

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

1

(NetSqlAzMan)

by Andrea Ferendeles

.NET Sql Authorization Manager is an authorization manager for .NET

Framework 3.5/4.0 developed applications (smart-client/web). The authorizations

storage is MS Sql Server 2000/2005/2008/Express.

NetSqlAzMan has been developed with LINQ to SQL.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

2

Summary

NetSqlAzMan is Open Source .. 4

Requirements .. 4

Security within the applications .. 5

Ms Authorization Manager (AzMan) vs .NET Sql Authorization Manager (NetSqlAzMan) .. 7

The NetSqlAzMan structure .. 9

Store and Store Group .. 10

Application and Application Group ... 13

Item Definitions... 15

Biz Rules .. 16

Item Authorizations .. 17

Database Users Custom-Authentication ... 20

NetSqlAzMan Database roles and Delegates ... 21

NetSqlAzMan is Time-dependant ... 22

Authorization Attribute ... 22

Applicative Delegation .. 27

Manipulating the NetSqlAzMan Storage by .NET code .. 36

ENS (Event Notification System) ... 39

Building Applications with NetSqlAzMan .. 41

Tutorial 1: CheckAccess inside Windows/Web Applications ... 41

Tutorial 2: CheckAccessHelper .. 43

Tutorial 3: UserPermissionCache .. 44

Tutorial 4: StorageCache ... 45

Tutorial 5: WCF Cache Service ... 46

Tutorial 6: NetSqlAzMan Aspect Oriented Programming (Check permissions through .NET attributes) 48

Tutorial 7: NetSqlAzMan Role Provider ... 49

Conclusions ... 51

Thanks to .. 52

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

3

References .. 52

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

4

What NetSqlAzMan is
Its name is definitely colourful but it’s neither a super-hero, not a recommended tooth-paste from the best

Italian dentists .

NetSqlAzMan is the .NET Sql Authorization Manager short form and is an applicative authorization manager, that is,

given an application user, what this user is authorized to do within that application.

NetSqlAzMan is for all Microsoft .NET 3.5/4.0 developers that need to manage loosely-coupled applicative

authorizations, that is, weakly coupled with source code, in a light and fast way having all these authorizations in a

relational database such as MS Sql Server (2000/2005/2008/MSDE/Express).

For all of you who already knows MS Authorization Manager (AzMan) or ADAM (Active Directory Application Mode)

then you are in the right place … but you have to expect a lot of innovations.

NetSqlAzMan is Open Source

NetSqlAzMan is an Open Source project, accommodated by the CodePlex.com community.

From the following link it’s possible to download both the source code (C#.net) and the setup package (.MSI) for the

x32/x64 platform: http://netsqlazman.codeplex.com

Requirements

 Windows 2003/XP or later

 .NET Framework 4.0

(http://www.microsoft.com/downloads/details.aspx?familyid=AB99342F-5D1A-413D-8319-

81DA479AB0D7&displaylang=en)

 MMC (Microsoft Management Console) 3.0

(http://support.microsoft.com/kb/907265/en-us)

 Sql Server 2000/2005/2008/MSDE/Express

(http://www.microsoft.com/express/sql/download/)

http://netsqlazman.codeplex.com/
http://www.microsoft.com/downloads/details.aspx?familyid=AB99342F-5D1A-413D-8319-81DA479AB0D7&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=AB99342F-5D1A-413D-8319-81DA479AB0D7&displaylang=en
http://support.microsoft.com/kb/907265/en-us
http://www.microsoft.com/express/sql/download/

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

5

Security within the applications

When we talk about applicative security it’s possibile to write symbolically the following expression:

{ Security } = { Authentication } + { Authorization }

where for Authentication we mean the credentials phase (who are you?) and for Authorization, what a user is granted

to do and what he isn’t (what can you do?). Generally, the authentication moment happens at first, and it’s enough to

assess once the user credentials to avoid repeating every time (at run-time) the same operation (think the “logon”

moment on your pc).

The second phase supposes that the user credentials have already been verified and therefore the user

identity is “assessed” and “well-known”. At this point, the Authorization system is able to reply to a user request to

execute a determined operation, for example, retrieving all the necessary informations from any data source (for

example File System’s ACL). To do an example, you can think when you go to the airport to take a flight.

When you are at the Check-In, you are asked of an airplane ticket and an identity document so that you can

have a security ticket back, the “boarding pass” (Authentication). At this point, and only after having got the boarding

pass, you can go to the right exit of your flight. Once, inside the boarding zone, you aren’t authorized to take any flight

but exclusively the one indicated on the boarding; such rule is completed at the boarding moment (Authorization) and

only with the right “ticket”. I excuse myself if this example has turned out banal but it’s very important to do clarity,

in order to understand in which context NetSqlAzMan is placed.

Well, NetSqlAzMan is just what stores and preserves the authorizations, giving us an answer like “yes,

autorized” or “no, not authorized” to anyone that makes a request (applications).

NetSqlAzMan is leaned instead on MS Windows operating system in order to carry out the authentication

phase (Kerberos / NTLM).

 We try to understand with a concrete example, the mechanism of the authorizations in an applicative context.

We imagine a managerial application of any Company. Inside this Company we can identify some “Business

Roles”such as: the administrator, the leaders, the secretaries, the employers etc. and some “Applicative Roles” that is

groups of persons that can do the same operations in that Application. Suppose that the application ,you are writing,

has functions about business accounting management, warehouse management and so on.

This application has to work with different user levels. As example, consider the “view – end-year budget” function,

that lists in detail all the costs and revenues of an entire year of activity. It’s reasonable to say that such operation

must be granted only to the company administrator and maybe to some leaders but not to the employers. Moreover

it’s reasonable to think that the administrator or one of his leaders wants “to delegate” this operation to one of his

secretaries, or grant (temporarly) the permission for such operations.

