
Code Contracts User Manual

Microsoft Corporation

August 14, 2013

What’s New?

• We fixed the debug information generated by the rewriter for async and iterator methods so that locals
now appear again when debugging.

• Static checker has a new option to warn about missing requires on methods visible outside your
assembly. See Section 6.6.3.

• The static checker recognizes a new contract helper AssumeInvariant that allows you to assume the
invariant of an object at arbitrary points in your program. It is a work-around for some static checker
limitations. See Section 2.13.

What was new?

• Section 2.2.5 describes how postconditions are handled for async methods and methods returning tasks
in general.

• Section 6.6.4 describes the inference options

• Section 6.6.9 describes the new slider to filter relevant warnings.

• Section 6.6.10 has been updated to describe the new InvariantInMethod modifier to suppress invariant
warnings at method exits.

• You can now enable the caching of the analysis results, to avoid the re-analysis of methods that did
not changed among different builds. See Section 6.6.5.

• Section 6.6.10 has been updated to describe the new EnsuresInMethod modifier to suppress precondi-
tion warnings at all call sites.

• Section 7 clarifies the behavior of if−then−throw and Requires〈E〉 with respect to the option assert
on failure.

• Section 6.6.10 has been updated to describe the new RequiresAtCall modifier to suppress precondition
warnings at all call sites.

• For each assembly, you now need to specify an explicit assembly mode according to how contracts are
used on that assembly. See Section 5.1.

1

• [ContractArgumentValidator] methods support factoring legacy if-then-throw style parameter valida-
tion into helper methods, while still permitting the tools to recognize them. See Section 2.11.

• [ContractAbbreviator] methods support factoring commonly used combinations of Requires and Ensures
into helper methods that can be used from multiple places. See Section 2.12.

• Section 4.8 describes how to turn off contract checking or inheritance at assembly, type, or method
level using attributes.

• Section 5.2 describes how to migrate an existing project to take advantage of contracts.

• Section 7.8 describes how to deal with test harness setup in VS2010 when the code under test is built
with .NET v3.5 and the Microsoft.Contracts.dll .

Contents

1 Code Contracts Library Overview 5
1.1 Example . 5

2 Contracts 5
2.1 Preconditions . 6

2.1.1 Legacy Requires . 6
2.1.2 Preconditions on automatic properties . 7

2.2 Postconditions . 7
2.2.1 Normal Postconditions . 7
2.2.2 Exceptional Postconditions . 7
2.2.3 Special Methods within Postconditions . 7
2.2.4 Postconditions on automatic properties . 9
2.2.5 Postconditions on async methods . 9

2.3 Object Invariants . 9
2.3.1 Invariants on Automatic Properties . 10

2.4 Assert . 11
2.5 Assume . 11
2.6 EndContractBlock . 11
2.7 Quantifiers . 11

2.7.1 ForAll . 11
2.7.2 Exists . 12

2.8 Interface Contracts . 12
2.9 Contracts on Abstract Methods . 13
2.10 Overloads on Contract Methods . 13
2.11 Contract Argument Validator Methods . 13
2.12 Contract Abbreviator Methods . 15
2.13 AssumeInvariant Helper . 16

3 Contract Inheritance 17
3.1 Custom Parameter Validation and Inheritance . 17
3.2 Inheriting from Multiple Methods . 18
3.3 Purity and Inheritance . 18
3.4 Object Invariants and Inheritance . 18

2

4 Contract Attributes 18
4.1 ContractClass and ContractClassFor . 18
4.2 ContractInvariantMethod . 18
4.3 Pure . 18
4.4 RuntimeContracts . 19
4.5 ContractPublicPropertyName . 19
4.6 ContractVerification . 19
4.7 ContractRuntimeIgnored . 19
4.8 ContractOption . 19

5 Usage Guidelines 20
5.1 Argument Validation and Contracts . 20

5.1.1 Assembly Mode . 21
5.1.2 Difference between Requires〈Exn〉 and if-then-throw 21
5.1.3 Forcing Projects to build with Contracts . 21

5.2 Migrating Projects towards Contracts . 22
5.2.1 Marking Existing Validation Code as Contracts . 22
5.2.2 Issues with Early Return . 22
5.2.3 Delegating Checks to Other Methods . 22
5.2.4 Writing Interface Contracts . 23
5.2.5 Going Further . 23

5.3 Contract Ordering . 24
5.4 Purity . 24
5.5 Visibility . 24
5.6 Special Method Usage . 24

6 Visual Studio Integration 24
6.1 Assembly Mode . 25

6.1.1 Custom Parameter Validation . 25
6.1.2 Standard Contract Requires . 25

6.2 Runtime Contract Checking . 26
6.2.1 Runtime Checking Level . 26
6.2.2 Public Surface Contract Checks . 26
6.2.3 Assert on Contract Failure . 26
6.2.4 Call-site Requires Checking . 26
6.2.5 Skip Quantifiers . 27
6.2.6 Build Steps . 27
6.2.7 Extra Options . 27
6.2.8 Suppressing Warnings . 27

6.3 C# Code Snippets . 27
6.4 VB Code Snippets . 28
6.5 Building a Contract Reference Assembly . 28
6.6 Static Contract Checking . 29

6.6.1 Current Limitations of the Checker and Bugs . 29
6.6.2 Setting Up a Configuration . 30
6.6.3 Static Checking Options . 30
6.6.4 Inference . 31
6.6.5 Caching of the Analysis Results . 31
6.6.6 Focus Your Attention . 31
6.6.7 Dealing with Warnings . 31
6.6.8 Baseline . 32
6.6.9 Relevant Warnings . 32
6.6.10 Filtering Warning Messages . 33

3

7 Runtime Contract Behavior 33
7.1 Rewriter Methods . 33
7.2 ReportFailure Method . 35
7.3 RaiseContractFailedEvent . 36
7.4 TriggerFailure . 36
7.5 Rationale for Runtime Behavior . 36
7.6 ContractException . 37
7.7 Providing a Custom Contract Runtime Class . 37
7.8 Test Harness Setup . 38
7.9 Tests that Exercise Contract Failure . 39

8 Contract Documentation Generation 39
8.1 Contract XML Format . 39

8.1.1 Contract Elements . 39
8.1.2 Additional Exception Elements . 40

8.2 Usage from Visual Studio . 40
8.3 Sandcastle Integration . 40

9 Installation 40
9.1 VS2010 Beta2 . 41
9.2 VS2010 Beta1 . 41
9.3 Upgrade-downgrade issues . 41

10 Troubleshooting 41
10.1 ASP .NET . 41

10.1.1 Asserts . 41
10.1.2 Ambiguous Type Warnings . 41

10.2 Contracts on struct constructors . 42
10.3 Call-site Requires . 42
10.4 Static Checker Doesn’t See Any Contracts . 42
10.5 Cannot have your own assemblies end in “Contracts” . 42

11 Known Issues 43
11.1 Build Slowdown . 43
11.2 Contracts on Delegates . 43
11.3 Iterators . 43
11.4 Closures . 43
11.5 Forms and Generated Code . 43
11.6 Old-style assembly signing . 44
11.7 Edit-Continue Not Working . 44
11.8 OldValue within Quantifiers . 44

12 Feedback 44

A Appendix 44
A.1 MsBuild Integration . 44
A.2 Contract Rewriter Command Line Options . 45

A.2.1 Troubleshooting Rewriting . 46
A.3 Static Contract Verifier Command Line Options . 46
A.4 Contract Reference Assemblies . 48

4

1 Code Contracts Library Overview

Contracts allow you to express preconditions, postconditions and object invariants in your code for runtime
checking, static analysis, and documentation. This document covers how to author them in your code, and
contains guidelines for using them effectively with the provided tools.

All of the contract methods are static methods defined in the Contract class which appears in the
System.Diagnostics .Contracts namespace.

Starting with the CLR v4 (or Silverlight 4), the Contract class and related types reside in mscor-
lib.dll.

If you build against a platform that does not contain the Contract namespace by default, first
try to add the reference from within VisualStudio to Microsoft .Contracts from the add reference
dialog under the .NET tab. If you can’t find it there, you can add it explicitly by browsing the
to locations described below.

The Contract namespace for platforms that don’t contain it by default appears in a separate
assembly called Microsoft .Contracts. dll that is installed under platform specific directories un-
der %PROGRAMFILES%/Microsoft/Contracts/PublicAssemblies. You need to add a reference to this
assembly for the appropriate platform.

For Silverlight 3, Microsoft .Contracts. dll is in %PROGRAMFILES%/Microsoft/Contracts/PublicAssemblies/Silverlight3.
When you add the reference from within VisualStudio, it may show a warning that this may cause
problems for Silverlight apps. You can ignore the warning.

For Windows Phone 7, the necessary reference Microsoft .Contracts. dll can be found under the
directory %PROGRAMFILES%/Microsoft/Contracts/PublicAssemblies/WindowsPhone71. Note, this as-
sembly works for both WP7 and WP7.1. When you add the reference from within VisualStudio,
it may show a warning that this may cause problems for Silverlight apps. You can ignore the
warning.

1.1 Example

The code in Figure 1 illustrates how the main three features of contracts are used, namely preconditions,
object invariants, and postconditions. The code defines a fragment of a rational class to represent rational
numbers. In order to define a proper rational, the denominator must be non-zero. We express this as a
precondition in the constructor using the Contract.Requires method call on line 13.

In this example, the intention is that every Rational object is always valid and has a non-zero denominator.
We express this precisely using an ObjectInvariant method tagged with a [ContractInvariantMethod] attribute.
It uses the method call Contract. Invariant on line 29 to express that the denominator is always non-zero.

Finally, given this invariant, we can use the Contract.Ensures method call on line 21 to express a postcon-
dition that the getter Denominator always returns a non-zero value.

The next section discusses all features of the contract library in detail. To start using contracts right
away with Visual Studio, we suggest jumping to section 5 and using the intervening sections as a reference.

2 Contracts

Most methods of the contract class are conditionally compiled, meaning the compiler only emits calls to these
methods when a special symbol, the full-contract symbol, is defined. That symbol is CONTRACTS FULL. This
allows writing contracts in your code without the use of #ifdef’s, yet produce different builds, some with
contracts, and some without.

If you are using Visual Studio 2008 or later (Section 6) or msbuild (Section A.1), then you don’t need to
define this symbol yourself. Instead, when you use the provided UI to enable runtime or static checking (or
properties in your projects or /p defines in msbuild arguments), the build automatically defines this symbol
and performs the appropriate rewrite actions. If you use your own build mechanism, then you need to define
the full-contract symbol if you want the contracts to be emitted into your assemblies for further consumption
by tools.

5

1 using System;
2 using System.Diagnostics .Contracts;
3

4 namespace ContractExample1 {
5

6 class Rational {
7

8 int numerator;
9 int denominator;

10

11 public Rational(int numerator, int denominator)
12 {
13 Contract.Requires(denominator != 0);
14

15 this .numerator = numerator;
16 this .denominator = denominator;
17 }
18

19 public int Denominator {
20 get {
21 Contract.Ensures(Contract.Result<int>() != 0);
22

23 return this .denominator;
24 }
25 }
26

27 [ContractInvariantMethod]
28 void ObjectInvariant () {
29 Contract. Invariant (this .denominator != 0);
30 }
31 }
32 }

Figure 1: Example of preconditions, postconditions, and invariants

2.1 Preconditions

Preconditions are expressed using Contract.Requires (...) . They are contracts on the state of the world when
a method is invoked. They generally are used to specify valid parameter values. All members mentioned in
preconditions must be at least as accessible as the method itself (Section 5.5). Otherwise, the precondition
cannot be understood (and thus satisfied) by all callers of a method. The condition should also be side-effect
free (Section 5.4).

The following precondition expresses that parameter x must be non-null.

Contract.Requires(x ! = null);

If your code must throw a particular exception on failure of a particular precondition, you can use the
generic overloaded form below. (Please read Section 5.1 before committing to this form in your code. You
cannot use Requires〈Exn〉 without running the contract tools on all builds. If you do, you will get a runtime
failure everytime.)

Contract.Requires<ArgumentNullException>(x != null, ”x”);

The runtime behavior of failed preconditions is defined in Section 7. The exception type you specify must
have a public constructor accepting a single string argument. Otherwise, the runtime will construct an
internal ContractException and throw that.

2.1.1 Legacy Requires

Most code already contains some parameter validation in the form of if-then-throw code. The contract tools
recognize if-then-throw statements as preconditions in the following cases:

6

• the statements appear first inside a method, and

• the entire set of such statements is followed by an explicit Contract method call, such as a Requires,
Ensures, EnsuresOnThrow, or EndContractBlock.

When if-then-throw statements appear in this form, the tools recognize them as “legacy-requires”. The
EndContractBlock form (Section 2.6) is only necessary if no other contracts follow the if-then-throw sequences.

if (x == null) throw new ...
Contract.EndContractBlock(); // All previous ’ if ’ checks are preconditions

Note that the condition in the above test is the negated precondition. The actual precondition would
be x ! = null. This form of precondition is highly restricted: it must be written as above, i.e., there are
no else-clauses and the body of the then-clause must be a single throw statement. The if-test is subject to
both the purity (Section 5.4) and visibility rules (Section 5.5), but the throw-expression is subject only to
the purity rules. However, the type of the exception thrown must be as visible as the method in which the
contract occurs.

2.1.2 Preconditions on automatic properties

Because automatic properties have no implementation bodies, you can’t write preconditions directly on such
properties. Instead use invariants on the automatic property as described in Section 2.3.1.

2.2 Postconditions

Postconditions are contracts on the state of a method when it terminates. In other words, the condition
is checked just prior to exiting a method. The runtime behavior of failed postconditions is described in
Section 7.

Unlike preconditions, members with less visibility may be mentioned in a postcondition. A client may
not be able to understand or make use of some of the information expressed by a postcondition using private
state, but it doesn’t affect the client’s ability to use the API correctly.

2.2.1 Normal Postconditions

Normal postconditions are expressed using Contract.Ensures (...) . They express a condition that must hold
on normal termination of the method.

Contract.Ensures(this .F > 0);

2.2.2 Exceptional Postconditions

Postconditions that should hold when particular exceptions escape from a method, are specified using
Contract.EnsuresOnThrow.

