

NETASM USER GUIDE

How to use native code injection with .NET

Alexandre MUTEL - alexandre_mutel [at] yahoo.fr

Date Contributor NetAsm Version Comment

24 July 2008 Alexandre MUTEL 1.0 Initial version

This document is a short user guide to help you use NetAsm native code injection. Feel free to send
your comments and improvement requests at http://www.codeplex.com/netasm

NetAsm User Guide

TABLE OF CONTENTS

1 Introduction ... 1

1.1 Hello World Code Injection sample ... 1

1.1.1 Setup native code injection in a class .. 1

1.1.2 Install the hook and run the code injection .. 2

1.2 Usage recommendations and restrictions .. 2

1.2.1 Recommendations ... 2

1.2.2 Restrictions .. 2

2 Code injection techniques ... 3

2.1 General .. 3

2.1.1 Code injection mechanism .. 3

2.1.2 Code injection level ... 4

2.1.3 Calling conventions .. 4

2.1.4 NetAsm class diagram ... 7

2.2 Static code injection (SCI) .. 8

2.3 Dll code injection (DLLCI) ... 8

2.4 Dynamic code injection (DCI) .. 9

2.4.1 Use of ICodeInjector interface ... 10

2.4.2 Global Native Code Injection ... 11

3 Benchmarks ... 12

3.1 Simple Add benchmark .. 12

3.2 Matrix Multiplication benchmark using SSE2 .. 13

4 Debugging .. 14

NetAsm User Guide Introduction

Page 1

1 INTRODUCTION

NetAsm provides a hook to the .NET JIT compiler and enables to inject your own native code in

replacement of the default CLR JIT compilation. With this library, it is possible, at runtime, to inject

x86 assembler code in CLR methods with the speed of a pure CLR method call and without the

cost of Interop/PInvoke calls.

The main features of NetAsm are:

 Runs on x86 32bit Microsoft .NET platform with 2.0+ CLR runtime (x64 may be supported in

the future).

 Provides three different native code injection techniques: Static, DLL, and Dynamic.

 Supports for debugging static and dynamic code injection.

 Supports for StdCall, FastCall, ThisCall, Cdecl. Default calling convention is CLRCall.

 NetAsm can be used inside any .NET language.

 Very small library <100Ko.

1.1 Hello World Code Injection sample

Using native code injection with NetAsm is a very simple task that can be achieved in two steps:

1) Specify the native code injection in a class

2) Install the hook in the main program of your application

1.1.1 Setup native code injection in a class

The following code is our first native code injection using static code injection technique:

using System;

using System.Runtime.CompilerServices;

using NetAsm;

namespace NetAsmDemo

{

 [AllowCodeInjection]

 class TestHelloWorld

 {

 [CodeInjection(new byte[] { 0xC3 }), MethodImpl(MethodImplOptions.NoInlining)]

 static public void NetAsmReturn()

 {

 throw new Exception("With NetAsm, You should not have an exception!");

 }

 }

}

The steps to allow and use code injection on a method in a class are:

1. Set [AllowCodeInjection] attribute on the class you want to do code injection.

2. Set [CodeInjection] attribute on the method that will be injected with native code

3. For void NetAsmReturn() method in TestHelloWorld, the native code used is : new byte[]

{ 0xC3 }. In x86 assembler, it’s the “RET” (return) command. This method does nothing

more than immediately returning after a call.

4. In our example, we have set the attribute MethodImpl(MethodImplOptions.NoInlining) :

This attribute force the JIT to not inline the IL code inside the method. This is for the purpose

of the demonstration but should be used with caution (see usage recommendation chapter).

NetAsm User Guide Introduction

Page 2

That’s all to use code injection!

In NetAsm, this kind of native code injection is called static native code injection.

TestHelloWorld only use static code injection at the method level. We will see later that NetAsm

provides other code injection techniques.

Now, to run this code injection test, we need to install NetAsm JITHook.Install().