 Now, how it’s possibile to realize such an application, without “wire” the following instructions inside the

source code:

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

6

If (user = “Jack” or user = “Michael”) then

(authorized)

 Else

 (not authorized)

First of all, we should separate the “single customer” from the “group of customer” idea, that is, a set of users to

which an operation will be granted. At design time, we’ll decide which user will belong to which group:

If (user belongs to “Administrators” group) then

(authorized)

 Else

 (not authorized)

So we are introducing a too strong association between “groups” and what “they can do”.

What will happen if tomorrow we decide to move a function from one group to another?!

Then we try to operate another process and say:

If (user has been authorized to do that X operation) then

(authorized)

 Else

 (not authorized)

You’re doing now the easiest thing , that is, to ask yourself if that user can or cannot do such function, without taking

in consideration his name or his group/role. The only link aspect betweeen the application and the authorizations

repository is the process name. All these names together defines “a contract” and, this is binding; if you change a

process name in the application or in the repository, it’s necessary to change its name in the other part, too.

The unique user identification is provided by the Authentication system (Windows), while the Authorization

system will answer “yes” or “no” to the “he has been authorized to do that X operation” question. It’s therefore

necessary to have a table with the “process name” and the relative “yes” or “no” for each user/group in any

repository. The NetSqlAzMan repository is called Storage and is hosted by a Sql Server database (the setup

package contains the Sql Script for the version 2000 or later).

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

7

Ms Authorization Manager (AzMan) vs .NET Sql Authorization Manager (NetSqlAzMan)

 As pointed out before, an analogous Microsoft product already exists and is called Authorization Manager

(AzMan); AzMan is present, by default, in Windows Server 2003 and, through the Admin Pack setup, in Windows XP.

The important difference between AzMan and NetSqlAzMan is that the first is Role-based, that is, based on the

belonging - Role concept and the operations container in each role, while the second is Item-based (or if you prefer

Operation-based), that is users or users group or group of groups that can or cannot belong to Roles or execute such

Task and/or Operations (Items).

Here the most important features and differences between the two products:

Ms AzMan:

 It’s COM.

 It’s equipped by a MMC 2.0 (COM) console.

 Its storage can be an XML file or ADAM (Active Directory Application Mode – è un LDAP).

 It’s role-based.

 It supports static/dynamic applicative groups, members/not-members.

 Structure based on Roles  Tasks  Operations. (Hierarchical Roles and Tasks , none Operations).

 Authorizations can be added only to Roles.

 It doesn’t implement the “delegate” concept.

 It doesn’t manage authorizations “in the time”.

 It doesn’t trigger events.

 The only type of authorization is “Allow”.

(to “deny” it needs to remove the user/group from his Role).

 It supports Scripting / Biz rules.

 It supports Active Directory users/groups and ADAM users.

NetSqlAzMan:

 It’s .NET 4.0.

 It’s equipped by a MMC 3.0 (.NET) console.

 Its storage is a Sql Server database(2000/MSDE/2005/Express).

 It’s based on LINQ to SQL technology.

 It’s Item-based.

 Structure based on Roles  Tasks  Operations. (all hierarchical ones).

 Authorizations can be added to Roles, Task and Operations.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

8

 It supports static/dynamic applicative groups, members/not-members.

 LDAP query testing directly from console.

 It’s time-dependant.

 It’s delegate-compliant.

 It triggers events (ENS).

 It supports 4 authorization types:

o Allow with delegation (authorized and authorized to delegate).

o Allow (authorized).

o Deny (not authorized).

o Neutral (neutral permission, it depends on higher level Item permission).

 Hierarchical authorizations.

 It supports Scripting / Biz rules (compiled in .NET – C# - VB – and not interpreted)

 It supports Active Directory users/groups and custom users defined in SQL Server Database.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

9

The NetSqlAzMan structure

You see the following structure both in the Storage and visually when you open the console (Start – run –

“NetSqlAzMan.msc”) :

 Storage Sql Server (db)

o Store 1 (logical)

 Store Groups (Basic/LDAP, members/not-members)

 Store Group 1

 Store Group 2

 Application 1

 Application Groups (Bbasic/LDAP, members/not-members)

o Application Group 1

o Application Group 2

 Item Definitions

o Role Definitions

 Role 1

o Task Definitions

 Task 1

o Operation Definitions

 Operation 1

 Item Authorizations

o Role Authorizations

 Authorizations for Role 1

o Task Authorizations

 Authorizations for Task 1

o Operation Authorizations

 Authorizations for Operation 1

 Application 2

 …

o Store 2

o …

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

10

Store and Store Group

About Store we mean a logical grouping of applications. At this level it’s possibile to define two object types: Store

Group and Application.

Store Groups are applicative groups of: Windows Users/Groups, other Store Groups (such as COM+ roles or Windows

security groups); each group can be Basic or LDAP type, that is,statically defined, by direct selection, or dynamically

defined through a LDAP query, that NetSqlAzMan resolves at run-time. In this way it’s possible, for example, to create

an Active Directory users group with a name that begins with “Andrea” and Dial-In permissions. In picture 1 we see

how to create a Store Group; in print 1 there is a LDAP query example and in picture 2 how to execute that LDAP query

directly from NetSqlAzMan console.

Picture 1

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

11

Picture 2

Moreover, the “Basic” Groups are constituted by Members and Not-Members that is users/groups/Store

Groups that must be “considered” when creating the Store Group while the not-members are users/groups/Store

Groups that must not be considered. In other words, the members list that get part of a Basic group is given by {

Members } – { Not-Members}. Since that members/not-members can be, at its turn, others Store Group, it’s possible to

realize powerful and complex recursive groups. In pictures 3 and 4 we see the Members and Non-Members definition

of one Basic group.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

12

Picture 3

 The Store Groups have a restricted visibility at Store level, so to be visibile from all the Applications contained

in the Store.

