namely,

the method may return 0, if the argument is 1. Since the contract states that

the return value should be positive, the contract is not satisfied. In contrast,

Foolmplementationl properly implements this contract, as it returns the argument

x, which is already known to be positive given the precondition.