Contract.EnsuresOnThrow<T>(this.F > 0);

The argument is the condition that must hold whenever an exception is thrown that is a subtype of T.
There are many exception types that would be difficult to use in an exceptional postcondition. For instance,
using the type Exception for T would require the method to guarantee the condition no matter what type of
exception is thrown, even if it is a stack overflow or other impossible-to-control exception. It is recommended
to use exceptional postconditions only for those exceptions that a caller should expect as part of the API,
e.g., a socket-closed exception on a method in an API for sending messages across a socket.

2.2.3 Special Methods within Postconditions

There are several special methods that may be used only within postconditions.

7

Method Return Values Within postconditions the method’s return value can be referred to via the
expression Contract.Result<T>(), where T is replaced with the return type of the method. When the compiler
is unable to infer the type it must be explicitly given. For instance, the C# compiler is unable to infer types
for methods that do not take any arguments.

Contract.Ensures(0 < Contract.Result<int>());

Methods with a return type of void cannot refer to Contract.Result<T>() within their postconditions.

Prestate Values (OldValue) Within a postcondition, an old expression refers to the value of an expres-
sion from the pre-state. It uses the method Contract.OldValue<T>(e), where T is the type of e. The generic
type argument may be omitted whenever the compiler is able to infer its type. For instance, the C# compiler
is able to infer the type since it takes an argument. There are several restrictions on what can occur in e
and also in which contexts an old expression may appear. An old expression may appear only within a
postcondition. An old expression cannot contain another old expression. A very important rule is that an
old expression must refer to a value that existed in the method’s pre-state, i.e., it must be an expression
that can be evaluated as long as the method’s precondition holds. Here are several instances of that rule.

1. The value must exist in the method’s prestate. If the following old expression is in a method whose pre-
condition implies that xs ! = null, then it is fine. But if the precondition is a disjunction xs ! = null || E

for any other expression E, then the old expression could get evaluated in a state where xs is null because
E held.

Contract.OldValue(xs.Length) // POSSIBLE ERROR

2. The method’s return value cannot be referred to in an old expression:

Contract.OldValue(Contract.Result<int>() + x) // ERROR

3. Out parameters cannot be referred to within an old expression.

4. An old expression cannot depend on the bound variable of a quantifier (Section 2.7), if the range of
the quantifier depends on the return value of the method:

Contract. ForAll (0,Contract.Result<int>(),
i => Contract.OldValue(xs[i]) > 3); // ERROR

5. An old expression cannot refer to the parameter of the anonymous delegate within a Contract. ForAll or
Contract. Exists unless it is used as an indexer or argument to a method call:

Contract. ForAll (0,xs .Length, i => Contract.OldValue(xs[i]) > 3); // OK
Contract. ForAll (0,xs .Length, i => Contract.OldValue(i) > 3); // ERROR

6. An old expression cannot occur in the body of an anonymous delegate if the value of the old expression
depends on any of the parameters of the anonymous delegate unless the anonymous delegate is an
argument to the methods Contract. ForAll or Contract. Exists :

Foo(... (T t) => Contract.OldValue(... t ...) ...); // ERROR

Out Parameters Because contracts appear before the body of the method, most compilers do not allow
references to out parameters in postconditions. To get around this issue, the library provides the method
Contract.ValueAtReturn<T>(out T t) which will not require that the parameter is already defined.

public void OutParam(out int x) {
Contract.Ensures(Contract.ValueAtReturn(out x) == 3);
x = 3;
}

8

As with OldValue, the generic type argument may be omitted whenever the compiler is able to infer its type.
The contract rewriter will replace the method call with the value of the out-parameter. The method may
appear only within postconditions. The argument to the method must be an out parameter or a field of
a struct type out parameter. The latter is also useful when referring to fields in the postcondition of a
struct(ure) constructor.

Note: Currently the tools do not check to make sure that out parameters are initialized properly disre-
garding their mention in the postcondition. Thus, in the above example, if the line after the contract had
used the value of x instead of assigning to it, a compiler would not issue the error that it should. However,
on a build where the CONTRACTS FULL is not defined (such as Release), the compiler will issue an error.

2.2.4 Postconditions on automatic properties

Because automatic properties have no implementation bodies, you can’t write postconditions directly on
such properties. Instead use invariants on the automatic property as described in Section 2.3.1.

2.2.5 Postconditions on async methods

The .NET 4.5 version introduces async methods into the .NET languages. An async method produces a
Task and allows computation to proceed while some other results are being computed or awaited. Async
methods are simply methods returning a Task with support for the await construct. In terms of contracts,
we treat all methods returning tasks the same, whether they are implemented using async or not.

Methods returning tasks provide two possible opportunities to check postconditions:

1. When the method returns the task (or throws an exception).

2. When the task returned by the method completes, either normally (optionaly producing a result value),
or via an exception.

The first point is the standard point at which contracts are checked. But we also support contract checking
at the second point as well. In order to do so, we introduce the notion of async ensures.

Async Ensures For any method (async or not) with a System.Threading.Tasks.Task return type (generic or
not), we split the written ensures clauses into two parts:

• All ensures that mention Contract.Result< >().Result, i.e., the eventual result of the task are considered
async ensures and are checked when the task completes.

• All remaining ensures are normal ensures clauses and are checked when the method returns the task.

Furthermore, exceptional ensures (EnsuresOnThrow) are checked both in the task producing method as well
as when the task completes with an exception.

Notes: The static contract checker currently ignores async ensures.

2.3 Object Invariants

Object invariants are conditions that should hold on each instance of a class whenever that object is visible
to a client. They express the conditions under which the object is in a “good” state.

All of an object’s invariants should be put into one or more private nullary instance methods that return
void. These methods are identified by being marked with the attribute [ContractInvariantMethod] (Section 4.2).
The invariant methods must have no other code in it than a sequence of calls to Contract. Invariant .

Individual invariants within invariant methods are specified using Contract. Invariant :

[ContractInvariantMethod]
private void ObjectInvariant () {

Contract. Invariant (this .y >= 0);
Contract. Invariant (this .x > this.y);
...

}

9

Invariants are conditionally defined on the full-contract symbol. During runtime checking, invariants are
checked at the end of each public method. If an invariant mentions a public method in the same class, then
the invariant check that would normally happen at the end of that public method is disabled and checked
only at the end of the outermost method call to that class. This also happens if the class is re-entered
because of a call to a method on another class.

Invariants are not checked for object finalizers or for any method that implements System.IDisposable .Dispose.
The runtime behavior for failed invariants is described in Section 7.

Don’t call methods marked with [ContractInvariantMethod] directly from your code. The contract tools
will issue an error if you do.

2.3.1 Invariants on Automatic Properties

Automatic properties are getters and setters without an explicit implementation. Due to the lack of a
code body, it isn’t possible to write Requires or Ensures directly on such auto-properties. Instead, we use
invariants on auto-properties to indirectly write such pre- and postconditions on the setters and getters of
auto-properties. For example, the code below

public int MyProperty { get; private set ; }

[ContractInvariantMethod]
private void ObjectInvariant () {

Contract. Invariant (this .MyProperty >= 0);
...

}

is equivalent to the following code:

private int backingFieldForMyProperty;
public int MyProperty {

get {
Contract.Ensures(Contract.Result<int>() >= 0);
return this . backingFieldForMyProperty;
}
private set {

Contract.Requires(value >= 0);
this . backingFieldForMyProperty = value;

}
}

[ContractInvariantMethod]
private void ObjectInvariant () {

Contract. Invariant (this . backingFieldForMyProperty >= 0);
...

}

As the example illustrates, invariants on auto-properties turn into:

1. A precondition for the setter

2. A postcondition for the getter

3. An invariant for the underlying backing field

Additionally, the pre- and postconditions on the automatic setter and getter behave like all invariants at
runtime in that they are not checked until the invariant needs to be re-established on exit from the object.
Thus during construction and internal setting of auto-properties, the setter precondition may be temporarily
violated without a runtime error.

10

2.4 Assert

Assertions are specified using Contract. Assert. They are used to state a condition that must hold at that
program point.

Contract. Assert(this . privateField > 0);
Contract. Assert(this .x == 3, ”Why isn’t the value of x 3?”);

Assertions are conditionally defined and so exist in the build only when the full-contract symbol or the
DEBUG symbol is defined. See section 7 for a description of the runtime behavior for failed assertions.

2.5 Assume

Assumptions are specified using Contract.Assume.

Contract.Assume(this. privateField > 0);
Contract.Assume(this.x == 3, ”Static checker assumed this”);

At runtime, Assume works exactly like Assert, i.e., the condition is checked, and if it fails, some action happens
(see Section 7).

However, for static verification an assumption is something that the verification will just add to the facts
that it knows about the program at that program point. You should use this for conditions that you believe
to hold at a program point, but that the static verification is unable to prove due to its limitations. It is
probably best to start with just assertions and then change them as needed while verifying the code.

Assumptions are conditionally defined and so exist in the build only when the full-contract symbol or
the DEBUG symbol is defined.

2.6 EndContractBlock

When a method’s contracts contain only preconditions in the if-then-throw form (Section 2.1.1), this method
is used to mark the end of the contract section. It has no other effect. All if-then-throw statements before
EndContractBlock are assumed to be preconditions. It is also defined conditionally on the full-contract symbol.

if (x == null) throw new ArgumentNullException(”x”);
if (y < 0) throw new ArgumentOutOfRangeException(...);
Contract.EndContractBlock();

2.7 Quantifiers

Limited support is available for quantifiers within contracts. We support only those forms which are exe-
cutable at runtime. This currently means that the range of quantification must be effectively computable.
Also, the “body” of each quantification must be an expression, i.e., not contain any loops or assignment
statements.

2.7.1 ForAll

Universal quantifications are written using Contract. ForAll . There are two overloads, both of which are static
methods. The first form takes two parameters: a collection and a predicate. A predicate is a unary method
that returns a boolean. The predicate is applied to each element in the collection. If it returns false on any
element, ForAll stops iterating and returns false. If the predicate returns true on all of the elements in the
collection, then ForAll returns true. Here’s an example of a contract that says that all elements contained in
the parameter xs must be non-null:

public int Foo<T>(IEnumerable<T> xs){
Contract.Requires(Contract. ForAll (xs , x => x != null));

11

Note that this overload of ForAll is generic; it is parameterized by the type of elements in the collection.
(That is, the first argument is of type IEnumerable<T> and the predicate must take an argument of type T.)

The other overload takes three parameters: an inclusive lower bound, an exclusive upper bound, and a
predicate. It iterates over a range within a collection and is not generic: the predicate must take an integer
as its argument. For example, the following method has a postcondition that all returned values in the array
must be positive:

public int [] Bar(){
Contract.Ensures(Contract. ForAll (0, Contract.Result<int[]>().Length,

index => Contract.Result<int[]>()[index] > 0));

It is also possible to use the extension method System.Linq.Enumerable.All instead of Contract. ForAll . The
System.Linq namespace contains other useful extension methods usable in contracts, such as for example Sum

to sum the elements of an IEnumerable.

2.7.2 Exists

Existential quantifications are written using Contract. Exists . There are the same two overloads with the same
parameters as Contract. ForAll .

The predicate is applied to each element in the collection. If it returns true on any element, Exists stops
iterating and returns true. If the predicate returns false on all of the elements in the collection, then Exists

returns false.
It is also possible to use the extension method System.Linq.Enumerable.Any instead of Contract. Exists .

2.8 Interface Contracts

Since most languages/compilers (including C# and VB) will not let you put method bodies within an
interface, writing contracts for interface methods requires creating a separate contract class to hold them.
The interface and its contract class are linked via a pair of attributes (Section 4.1).

[ContractClass(typeof(IFooContract))]
interface IFoo {
int Count { get; }
void Put(int value);
}
[ContractClassFor(typeof(IFoo))]
abstract class IFooContract : IFoo {

int IFoo.Count {
get {

Contract.Ensures(0 <= Contract.Result<int>());
return default(int); // dummy return
}
}
void IFoo.Put(int value){

Contract.Requires(0 <= value);
}
}

The tools expect that the contract class is abstract and implements the interface it is providing contracts
for.

Note how the code produces a dummy return value. The easiest way is to always use default(T) for any
type T. Do not use Contract.Result<T>(), as the tools will emit an error. Alternatively, you can just throw
an exception. This is particularly easy when you have Visual Studio generate the method implementations
for you because that is what it produces.

If you need to refer to interface methods within the same interface in the contracts, you may want to use
implicit implementations of the methods you want to refer to.

12

[ContractClassFor(typeof(IFoo))]
abstract class IFooContract : IFoo {
public int Count { // implicit interface implementation

get {
Contract.Ensures(0 <= Contract.Result<int>());
return default(int); // dummy return
}
}
void IFoo.Put(int value){

Contract.Requires(0 <= value);
Contract.Requires(this .Count < 10); // otherwise , need to write ((IFoo) this).Count
}
}

2.9 Contracts on Abstract Methods

Similarly to interface methods, abstract methods in an abstract class cannot contain method bodies, thus
contracts for these methods need to be written separately. The mechanism used for annotating abstract
classes is the same as that for interfaces. The contract class must be abstract and implement the abstract
class for which it defines contracts:

[ContractClass(typeof(FooContract))]
abstract class Foo {
public abstract int Count { get; }
public abstract void Put(int value);
}

[ContractClassFor(typeof(Foo))]
abstract class FooContract : Foo {
public override int Count {

get {
Contract.Ensures(0 <= Contract.Result<int>());
return default(int); // dummy return
}
}
public override void Put(int value){

Contract.Requires(0 <= value);
}
}

2.10 Overloads on Contract Methods

All of the contract methods have overloads that take a string in addition to the boolean condition:

Contract.Requires(x ! = null , ” If x is null , then the missiles are fired ! ”);

The user-supplied string will be displayed whenever the contract is violated at runtime. Currently, it must
be a compile-time constant.

2.11 Contract Argument Validator Methods

Important: the ContractArgumentValidatorAttribute type is not defined in the .Net Framework
prior to mscorlib . dll 4.5. In order to use this feature in earlier versions, please add the file
ContractExtensions . cs or ContractExtensions .vb to all of your projects that contain contract valida-
tor methods.

These files are found in %ProgramFiles%\Microsoft\Contracts\Languages\....

13

If your project uses explicit if-then-throw code to validate parameters (usage mode 3 in Section 5.1), you are
likely employing helper methods that perform checks and throw particular exceptions on failure, as shown
in the following example.

static class ValidationHelper {
public static void NotNull(object argument, string parameterName) {

if (argument == null) throw new ArgumentNullException(parameterName, ...);
}
}

...

public void MyMethod(string value) {
ValidationHelper .NotNull(value , ”value”);
...