Picture 4

 The Store Group is the ideal in order to implement the concept of “Business Role” that is a grouping of

persons in a Company who carry out one determined function with different rights from the rights that every role will

have in every application; here some examples of business roles: “Managing”, “Employees”, “Responsible UO”, etc….

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

13

Print 1:

LDAP query to include all the Active Directory users whose name begins with Andrea and Dial-In permissions.

(&(objectCategory=user)(cn=Andrea*)(msNPAllowDialin=TRUE))

Optionally you can include the RootDSE as query prefix and between [...]:

[RootDSE:OU=My OU, DC=My Domain, DC=ext](&(objectCategory=user)(cn=Andrea*)(msNPAllowDialin=TRUE))

For all of you interested to know more about the syntax and potentiality of LDAP queries can read this interesting

Microsoft article about the LDAP queries syntax:

http://www.microsoft.com/technet/prodtechnol/exchange/2003/insider/ldapquery.mspx.

Application and Application Group

For Application we mean that one that will request at run-time the NetSqlAzMan storage; here the definition

is purely logical and so it doesn’t require any association with the type or name of the real application. To avoid any

confusion it’s better to assign the same name and maybe writing a little description about what the application does in

the appropriate gap as pictures 5 and 6 show.

http://www.microsoft.com/technet/prodtechnol/exchange/2003/insider/ldapquery.mspx

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

14

Picture 5

An Application Group is identical to a Store Group except that its scoping (visibility) is restricted only for the

Application where is defined; an Application Group may consider a Store Group among its members/not-members but

the vice versa cannot never happen.

The Application Group is the ideal to represent “Applicative Roles”.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

15

Picture 6

Item Definitions

Every Application contains the definition of Item. Item contains the types Role, Task and Operation

Logical meanings of items type are defined as follow:

 Role: is a group of “users” that can do the same operations;

o A Role can have members type such as Role, Task, Operation.

o Samples of Role are: “Administrator”, “General Director”, “Product Manager”.

 Task: is a logical macro-functionality of the Application

o A Task can have members type such as Task, Operation.

o Samples of Task are: “Insert”, “Update”, “View Report”.

 Operation: is a micro- functionality of the Application

o An Operation can have only Operation members type.

o Samples of Operation are: “Add new user”, “Update user”, “View Report 1”.

It usually happens that doing a certain operation, it automatically implies doing other ones of a lower level, or this idea

can be used to assign authorizations in a hierarchical way.

If we consider, just as an example, “Delete” and “Insert” operations and assume that a users group is

authorized to “delete”, another one can “insert” and other groups are authorized to both “delete” and “insert”.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

16

In this case is necessary to create a “Modify” Task and two “Insert” and “Delete” Operations therefore change

the Task properties(from the console) and say that it’s constituted by two Operations (members Item). This fact will be

important when you’ll assign authorizations to these Items, because the Task rights (container Item) wil be inherited

from Operation (Item members) but the vice versa will not happen (towards bottom); the one that will be authorized

to “modify” will be implicitly authorized to “insert” and “delete” too. In picture 7 there’s a sample about this

hierarchy.

Picture 7

When we’ll finish creating all the Operation and, aggregate in logical Task of the Application, we can finally

say what each applicative Role can do. We create as many Role as they are indicated in the application analysis and

we’ll specify for each Role which Tasks are part of it.

Biz Rules

For each Item is possibile to define a Business Rule (Biz Rule, that is logical rule). A Biz Rule has to determine if

the authorization, eventually assigned for a user that is doing access check (CheckAccess) has to be considered or not.

In othe words, this is a way to determine the belongings to an Item or not at Run-Time.

To define a Biz Rule is sufficient to create an Item, therefore confirm the new added from the Snap-In, access

the Item properties and press the “Biz Rule” botton.

At this point we can write the .NET source code in C#/VB directly in the rule definitions window, or you can

(advised) choose a different language and click on “New Biz Rule”, then copy the rule “template” and edit it in a more

comfortable environment such as VS.NET 2005.

When we finish writing our source code (and without syntactic errors) you paste the Biz Rule code and press

the “Reload Biz Rule” botton. In that moment NetSqlAzMan compiles the rule and generates a .NET assembly in full

rule and copies its binary image inside the “BizRules” sql table.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

17

At Run-Time … the compiled assembly wil be read again from the db (and put it in cache for all the session

time) and then executed. If you observe the Execute method firm, its return type is simply a boolean one that, when

true makes CheckAccess method to continue otherwise it’s interrupted (inside the Item hierarchy). The true difference

between MS AzMan and NetSqlAzMan, about the Biz Rule, is the possibility to write Biz Rule in .NET code instead using

Scripting (jscript/vbscript) and consequently a great increase of performance at run-time.

Item Authorizations

Once we’ve defined all the Item (Role, Task, Operation) and created a right hierarchy among them, we should be

worried about “to fill up”these containers with real users/groups and therefore “who … can do … what”, indicating for

everyone their permissions.

“Who” can be one of the following objects:

 A Windows user

 A Windows group

 A Store Group

 An Application Group

“Can do” can be one of the following authorizations:

 Allow with delegation

 Allow

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

18

 Deny

 Neutral

“What” will be one of the Item definined before:

 Role

 Task

 Operation

If the Item hierarchy has been correctly built , usually we sould be able to assign permissions only to Roles. When an

application will ask NetSqlAzMan … “can I do an X Operation ?”, its run-time will verify whether that operation belongs

to a Task , that in turn belongs to a Role of which the application user takes part.

Note 1:

If in the NetSqlAzMan console you select one or more Application, or at least the entire Store, it’s possible to view

the Item hierarchy by clicking the right botton mouse and choosing the “Items Hierarchical View” menu (picture 11).