1.1.2 Install the hook and run the code injection

To call the TestHelloWorld method, the main program has to initialize NetAsm:

using System;

using NetAsm;

namespace NetAsmDemo

{

 class Program

 {

 static void Main(string[] args)

 {

 // Install the JIT Hook

 JITHook.Install();

 // Run TestHelloWorld Method

 TestHelloWorld.NetAsmReturn();

 // Remove the JIT Hook

 JITHook.Remove();

 }

 }

}

If you run this program, it will return without any exception. While executing this code, the CLR

Virtual Machine use our native code “RET” command instead of the IL code inside the method. It

means that the original IL code is not compiled by the default JIT compiler.

Now that we know how to do a simple native code injection, we are going to see other code injection

techniques available in NetAsm.

1.2 Usage recommendations and restrictions

1.2.1 Recommendations

 Before using NetAsm, make sure that it is worth to use native code instead of the

default JIT. Managed code can be already compiled quite efficiently by the default JIT.

 Keep your native code as small as possible: don’t make any call from your native code to

any operating systems functions.

 You should always (when possible) try to implement first the method in managed code,

and leave it in the method body. This way, if you disable NetAsm, your code should be able to

run in full managed mode.

 Always benchmark your native code versus your managed code.

1.2.2 Restrictions

 NetAsm only supports currently 32bit Microsoft OS.

 Debugging is limited to static and dynamic code injection.

NetAsm User Guide Code injection techniques

Page 3

2 CODE INJECTION TECHNIQUES

NetAsm provides three native code injection techniques:

 Static code injection: We have seen this technique in the TestHelloWorld. The native code

is stored in an attribute of the method.

 Dll code injection : this method is similar to the DllImport mechanism but CLR methods are

directly bind to the DLL function, without going through the interop layers.

 Dynamic code injection: you can generate native code dynamically with a callback interface

that is called by the JIT when compilation of a method is occurring. It means that you can

compile a method “on the fly”. You have also access to the IL code of the method being

compiled.

2.1 General

2.1.1 Code injection mechanism

NetAsm provides a hook just before the default JIT compiler of the CLR VM is called. With NetAsm,

you can replace the native code of a method with your own optimized assembler code.

The general mechanism and restrictions of NetAsm are:

 NetAsm is working on any public/protected/internal/private methods (but not on

constructors):

o Instance methods: The native method expect the first parameter to be the this

pointer of the instance of the object.

o Static methods

 NetAsm is a JIT native code injector and consequently not a JIT compiler: it doesn’t

compile the original IL Code to native code : this is the work of the default JIT compiler.

Although, it is almost possible to do your own compiler with NetAsm dynamic native code

injection technique, but this is out of the scope of NetAsm.

 NetAsm doesn’t inline native assembler code inside a part of a method but replace

the whole code of the method with your own native code: it means that when you use

NetAsm, the IL code inside the method is not executed – even partially.

 Once the native code is generated for a method, it cannot be re-generated again.

 NetAsm cannot inline the native code of a method into another. Only the default JIT

compiler supports this feature: You need to be very carefully when choosing to use NetAsm

for small methods and to bypass the inline capabilities of the JIT: you may have a slight

performance impact. Use the attribute MethodImpl(MethodImplOptions.NoInlining) to force

the default JIT compiler to not inline the method.

 The generated native code is considered as CLR code and not as unmanaged code . It

means that there are some restrictions: it is for example impossible to debug DLL injected

native code. See Debug section for more information.

 Native code injection is called by the CLR VM, when you try to access at runtime a method

that is not yet compiled. NetAsm doesn’t compile methods at startup: native code for

methods is therefore JIT injected.

NetAsm User Guide Code injection techniques

Page 4

2.1.2 Code injection level

Native code injection can take place at 3 different levels:

 Method level: the code injection is specified at the method level using [CodeInjection]

attribute.

 Class level: the code injection is specified at the class level using [CodeInjection] attriute.

 Application level: the code injection is specified at the application level, using global code

injector in the JITHook class.