}

In the above example, MyMethod has an effective precondition specifying that parameter value should not be
null. In order for the contract tools to recognize that the call to ValidationHelper .NotNull represents a contract,
the called method can be marked with the [ContractArgumentValidator] attribute and the EndContractBlock()

marker should be used in order for the tools to extract the proper specifications for document generation
and static checking:

static class ValidationHelper {
[ContractArgumentValidator]
public static void NotNull(object argument, string parameterName) {

if (argument == null) throw new ArgumentNullException(parameterName, ...);
Contract.EndContractBlock();
...

}
}

Besides if-then-throw statements, the contract section of contract validator methods is allowed to contain
calls to other contract validator methods. However, no other contracts, such as Requires, or Ensures are
allowed. Code after the EndContractBlock() is ignored by all contract tools.

The following shows a range argument validator written in terms of an existing NotNull validator method:

static class ValidationHelper {
[ContractArgumentValidator]
public static void NotNull(object argument, string parameterName) { ... }

[ContractArgumentValidator]
public static void InRange(object[] array , int index , string arrayName, string indexName) {

ValidationHelper .NotNull(array , arrayName);
if (index < 0) throw new ArgumentOutOfRangeException(indexName, ...);
if (index >= array.Length) throw new ArgumentOutOfRangeException(indexName, ...);
Contract.EndContractBlock();
...

}

...

public void MyMethod(int[] data, int position) {
ValidationHelper .InRange(data, position , ”data”, ” position ”);
...

}
}

From a specification point of view, method MyMethod above has the following three contracts:

14

Contract.Requires<ArgumentNullException>(data != null);
Contract.Requires<ArgumentOutOfRangeException>(position >= 0);
Contract.Requires<ArgumentOutOfRangeException>(position < data.Length);

In ordinary methods, calls to contract validator methods can be freely mixed with other contracts, such as
Contract.Ensures or additional Contract.Requires.

2.12 Contract Abbreviator Methods

Important: the ContractArgumentValidatorAttribute type is not defined in the .Net Framework
prior to mscorlib . dll 4.5. In order to use this feature in earlier versions, please add the file
ContractExtensions . cs or ContractExtensions .vb to all of your projects that contain contract valida-
tor methods.

These files are found in %ProgramFiles%\Microsoft\Contracts\Languages\....

If you find yourself repeating similar sets of contracts in many methods, you can use contract abbreviator
methods to factor these contracts and reference them in multiple places. The following example contains
similar sequences of contracts in Method1, Method2, and Method3:

public class MyClass {
public int State { get ; }
public int Data { get; }

public void Method1(...) {
Contract.Requires(this .State == 0);
Contract.Ensures(this .State == Contract.OldValue(this.State));
Contract.Ensures(this .Data == Contract.OldValue(this.Data));
...

}

public void Method2(...) {
Contract.Requires(this .State == 0);
Contract.Ensures(this .State == Contract.OldValue(this.State));
Contract.Ensures(this .Data == Contract.OldValue(this.Data));
...

}

public void Method3(...) {
Contract.Requires(this .State == 1);
Contract.Ensures(this .State == Contract.OldValue(this.State));
Contract.Ensures(this .Data == Contract.OldValue(this.Data));
...

}
}

With contract abbreviator methods, the above code can be refactored as follows:

public class MyClass {
public int State { get ; }
public int Data { get; }

[ContractAbbreviator]
private void DataAndStateUnchanged() {

Contract.Ensures(this .State == Contract.OldValue(this.State));
Contract.Ensures(this .Data == Contract.OldValue(this.Data));
}
[ContractAbbreviator]
private void InStateZeroAndUnchanged() {

Contract.Requires(this .State == 0);

15

DataAndStateUnchanged();
}

public void Method1(...) {
InStateZeroAndUnchanged();
...

}

public void Method2(...) {
InStateZeroAndUnchanged();
...

}

public void Method3(...) {
Contract.Requires(this .State == 1);
DataAndStateUnchanged();
...

}
}

As shown in the example, abbreviator methods can abbreviate both Requires and Ensures, as well as contain
calls to other abbreviator methods. At use sites in ordinary methods, they can be combined with any other
form of contracts.

The validity of such contracts (in terms of visiblity and other well-formedness criteria) is not checked in
the context of the abbreviator method, but in the context of where the abbreviator method is eventually
used on an ordinary method. Abbreviator methods cannot contain calls to contract argument validators
(Section 2.11).

2.13 AssumeInvariant Helper

The static checker recognizes methods called AssumeInvariant as an extra contract helper that can be used in
code to force the static checker to assume the invariant on an object. This step may be necessary due to
limitations of the static checker in order to avoid warnings.

Here’s an example listing of how the helper is used:

// Include this helper in your project if necessary
static class ContractHelper
{

[Pure]
static void AssumeInvariant<T>(T o) { }

}

class C
{
public int field ;

[ContractInvariantMethod]
private void ObjectInvariant () {

Contract. Invariant (field > 0);
}

public C() {
field = 1;
}
}

16

class TestAssumeInvariant
{

static void TestMe1(C p) {
Contract. Assert(p. field > 0); // 〈 warning unproven by cccheck
}

static void TestMe2(C p) {
ContractHelper.AssumeInvariant(p);
Contract. Assert(p. field > 0); // 〈 no warning by cccheck
}

}

Important: the AssumeInvariant method is not defined in the .Net Framework. In order to use this
feature, you must define this method yourself as shown in the example above.

3 Contract Inheritance

Contracts are inherited along the same subtyping relation that the type system enforces. That is, a variable
of static type T might have a value at runtime of type U where U is a subtype of T. The type system
guarantees that any operation you perform on the variable that is type-correct for a value of type T will still
be type-correct when the runtime value has a type of U. Contracts should behave in the same way: this is
called behavioral subtyping.

Enforcing behavioral subtyping has the consequence that certain contracts are not allowed. For instance,
suppose a method T.M has a precondition. If a client makes sure that they have satisfied the precondition
and has a variable o whose static type is T, then the client should not get a precondition violation when they
call o.M. This needs to be true even if the runtime value o has type U. Therefore, the method U.M cannot add
a precondition that is stronger than the precondition of T.M. While we could allow a weaker precondition,
we have found that the complications of doing so outweigh the benefits. We just haven’t seen any compelling
examples where weakening the precondition is useful. So we do not allow adding any preconditions at all in
a subtype. Two important things to note:

• An interface implementation is a subtype of that interface, so this applies not just to classes which
extend other classes, but also to interface implementations (implicit and explicit ones).

• Not having a precondition at all is equivalent to having one with the condition true, so if a supertype
or interface method does not list a precondition, then it is still not allowed to add one.

As a consequence, method preconditions must be declared on the root method of an inheritance/implemen-
tation chain, i.e., the first virtual or abstract method declaration, or the interface method itself.

This problem doesn’t come up for postconditions: having a stronger postcondition just gives clients
more guarantees than they had before. Therefore, we allow subtypes to add postconditions which are
just conjoined (i.e., “and-ed”) with any existing postconditions. Object invariants also are inherited: any
additional invariants are just added as additional constraints that are enforced on the type where they are
declared and any subtypes.

3.1 Custom Parameter Validation and Inheritance

Custom parameter validation code in your assembly—ie., legacy requires (Section 2.1.1) or validator methods
(Section 2.11)—are not inherited if your assembly mode is set to Custom Parameter Validation (Section 5.1.1).
This mode is used when you do not use the contract rewriter on your release build. In that case, parameter
validation on overriding methods cannot be inserted by our tools and you will likely do so by hand. Thus,
it makes little sense for the tools to inherit them in builds where you run the contract rewriter.

Regular Requires are inherited normally in every usage scenario where the contract rewriter is used.

17

3.2 Inheriting from Multiple Methods

If a method has multiple root methods (overrides a method and at the same time implements an interface
method (or implements two different interface methods)), then the effective precondition of the implementing
method would be the conjunction of the preconditions of all root methods. Since this may be a stronger
precondition than the precondition of any of the root methods, this is not allowed.

The contract tools cannot easily determine whether the preconditions of all root methods are equiva-
lent, thus they emit a warning in situations where there are multiple root methods and at least one has a
precondition.

3.3 Purity and Inheritance

Purity (Section 5.4) is also inherited. Once a method is pure, all of its overrides/implementations must be
pure as well.

3.4 Object Invariants and Inheritance

Object invariants can be added in every subclass and they are conjoined with the base class invariants. The
base class invariants are enforced at runtime automatically, provided the assembly containing the base class
also has contract runtime checking enabled. Thus, you should not invoke the base class invariant method
from your own code.

Whether the invariant of a base class is inherited or not is controlled by a command-line option of the
rewriter and also by the ContractOption attribute. The command-line option controls only the default for
whether invariants are inherited across assembly boundaries. Within an assembly, invariants are inherited
unless the ContractOption specifies otherwise.

4 Contract Attributes

4.1 ContractClass and ContractClassFor

For interfaces and abstract types, contracts are written in a separate class (Section 2.8). The ContractClass

attribute is added to the interface (or abstract type) to point to that separate class.

[ContractClass(typeof(ContractForJ))]
interface J { ... }

The ContractClassFor attribute is used to provide the backwards link from a class that holds the contracts for
an interface or abstract type to the interface or abstract type.

[ContractClassFor(typeof(J))]
class ContractForJ : J { ... }

4.2 ContractInvariantMethod

This attribute is used to mark methods that contain object invariant specifications. The methods marked
with this attribute must be nullary methods with void return types and contain nothing other than calls to
Contract. Invariant (Section 2.3). You may not call these methods from within your code.

4.3 Pure

The attribute [Pure] may appear on methods and declares the programmer’s intent that the method has no
visible side-effects for callers. Methods are allowed in contracts only if they are declared pure. See Section 5.4
for an explanation of when you need to use this attribute.

In addition to methods [Pure] can appear on delegate type declarations to specify that all instances
of this delegate type are considered side-effect free. Some existing delegates are considered pure, such as
System.Predicate<T> and System.Comparison<T>.

18

4.4 RuntimeContracts

This assembly-level attribute is added to assemblies by the contract rewriter to flag that an assembly has
already been rewritten.

4.5 ContractPublicPropertyName

This attribute is used on a field to allow it to be used in a method contract where the method is more visible
than the field, e.g., a private field and a public method. This is used to be exempt from the Visibility rules
(Section 5.5).

[ContractPublicPropertyName(”PublicProperty”)]
private int internal ;
public int PublicProperty { get { ... } }

The argument to the attribute is the string name of a corresponding property. The type of the field should
be assignable to the type of the corresponding property, but that is currently not checked. However, an error
will result if a property with the indicated name cannot be found.

4.6 ContractVerification

This attribute is used to instruct downstream tools whether to assume the correctness of the assembly, type
or member it decorates without performing any verification or not. You can use [ContractVerification (false)]

to explicitly mark an assembly, type or member as one to not have verification performed on it. The most
specific element found (member, type, parent type, then assembly) takes precedence. (That is a useful
feature for turning off verification for an assembly but enabling it for one particular type in the assembly.)
When it is applied to a type, then it applies to all members of the type, including nested types. When it is
applied to an assembly, then it applies to all types and members of the assembly. When it is applied to a
property, then it applies to both the getter and setter.

4.7 ContractRuntimeIgnored

This attribute can be placed on pure methods and properties. If a method or property is used inside a
contract and the method is annotated with the [ContractRuntimeIgnored] attribute, then the entire contract
in which it appears is ommitted from runtime checking.

Note: Uses of [ContractRuntimeIgnored] annotated methods within Contract. Assert and Contract.Assume are
not currently recognized.

4.8 ContractOption

Important: the ContractArgumentValidatorAttribute type is not defined in the .Net Framework
prior to mscorlib . dll 4.5. In order to use this feature in earlier versions, please add the file
ContractExtensions . cs or ContractExtensions .vb to all of your projects that contain contract valida-
tor methods.

These files are found in %ProgramFiles%\Microsoft\Contracts\Languages\....

The ContractOptionAttribute takes a category string, a settings string, and a settings value, which is either a
boolean or a string. Currently, the following settings are supported:

19

Category Setting Usage Value/Effect
“contract” “inheritance” assembly, types, methods true: contract inheritance (default).

false: contract inheritance is suppressed
Note: this option affect both runtime and
static contract checking.

“runtime” “checking” assembly, types, methods true: contract checking on (default).
false: contract checks omitted.
Note: all checks recognized by contracts
are omitted, even legacy requires.

5 Usage Guidelines

5.1 Argument Validation and Contracts

Before you start using contracts in your own code, you need to make a few decisions that influence what
contract forms to use for argument validation and where (see Figure 2). Note that you can make these
decisions independently for each managed assembly you produce (each project):

Figure 2: How to Perform Argument Validation

The easiest use of the contract tools is if you decide that you don’t need to perform argument validation
at runtime in release builds (Usage 1). In that case, you use the contract tools during development, but not
on the shipped bits. Remember, you can ship a contract reference assembly along with your release bits so
clients can get runtime checking of your parameter validations on their debug builds via call-site requires
checking.

20

The second easiest approach if you need argument validation in your release build is to turn on contract
checking in all builds (Usage 2). You therefore take advantage of the tools to produce the runtime strings of
your conditions and to perform contract inheritance for you. You can choose to produce specific exceptions
for your parameter validations, or have the default ContractException. The risk of using the contract tools
in your release build is that you depend on tools that have not reached production quality level.

The trickiest combination is when you want argument validation in release builds, but you are using the
contract tool for runtime checking only in debug builds, but not in the release build (Usage 3). In that case,
you have to continue writing your argument validation the way you already do, namely using if-then-throw
statements (we call them legacy-requires). If you want these to be tool discoverable, add other contracts
(such as Ensures) after them, or use Contract.EndContractBlock(), if no other contracts are present. Note
that since you are not using the runtime checking tools in the release build, you are not going to get any
inheritance of contracts and you have to manually repeat your legacy-requires on overrides and interface
implementations. For interface and abstract methods, you still get the most benefit if you write contract
classes with normal requires and ensures forms so you get checking in your debug builds and they appear in
contract reference assemblies and are thus visible to dependent projects and to static checkers.