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

19

We now try to give a meaning to these four available authorizations, just remember that in NetSqlAzMan knows the

idea of “delegate”, that is a user that delegates another one to do an operation originally allowed only for the first

one.

In a particular way that user that has got the “Allow with delegation” authorization can surely do that

operation and moreover he can delegate one or more users to do the same operation originally granted to him. This

delegate mechanism , for security reasons , cannot be extended beyond the first level. That means that the delegated

user cannot delegate another user to do the same operation (Allow with delegation doesn’t propagate).

The Allow right grants the authorizations to do that determined Item without delegate right.

The Deny right denies,on the contrary, every authorization while a Neutral type authorization is ,indeed,

neutral, that is neither “yes” or “not”, but it’s the higher level Item to decide about.

The Neutral authorizations exist with their administrative scope and allow to maintain the “who”-“what”

association in the store without saying if “what” can or cannot be done . A typical use of a Neutral authorization

and for that Item which permissions continually change, and therefore it would be tedious, repetitively, to add and

delete authorization subjects from the Storage; it’s better to leave it there and modify only the permission when

necessary.

One last consideration about the Deny authorization type: if for an Item, a user is authorized to a Deny

permission, this user cannot surely do such operation and not even one of the eventually subordinate operations (sons

Item) even if one of these is authorized to Allow o Allow with delegation permisssion; as it happens for File System and

Sql Server authorizations , the more restrictive permission is successful. Viceversa, if for an Item a user is authorized to

both Allow and Allow with delegation permissions, the less restrictive permission is successful that is Allow with

delegation.

Attention to this affirmation, that is true only for authorizations allowed on the same Item and doesn’t for

hierarchical Itemi; Allow with delegation doesn’t propagate on sons Item.

In picture 8 the console view where you can set the authorizations.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

20

Figura 8

Database Users Custom-Authentication

 From the NetSqlAzMan ver. 1.3.0.0 is possible to execute the check-access not only through Windows

authentication but even through custom authentication for defined users in a MS Sql Server database.

 This new functionality exists because of the dbo.GetDBUsers table-function, defined in the NetSqlAzMan

storage Database storage. This table-function has to return a list of users defined through a value pair: CustomSid,

Username (varbinary(85), varchar(255)).

 It’s very important to modify, before starting to use this functionality, the GetDBUsers table-function to

correctly the list of users from any users table (even from a different Database), previously defined.

 At run-time we find 2 methods to retrieve such list (or just a specific user) through the

GetDbUsers/GetDBUser functions, defined in IAzManStorage, IAzManStore e IAzManApplication object type.

 Finally , for the check-access you should use a specific overload of the CheckAccess function that accepts in

input an IAzManDBUser object type, returned by the over cited methods.

 In the following picture we see a screenshot that shows an added DB User to which assign the skilled

authorizations.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

21

Finally a DB User, can be added to a Store Group, to an Application Group and directly as an authorization member in

the Item Authorization.

NetSqlAzMan Database roles and Delegates

 When an authorization is granted by the NetSqlAzMan Administrator, through the administrative console, we

are talking properly about “Authorization”. The same mechanism can be used during run-time by special users that

allow other users to do a determined operation in their place. In this case we are talking about “Delegate”.

 In order to delegate, the delegant user must have the Allow with delegation permission directly on the Item

and must belong to Sql Server: NetSqlAzMan_Users role. In the Sql Storage are present in fact 3 (three) different

Database Roles:

 NetSqlAzMan_Administrators (full control)

 NetSqlAzMan_Managers (can manage Store/Application permissions)

 NetSqlAzMan_Users (only reading and delegate permission on Item with Allow with delegation permission)

 NetSqlAzMan_Readers (read only – minimum permission to perform a CheckAccess)

Further on we’ll see how to use the Item.CreateDelegateAuthorization method of the NetSqlAzMan API.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

22

NetSqlAzMan is Time-dependant

 Each authorization can “be lavished” for an indetermined or determined time. The two Valid From e Valid To

fields in the authorizations window, indicate respectively the starting and expiring date of the same authorization.

Arranging this characteristic with the possibility to add more than an authorization for subject and for different

temporal intervals, in addition the authorizations chain and the permission type (allow or deny) is possible to set

authorizations that change during passing time. You can say, for example, that a “u1” user can execute the “x” Item

only from the 1st-january-2006 to 30 rd-june-2006 and then from the1st-january-2007 to 30rd-june-2007. In these two

time gaps you can exclude specific periods, adding other permissions for smaller periods and even of Deny type.

 The same matter is for delegations, because they’re authorizations in all respects (but set by different Owner

than Administrator).

Authorization Attribute

 The last ring of the chain of this structure is represented by the Authorization Attribute that is all the

attributes of an authorization . Physically an attribute is represented by a simple brace “key-value” , both of string

type. For each Authorization is possibile to define infinite attributes with the only rule that the Attribute name (the key)

must be unique for that authorization. Vice versa we can define another attribute with the same key for another

authorization.

The Authorization Attribute scope is that one to concur with the worse level added than the custom

information for every single authorization, increasing the granularity permissions level.

 A typical use of attributes is that one for a user profile data. We suppose that a “u1” user has the “Project

manager” role for an IT Company about a certain “p1” project; we imagine moreover that in the same Company it’s

been developed an application that allows all the project-managers to monitor the progress state about their own

projects. Suppose that the application provides also a “SAL Check” (working progress state) operation. What does it

happen if the “u1” user wants to delegate a “u2” user, a trusty person of his development team, to check ,in his

stead, the “p1” project state? A delegation from “u1” to “u2” means that “u2 is authorized to do the SAL Check

operation at “u1” place but he wouldn’t know the “…for the only p1 project” information.