Code injection techniques do not apply to each level. The following table shows code injection

techniques allowed for each level:

Technique Method level Class level Application level

Static code injection

Dll code injection

Dynamic code injection

To determine which code injection to use for a method, NetAsm tries to find a code injection at the

method level first, then at the class level, and if it is configured, at the application level.

So the order to get the code injection is:

 If defined, take Method Level →, else take Class Level →, else take Application Level

For example, if you define a static code injection on a method1 of Class A and a dynamic code

injection on Class A, the method1 will be injected with its static code injection defined in the attribute

and all other methods will be dynamically compiled by the ICodeInjector provided at the class level.

2.1.3 Calling conventions

2.1.3.1 SUPPORTED CALLING CONVENTIONS

The calling convention of the CLR is ClrCall . This is a variant of the FastCall calling convention but

arguments are passed from left to right.

In order to achieve optimal speed and avoid any conversion, NetAsm use by default the ClrCall

convention. When you declare a code injection technique, the default Calling Convention is then

ClrCall. You can change the Calling Convention technique using the optional parameter

CallingConvention in the [CodeInjection] attribute. The behavior of the ClrCall calling convention is:

 First parameter is stored in ECX register, Second Parameter is stored in EDX. Other

parameters are pushed on the stack, from left to right parameters. We will see that there are

some exceptions to this rule. The callee cleans the stack.

NetAsm also supports other calling conventions:

 FastCall : Similar to ClrCall, but method’s parameter are passed from right to left. The callee

cleans the stack.

 StdCall : All parameters of a method are pushed on the stack, from right to left. The callee

cleans the stack.

NetAsm User Guide Code injection techniques

Page 5

 ThisCall : Used to communicate with c++ object (no example yet with NetAsm). First

parameter is ECX (and is the This pointer of an instance of the object). Other parameters are

passed on the stack from right to left. The callee clean the stack.

 Cdecl : Similar to StdCall, but the caller cleans the stack.

To use other calling conventions than the default ClrCall, use the optional parameter

CallingConvention in the CodeInjection attribute.

 Be aware that these calling conventions are partially supported by NetAsm. For example,

parameters using structure larger than 8 bytes are not supported (will be fixed in next version of

NetAsm)

 See TestCallingConventions.cs in NetAsmDemo for a set of examples of calling conventions.

2.1.3.2 THE CLRCALL CALLING CONVENTION

ClrCall (as FastCall) can be a bit confusing when parameters are mixed with 4 bytes and 8 bytes size

parameters (64Bit). We are going to see through some examples how to declare a C prototype

equivalent of a C# method ClrCall.

All the following examples are extracted from TestCallingConventions.cs in NetAsmDemo.

Example 1: 3 integer parameters:

The C# declaration code is:

[CodeInjection("NetAsmDemoCLib.dll"), MethodImpl(MethodImplOptions.NoInlining)]

public static int Test3ArgClrCall(int x, int y, int z) {return 0;}

 x will be in ECX register

 y will be in EDX register

 z will be push on the stack

The C declaration code of the function is:

extern "C" int __fastcall Test3ArgClrCall(int x, int y, int z) {return x + y * 3 + z * 5;}

As you can see, in C/C++, you can’t use the __clrcall calling convention, but you have to use the

fastcall convention. This is because when using __clrcall convention in C/C++, the compiler expect

the solution to be compiled with the /clr flag. We don’t want to use any CLR method, because we are

using native code! So, we have to fake a ClrCall with a FastCall convention.

Up to 3 parameters, ClrCall and FastCall convention are similar between C# and C/C++.

Example 2: 4 integer parameters:

The C# declaration is:

[CodeInjection("NetAsmDemoCLib.dll"), MethodImpl(MethodImplOptions.NoInlining)]

public static int Test4ArgClrCall(int x, int y, int z, int w) {return 0;}

 x will be in ECX register

 y will be in EDX register

 z will be push on the stack

 w will be push on the stack

NetAsm User Guide Code injection techniques

Page 6

The equivalent ClrCall declaration in C code of the function is:

int __fastcall Test4ArgClrCall(int x, int y, int w, int z) {return x + y*3 + z*5 + w*7;}

As you can see. The W and Z parameters are reversed. This is because FastCall convention is pushing

parameters on the stack from right to left.