5.1.1 Assembly Mode

The contract tools need to know which usage mode you choose. If you use VisualStudio, select the Assemby
Mode on the contract property pane as follows:

• Usage 1 or 2: Standard Contract Requires

• Usage 3: Custom Parameter Validation

This permits the tools to emit proper warnings when you violate the usage guidelines. If you use the tools
from the command-line, pass the proper argument for the -assemblyMode option.

5.1.2 Difference between Requires〈Exn〉 and if-then-throw

The difference between these two forms is whether we rely on tools to perform inheritance of contracts or
whether programmers manually inherit them as in existing practice. Requires〈Exn〉(...) is intended to be
used with tool support, meaning that they are inherited in all builds and the message strings are generated
automatically to include the failing condition. Well-formedness checks of contracts do not allow specifying
Requires〈Exn〉 on overrides or interface implementations.

On the other hand, legacy-requires (if-then-throw) try to capture existing practice for release builds,
while providing some extra support for Debug builds using the tools. In Debug builds with contract tool
support, on failure of legacy-requires the contract failure hook is called. This provides the ability to detect
otherwise silent failures (due to catches) in debug builds.

5.1.3 Forcing Projects to build with Contracts

If you are using scenario 2 (Requires〈Exn〉) and you make your source code available to other developers,
you might want to alert them that they need to use the tools to build your source. If so, you can insert the
following snippet into your project file at the end (after the import of the CSharp or VisualBasic targets):

<PropertyGroup>
<CompileDependsOn>$(CompileDependsOn);CheckForCodeContracts</CompileDependsOn>

</PropertyGroup>
<Target Name=”CheckForCodeContracts”

Condition=”’$(CodeContractsImported)’ != ’true ’”>
<Error Text=”Project requires Code Contracts http://msdn.microsoft.com/en−us/devlabs/dd491992.aspx”/>

</Target>

21

5.2 Migrating Projects towards Contracts

Likely, you have an existing project and you would like to start using contracts with minimal changes. If
after reading Section 5.1 you determine that your project falls into usage mode 1 or 2, you don’t really have a
migration task to do. This section thus assumes that your project falls into usage 3, namely that it contains
explicit parameter validation code throwing exceptions, that you want to ship such validation code in your
release, and that the contract rewriting tool will not be used in your release build.

The goal of migration is to mark your existing argument validation code so that the contract tools can
recognize it. Once you have made your validations recognizable, you can start to take advantage of the tools
as follows:

• You can use documentation generation to augment doc-xml files with contracts and produce documen-
tation that includes explicit descriptions of your preconditions and other contracts (Section 8).

• In your test/debug builds, you can enable the runtime contract checker to find inconsistencies in your
validation code (e.g., forgetting to validate parameters in overrides or interface implementations)

5.2.1 Marking Existing Validation Code as Contracts

In methods containing argument validation code in the form of if−then−throw statements, you should place
a Contract.EndContractBlock() call after the last such statement as described in Section 2.1.1.

If your code uses helper methods to validate contracts, mark these methods with a ContractArgumentValidator

attribute as described in Section 2.11.

5.2.2 Issues with Early Return

Sometimes, you have existing code as follows:

void MyMethod(string data) {
if (data == null) return;
if (data.Length == 0) throw new ArgumentException(...);
...

If you add an EndContractBlock() marker after the if-then-throw statement, the contract tools will complain
about the return statement found in the contract section. In order to fix this, you have to move the return
after the parameter validation check, while at the same time weakening the parameter validation to allow
for data to be null :

void MyMethod(string data) {
if (data ! = null && data.Length == 0) throw new ArgumentException(...);
Contract.EndContractBlock();
if (data == null) return;
...

This transformation makes the effective precondition explicit, which is that either data is null, or data.Length

is greater than 0: Contract.Requires<ArgumentException>(data == null || data.Length > 0).

5.2.3 Delegating Checks to Other Methods

Suppose you have a code pattern similar to the following code:

public class Base {
public virtual void Compute(string data) {

if (data == null) throw new ArgumentNullException(...);
Contract.EndContractBlock();
...

}
}

22

public class Derived : Base {
public override void Compute(string data) {
base.Compute(data);
...

}
}

Then the tools will issue warning CC1055 with a message of the form:

Method ’Derived.Compute’ should contain custom argument validation for
’Requires〈ArgumentNullException〉(data ! = null)’ as it overrides ’Base.Compute’ which suggests
it does.

In this situation, the warning is not helpful, as the implementation of Derived.Compute delegates the parameter
validation to another method (in this case the base method). To avoid the warning in this situation without
repeating the validation, you can add a SuppressMessage attribute to the method:

public class Derived : Base {
[SuppressMessage(”Microsoft.Contracts”, ”CC1055”, Justification =”Validation performed in base method”)]
public override void Compute(string data) {
base.Compute(data);
...

}
}

5.2.4 Writing Interface Contracts

You can specify interface contracts as explained in Section 2.8. On interfaces you don’t need to use the if-then-
throw form of contracts, as they are never executed directly. Instead, you can use Requires〈Exception〉 (...)

on interfaces. In builds where you enable the tools, they make sure that each implementation of the interface
has validation code (Note: the tools currently don’t check that the validation code is equivalent, only that
you have any validation at all).

If you use Requires (...) on interface methods, these preconditions will be enforced at runtime only in builds
where you enable runtime checking. Unlike for Requires〈Exception〉 (...) , the inheritance of Requires (...) onto
each implementation is done by the tools and you don’t need to repeat them.

5.2.5 Going Further

When you get to the point that you have marked existing validation as contracts, and you get a clean build
and test run of a debug build with runtime checking enabled, you are ready to write more contracts that are
enforced in your debug/test runs.

You can add invariant methods to enforce data integrity (Section 2.3) and you can write Contract.Requires

for additional preconditions (Section 2.1) and Contract.Ensures for postconditions (Section 2.2). These checks
are enforced in your testing builds with runtime checking enabled, but disappear from your shipping code.

Once you feel comfortable writing contracts and understand what they do, you may want to start using
the static contract checker. Please read Section 6.6 before embarking on this adventure.

23

5.3 Contract Ordering

Method contracts should be written with the different elements ordered as follows:

If-then-throw Backward-compatible public preconditions
Requires, Requires〈E〉 All public preconditions
Ensures All public (normal) postconditions
EnsuresOnThrow All public exceptional postconditions
Ensures All private/internal (normal) postconditions
EnsuresOnThrow All private/internal exceptional postconditions
EndContractBlock If using if-then-throw-style preconditions without any other con-

tracts, place a call to EndContractBlock to indicate all previous if
checks are preconditions.

5.4 Purity

All methods called within a contract must be pure: that is, they must not update any pre-existing state. (A
pure method is allowed to modify objects that have been created after entry into the pure method.) Code
Contract tools currently assume the following things are pure:

• Methods marked [Pure] (If a type is marked [Pure], then that applies to all of its methods.) The pure
attribute is defined in the contract library. (Section 4.3)

• Property getters.

• Operators (static methods whose names start with op , have one or two parameters and a non-void
return type).

• Any method whose fully qualified name begins with System.Diagnostics .Contracts.Contract, System.String,
System.IO.Path, or System.Type.

• Any invoked delegate, provided that the delegate type itself is attributed with [Pure]. The existing
delegate types System.Predicate<T> and System.Comparison<T> are considered pure.

In the future, there will be a purity checker that will enforce these assumptions.

5.5 Visibility

All members mentioned in a contract must be at least as visible as the method in which they appear. For
instance, a private field cannot be mentioned in a precondition for a public method: clients wouldn’t be
able to validate such a contract before they call the method. However, if the field is marked with the
ContractPublicPropertyName attribute (Section 4.5), then it is exempt from these rules.

5.6 Special Method Usage

Special methods such as Contract.Result<T> can only appear in Ensures contracts and type T must agree with
the method return type.

6 Visual Studio Integration

When the managed contracts plugin is installed, C# and VB projects within Visual Studio are augmented
with an extra property pane entitled “Code Contracts”, as shown in Figure 3. This pane provides configu-
ration specific options for enabling runtime contract checking, as well as static contract checking.

If you are using contracts with a target platform of 4.0 or later and you are referencing (implicitly)
mscorlib.dll, then the Contract class appears in the System.Diagnostics .Contracts namespace. If you are using a
pre-4.0 target platform, you need to add a reference to the Microsoft .Contracts. dll library. The library should
appear under the .NET tab when adding project references.

24

Figure 3: Contract Property Pane in Visual Studio

6.1 Assembly Mode

Use the assembly mode selection on the UI to indicate to the tools what usage mode (Section 5.1) you want
for the present project:

6.1.1 Custom Parameter Validation

Select this mode if your project falls into usage 3 (Section 5.1), i.e., you want to check parameter validation
in your released version of the code and you don’t run the contract rewriter on your release bits.

In this mode, you can use legacy if-then-throw statements and [ContractArgumentValidator] methods
to express parameter validation code that you want the contract tools to recognize. You have to manually
perform inheritance of such validation code and the tools warn you if it sees overrides/implementations where
such validation appears to be missing. You can use ordinary Requires(condition) for debug only preconditions.
These will be inherited automatically, but only appear in builds where you enable the contract rewriter.

In this mode, you are not allowed to use the Requires〈Exn〉 form, except on contract classes for interfaces
and abstract types. If you do, the tools will issue an error.

6.1.2 Standard Contract Requires

Select this mode if your project falls into usage 1 or 2 (Section 5.1), i.e., you either don’t want parameter
validation in your released code, or you run the contract rewriter on your released code.

25

In this mode, you are not allowed to use legacy if-then-throw blocks marked as contracts with EndContractBlock

or [ContractArgumentValidator] methods. The tools will emit errors if you do.

6.2 Runtime Contract Checking

We suggest using either a standard Debug (or Checked) configuration or a custom configuration to use runtime
contract checking. The benefit of a custom configuration is to allow separate testing of potentially expensive
contract checks without affecting existing test runs with stricter timing constraints.

To enable runtime contract checking in a particular configuration, select the configuration and check
the box for runtime contract checking. We also recommend you select Build to build a contract reference
assembly (see Section 6.5).

6.2.1 Runtime Checking Level

The drop-down menu to the right let’s you select the level of runtime contract checking. The enabled contract
checks depending on the level are listed in the table below:

Enabled Runtime Checks
Checking Level Legacy Requires〈E〉 Requires Ensures Invariants Asserts Assumes

Full X X X X X X X
Pre and Post X X X X
Preconditions X X X
ReleaseRequires X X
None

By “Legacy”, we mean any if-then-throw blocks preceding any Contract.∗ methods, which are therefore
recognized as declarations of preconditions.

Note that when level “None” is selected, all contracts are erased, including “Legacy requires”. This level
is useful mainly for doing benchmarking without any contracts.

6.2.2 Public Surface Contract Checks

In addition to the level, the checkbox Only Public Surface Contracts can be used to erase all contracts on
methods that are not callable from outside the assembly (even via interfaces).

Warning: if you create a delegate from a method that is not visible from outside the assembly and the
delegate itself will be callable from outside the assembly, then any parameter validation on this method will
not trigger with this box checked.

Warning: if you delay parameter validation on a method callable from outside by having it call a method
not callable from outside the assembly that performs the validation, then you will get no validation with
this box checked, as the validation on the non-visible method is erased.

6.2.3 Assert on Contract Failure

When this box is checked (default), all contract failures, including Requires〈E〉 and legacy requires (marked
if-then-throws) trigger the default failure behavior of the contract library, which is to display an assert dialog.
Clearing this box will instead generate code that throws exceptions on failure. See Section 7 for details.

6.2.4 Call-site Requires Checking

When building a project A with call-site requires checking on, the rewriter will determine at each call-site
within A if the call “potentially” calls a method defined in another assembly. In that case, the rewriter will
insert the Requires checks for the called method at the call-site within assembly A (actually, we use wrapper
methods to avoid duplicating the checks). Of course, in order for this to work, the contracts for the called
method need to be known, which will require contract reference assemblies (B.Contracts, if the method is
defined in assembly B).
Some Requires checks are not currently instrumented at call-sites:

26

• Requires of constructors

• Requires of protected methods

Call-site requires checking enables a library writer to produce a library B without runtime Requires checks
(e.g., for performance reasons), while providing the Requires separately in a contract reference assembly
B.Contracts. A developer of a project A referencing B and using call-site requires checking will have parameter
validations checked for methods in B, regardless of whether B is actually instrumented with checks or not.

6.2.5 Skip Quantifiers

Quantifier checking can be expensive at runtime as it may traverse large collections of data. Enabling skip
quantifiers will skip any contracts that contain Contract. ForAll or Contract. Exists calls.

6.2.6 Build Steps

When runtime contract checking is enabled, a build will perform the following actions in addition to the
regular compile:

• It determines the availablility of contract reference assemblies for all referenced projects and warns if
they are missing (Section 6.5).

• It applies the contract rewriter ccrewrite to the target assembly, performing well-formedness checks on
the contracts, instrumenting contract runtime checks into the appropriate places, including contract
inheritance (Section 7).

6.2.7 Extra Options

The boxes labeled custom rewriter methods can be used to customize the runtime behavior for contract
failure by specifying an assembly (relative to the project output directory) and the full namespace path to
the type containing the custom failure behavior (see Section 7). The specified assembly may be the project
output itself.

Under the advanced options, extra library paths (semi-colon separated) can be specified for finding
contract reference assemblies. Extra runtime checker and static checker command line options can be specified
there as well.

6.2.8 Suppressing Warnings

You can suppress warnings you get from the tools by adding SuppressMessage attributes to methods. For
example, to suppress a warning CC1055 about missing validation on a method, add the following attribute:

[SuppressMessage(”Microsoft.Contracts”, ”CC1055”, Justification =”Check performed in DelegateTo”)]
public override void Compute(string s) {

DelegateTo(s);
}

In general, to suppress any warning, use the above pattern with the appropriate error number you want to
suppress. The error number should be visible in the output window if it is not included in the message on
the Error List window.

You can place SuppressMessage attributes on types and properties in addition to methods. In that case,
the suppression applies to the entire scope of the type or property.

6.3 C# Code Snippets

The installer adds a number of C# code snippets that are useful for authoring code contracts. Each snippet
in the table below is invoked by typing the character shortcut and hitting TAB TAB (tab twice).