 The “project-p1” (key-value) attribute added to the delegate authorization from “u1” to “u2” solves such

problem; but the fact that NetSqlAzMan, in front of such a “u2” request “can I execute the SAL Check item ?” will reply

Allow; then the application has to read the eventual Authorization Attribute and sort the projects list to use for the

operation. Other attribute examples are given by : “Authorization Date”, “membership UO ”, “Area”, “Department”,

etc….

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

23

NetSqlAzMan Snap-In and DataBase Sql
Server creation

 You’are going to see how to implement physically all that we’ve said till now, through the NetSqlAzMan.Snap-

In. First of all, you have to create a new Sql Server database; I suggest the NetSqlAzManStorage name but anything

else is ok, then execute the appropriate script that you’ll find in the NetSqlAzMan setup directory (there are both Sql

Server 2000 and 2005 versions), be careful to select, as active database, the one just created (by Query Analyzer or Sql

Management Studio) before starting the script.

Once the database has been created, the console can be started in 3 different ways:

 Start – Programs - .NET Sql Authorization Manager – NET Sql Authorization Manager Console

 Start – Run – NetSqlAzMan.msc

 Start – Run – mmc and then Add/remove Snap-In, then choose .NET Sql Authorization Manager from the list

and then click on the Add botton.

Now we’ve to say NetSqlAzMan which Storage is to manage – picture 9; this operation can be done by right clicking on

the .NET Sql Authorization manager node and then choosing the Storage connection menu. We then specify the

server name and eventually the Sql Server instance on which we’ve created the database and executed the sql script,

the authentication type (Sql or Windows), the Storage name and more eventual added parameters that will be part of

the connection string ADO.NET (as ex. “Enlist = false;”).

Picture 9

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

24

Note 2:

NetSqlAzMan can work in two different ways: “Administrator” and “Developer”; the first one doesn’t regard local

Users/Groups/Well Know SIDs but only the Domain or Forest Active Directory Users/Groups/Well Know SIDs and

doesn’t allow the Operation manipulation (because considered at developers use); the second one regards both .

The “Developer” way has been done just for the development time, when the Deployment environment isn’t

available or not even known. In this way the developer has to define from which are the Operations that make up

each Task (previously defined by the analyst). To change this way it’s necessari to use the console and, by right

clicking on the.NET Sql Authorization Manager node, choose the Options menu.

At this point we’re ready to create Store, Store Group, Application, Application Group, Role, Task, Operation,

Authorization and Authorization Attribute by right clicking – New Store, New Application, etc…. In picture 10 an

example of Store.

Picture 10

When we’ve finished, we save the console so that next time we don’t have to supply again the same

connection data about the NetSqlAzMan Storage.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

25

NetSqlAzMan API – Il Run-Time Engine

Once the structure has been created from the NetSqlAzMan console, we see how the applications can enquire

the Storage through the run-time engine API. You create then our application (smart client, web, etc…) with VS.NET

2005 and add a reference to the .NET NetSqlAzMan.dll Assembly. This assembly should be visibile in the components

list of the “add reference”window; if it doesn’t, look for it in the NetSqlAzMan setup folder.

 At the beginning of our source code, we add two using/imports rules to declare using the NetSqlAzMan and

NetSqlAzMan.Interfaces namespaces. Now all the necessary code to enquire the storage is just the following, as shown

in print 2:

Print 2:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

...

string cs = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated

Secuirty = SSPI;";

IAzManStorage storage = new SqlAzManStorage(cs);

System.Security.Principal.WindowsIdentity identity =

System.Security.Principal.WindowsIdentity.GetCurrent();

//For each Operation …

//Can I do "My Operation" ?

AuthorizationType authorization = storage.CheckAccess("My Store", "My

Application", "My Operation", identity, DateTime.Now, true);

switch (authorization)

{

 case AuthorizationType.AllowWithDelegation:

 //Yes, I can ... and I can delegate

 break;

 case AuthorizationType.Allow:

 //Yes, I can

 break;

 case AuthorizationType.Deny:

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

26

 case AuthorizationType.Neutral:

 //No, I cannot

 break;

}

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

...

Dim cs As String = "Data Source=(local);Initial Catalog =

NetSqlAzManStorage;Integrated Secuirty = SSPI;"

Dim storage As IAzManStorage = New SqlAzManStorage(cs)

Dim identity As System.Security.Principal.WindowsIdentity =

System.Security.Principal.WindowsIdentity.GetCurrent()

'For each Operation …

'Can I do "My Operation" ?

Dim authorization As AuthorizationType = storage.CheckAccess("My Store", "My

Application", "My Operation", identity, DateTime.Now, True)

Select Case authorization

 Case AuthorizationType.AllowWithDelegation

 'Yes, I can ... and I can delegate

 Case AuthorizationType.Allow

 'Yes, I can

 Case AuthorizationType.Deny Or AuthorizationType.Neutral

 'No, I cannot

End Select

First of all we’ve to create a NetSqlAzManStorage class instance, supplying the Sql Server connection string to the

constructor, then returning the user identity, that is working with the application.

To return the WindowsIdentity for an ASP.NET application we use the LogonUserIdentity property of the HttpRequest

class of the .aspx page; if, instead we are working for a Smart-Client application we should use the

System.Security.Principal.WindowsIdentity.GetCurrent() static method.

It’s now sufficient to supply the CheckAccess method with the following input parameters:

 StoreName (System.String): the store name

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

27

 ApplicationName (System.String): the application name

 ItemName (System.String): the Item name (a Role, a Task or an Operation).

 windowsIdentity (System.Security.Principal.WindowsIdentity): the user identity

 ValidFor (System.DateTime): DateTime that indicates for which point in time the check is requested (typically

DateTime.Now).

 OperationsOnly (System.Boolean): true to indicate that the Item must be necessarily an Operation, false

otherwise (if you want to check the access to a Task or a Role).