Example 4: 4 integer parameters and a double 64bit parameter. This example shows the main

difference between the clrcall and fastcall convention.

The C# declaration is:

[CodeInjection("NetAsmDemoCLib.dll"), MethodImpl(MethodImplOptions.NoInlining)]

public static double Test4ArgWith1DoubleClrCall(int x, double y, int z, int w, int ww) {

return 0;}

The behavior is different here, because 64 bit parameters are not stored in registers but are pushed

on the stack:

 x will be in ECX register

 y will be pushed on the stack

 z will be in EDX register

 w will be push on the stack

 ww will be push on the stack

The equivalent declaration in C of this ClrCall is thus a FastCall:

double __fastcall Test4ArgWith1DoubleClrCall(int x, int z, int ww, int w, double y) {

 return x + y * 3 + z * 5 + w * 7;

}

Notice the order of the parameters: Because double (but also Int64 UInt64, structure) are pushed on

the stack, they are not used by a register. Still, the compiler allocates a register for the first available

parameter (z) from left to right that has a maximum size of 4 bytes (and is not a structure as well).

 This behavior needs to be fully understood before playing with ClrCall conventions!

 All the methods in the previous examples were declared static: be aware that if a method is

not static (instance), the first parameter of the C equivalent method is the this pointer of

the instance of the object. The this pointer is always stored in the ECX register.

ECX

EDX

With ClrCall, Arguments are push on the stack from left to right (y first, w, and ww)

ECX

EDX

The equivalent ClrCall in C is a fastcall with reversed arguments (pushed from right to left)

NetAsm User Guide Code injection techniques

Page 7

2.1.4 NetAsm class diagram

The NetAsm public API is small and thus very simple to use and understand.

2.1.4.1 JITHOOK CLASS

This is the main class that should be called at the beginning of your application.

2.1.4.2 ATTRIBUTES CLASS

To identify the code injection, NetAsm uses three classes:

2.1.4.3 DYNAMIC CODE INJECTION CLASS

To use dynamic native code injection, Netasm provides one interface and one class:

NetAsm User Guide Code injection techniques

Page 8

2.2 Static code injection (SCI)

Static native code injection is the most simple code injection technique in NetAsm although you need

to know how to generate your assembler native code. If you want to inject your own native code

without depending on an external DLL, you should use native code injection.

To setup a static native code injection, we just have to initialize a [CodeInjection] attribute with an

array of native code bytes (assembler x86):

 [CodeInjection(new byte[] { 0xC3 }), MethodImpl(MethodImplOptions.NoInlining)]

 static public void NetAsmReturn()

NetAsm doesn’t provide currently any assembler to facilitate translation of textual assembler

instruction to binary assembler code. To import your own code, you should use different techniques:

 Use an external assembler. FASM for example provides a way to output a simple binary

format (without any COFF’s like structure) from an assembler source code.

 Use the Microsoft visual C++ inline assembler, configure your project to generate assembler

listing and copy back the data from the *.cod generated files.

Due to its static nature, Static code injection only works on method and is not available at class

or application levels:

Technique Method level Class level Application level

Static code injection

NetAsm may provide in the future a simplified assembler to allow the use of textual assembler code

inside the [CodeInjection] attribute.

 See TestStaticCodeInjection.cs in NetAsmDemo for a set of examples using static code.

2.3 Dll code injection (DLLCI)

NetAsm Dll native code injection is the equivalent of the interop Dllimport mechanism.

Although, NetAsm DLLCI differs in many ways:

 DLLCI use ClrCall as the default calling convention. You can still use other calling conventions

(StdCall, FastCall, ThisCall, Cdecl), even if these implementations are still limited (structure on

the stack are not supported).

 The DLL function is directly associated to the method implementation: there is no additional

layer between the CLR and your code. The Dll function is executed as it was a pure CLR

native code.