27

Shortcut Contract Snippet

cr Contract.Requires(...);
ce Contract.Ensures(...);
ci Contract.Invariant(...);
crr Contract.Result〈...〉()
co Contract.OldValue(...)
cim [ContractInvariantMethod]

private ObjectInvariant() {
Contract.Invariant(...);

}
crn Contract.Requires(... != null);
cen Contract.Ensures(Contracts.Result〈...〉() != null);
crsn Contract.Requires(!String.IsNullOrEmpty(...));
cesn Contract.Ensures(!String.IsNullOrEmpty(Contracts.Result〈string〉()));
cca Contract.Assert(...);
cam Contract.Assume(...);
cre Contract.Requires〈E〉(...);
cren Contract.Requires〈ArgumentNullException〉(... != null);
cresn Contract.Requires〈ArgumentException〉(!String.IsNullOrEmpty(...));
cintf expands to an interface template and associated contract class

6.4 VB Code Snippets

The installer also adds Visual Basic code snippets similar to the ones for C#. Each snippet in the table
below is invoked by typing the shortcut and hitting TAB (tab once).

Shortcut Contract Snippet

creq Contract.Requires(...)
cens Contract.Ensures(...)
cinv Contract.Invariant(...)
crr Contract.Result(Of ...)()
cold Contract.OldValue(...)
cim 〈ContractInvariantMethod()〉

Private Sub ObjectInvariant()
Contract.Invariant(...)

End Sub
crn Contract.Requires(... IsNot Nothing)
cen Contract.Ensures(Contracts.Result(Of ...)() IsNot Nothing)
crsn Contract.Requires(Not String.IsNullOrEmpty(...))
cesn Contract.Ensures(Not String.IsNullOrEmpty(Contracts.Result(Of string)()))
cca Contract.Assert(...)
cam Contract.Assume(...)
cre Contract.Requires(Of Exc)(...)
cren Contract.Requires(Of ArgumentNullException)(... NotIs Nothing)
cresn Contract.Requires(Of ArgumentException)(Not String.IsNullOrEmpty(...))
cintf expands to an interface template and associated contract class

6.5 Building a Contract Reference Assembly

Note change from previous behavior: Contract reference assemblies are not longer built automatically for all
dependee projects of a project.

If your project contains contracts and is referenced by other projects, we strongly recommend that you
select Build under the contract reference assemby section in the properties tab for CodeContracts.

28

The contract reference assembly for an assembly named A will be called A.Contracts. dll and appears in
the project output directory. It can be distributed along with your assembly so other developers can take
advantage of the contracts for your project.

This contract reference assembly is crucial to make the contracts in your project available to referencing
projects. Without building a contract reference assembly, other projects cannot determine what contracts
are present.

The drop down for building contract reference assemblies has three selections: (none), Build, and DoNot-
Build. The behavior of these selections is described below:

• (none): this is the default setting when you haven’t made an explicit choice yet. If another project
requires the contracts of this project, the build will warn you that no contract reference assembly was
found. To get rid of this build warning, select either Build or DoNotBuild.

• Build: this is the recommended setting when your project has contracts. It will produce an assembly
called A.Contracts. dll in the output directory of project A. It makes the contracts of A visible to other
projects.

• DoNotBuild: this setting is recommended if this project does not contain contracts, or there are
problems building the contract reference assembly. With this setting, the build warning about missing
the contract reference assembly produced when other projects reference this project will disappear.

For a description of the command line tool to build contract reference assemblies, see Section A.4.

6.6 Static Contract Checking

First, a word of caution: Static code checking or verification is a difficult endeavor. It requires a relatively
large effort in terms of writing contracts, determining why a particular property cannot be proven, and
finding a way to help the checker see the light.

Before you start using the static contract checker in earnest, we suggest you spend enough time using
contracts for runtime checking to familiarize yourself with contracts and the benefits they bring in that
domain.

6.6.1 Current Limitations of the Checker and Bugs

Below is a list of known bugs or unimplemented features in the static contract checker:

Known Limitations

• Invariants are only checked by the static checker on method exits, but not prior to calls. It is thus easy
to trick the checker into thinking the invariant on this holds by calling an empty method on this .

• Invariants on structs are checked the same way as invariants on classes. However, since structs always
have an implicit emtpy default constructor, and this constructor is not checked, invariants violated by
the default constructor are not reported.

• The static contract checker has limited supported for ForAll and Exists quantifiers, provided the quan-
tified expression is simple like x => x != null.

• when writing iterators using yield , the static contract checker will not be able to prove postconditions
(see Section 11.3).

• post conditions of async methods are not checked by the static checker.

29

6.6.2 Setting Up a Configuration

If you are still determined to go ahead with contracts, we suggest you create a separate configuration, e.g.,
CodeAnalysis—based on your Debug configuration—and enable static checking for that configuration. This
avoids slowing down regular build flavors.

To enable static checking, check the box titled Perform Static Contract Checking. If static checking is
enabled, a build performs the following steps:

• It builds an alternate target for the project with CONTRACTS FULL symbol defined. The target is
called X.decl . dll where X is the regular assembly name of the project.

• It runs the static verifier on X.decl . dll and displays warnings in the output and task windows.

6.6.3 Static Checking Options

By default, the static verification tries to prove all explicit contracts in the code under analysis (assertions,
invariants, requires, and ensures), as well as requires of methods called in other assemblies, and inherited
ensures and object invariants on classes extending base classes and interfaces in other assemblies.

Check in Background: This option (on by default) controls whether the running of the static checker
will block your build.

Show squigglies: Controls whether warnings emitted by the static checker appear as squigglies in the
source text. It is off by default as the squigglies can be overwhelming if lots of warnings are emitted.

Cache results: Controls if the analysis results are cached. If checked, the analysis tries to avoid analyzing
methods whose outcomes cannot possibly change (because no contracts, no code, and no relevant metdata
has changed). Enabling this option allows for faster turn-around times if using the static checker repeatedly.

To share the cache among multiple developers, use a SQL server and put the server name in the SQL
Server configuration box in the UI. Note: the SQL server connection uses Windows authentication to log
onto the server. Your developers will need the right to create and modify databases.

If you see connection timeouts, you can increase the timeout by adding

−cacheserverTimeout value

in the extra static checker options.

Implicit obligations: The check box Implicit Non-Null Obligations enables additional checks, which warn
about potential inappropriate uses of null in the code under analysis. Similarly, the check box Implicit Array
Bounds Obligations causes the verifier to try to validate the following:

• Array accesses are within bounds of the array (lower and upper).

• Array creation uses a non-negative size.

Enabling Implicit Arithmetic Obligations causes the checker to warn about division by zero errors, floating
point precision mismatches, and erroneous negations of Int .MinValue. The Implicit Enum Writes Obligations
checks that when a value is written into a location of enum type, the value is one of the defined values for
such a type.

We suggest you do not enable the implicit checks initially, as they easily lead to too many warnings if
you enable the checking on an existing code base. For a new code base, feel free to enable them initially.

Redundant Assumptions: Enabling this option causes the checker to attempt to prove the Contract.Assume

statements and warn if they are provable. We suggest you use this option only occasionally to get rid of
redundant assumptions, but not on a continuous basis, as it slows down the static analysis substantially.

30

Show Assumptions: This options let the static checker making explicit some of the implicit assumptions
you made in your code. Examples are assumptions on the value returned by a method, on the input
parameters or object fields that cannot be expressed by preconditions because they violate visibility rules.

Missing Public Requires When this option is selected, the static checker will warn about missing requires
on methods visible outside the assembly. Effectively, the option turns suggested requires on such methods
into warnings.

6.6.4 Inference

The static checker helps the annotation process by suggesting contracts, and propagating them to the
callers. The first time you run inference, it may take some time, so please be patient. We suggest to
use inference together with caching. The “infer” switches propagate the inferred contracts to the callers.
The “suggest” switches simply print out the inferred contracts in the output window. The static checker
infers/suggest preconditions from failing assertions. The suggested/inferred preconditions are necessary in
that, if they do not hold then the method is doomed to fail. By default, the static checker filters preconditions
containing disjunctions. To enable them, check the “disjunctive requires” box. The static checker uses some
heuristics to derive to filter the method postconditions inferred/suggested to the user. Object invariants are
inferred/suggested from the failing assertions involving readonly fields.

6.6.5 Caching of the Analysis Results

By default, after a build, the static verifier analyzes all the methods in a given assembly. However, it is often
the case that only few methods changed among two builds. The caching mechanism allows to persist the
analysis results between builds and it avoids re-analyzing most of the unmodified methods. To activate it,
simply check the box in the Visual Studio pane.

6.6.6 Focus Your Attention

As mentioned in the introduction, static verification is difficult and at times overwhelming. To not get lost
in a sea of warnings, we suggest you focus the static contract checker on a small part of your code and drill
down in that area. To do so, use the attribute

[assembly: ContractVerification (false)]

in your assembly. This attribute at the assembly level turns off contract checking by default. Now you can
focus the static contract checker on individual methods or individual types by adding the attribute

[ContractVerification (true)]

to a class, struct, or individual method. The attribute changes the default for the sub-tree of code it appears
on. This means you can switch the default mutliple times, e.g., if enabled on a particular type, you can
disable it again for a nested class or individual methods.

Once you are happy with the contract checking in the small set of methods you focused on, you can grow
the set incrementally. Note that you may need to write contracts on methods called from your set of checked
methods, even if the called methods themselves are not in your focus set.

6.6.7 Dealing with Warnings

When the static verifier issues a warning about a particular contract or implicit proof obligation, it doesn’t
necessarily indicate an error in the code. Warnings are issued whenever the checker is unable to prove that
the contract holds on all executions under the assumptions provided by the contracts on all other methods.

If the verifier emits a warning that the programmer deems unwarranted, it is possible for the programmer
to make this explicit in a number of ways. Most often, it is possible to add a requires to the method where
the warning occurs to make some assumption between callers and the method explicit. For example, if the
method uses a parameter p without checking for null, the method wants to assume that callers never pass
null. In order for the verifier to understand this, add a precondition of the form:

31

Contract.Requires(p ! = null);

If the warnings concerns internal object state of fields that might not be visible to all callers of the method,
then this might indicate the need for an object invariant. For example, if a field f is assumed to be non-null
at all times, an object invariant should be added:

[InvariantMethod]
private void ObjectInvariant () {

Contract. Invariant (f ! = null);
}

This invariant is now assumed on all method entries of this class, and it is checked on all method exits, and
in addition on exit of all constructors.

Alternatively, it might be that the method where the warning is emitted obtains a value as a result from
a call to another method M and uses it without checking for null. Again, the method assumes that the result
of M is non-null given the particular parameters. This can be made explicit by adding a contract to M of
the form:

Contract.Ensures(Contract.Result<T>() != null);

where T is the return type of M. If the method returns non-null only provided certain properties hold of the
parameters, that can be made explicit as well by using a disjunction in the ensures. For example, method
M might return null if a parameter p is null, otherwise it returns non-null. This is expressed as follows:

Contract.Ensures(p == null || Contract.Result<T>() != null);

Another way to read the above disjunction is as an implication: p ! = null ==> result != null.
For some warnings it will either be too complicated to add all the invariants to the code to show why

a particular contract should be true, or the verifier might have inherent limitations that prevent it from
proving it. In cases where all else fails, it is always possible to add an explicit assumption in the code. For
example, if some local x is known to be non-null at a given program point, but there is no other way to teach
the verifier why this is so, then an explicit Assume statement will do the trick:

Contract.Assume(x != null);

Such assumptions are silently believed by the static verification. However, they are still checked at runtime
when using runtime checks. Thus, accidental erroneous assumptions added by programmers can be discovered
during testing.

6.6.8 Baseline

Bringing an existing code base to a point where the verifier emits only a few warnings is difficult and time
consuming, as it requires adding numerous contracts. To make it easier to use contracts on existing code
bases, and to focus warnings introduced by new code or code changes, the Baseline functionality can be
used.

To use the baseline functionality, check the box labelled Baseline and provide a file name to store the
baseline in. The path is relative to the project output directory. When the analysis is run and the baseline
file does not exist, the baseline is created. During this run, all warnings are shown in the output and stored
in the baseline file as XML.

When the analysis is run and the baseline file exists, then the baseline acts as a filter and warnings
already found in the baseline are not shown again. New warnings are shown and stored in a file called
<baseline>.new, where <baseline> is the file name of the baseline file. Since the files are stored as textual
XML, it is possible to edit them and to add additional failures to the baseline. The format does not depend
on method ordering and additional XML tags for grouping can be introduced freely.

6.6.9 Relevant Warnings

The Warning Level slider enables a heuristic to report the most relevant warnings. By default, it is set to
Low, i.e., only the most relevant warnings are reported in the Error List window.

32

6.6.10 Filtering Warning Messages

If using Contract.Assume is ineffective to quiet noise in the static contract checker warnings, a last resort is to
turn off certain warnings using the CodeAnalysis SuppressMessage attribute. To instruct the static contract
checker not to emit a particular class of warnings for a method (a type, an assembly), annotate the method
(the type, the assembly) with the attribute:

[System.Diagnostics .CodeAnalysis.SuppressMessage(”Microsoft.Contracts”, warningFamily)]

where warningFamily is one of: Requires, Ensures, Invariant , NonNull, ArrayCreation, ArrayLowerBound, ArrayUpperBound,
DivByZero, MinValueNegation.

If necessary, the static contract checker allows filtering a single warning message (instead of an entire
family) as well. To do so you can annotate a method with the attribute

[System.Diagnostics .CodeAnalysis.SuppressMessage(”Microsoft.Contracts”, warningFamily−ILOffset−MethodILOffset)]

where warningFamily is as above, and ILOffset and MethodILOffset are used by the static contract checker
to determine the program point the warning refers to. The offsets can be obtained from the static contract
checker by providing the −outputwarnmasks switch in the “Custom Options” entry in the VS pane. Check
the Build Output Window for the necessary information. Code changes to the method or the contract being
violated may invalidate the IL offsets and turn the suppression ineffective.

Sometimes the precondition for a method may be too complex for the static analyzer. In order to suppress
all the warning messages issued at call sites, one can use the RequiresAtCall modifier:

[System.Diagnostics .CodeAnalysis.SuppressMessage(”Microsoft.Contracts”, ‘‘ RequiresAtCall−exp’’)]

where exp is a string describing the condition to be ignored. The attribute should be added to the method
where the precondition is defined. The −outputwarnmasks switch provides (in the Build Output Window)
the necessary information. The EnsuresInMethod modifier allows to suppress all the warnings related to a
postcondition in all the methods implementing or overriding the current method. The attribute should be
added to the method where the postcondition is defined. The InvariantInMethod modifier allows to suppress all
the warnings related to an object invariant. The attribute should be added to the type where the invariants
is defined.