The CheckAccess method answer will be of NetSqlAzMan.AuthorizationType enum type and its meaning will be

one of the following:

 AuthorizationType.AllowWithDelegation: allowed access with delegation right.

 AuthorizationType.Allow: allowed access without delegation right.

 AuthorizationType.Deny: denied access.

 AuthorizationType.Neutral: neutral access (so denied).

Applicative Delegation

If we want to implement in our application an .aspx page or a specific Form Windows to allow the users to

delegate, we should have ,first, the following informations:

 The Item (Role, Task, Operation) delegation object;

 Who is the “delegant” user;

 Who is the “delegated” user;

 The validity time of the “delegation” (from … to);

 The authorization type to assign (Allow or Deny).

all informations to pass to the NetSqlAzMan.SqlAzManItem.CreateDelegateAuthorization(…) method.

From the first NetSqlAzManStorage class, we can “navigate” in the NetSqlAzMan DOM using the GetXXX() accessories

methods or simplier using an indexer, as shown in prints 3 and 4.

Print 3:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

28

...

string cs = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated

Secuirty = SSPI;";

IAzManStorage storage = new SqlAzManStorage(cs);

storage.OpenConnection();

IAzManStore store = storage.GetStore("My Store");

IAzManApplication application = store.GetApplication("My Application");

IAzManItem operation = application.GetItem("My Operation"); //Or "My Task" Or

"My Role"

//...

storage.CloseConnection();

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

...

Dim cs As String = "Data Source=(local);Initial Catalog =

NetSqlAzManStorage;Integrated Secuirty = SSPI;"

Dim storage As IAzManStorage = New SqlAzManStorage(cs)

storage.OpenConnection()

Dim store As IAzManStore = storage.GetStore("My Store")

Dim application As IAzManApplication = store.GetApplication("My Application")

Dim operation As IAzManItem = application.GetItem("My Operation") 'Or "My Task"

Or "My Role"

'...

storage.CloseConnection()

Print 4:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

...

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

29

string cs = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated

Secuirty = SSPI;";

IAzManStorage storage = new SqlAzManStorage(cs);

IAzManItem operation = storage["My Store"]["My Application"]["My Operation"];

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

...

Dim cs As String = "Data Source=(local);Initial Catalog =

NetSqlAzManStorage;Integrated Secuirty = SSPI;"

Dim storage As IAzManStorage = New SqlAzManStorage(cs)

Dim operation As IAzManItem = storage("My Store")("My Application")("My

Operation")

It’s always possible and even better recommended to get, at run-time, an Item list defined in the Storage, but we

must consider only that ones with AllowWithDelegation permission, as shown in print 5, because only with this specific

permission is possible to delegate.

Print 5:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

...

string cs = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated

Secuirty = SSPI;";

IAzManStorage storage = new SqlAzManStorage(cs);

foreach (IAzManItem item in storage["My Store"]["My

Application"].GetItems(ItemType.Role))

{

 foreach (IAzManAuthorization auth in item.GetAuthorizations())

 {

 if (auth.AuthorizationType == AuthorizationType.AllowWithDelegation)

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

30

 {

 //On this "item" can delegate

 }

 }

}

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

...

Dim cs As String = "Data Source=(local);Initial Catalog =

NetSqlAzManStorage;Integrated Secuirty = SSPI;"

Dim storage As IAzManStorage = New SqlAzManStorage(cs)

For Each item As IAzManItem In storage("My Store")("My

Application").GetItems(ItemType.Role)

 For Each auth As IAzManAuthorization In item.GetAuthorizations()

 If auth.AuthorizationType = AuthorizationType.AllowWithDelegation Then

 'On this "item" can delegate

 End If

 Next

Next

After indicating the delegation object Item and the delegant user identity (same procedure shown in print 2) we should

think about the “delegated” user, the one to allow the right to do the Item in our stead. Such identity is represented

only by the SID (Security IDentifier) of a Windows user.

SID are guarded by the Active Directory infrastructure to which the application belongs to; to get a SID we

must have the corresponding Login and generally a table of combinations is necessary between the user name, for

example (name and surname), and the Login (DOMAIN\User). The .NET Framework 2.0 , fortunately, supplies two new

and important classes to do such operation: System.Security.Principal.NTAccount and

System.Security.Principal.SecurityIdentifier, that together allow to have an user SID , just given its Login and/or

viceversa; print 6 shows an example.

Print 6:

C#

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

31

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

using System.Security.Principal;

...

//Retrieve SID from NTAccount

NTAccount ntAccount1 = new NTAccount("MYDOMAIN", "username");

SecurityIdentifier SIDofNTAccount1 =

(SecurityIdentifier)ntAccount1.Translate(typeof(SecurityIdentifier));

string SSid = SIDofNTAccount1.Value; //S-X-XXXX-XXXX-XXXX-XXXXXXXX

//Retrieve NTAccount from SID

SecurityIdentifier SID2 = new SecurityIdentifier("S-1-1-0"); //Well Know SID of

Everyone

NTAccount ntAccount2 = (NTAccount)SID2.Translate(typeof(NTAccount));

string accountName = ntAccount2.Value; //Everyone

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

Imports System.Security.Principal

...

'Retrieve SID from NTAccount

Dim ntAccount1 As NTAccount = New NTAccount("MYDOMAIN", "username")

Dim SIDofNTAccount1 As SecurityIdentifier =

DirectCast(ntAccount1.Translate(GetType(SecurityIdentifier)),

SecurityIdentifier)

Dim SSid As String = SIDofNTAccount1.Value 'S-X-XXXX-XXXX-XXXX-XXXXXXXX

'Retrieve NTAccount from SID

Dim SID2 As SecurityIdentifier = New SecurityIdentifier("S-1-1-0") 'Well Know

SID of Everyone

Dim ntAccount2 As NTAccount =

DirectCast(SID2.Translate(GetType(SecurityIdentifier)), NTAccount)

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

32

Dim accountName As String = ntAccount2.Value 'Everyone

Then the SID will be passed as parameter to the NetSqlAzMan.SqlAzManSID constructor class.