 You can bind a dll function on an instance and static method (Dllimport enable only on

static methods). Be careful that the first parameter of the native method will be the this

pointer on the instance object.

To setup a DLL native code injection, we just have to initialize a [CodeInjection] attribute at the

method level or at the class level :

NetAsm User Guide Code injection techniques

Page 9

Technique Method level Class level Application level

Dll code injection

At the method level, with an explicit name for the dll function :

[CodeInjection("NetAsmDemoCLib.dll", "NetAsmAddInC"), MethodImpl(MethodImplOptions.NoInlining)]

public int NetAsmAddDll(int x, int y)

Or by using the name of the method to resolve the dll function . In this example, the C# method

is binded to the NetAsmAddInC function exported by the NetAsmDemoCLib.dll

[CodeInjection("NetAsmDemoCLib.dll"), MethodImpl(MethodImplOptions.NoInlining)]

public int NetAsmAddInC(int x, int y)

At the class level, without any name function . All the methods in the class will be bind to the

equivalent exported dll function (using the name of the method):

[AllowCodeInjection, CodeInjection("NetAsmDemoCLib.dll")]

class TestDllCodeInjection { }

When you set a code injection at the class level, all the methods will be resolved to the external DLL.

If you want to force a method not to be code injected, you have to set the attribute

[NoCodeInjection] on the method. If you set both [NoCodeInjection] and [CodeInjection] on

a same method, the code injection attribute won’t be used.

 See TestDllCodeInjection.cs in NetAsmDemo for a set of examples using dll code.

2.4 Dynamic code injection (DCI)

Dynamic native code injection is the most versatile code injection technique in NetAsm. You

can dynamically generate the native code of methods at runtime, with the use of a callback interface

that is called every time a method needs to be compiled.

With this technique, you can:

 Make a static like native code injection.

 Make a Dll like native code injection.

 Combine any native code injection techniques.

 Generate a native code based on the IL Code (DCI gives access to the IL Code of the method

being compiled).

 And a lot more…

DCI can be applied at method level, class level and application level (also called Global Injector):

Technique Method level Class level Application level

Dynamic code injection

DCI is based on a simple callback interface ICodeInjector that provides an easy way to generate

dynamic native code.

NetAsm User Guide Code injection techniques

 Page
10

2.4.1 Use of ICodeInjector interface

The use of ICodeInjector is straightforward. In order to understand DCI, we are going to analyze

the NopCodeInjector example class provided in NetAsmDemo.

This class injects a simple native code that makes the method returning immediately. The specificity

of this code injector is that:

 It prints information about the method being compiled.

 It generates a different native code, if there is a stacksize or not on the method being JITed

o If no stacksize, it generates the simple code we have already seen in TestHelloWorld :

The .x86 RET assembler opcode (0xC3).

o If stacksize > 0, it generates a RET + StackSize .x86 assembler opcode (0xC2 + Short

stack size)

The code of the NopCodeInjector:

/// <summary>

/// Simple NopCodeInjector used by <see cref="TestDynamicCodeInjection"/>.

/// This CodeInjector generate a Nop method for any methods (with eventual parameters).

/// </summary>

public class NopCodeInjector : ICodeInjector

{

 // .X86 instruction : RET + stacksize

 private static byte[] ReturnWithStackSize = new byte[] {0xC2, 0x00, 0x00};

 private static byte[] ReturnWithNoStack = new byte[] { 0xC3};

 public void CompileMethod(MethodContext context)

 {

 // 1) Print information about the method being compiled using reflection classes.