7 Runtime Contract Behavior

The runtime behavior of a contract can be configured at the time the contract rewriter is run and also during
program execution.

The basic operation of the contract rewriter is to place runtime checks for contracts at appropriate places.
The contracts may come from a variety of places, e.g., via inheritance from contract reference assemblies or
other code in the assembly being rewritten.

7.1 Rewriter Methods

Every contract usage is translated to call a particular rewriter method according to the table below:

33

Requires(cond) CR.Requires(cond, null, “cond”)

Requires(cond, msg) CR.Requires(cond, msg, “cond”)

Requires〈E〉(cond) CR.Requires〈E〉(cond, null, “cond”)
Requires〈E〉(cond, msg) CR.Requires〈E〉(cond, msg, “cond”)

Ensures(cond) CR.Ensures(cond, null, “cond”)

Ensures(cond,msg) CR.Ensures(cond, msg, “cond”)

EnsuresOnThrow〈E〉(cond) CR.EnsuresOnThrow(cond, null, “cond”, exn)

EnsuresOnThrow〈E〉(cond,msg) CR.EnsuresOnThrow(cond, msg, “cond”, exn)

Invariant(cond) CR.Invariant(cond, null, “cond”)

Invariant(cond, msg) CR.Invariant(cond, msg, “cond”)

Assert(cond) CR.Assert(cond, null, “cond”)

Assert(cond, msg) CR.Assert(cond, msg, “cond”)

Assume(cond) CR.Assume(cond, null, “cond”)

Assume(cond, msg) CR.Assume(cond, msg, “cond”)

For legacy requires (if-then-throw), the rewriting depends on a switch to the contract rewriter on whether
to additionally assert on failure:

Assert on failure Throw on failure (default)

(legacy require) if cond then throw if cond then { var m =
CR.RaiseContractFailedEvent(...);

if (m != null) Assert(false, m);
throw

if cond then {
CR.RaiseContractFailedEvent(...);
throw

As you can see, the different overloads are all reduced to calls on 7 distinct methods in a contract runtime
class CR:

class CR {
void Requires(bool cond, string userMessage, string condition);
void Requires<E>(bool cond, string userMessage, string condition);
void Ensures(bool cond, string userMessage, string condition);
void EnsuresOnThrow(bool cond, string userMessage, string condition , Exception exn);
void Invariant (bool cond, string userMessage, string condition);
void Assert(bool cond, string userMessage, string condition);
void Assume(bool cond, string userMessage, string condition);
}

The exception argument to EnsuresOnThrow is the actual caught exception. These runtime contract methods
are either generated by the contract rewriter in the generated type System.Diagnostics .Contracts. ContractsRuntime,
or they can be provided by the programmer as custom rewriter methods to the contract rewriter (see Sec-
tion 7.7).

In the case where the contract rewriter synthesizes the methods, they all have the following form:

void Requires(bool cond, string userMessage, string condition) {
if (cond) return;
ReportFailure (ContractFailureKind . Precondition , userMessage, condition , null);

}

That is, the methods return if the condition is true. Otherwise, they call ReportFailure . The other contract
methods are similar. EnsuresOnThrow passes the caught exception on to the ReportFailure method.

The method that has special pre-defined failure behavior is Requires〈E〉. It looks for a public constructor
of the given exception type that takes two string arguments. It then passes the message constructed by
user provided by RaiseContractFailedEvent and the user provided message to the exception constructor. For
the standard ArgumentException type, the intention is that the second parameter (the optional user provided
message) is the parameter name. Since ArgumentNullException takes these parameters in reversed order, the
generated code reverses the arguments in that case. If no two argument constructor is found, constructor
with a single string argument is tried. If found, it is used to construct the exception passing as a parameter
the message constructed by RaiseContractFailedEvent.

34

void Requires<E>(bool cond, string userMessage, string condition)
where E:Exception {
if (cond) return;
string str = TestRewriterMethods.RaiseContractFailedEvent(ContractFailureKind.Precondition , message, conditionText, null);

#if AssertOnFailure
if (str ! = null) {

System.Diagnostics .Debug.Assert(false , str);
}

#endif
Exception exception = null ;
ConstructorInfo constructor = typeof(TException).GetConstructor(new Type[] { typeof(string), typeof(string) });
if (constructor ! = null)
{

if (constructor .GetParameters ()[0]. Name == ”paramName”)
{

exception = constructor . Invoke(new object[] { message, str }) as Exception;
}
else
{

exception = constructor . Invoke(new object[] { str , message }) as Exception;
}
}
else
{

constructor = typeof(TException).GetConstructor(new Type[] { typeof(string) });
if (constructor ! = null)
{

exception = constructor . Invoke(new object[] { str }) as Exception;
}
}
if (exception == null)
{
throw new ArgumentException(str, message);
}
throw exception;
}

To use Requires<E> properly with ArgumentNullException or ArgumentOutOfRangeException, use the second
argument to Requires to pass the parameter name:

void TestMe(string name, int index) {
Contract.Requires<ArgumentNullException>(name != null, ”name”);
Contract.Requires<ArgumentOutOfRangeException>(index >= 0, ”index”);

The ReportFailure and RaiseContractFailedEvent methods are discussed below.

7.2 ReportFailure Method

The ReportFailure method can be provided as part of the custom runtime contract class (Section 7.7). Oth-
erwise the following method is synthesized:

void ReportFailure (ContractFailureKind kind, string userMessage,
string condition , Exception inner)

{
var message = RaiseContractFailedEvent(kind, userMessage, condition , inner);
if (message == null) return; // handled
TriggerFailure (kind, message, userMessage, condition, inner);

}

35

ReportFailure first calls the RaiseContractFailedEvent method which returns either null if the failure is handled,
or the message string to use when calling TriggerFailure .

The two methods called RaiseContractFailedEvent and TriggerFailure can also be provided by the user in the
supplied custom runtime contract class (Section 7.7). Otherwise, the methods from the Microsoft .Contracts. dll

or mscorlib . dll are used.

7.3 RaiseContractFailedEvent

The default implementation of RaiseContractFailedEvent in the library is to call each handler registered with
the Contract. ContractFailed event. Exceptions thrown by handlers are ignored, but each handler can indicate
whether the failure is handled by calling SetHandled() on the event argument. If any handler sets the failure
as handled, the method returns null and no further action is taken.

Alternatively, handlers can call SetUnwind() on the event argument to ask the code to unwind. In that
case, a ContractException is thrown after all handlers have executed.

If a handler throws an exception, it is treated as if it called SetUnwind. Additionally, the thrown exception
will be used as the inner exception of the ContractException thrown after all handlers have executed. When
multiple handlers throw, the inner exception used is undetermined.

7.4 TriggerFailure

The default implementation of TriggerFailure in the library is to break into the debugger (if attached) or
display an assert dialog box.

If the option “assert on contract failure” in the Visual Studio Contract property pane is cleared, or the
/throwonfailure option is used on the command line, the contract rewriter instead synthesizes an alternative
TriggerFailure method that throws a ContractException. Note that the ContractException type is added internally
to the assembly being runtime checked.

7.5 Rationale for Runtime Behavior

Why, you might ask, is the runtime behavior for contract failure not just to throw an exception?
A lot of discussion has gone into the current design in order to address the following problem with

exceptions: thrown exception can be handled. This means that in your debugging or test runs, you might
actually fail some contracts, but the exception being thrown gets caught and silently swallowed somewhere
and nothing ever gets reported about the contract failure. This is particularly annoying in the case where in
your Release build the contract disappears and no exception is thrown, thus resulting in completely different
code paths.
It was thus important that our design address this point, namely:

Contract failure should be disoverable, even if masked by catching exceptions.

We provide two ways to discover contract failure. First, by invoking the ContractFailedEvent on any contract
failure, including properly recognized if−then−throw validations.

Second, the option assert on failure inserts code that triggers an assertion dialog. Additionally, for hosted
or non-interactive environments, the host gets control, or the process is aborted.

Now clearly, throwing up a dialog or taking the process down is not the desired behavior in your release
build, test runs, or any non-development environment. That is why we have provided ways to change the
default behavior.

First, in a testing environment, we need a way for the test framework to be notified and regain control
of the execution when a contract fails. See Section 7.8 for more details on working in testing frameworks.

Second, in your released code, you should never enable assert on failure (which is the assert dialog). This
means following the guidelines of Section 5.1.

36

7.6 ContractException

The ContractException type is not a public type and is emitted as a nested private type into each assembly
for which runtime contract checking is enabled. It is thus not possible to write catch handlers catching only
ContractException. Contract exceptions can thus only be handled as part of a general exception backstop. The
rationale for this design is that programs should not contain control logic that depends on contract failures,
just like programs should not catch ArgumentNullException or similar validation exceptions.

7.7 Providing a Custom Contract Runtime Class

Using the VS interface, one can specify the contract runtime class and its assembly directly. From the
command-line, use the /rw option.

The custom runtime class provided can have any combination of the following methods:

public static class RuntimeFailureMethods {
public static void Requires(bool cond, string userMsg, string condText)
{ ... }

public static void Requires<E>(bool cond, string userMsg, string condText)
where E : Exception
{ ... }

public static void Ensures(bool cond, string userMsg, string condText)
{ ... }

public static void EnsuresOnThrow(bool cond, string userMsg, string condText, Exception innerException)
{ ... }

public static void Assert(bool cond, string userMsg, string condText)
{ ... }

public static void Assume(bool cond, string userMsg, string condText)
{ ... }

public static void Invariant (bool cond, string userMsg, string condText)
{ ... }

public static void ReportFailure (ContractFailureKind kind, string userMsg, string condText, Exception inner)
{ ... }

public static string RaiseContractFailedEvent(ContractFailureKind kind, string userMsg, string condText,
Exception inner) { ... }

public static void TriggerFailure (string message, string userMsg, string condText, Exception inner)
{ ... }
}

Any omitted methods are synthesized (or the default library methods are used). If you specify all seven
kinds of contract methods, then ReportFailure and TriggerFailure will never be called from any generated code.
It is important to understand the default synthesized code: Requires, Ensures, etc. all call ReportFailure , but
Requires<E> does not. It calls only RaiseContractFailedEvent. Note that RaiseContractFailedEvent may still be
called in the case of legacy-requires.

If you provide a custom contract runtime class, the assembly containing it must be able to be found by
the contract rewriter and then deployed with the rewritten assembly when it is executed. To make this easy,
you can provide a custom contract runtime class within the assembly being rewritten.

If the class is a nested type, then you must use the three argument form with the option. That is, the
option /rw:A,M.N,C.D.E will look in the assembly A for the nested type E within the nested type D within
the top-level type C that is declared in namespace M.N. If the class is not nested, then you can use the two

37

argument form: /rw:A,M.N.C will look in the assembly A for the type C that is declared in the namespace
M.N.

7.8 Test Harness Setup

If you are using test harnesses or test environments to execute unit and regression tests that exercise code
with contracts, you probably don’t want the default contract failure behavior (which will put up assert dialog
boxes).

There are three ways to configure contract behavior for testing:

1. The simplest form is to just clear the “assert on contract failure” box in the UI. Now contract failure
results in exceptions, which test harnesses typically deal with. However, this option is not the preferred
one, just the simplest, as it will potentially mask contract failures from your tests due to catch blocks
in your code.

2. The better way to deal with contract failure in a testing environment is to use the ContractFailed event
hook to notify the test framework of the failure and to unwind the stack. Unwinding is done via an
exception, but even if that is caught unintentionally by the surrounding code, the failure will have been
recorded.

For the Microsoft mstest framework, the code below in your test assembly will have the effect of turning
contract failure into test failure:

[TestClass]
public class Test
{

[AssemblyInitialize]
public static void AssemblyInitialize (TestContext tc)
{

Contract. ContractFailed+= (sender, e) => {
e.SetUnwind(); // cause code to abort after event
Assert . Fail (e. FailureKind .ToString() + ”:” + e.DebugMessage);

};
}

}

One complication arises in VS2010 where test projects are always built against .NET 4.0. If your code
under test is built against v3.5 (or earlier) and you reference Microsoft .Contracts. dll from your code
under test, then the above event hook registers with the wrong hook, namely the one in .NET 4.0,
instead of the one used by your code under test.

To solve this, your test project needs to reference Microsoft .Contracts. dll (the version for .NET v3.5).
To avoid namespace ambiguity, change the alias property on the reference from global to something
like Contracts. Now in your test project, you can reference the v3.5 contract library via the following
C#:

extern alias Contracts; // this must be the name you used in the Aliases property of the reference

using Contracts :: System.Diagnostics .Contracts; // instead of System.Diagnostics .Contracts

Using the Contracts :: System.Diagnostics .Contracts namespace now refers to the v3.5 version of the con-
tracts instead of the .NET 4.0 version and thus the event hook used should be the desired one that
matches the one in your code under test.

3. Finally, by providing your own runtime contract class (Section 7.7), you can customize the behavior
even further. For example, you can provide runtime contract methods that throw your own particular
exceptions for contract failures.

38

7.9 Tests that Exercise Contract Failure

If you write tests that exercise contract failures, you should be careful. First off, are you writing any tests
that intentionally exercise Debug.Assert failures? I didn’t think so. In general, the same reasoning applies to
contract failures: don’t exercise them in your tests.

There is only one situation where exercising contract failures as part of regular testing is advised: if you
use requires contracts for parameter validation that are enabled in your release bits, then you may want to
test for that, in particular if you use specific exceptions to report argument validation failures (and not the
internal ContractException).

In that situation, your test will be expecting a particular exception (other than ContractException), and
thus the unit test framework mechanism for expected exceptions can be used nicely.

8 Contract Documentation Generation

The ccdocgen tool shipping with the CodeContract installer augments an existing A.xml doc file with XML
elements describing the contracts present in the code of an assembly A. The original A.xml is produced by
C# and VisualBasic compilers from documentation comments in the code when the appropriate compilation
option is used (/doc: file).