The last two parametrs are System.DateTime? type (can be null) and represent the start and end date/time of

delegation validity. If one of them or both have a null value, that means that the delegation has no expiry date or

without validity start or indetermined time. Print 7 shows an example of applicative delegation.

Print 7:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

using System.Security.Principal;

...

IAzManItem item = ...;

WindowsIdentity delegatingIdentity = WindowsIdentity.GetCurrent();

NTAccount delegatedUserNTAccount = new

NTAccount("MYDOMAIN","delegatedusername");

SecurityIdentifier delegatedUserSID =

(SecurityIdentifier)delegatedUserNTAccount.Translate(typeof(SecurityIdentifier))

;

IAzManSid delegatedUserAzManSID = new SqlAzManSID(delegatedUserSID);

DateTime? validFrom = DateTime.Now;

DateTime? validTo = new DateTime?(); //No expiration date

IAzManAuthorization del = item.CreateDelegateAuthorization(delegatingIdentity,

delegatedUserAzManSID, RestrictedAuthorizationType.Allow, validFrom, validTo);

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

Imports System.Security.Principal

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

33

...

Dim item As IAzManItem = ...

Dim delegatingIdentity As WindowsIdentity = WindowsIdentity.GetCurrent()

Dim delegatedUserNTAccount As NTAccount = New NTAccount("MYDOMAIN",

"delegatedusername")

Dim delegatedUserSID As SecurityIdentifier =

DirectCast(delegatedUserNTAccount.Translate(GetType(SecurityIdentifier)),

SecurityIdentifier)

Dim delegatedUserAzManSID As IAzManSid = New SqlAzManSID(delegatedUserSID)

Dim validFrom As Nullable(Of Date) = DateTime.Now

Dim validTo As Nullable(Of Date) = New Nullable(Of Date) 'No expiration date

Dim del As IAzManAuthorization =

item.CreateDelegateAuthorization(delegatingIdentity, delegatedUserAzManSID,

RestrictedAuthorizationType.Allow, validFrom, validTo)

 The NetSqlAzMan.SqlAzManItem.CreateDelegateAuthorization(…) method returns an instance of

IAzManAuthorization type that you can use to add one or more attributes as shown in print 8.

Print 8:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

using System.Security.Principal;

...

IAzManAuthorizationAttribute attr = del.CreateAuthorizationAttribute("My Key",

"My Value");

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

Imports System.Security.Principal

...

del.CreateAuthorizationAttribute("My Key", "My Value")

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

34

Once the delegation has been carried out, the “delegated” user can access the application functionalities represented

by Item for which he’s been delegated. (the permission assigned by the delegation is Allow).

When you work with delegations is very important to know if the user has already delegated others or not, simply to

avoid that the same user can do again the delegate operation on the same delegated one. To do so is necessary to

read the given authorizations to a certain Item using such methods as

NetSqlAzMan.SqlAzManItem.GetAuthorizationsOfOwner(…) supplying the “delegant” user SID or, the

NetSqlAzMan.SqlAzManItem.GetAuthorizations(…) method for delegations on specific user, passing the “delegant” SID

and the “delegated” SID. An example of use about these two methods in print 9.

Print 9:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

using System.Security.Principal;

...

IAzManItem item = ...;

IAzManSid delegatingUserSid = ...;

IAzManSid delegatedUserSid = ...;

IAzManAuthorization[] authorizations =

item.GetAuthorizationsOfOwner(delegatingUserSid);

foreach (IAzManAuthorization auth in authorizations)

{

 if (auth.SID.StringValue.Equals(delegatedUserSid.StringValue))

 {

 //delegatedUserSid is already a delegate

 }

}

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

35

Imports System.Security.Principal

...

Dim item As IAzManItem = ...

Dim delegatingUserSid As IAzManSid = ...

Dim delegatedUserSid As IAzManSid = ...

Dim authorizations As IAzManAuthorization() =

item.GetAuthorizationsOfOwner(delegatingUserSid)

For Each auth As IAzManAuthorization In authorizations

 If auth.SID.StringValue.Equals(delegatedUserSid.StringValue) Then

 'delegatedUserSid is already a delegate

 End If

Next

At last, to remove a delegation, executed from a “u1” to “u2” user it’s available the

NetSqlAzMan.SqlAzManAuthorization.DeleteDelegateAuthorization(…) method; the supplying parameters are the

“u1” user WindowsIdentity and the “u2” user SID (print 10).

Print 10:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

using System.Security.Principal;

...

IAzManItem item = ...;

WindowsIdentity u1 = WindowsIdentity.GetCurrent();

IAzManSid u2 = ...;

item.DeleteDelegateAuthorization(u1, u2);

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

36

Imports System.Security.Principal

...

Dim item As IAzManItem = ...

Dim u1 As WindowsIdentity = WindowsIdentity.GetCurrent()

Dim u2 As IAzManSid = ...

item.DeleteDelegateAuthorization(u1, u2)

Manipulating the NetSqlAzMan Storage by .NET code

The NetSqlAzMan API are more useful to manipulate the Sql Server Storage directly from .NET code. It’s enough to

think that the administrative console, internally, uses exactly these API; that means that all we can do from the

console, we can do it from source code too.

It would be long and extremely laborious describing every single method of each class present in the NetSqlAzMan

DOM , for further details refer to the chm supplied with the product.