 MethodInfo methodInfo = context.MethodInfo;

 Console.Out.WriteLine("> JIT NopCodeInjector is called on method [{0}] with a StackSize {1}",

methodInfo.Name, context.StackSize);

 // 2) Generate a native code with a Ret + StackSize of the method

 CodeRef nativeCodeRef;

 if (context.StackSize > 0)

 {

 // If there is a stack, then, generate the RET + Stacksize opcode

 nativeCodeRef = context.AllocExecutionBlock(ReturnWithStackSize);

 Marshal.WriteInt16(nativeCodeRef.Pointer, 1, (short) context.StackSize);

 } else

 {

 // If there is no stack used, then RET

 nativeCodeRef = context.AllocExecutionBlock(ReturnWithNoStack);

 }

 // 3) Inform NetAsm with the native code to use for the method

 context.SetOutputNativeCode(nativeCodeRef);

 }

}

As we can see, we need to implement the CompileMethod. MethodContext is the only parameter of

this method and gives access to:

 The reflection MethodInfo being JITed.

 The IL code of the method (A CodeRef is returned with a pointer to the IL Code)

 Compile the IL code to a native code and have access to the compiled code.

 Method to effectively output the native code back to the JIT : SetOutputNativeCode . This

method has two signatures:
o void SetOutputNativeCode(byte[] nativeCodeArray);

o void SetOutputNativeCode(CodeRef nativeCodePointer);

CodeRef is a small structure that contains a pointer to a code and the size of the code in bytes.

NetAsm User Guide Code injection techniques

 Page
11

In the NopCodeInjector example, we use the method context.AllocExecutionBlock to allocate a

CodeRef with a native code buffer. This method allocates a block of memory that can be executed by

the processor and copy the native code buffer to this newly allocated block of execution memory.

The CodeRef returned through SetOutputNativeCode method should be instantiate within the

context and using the AllocExecutionBlock from the context. This is necessary to enable debugging

for native code. Although, it is possible to allocate other external execution block (see

CodeRef.AllocExecutionBlock).

To use the NopCodeInjector we only have to set the code injection technique on a method (or a

class):

[CodeInjection(typeof(NopCodeInjector)), MethodImpl(MethodImplOptions.NoInlining)]

public static void NetAsmNopMethod() {...}

2.4.2 Global Native Code Injection

We have seen that Dynamic Code Injection (DCI), is able to provide a code injection at the application

level : this is also called Global Code Injection (GCI). NetAsm provide a code injection based on

pattern regular expression matching on class names.

The CodeInjector is setup while initializing the JITHook. We need to install the code injector here, and

associate it with a regular expression. The following example extracted from NetAsmDemo force the

JIT to use the GlobalCodeInjector for all classes inside the NetAsmDemo.* namespace.

// ---

// Install the JITHook.

// Test a Global Code Injector with pattern regex on classes names. Perform a Global

// Code Injection only on NetAsmDemo..* namespace

JITHook.Install("NetAsmDemo\\..*",new GlobalCodeInjector());

...Run_your_code_here...

// Remove it

JITHook.Remove();

// The JITHook with the Global Injector is removed here

// ---

Because all the classes inside the NetAsmDemo namespace will be compiled, we have placed the

GlobalCodeInjector in a different namespace. Otherwise, NetAsm would have end up in an infinite

recursive loop, trying to compile the compiler with itself…

 As a consequence, you should always verify that the GlobalCodeInjector is not matched by the

regular expression passed to JITHook.Install method!

namespace NetAsmDemoSafeGarden

{

 public class GlobalCodeInjector : ICodeInjector

 {

 public void CompileMethod(MethodContext context)

 {

 // Just display that the Global hook is called

 PerfManager.Instance.WriteLine("> Global JIT Code Injector is called : Compile Method

{0}.{1}", context.MethodInfo.DeclaringType.Name, context.MethodInfo.ToString());

 // Nothing to do. Let the default JIT compile the method.

 }

 }

}

NetAsm User Guide Benchmarks

 Page
12

3 BENCHMARKS

NetAsmDemo provides two micro-benchmarks to explicit performance gains using NetAsm:

 Simple Add Benchmark is a benchmark that demonstrates the overhead of calling methods

using different managed, interop techniques against NetAsm.

 Matrix Multiplication Benchmark SSE2 is a benchmark that demonstrates the use of SSE2

for optimized methods and compare different calling techniques (interop, mixed, managed

and NetAsm).

The main results are:

 For calling overhead, NetAsm can perform as fast as pure managed calls and is two

times faster than fast interop (no security checks).