8.1 Contract XML Format

Contract information may appear in the existing XML doc file in the following places:

• In method elements that are neither getters, setters, nor compiler generated

• In type elements

• In property elements: Here, two sub elements are introduced when present in the code called getter
and setter under which the respective contracts appear.

8.1.1 Contract Elements

requires elements may appear under method elements, property getters, and property setters. The element
body is the string of the original precondition. The following attributes may optionally appear:

• description is the optional user provided description string of the contract.

• inheritedFrom is the full documentation id for the method the contract was inherited from.

• exception is the full documentation id for the exception type being thrown if the requires is violated.

ensures elements may appear under method elements, property getters, and property setters. The element
body is the string of the original postcondition. The following attributes may optionally appear:

• description is the optional user provided description string of the contract.

• inheritedFrom is the full documentation id for the method the contract was inherited from.

ensuresOnThrow elements may appear under method elements, property getters, and property setters.
The element body is the string of the original exceptional postcondition. The following attributes may
optionally appear:

• description is the optional user provided description string of the contract.

• inheritedFrom is the full documentation id for the method the contract was inherited from.

• exception is the full documentation id for the type of thrown exceptions for which the exceptional
postcondition holds.

39

pure elements may appear under methods marking them as pure. No additional information is present.

invariant elements may appear under classes. The element body is the string of the original invariant.
The following attribute may optionally appear:

• description is the optional user provided description string of the contract.

8.1.2 Additional Exception Elements

The XML doc format may already contain entries for exceptions thrown by a method or property accessors.
Contracts may add further exception elements under methods and properties. These exception elements
arise if the method or property accessors contain any requires with an explicit exception, or any ensuresOn-
Throw element. The body of the exception element contains either the condition under which it is thrown,
or the exceptional post condition that holds when it is thrown. The cref attribute of the exception element
is the full doc id of the thrown exception.

8.2 Usage from Visual Studio

When you build your project from Visual Studio, make sure to check “XML documentation file” in your
project Build property pane in order to generate the XML documentation file for your project. Note that
the compiler may issue warnings about missing XML comments on your project when you do that. This is
normal and you may want to add the missing descriptions.

On the Code Contract property pane, select both “Build for the Contract Reference Assembly” and
“Emit contracts into XML doc file”. Note: if you select these options without also selecting the “XML
documentation file” on the Build property pane of your project, the ccdocgen tool is not invoked.

8.3 Sandcastle Integration

Sandcastle (http://www.codeplex.com/Sandcastle) is a freely available tool that generates help files and
web sites describing your APIs, based on the XML doc comments in your source code. The CodeContracts
install contains a set of files that can be copied over a Sandcastle installation to take advantage of the
additional contract information. The produced documentation adds a contract section to methods with
declared requires and/or ensures.

In order for Sandcastle to produce Contract sections, you need to patch a number of files in its instal-
lation. Please refer to the Sandcastle Readme.txt found under Start Menu/CodeContracts/Sandcastle for
instructions.

A future release of Sandcastle will hopefully support contract sections without the need for this patching
step.

9 Installation

The Code Contract tools work with Visual Studio 2008 and Visual Studio 2010. They come in three flavors:

Devlab Premium The devlab premium download allows for commercial use of all tools, provided they are
used with Visual Studio Premium or up, or a Team Edition. http://msdn.microsoft.com/en-us/

devlabs/dd491992.aspx

Devlab Standard The devlab standard download allows for commercial use of the runtime contract check-
ing tool with any Visual Studio edition (except Express). http://msdn.microsoft.com/en-us/

devlabs/dd491992.aspx

Academic The academic download from the Microsoft Research web site allows non-commercial use of
all tools (for e.g., teaching) on any Visual Studio edition (besides Express). http://research.

microsoft.com/contracts

40

http://www.codeplex.com/Sandcastle
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://research.microsoft.com/contracts
http://research.microsoft.com/contracts

9.1 VS2010 Beta2

The tools work with VS2010 Beta2 and there should be no observable difference with respect to their behavior
compared to VS2008 except for what is listed below.

• It appears that sometimes the first message emitted by the static checker disappears from the Visual
Studio Error List. Rebuilding usually solves this issue.

9.2 VS2010 Beta1

The tools work with VS2010 Beta1 (but not the CTP). There are some discrepancies in the runtime behavior
of contracts on the Beta1 w.r.t. the documentation due to the fact that the latest contract class changes did
not make it into the Beta1. These discrepancies are described below and occur only if you target .NET 4.0.
If you target 3.5 or lower, the Microsoft .Contracts. dll library needs to be explicitly referenced and then the
behavior should match what is in this document.

The Beta1 discrepancies are:

• The Contract class is missing the new Requires<TException> overload. Instead, it includes the now ob-
solete RequiresAlways (but it isn’t marked obsolete in Beta1). RequiresAlways is temporarily supported
as behaving like Requires<ArgumentException>.

• Use of RequiresAlways without turning on runtime checking (running ccrewrite) results in a check that
stops the process if it fails. We suggest you don’t use RequiresAlways as it is obsolete.

• The ContractFailed event is not raised on contract failures.

• When the failure behavior is an assert dialog box, the System.Diagnostics.Assert dialog is triggered
without concern for whether the environment is hosted or non-interactive.

Other Beta1 issues are:

• Contract Code snippets don’t seem to show up on all installations of VS2010, but do on some.

9.3 Upgrade-downgrade issues

Before upgrading or downgrading your Visual Studio 2008 installation (e.g., from Professional to Team
Edition), make sure to uninstall the code contracts package.

10 Troubleshooting

10.1 ASP .NET

10.1.1 Asserts

If you use runtime contract checking on an ASP.NET assembly, please do not check the Assert on Contract Failure

box in the contract property pane for that project. When running hosted inside a web server or inside internet
explorer, the assertion causes the process to exit rather than provide a useful error message.

When you leave the box unchecked, you will get an exception instead which is displayed properly in these
contexts.

10.1.2 Ambiguous Type Warnings

If you use contracts with ASP .NET and deploy your assemblies for IIS, it may be that the IIS server com-
plains about ambiguous type references due to contract reference assemblies. In order to configure IIS to
ignore contract reference assemblies, you can add entries to your Web.config file as explained on MSDN http:

//msdn.microsoft.com/en-us/library/bfyb45k1.aspx. For example, to remove MyAssembly.Contracts,
add the entry remove as shown below:

41

http://msdn.microsoft.com/en-us/library/bfyb45k1.aspx
http://msdn.microsoft.com/en-us/library/bfyb45k1.aspx

assemblies>
<add assembly=”System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089” />
<add assembly=”System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35” />
...
<add assembly=”System.Data.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089” />
<remove assembly=”MyAssembly.Contracts”/>

</assemblies>

10.2 Contracts on struct constructors

A subtle issue comes up when writing contracts on constructors for structs (as opposed to classes). The
compiler will not let you reference this before any fields are assigned to. Here is an example.

public struct S{
int x;
public bool P { get { ... } }
public S(int y){
this .x = y;

}
}

Suppose you would like to add this postcondition to the constructor:

Contract.Ensures(this .P);

If you try that (and fill in the dots in the getter for P), then you will get the following error message from
the compiler:

struct . cs (12,22): error CS0188: The ’this’ object cannot be used before all of its fields are assigned to

To get around this, you can use the method ValueAtReturn, which is explained in Section 2.2.3:

public S(int y){
Contract.Ensures(Contract.ValueAtReturn(out this).P);
this .x = y;

}

10.3 Call-site Requires

When building an assembly A with runtime checking enabled against a library B that has no runtime requires
checking enabled, but provides a contract reference assembly B.Contracts, the contract rewriter can insert
the appropriate requires at call sites to the library B. Make sure to check the box Call-site Requires Checking
on the contract property pane of project A.

10.4 Static Checker Doesn’t See Any Contracts

If you think that the static checker is not seeing any of your contracts (for instance, it complains about a
parameter possibly being null even though you have a precondition that it cannot be null), then make sure
that your assembly does not have a name that ends in “.Contracts”. The static checker treats all assemblies
that end with that string as reference assemblies and will not load them to perform analysis on.

10.5 Cannot have your own assemblies end in “Contracts”

When using systems such as WCF, you often have assemblies named X.Contracts. dll that are not Code
Contracts Contract Assemblies (Section 6.5) This confuses the Code Contracts tools and you are likely to
get an exception during the generation of the Code Contracts Contract assembly for your project. Currently
you must rename your other assemblies so that they do not end with “Contracts”.

42

11 Known Issues

11.1 Build Slowdown

The build within Visual Studio slows down noticeably for solutions with many projects, mainly due to the
time it takes to instrument the runtime checks. We hope to address this in the future.

11.2 Contracts on Delegates

Currently, there is no mechanism to provide contracts on delegate types or delegate values. In the future, we
will support a mechanism similar to contracts for interfaces that will allow associating requires and ensures
to delegate types.

11.3 Iterators

You can now put contracts on iterators.

public class Graph
{

public IEnumerable<Node> Nodes(Graph g)
{

Contract.Requires(g ! = null);
Contract.Ensures(Contract. ForAll (Contract.Result<IEnumerable<Node〉(),

node => node != null));
foreach (var x in g.MethodForGettingNodes())

yield return x;

}
}

The contracts above make sure that callers don’t pass in a null parameter, and the method itself guarantees
that all elements in the resulting collection are non-null.

Currently, the static checker does not reason about collections and thus will not be able to prove the
postcondition above.

11.4 Closures

Closures can have contracts and runtime checking works as expected. The static contract checker however
performs no inference or propagation of contracts and will thus emit false warnings. One reason for this is
the lack of contracts on delegates (see above). Use

Contract.Assume(cond);

in places where the static contract checker fails to prove cond. This should keep the contract checker quiet,
while still checking this contract at runtime.

11.5 Forms and Generated Code

You may get errors from the static contract checker in generated code such as form initialization from VB or
C# form applications. The main reason is that there’s a lack of contracts on some of the libraries involved.
To avoid having to write contracts in generated code while eliminating noisy warnings is to put an attribute
on such methods (like InitializeComponent). In C#

[System.Diagnostics .Contracts. ContractVerification (false)]

In VB:

<System.Diagnostics.Contracts. ContractVerification (False)>

43

11.6 Old-style assembly signing

Old style assembly signing using the attribute

[attribute : AssemblyKeyFile (...)]

is not supported in conjunction with Code Contracts.

11.7 Edit-Continue Not Working

When using runtime checking of contracts, the IL is rewritten by our tools. Edit-continue relies on being
able to insert code into an existing executable. Since that feature is not aware of the contract rewriting, it
won’t work. There’s no work-around other than not using edit-continue when also using contracts.

11.8 OldValue within Quantifiers

It is not possible at the moment to use the method Contract.OldValue<T>(e) within these two overloads:

• Contract. ForAll<T>(IEnumerable<T>, Predicate<T>)

• Contract. Exists<T>(IEnumerable<T>, Predicate<T>)

This restriction is just when doing runtime checking. Note that it does work within the overloads:

• Contract. Forall (int , int , Predicate<int>)

• Contract. Exists (int , int , Predicate<int>)

12 Feedback

There is a forum for bugs, feedback, discussions, and questions on Code Contracts at http://social.msdn.
microsoft.com/Forums/en-US/codecontracts/threads.

Another way to contact us is to send feedback to codconfb@microsoft.com.

A Appendix

A.1 MsBuild Integration

The Visual Studio integration described in Section 6 is implemented using MsBuild in the following way:

• The Contract Property Pane selections simply add MsBuild properties to the project file (.csproj or
.vbproj).

• An msbuild script extension Microsoft .Contract. targets contains the extra build actions for the runtime
contract instrumentation and static verification steps.

As a result of this approach, it is possible to use the same functionality when building from the command
line with the msbuild command. Using msbuild on a project or solution that uses contracts enabled via the
VS user interface will perform the same actions as the corresponding build under VS.

For projects that do not have contracts enabled via the UI, the following properties can be set on the
command line.

• CodeContractsEnableRuntimeChecking: when set to true, the contract rewriter instruments the target
assembly with runtime contract checks.

• CodeContractsAssemblyMode: set this to 0 if you use custom parameter validation in your assembly that
throw exceptions (usage mode 3). Otherwise, set this to 1.

44

http://social.msdn.microsoft.com/Forums/en-US/codecontracts/threads
http://social.msdn.microsoft.com/Forums/en-US/codecontracts/threads

• CodeContractsRuntimeCheckingLevel: set this to one of the following values: Full, Pre and Post, Precon-
ditions, ReleaseRequires, or None.

• CodeContractsRuntimeThrowOnFailure: set this to true if you want contract failure to throw an exception.
Otherwise, failure will result in an assertion.

• CodeContractsRuntimeOnlyPublicSurface: when set to true, the rewriter instruments only publicly visible
methods.

• CodeContractsRuntimeCallSiteRequires: when set to true, the rewriter instruments preconditions at call-
sites.

• CodeContractsReferenceAssembly: set to Build if you want to build a contract reference assembly for this
project. Useful if other projects reference this assembly and need to see the contracts inside it, or if
you want to generate documentation with contracts. Set it to DoNotBuild if you want to avoid building
it.

• CodeContractsEmitXMLDocs: when set to true and a contract reference assembly for the project is pro-
duced, and xml-docs for the project are produced, then the XML is augmented with contract elements.

• CodeContractsCustomRewriterAssembly: set this to the assembly path containing the type with the custom
rewriter methods you want to call on contract evaluation.

• CodeContractsCustomRewriterClass: this is the name of the class containing your custom rewriter methods.
Use it in conjunction with CodeContractsCustomRewriterAssembly.

• CodeContractsLibPaths: set this to a semi-colon separated list of paths where additional contract reference
assemblies are located.

• CodeContractsRunCodeAnalysis: when set to true, the static contract verifier is run on the build target.

• CodeContractsNonNullObligations: when set to true, the static analyzer will try to validate all pointer
de-references against null.

• CodeContractsBoundsObligations: when set to true, the static analyzer will try to validate all array bounds.

• CodeContractsArithmeticObligations: when set to true, the static analyzer will try to validate some arith-
metic obligations, such as division by zero.

• CodeContractsRedundantAssumptions: when set to true, the static analyzer will warn if an assumption can
be proven.

• CodeContractsRunInBackground: when set to true, the static analyzer runs in the background without
blocking the build.

• CodeContractsExtraAnalysisOptions: can be used to pass extra options to the static analyzer.

A.2 Contract Rewriter Command Line Options

The contract rewriter performs several tasks: postconditions are moved to the end of the method body,
method return values are substituted for occurrences of Contract.Result<T>() and pre-state values are sub-
stituted for occurrences of Contract.OldValue<T>(). In addition, contract inheritance is performed.

To rewrite an assembly without VS or MsBuild integration, compile the assembly with the symbol
CONTRACTS FULL. Then use the ccrewrite .exe tool. Here is a full list of its options:

-automaticallyLookForOOBs (default=true) : Automatically load out-of-band contracts.

[short form: autoRef]

-allowRewritten : Silently do nothing if the input assembly has already been rewritten.

-breakIntoDebugger : Causes the debugger to be invoked.[short form: break]

-contracts <string-arg> : Out-of-band contract assemblies.

45

-debug (default=true) : Use debug information.

-hideFromDebugger (default=true) : Hide rewritten contract methods from debugger.

-libpaths <string-arg> : Additional paths to search for referenced assemblies.

-assemblyMode (legacy | standard) (default=legacy)

: Set to legacy if assembly uses if-then-throw parameter validation

-level <int-arg> (default=4) : Instrumentation level: 0=no contracts, 1=ReleaseRequires, 2=Requires,

3=Ensures, 4=Invariants. (Each increase includes the previous)

-recursionGuard <int-arg> (default=4) : Contract recursion level at which to stop evaluating contracts

-throwOnFailure : Throw ContractException on contract failure[short form: throw]

-publicSurfaceOnly : Remove all contracts except those visible from outside assembly

[short form: publicSurface]

-callSiteRequires : Instrument call sites with requires checks where necessary

[short form: csr]

-output <string-arg> (default=same) : Output path for the rewritten assembly.[short form: out]

-writePDBFile (default=true) : Write PDB file. Cannot be specified unless /debug is also specified

-keepOriginalFiles : Copy original files (using .original extension)

[short form: originalFiles]

-rewrite (default=true) : Rewrites the given assembly to insert runtime contract checks.

-rewriterMethods <string-arg> : Alternative methods to use for checking contracts at runtime.

Syntax: /rw:<assembly>,<class name>.[short form: rw]

-shortBranches : Preserve short branches in the rewritten assembly.

-extractSourceText (default=true) : Extract the source text for the contracts. (Requires /debug.)

-targetplatform <string-arg> : Path to alternate core library (and set of framework assemblies).

[short form: platform]

-verbose <int-arg> (default=0) : Print out extra information.

-contractLibrary <string-arg> : Dll/Exe name containing shared contract class

(if not mscorlib/Microsoft.Contracts.dll)

-inheritInvariants (default=true) : Inherit invariants across assemblies[short form: ii]

-addInterfaceWrappersWhenNeeded (default = true) : If an interface implementation is inherited

and that implementation does not implement the interface

method, then introduce a wrapper method into which the

contracts can be injected. [short form: iw]

-assembly <string-arg> : Assembly to process.

A.2.1 Troubleshooting Rewriting

When using the contract rewriter without contract reference assemblies (Section 6.5) for referenced assem-
blies, one must take care to rewrite the assemblies in the reverse build order.

In other words, one cannot use the contract rewriter on an assembly A, if the referenced assemblies (say
B) of A have already been rewritten, and there are no contract reference assemblies (B.Contracts. dll) available
for them.

The reason is that the contract rewriter needs to find contracts for assembly B possibly inherited when
rewriting A. When B.Contracts. dll is available, the contracts are taken from there and B can already be
rewritten.

Note that the MsBuild and VS integration use contract reference assemblies and thus do not have this
limitation.

A.3 Static Contract Verifier Command Line Options

In addition to the VS and MsBuild integration, the static contract verifier can also be run from the command
line via the cccheck.exe tool. The commandline options are as follows:

usage: <general-option>* [<analysis> <analysis-options>]+ <assembly>+

where <general-option> is one of

-assemblyMode (legacy | standard) (default=legacy)

: Set to legacy if assembly uses if-then-throw parameter validation

46

-ca (default=true) : Check assertions

-checkassumptions : Check assumptions, and suggest those that can be discharged

-trace (dfa + heap + expressions + egraph + partitions + wp) (default=)

-show (progress + il + errors + validations + unreached + progressbar + obligations + paths +

invariants + warnranks + analysisphases + proofobligations) (default=errors)

-stats (valid + time + mem + perMethod + arithmetic + asserts + methodasserts + slowmethods +

abstractdomains) (default=valid,time)

-infer (requires + propertyensures + methodensures) (default=propertyensures)

-suggest (requires + propertyensures + methodensures) (default=requires)

-timeout <int-arg> (default=10) : Analysis timeout per method in seconds

-wp (default=true) : Use weakest preconditions

-libPaths <string-arg> : Search paths for reference assemblies

-cclib <string-arg> (default=Microsoft.Contracts) : Shared contract class library

-nologo

-outFile <string-arg>

-baseLine <string-arg> : use baseline file, or create if absent

-xml : Write xml output

-logLevel <int-arg> (default=0) : 0 - none, 1 - some, 2 - verbose

-logFile <string-arg> : Log debugging to given file

-logXml : Log debugging as xml

-analyzeIteratorMethods : Analyze an iterator method if true

-joinsBeforeWiden <int-arg> (default=1) : Number of joins before applying the widening

-enforceFairJoin : Enforce the at lease one join for each loop path

-includeCompilerGenerated : Analyze compiler generated code

-contract <string-arg> : Use contract reference assembly

-nobox : Don’t pop-up IDE boxes

-platform <string-arg> : Set .NET core library (must be first option)

-sortwarns (default=true) : Prioritize the warnings

-maskwarns (default=true) : Enable suppression of warnings

-outputwarnmasks : Outputs the masks to suppress warnings

-maxPathSize <int-arg> (default=25) : Limit backward WP computation length

-maxWarnings <int-arg> (default=2147483647) : Limit number of issued warnings overall

-remote : Write output formatted for remoting

-precisionlevel <int-arg> (default=0) : 0 - low, 1 - medium, 2 - high, ..

where derived options are of

-statsOnly is ’-show=!! -suggest=!!’

-ide is ’-stats=!! -trace=!!’

-silent is ’-show=!! -stats=!! -trace=!! -nologo’

where <analysis> is one of

-arithmetic[:<comma-separated-options>]

-obl (div0 + negMin + floatEq) (default=div0,negMin,floatEq) : Set of obligations to produce

-precision (Light | Normal | Strong) (default=Normal)

-fp (default=true) : Enable analysis of floats

-type (Intervals | Leq | Karr | Pentagons | PentagonsKarr | PentagonsKarrLeq |

PentagonsKarrLeqOctagons | SubPolyhedra | Octagons | WeakUpperBounds | Top)

(default=Pentagons)

-reduction (Fast | Complete | Simplex | SimplexOptima | None) (default=Simplex)

: Reduction algorithm used by subpolyhedra

-steps <int-arg> (default=1) : Number of closure steps while checking assertions

-maxeqpairs <int-arg> (default=25) : Max number of pair of equalities that can be propagated

by karr

-ch : SubPolyhedra only : use 2D convex hulls to infer constraints

-infOct : SubPolyhedra only : infer octagonal constraints

-mpw (default=true) : Use widening with thresholds

-tp : Use trace partitioning

-diseq (default=true) : Track Numerical Disequalities

-noObl : No proof obligations for bounds

47

-precisionlevel <int-arg> (default=2) : 0 - low, 1 - medium, 2 - high, ..

-bounds[:<comma-separated-options>]

-type (Intervals | Leq | Karr | Pentagons | PentagonsKarr | PentagonsKarrLeq |

PentagonsKarrLeqOctagons | SubPolyhedra | Octagons | WeakUpperBounds | Top)

(default=PentagonsKarrLeq)

-reduction (Fast | Complete | Simplex | SimplexOptima | None) (default=Simplex)

: Reduction algorithm used by subpolyhedra

-steps <int-arg> (default=1) : Number of closure steps while checking assertions

-maxeqpairs <int-arg> (default=25) : Max number of pair of equalities that can be propagated

by karr

-ch : SubPolyhedra only : use 2D convex hulls to infer constraints

-infOct : SubPolyhedra only : infer octagonal constraints

-mpw (default=true) : Use widening with thresholds

-tp : Use trace partitioning

-diseq (default=true) : Track Numerical Disequalities

-noObl : No proof obligations for bounds

-precisionlevel <int-arg> (default=2) : 0 - low, 1 - medium, 2 - high, ..

-nonnull[:<comma-separated-options>]

-noObl : Don’t generate proof obligations

To clear a list, use -<option>=!!

To remove an item from a list, use -<option> !<item>

A.4 Contract Reference Assemblies

A contract reference assembly A.Contracts. dll for assembly A contains the publicly visible interface of A along
with its contracts, but no code bodies. Such contract reference assemblies are used both during rewriting
to inherit contracts across assemblies, as well as during static verification to discover contracts on methods
and types from other assemblies than the assembly under analysis.

The command line tool to produce a contract reference assembly is ccrefgen .exe.

Usage: ccrefgen [/attribute:<string>]* [/backCompat[+|-]] [/contracts[+|-]] [/ignore:<string>]

[/keep:{All|ExtVis|NonPrivate}] [/onlyTransparent[+|-]] [/keepAttributes[+|-]]

[/out:<string>] [/rename[+|-]] [/renameOnly[+|-]] [/sourceText[+|-]]

[/verify[+|-]] [/producePDB[+|-]] [/break[+|-]] <assemblies>* @<file>

[/attribute:<string>]* Atribute to exempt from whatever polarity

keepAttributes is (Short form: /a)

[/backCompat[+|-]] Behave as the original AsmMeta Default

value:’-’ (Short form: /b)

[/contracts[+|-]] Emit contracts Default value:’+’ (Short form:

/c)

[/ignore:<string>] File listing metadata entities to skip Default

value:’’ (Short form: /i)

[/keep:{All|ExtVis|NonPrivate}] Specify what elements to keep Default

value:’All’ (Short form: /k)

[/onlyTransparent[+|-]] Only emit security transparent & safe API’s

Default value:’-’ (Short form: /ot)

[/keepAttributes[+|-]] Emit attributes Default value:’+’ (Short form:

/ka)

[/out:<string>] Output (full) path for the reference assembly.

(Short form: /o)

[/rename[+|-]] Rename the assembly itself. Default value:’+’

(Short form: /r)

[/renameOnly[+|-]] Just rename the assembly, don’t modify it in

any other way. Default value:’-’ (Short form:

48

/ro)

[/sourceText[+|-]] When emitting contracts, include the source

text of the condition. (Ignored if /contracts

is not specified.) Default value:’+’ (Short

form: /st)

[/verify[+|-]] Produce verifiable IL Default value:’-’ (Short

form: /v)

[/producePDB[+|-]] Produce a PDB for output Default value:’-’

(Short form: /pdb)

[/break[+|-]] Break into debugger Default value:’-’ (Short

form: /break)

<assemblies>* Assembly to process.

@<file> Read response file for more options.

49

	Code Contracts Library Overview
	Example

	Contracts
	Preconditions
	Legacy Requires
	Preconditions on automatic properties

	Postconditions
	Normal Postconditions
	Exceptional Postconditions
	Special Methods within Postconditions
	Postconditions on automatic properties
	Postconditions on async methods

	Object Invariants
	Invariants on Automatic Properties

	Assert
	Assume
	EndContractBlock
	Quantifiers
	ForAll
	Exists

	Interface Contracts
	Contracts on Abstract Methods
	Overloads on Contract Methods
	Contract Argument Validator Methods
	Contract Abbreviator Methods
	AssumeInvariant Helper

	Contract Inheritance
	Custom Parameter Validation and Inheritance
	Inheriting from Multiple Methods
	Purity and Inheritance
	Object Invariants and Inheritance

	Contract Attributes
	ContractClass and ContractClassFor
	ContractInvariantMethod
	Pure
	RuntimeContracts
	ContractPublicPropertyName
	ContractVerification
	ContractRuntimeIgnored
	ContractOption

	Usage Guidelines
	Argument Validation and Contracts
	Assembly Mode
	Difference between Requires"426830A Exn"526930B and if-then-throw
	Forcing Projects to build with Contracts

	Migrating Projects towards Contracts
	Marking Existing Validation Code as Contracts
	Issues with Early Return
	Delegating Checks to Other Methods
	Writing Interface Contracts
	Going Further

	Contract Ordering
	Purity
	Visibility
	Special Method Usage

	Visual Studio Integration
	Assembly Mode
	Custom Parameter Validation
	Standard Contract Requires

	Runtime Contract Checking
	Runtime Checking Level
	Public Surface Contract Checks
	Assert on Contract Failure
	Call-site Requires Checking
	Skip Quantifiers
	Build Steps
	Extra Options
	Suppressing Warnings

	C# Code Snippets
	VB Code Snippets
	Building a Contract Reference Assembly
	Static Contract Checking
	Current Limitations of the Checker and Bugs
	Setting Up a Configuration
	Static Checking Options
	Inference
	Caching of the Analysis Results
	Focus Your Attention
	Dealing with Warnings
	Baseline
	Relevant Warnings
	Filtering Warning Messages

	Runtime Contract Behavior
	Rewriter Methods
	ReportFailure Method
	RaiseContractFailedEvent
	TriggerFailure
	Rationale for Runtime Behavior
	ContractException
	Providing a Custom Contract Runtime Class
	Test Harness Setup
	Tests that Exercise Contract Failure

	Contract Documentation Generation
	Contract XML Format
	Contract Elements
	Additional Exception Elements

	Usage from Visual Studio
	Sandcastle Integration

	Installation
	VS2010 Beta2
	VS2010 Beta1
	Upgrade-downgrade issues

	Troubleshooting
	ASP .NET
	Asserts
	Ambiguous Type Warnings

	Contracts on struct constructors
	Call-site Requires
	Static Checker Doesn't See Any Contracts
	Cannot have your own assemblies end in ``Contracts"

	Known Issues
	Build Slowdown
	Contracts on Delegates
	Iterators
	Closures
	Forms and Generated Code
	Old-style assembly signing
	Edit-Continue Not Working
	OldValue within Quantifiers

	Feedback
	Appendix
	MsBuild Integration
	Contract Rewriter Command Line Options
	Troubleshooting Rewriting

	Static Contract Verifier Command Line Options
	Contract Reference Assemblies