 In the case of using optimized instructions not available in .NET (like SSE2 in the matrix

benchmark), NetAsm was able to be 50-60% faster than managed code.

Although, be aware that micro-benchmarks are always subject to issues and should not be

considered as a proof for any other benchmarks. All the benchmarks here use a warm-up loop to

avoid the cost of any compilation effects at startup and run the test several times.

3.1 Simple Add benchmark

This benchmark consists in measuring the processing time for adding 2 integers. This benchmark

measure the performance between several implementations:

 Managed and Managed Inline : we test both managed with NoInline (with the attribute

[MethodImpl(MethodImplOptions.NoInlining)]) and the default managed code inline.

 Interop and Interop NoSecurity : we test default Interop technique and Interop with no

security attribute flag ([SuppressUnmanagedCodeSecurity])

 Mixed C++/CLI : we test the use of an external Mixed C++/CLI using native code.

 NetAsm : we use NetAsm with a static native code injection.

For example, the implementation of the Managed Inline is like:

 public int ManagedAddInlined(int x, int y)

 {

 return x + y;

 }

The NetAsm code of the Add method is:

[CodeInjection(new byte[] { 0x8b, 0x44, 0x24, 0x04, 0x03, 0xc2, 0xc2, 0x04, 0x00 }),

MethodImpl(MethodImplOptions.NoInlining)]

public int NetAsmAdd(int x, int y)

{

 // This method is compiled using the native code from the CodeInjection Attribute

 // The IL code of this method is never compiled by the JIT

 // ADD +1 to check that this method is not used.

 return x + y + 1;

}

NetAsm User Guide Benchmarks

 Page
13

It was generated from the C method and the assembler code was copied from the *.cod output

assembler listing files generated by Microsoft visual C++ :

extern "C" int __fastcall NetAsmAddInC(void* pThis, int x, int y) {

 return x + y;

}

// The generated native code of this method is :

 00000 8b 44 24 04 mov eax, DWORD PTR _y$[esp-4]

 00004 03 c2 add eax, edx

 00006 c2 04 00 ret 4

Results are indexed on a 100 time based. The default base is managed inline. Lower is better.

As we can see, NetAsm performs almost as fast as Managed Inline and is twice faster than

the Interop (with no security checks).

This result was expected, as NetAsm native code is considered by the CLR VM as pure managed code

compiled by the JIT. Therefore, the performance should be the same than managed code.

 See TestSimpleAddBenchmark.cs in NetAsmDemo for the code of this benchmark.

3.2 Matrix Multiplication benchmark using SSE2

This benchmark is based on the work of scapecode in the article Playing with the .NET JIT Part3 : it

measures the performance between different matrix multiplications implementations using standard

CLR, standard C and SSE2 instructions.

As for SimpleAddBenchmark, this benchmark compares different implementations:

 Managed Std and Managed Unsafe: we test both standard managed code and unsafe

managed code (using pointers on matrix array instead of CLR arrays).

 Interop Std and Interop SSE2, and Interop SSE2 NoSecurity : we test default Interop

technique with a C implementation (without using any SSE2 instructions), and two interop

using SSE2 (with one using the no security attribute flag [SuppressUnmanagedCodeSecurity])

 Mixed SSE2 C++/CLI : we test the use of an external Mixed C++/CLI using native code.

 NetAsm Std and NetAsm SSE2: we use NetAsm with a standard C matrix multiplication and

a SSE2 implementations.

100

102

111

237

551

1966

0 500 1000 1500 2000 2500

Managed Inline

NetAsm

Managed

Interop NoSecurity

Mixed C++/CLI

Interop

Managed
Inline

NetAsm Managed
Interop

NoSecurity
Mixed

C++/CLI
Interop

Time (ms) 100 102 111 237 551 1966

Simple Addition Benchmark
Reference time is Managed (lower is better)

http://scapecode.com/
http://scapecode.com/archive/2007/04/28/Playing-with-the-.NET-JIT-Part-3.aspx

NetAsm User Guide Debugging

 Page
14

Results are indexed on a 100 time based. The default base is managed inline. Lower is better.

There are several remarks concerning the results:

 First, NetAsm SSE2 outperforms any other implementations, ranging from 10% to 300%

in speed gain (70% faster than the default managed code).

 Managed Unsafe and NetAsm unsafe are equivalent : it means that the default JIT

compiler is performing very well in optimizing the C# code (as fast as C code). Consequently,

you should always test if it is relevant to replace managed code with c code, as the JIT

compiler can generate a fast native code.

 NetAsm SSE2 is only 10% faster than Interop SSE2: this result is different from

SimpleAddBenchmark. The reason is the cost of calling the interop code is negligible compare

to the time used for computing the result.

 See TestMatrixMulBenchmark.cs, NetAsmDemoCLib.dll and NetAsmDemoMixedLib.dll in

NetAsmDemo for the code of this benchmark.

4 DEBUGGING

NetAsm supports debugging of native code injection with CLRCall conventions, although

static and dynamic code injections are only supported. DLL code injection is not supported: this

is due to the fact that to be able to debug injected code, native code should run from an execution

block allocated by the CLR (the DLL function is not allocated by the CLR but is loaded via the

LoadLibrary functions from the operating system).

Moreover, the code injected is considered as CLR code, and cannot be debugged with standard

interrupt breakpoints (in C DebugBreak… etc.). The only way to achieve the debugging of external DLL

should be to leave the CLR runtime and inform the transition to an unmanaged environment, but this

59

65

94

94

100

134

166

199

0 50 100 150 200 250

NetAsm SSE2

Interop NoSecurity SSE2

NetAsm Std

Managed Unsafe

Managed Std

Interop SSE2

Interop Std

Mixed C++/CLI

NetAsm
SSE2

Interop
NoSecurity

SSE2

NetAsm
Std

Managed
Unsafe

Managed
Std

Interop
SSE2

Interop Std
Mixed

C++/CLI

Time (ms) 59 65 94 94 100 134 166 199

Matrix Multiplication Benchmark
Reference time is Managed Std (lower is better)

NetAsm User Guide Debugging

 Page
15

is currently impossible due to an API unavailable inside the jit (IHostTaskManager

EnterRuntime/LeaveRuntime). For debugging external DLLs, using interop is recommended.

To debug NetAsm native code, you need to set a breakpoint while calling the method to debug into.

Breakpoints should not be inside the NetAsm method code injected (this is not working).

If we look at the TestGuid example in NetAsmDemo, to debug the Guid.Get method, we need to set a

breakpoint on the calling site:

When you run the program in debug mode, you should have a hit on your breakpoint:

You go inside the Cpuid.Get method, you should then press Step+Into [F11] :

As you can see, we are now inside the NetAsm native code method,

BUT the CLR code is not used. We need then to switch to the

Disassembly Window to get the native assembler code. Use the

popup menu (right button click on the method to force to go to the

disassembly window and update the assembler code).

You don’t have access to parameter’s variable but you can look at the register windows.

NetAsm User Guide Debugging

 Page
16

As you can see, the native code is not related to any IL code and is directly disassembled from the

native code provided by the NetAsm static native code injection (see previous snapshot : 0x83, 0xEC,

0x08….etc.).

	Introduction
	Hello World Code Injection sample
	Setup native code injection in a class
	Install the hook and run the code injection

	Usage recommendations and restrictions
	Recommendations
	Restrictions

	Code injection techniques
	General
	Code injection mechanism
	Code injection level
	Calling conventions
	Supported calling conventions
	The ClrCall calling convention

	NetAsm class diagram
	JitHook class
	Attributes class
	Dynamic code injection class

	Static code injection (SCI)
	Dll code injection (DLLCI)
	Dynamic code injection (DCI)
	Use of ICodeInjector interface
	Global Native Code Injection

	Benchmarks
	Simple Add benchmark
	Matrix Multiplication benchmark using SSE2

	Debugging