In the example shown in print 11, we use the DOM to create at run-time a Store, an Application, a Role, a Task, an

Operation and to make this last one as Item member of the Task and the Task as Item member of the Role; in this

example an Authorization and an AuthorizationAttribute have been created, too. Remember that the user that will

execute such code must belong to the Sql Database Role: NetSqlAzMan_Administrators.

Print 11:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

using System.Security.Principal;

...

string cs = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated

Secuirty = SSPI;";

IAzManStorage storage = new SqlAzManStorage(cs);

WindowsIdentity identity = WindowsIdentity.GetCurrent();

IAzManSid targetUserSID = ...;

try

{

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

37

 storage.OpenConnection();

 storage.BeginTransaction();

 IAzManStore newStore = storage.CreateStore("A New Store", "Store

description");

 IAzManApplication newApplication = newStore.CreateApplication("A New

Application", "Application description");

 IAzManItem role1 = newApplication.CreateItem("Role 1", "Role description",

ItemType.Role);

 IAzManItem task1 = newApplication.CreateItem("Task 1", "Task description",

ItemType.Task);

 IAzManItem op1 = newApplication.CreateItem("Operation 1", "Operation

description", ItemType.Operation);

 task1.AddMember(op1);

 role1.AddMember(task1);

 IAzManAuthorization auth = op1.CreateAuthorization(new

SqlAzManSID(identity.User), WhereDefined.LDAP, targetUserSID, WhereDefined.LDAP,

AuthorizationType.Deny, new DateTime(2006, 1, 1), new DateTime(2006, 12, 31));

 IAzManAuthorizationAttribute attr = auth.CreateAuthorizationAttribute("Some

Key", "Some Value");

 storage.CommitTransaction();

}

catch

{

 if (storage.TransactionInProgress)

 storage.RollBackTransaction();

}

finally

{

 storage.CloseConnection();

}

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

38

Imports System.Security.Principal

...

Dim cs As String = "Data Source=(local);Initial Catalog =

NetSqlAzManStorage;Integrated Secuirty = SSPI;"

Dim storage As IAzManStorage = New SqlAzManStorage(cs)

Dim identity As WindowsIdentity = WindowsIdentity.GetCurrent()

Dim targetUserSID As IAzManSid = ...

Try

 storage.OpenConnection()

 storage.BeginTransaction()

 Dim newStore As IAzManStore = storage.CreateStore("A New Store", "Store

description")

 Dim newApplication As IAzManApplication = newStore.CreateApplication("A New

Application", "Application description")

 Dim role1 As IAzManItem = newApplication.CreateItem("Role 1", "Role

description", ItemType.Role)

 Dim task1 As IAzManItem = newApplication.CreateItem("Task 1", "Task

description", ItemType.Task)

 Dim op1 As IAzManItem = newApplication.CreateItem("Operation 1", "Operation

description", ItemType.Operation)

 task1.AddMember(op1)

 role1.AddMember(task1)

 Dim auth As IAzManAuthorization = op1.CreateAuthorization(New

SqlAzManSID(identity.User), WhereDefined.LDAP, targetUserSID, WhereDefined.LDAP,

AuthorizationType.Deny, New DateTime(2006, 1, 1), New DateTime(2006, 12, 31))

 Dim attr As IAzManAuthorizationAttribute =

auth.CreateAuthorizationAttribute("Some Key", "Some Value")

 storage.CommitTransaction()

Catch

 If storage.TransactionInProgress Then

 storage.RollBackTransaction()

 End If

Finally

 storage.CloseConnection()

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

39

End Try

The API use LINQ –Language Integrated Query to read and write from Sql Server and this involves a performance

increase and all the security provided by LINQ (for ex. no sql injection)

ENS (Event Notification System)

All the NetSqlAzMan classes fire events and this fact is very useful if, for example, we want to trace a log

about all the operations carried out by users on the Storage. Moreover every events of every class you could possibly

imagine have been collected and centralized in a unique class with static events: SqlAzManENS.

 ENS is a powerful System of Events Notification to use both with administrative scope and in order to manage

all the events that happen in the Storage through your application. In print 12 an example how using the

NetSqlAzManENS class.

Print 12:

C#

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

using NetSqlAzMan.ENS;

...

SqlAzManENS.StoreCreated += new StoreCreatedDelegate(SqlAzManENS_StoreCreated);

...

void SqlAzManENS_StoreCreated(IAzManStore storeCreated)

{

 System.Diagnostics.Debug.WriteLine(storeCreated.Name + " store created");

}

VB.NET

Imports NetSqlAzMan

Imports NetSqlAzMan.Interfaces

Imports NetSqlAzMan.ENS

...

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

40

Dim WithEvents ens As SqlAzManENS 'class-level field

...

Private Sub ens_StoreCreated(ByVal storeCreated As

NetSqlAzMan.Interfaces.IAzManStore) Handles ens.StoreCreated

 System.Diagnostics.Debug.WriteLine(storeCreated.Name + " store created")

End Sub

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

41

Building Applications with NetSqlAzMan

Requirements:

 .NET Framework 4.0

 NetSqlAzMan 3.6.0.6 (or upper) installed

 Visual Studio .NET 2010

For each tutorial:

 Create a new Windows/Web application

 Add a reference to the NetSqlAzMan.dll assembly

Tutorial 1: CheckAccess inside Windows/Web Applications

 Add using clauses:

using NetSqlAzMan;

using NetSqlAzMan.Interfaces;

...

 Create a SqlAzManStorage instance:

string cs = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated

Secuirty = SSPI;";

IAzManStorage storage = new SqlAzManStorage(cs);

 Get user Windows Identity:

System.Security.Principal.WindowsIdentity identity =

System.Security.Principal.WindowsIdentity.GetCurrent();

 Invoke SqlAzManStorage.CheckAccessMethod:

//Can I do "My Operation" (or my Task … or my Role) ?

AuthorizationType authorization = storage.CheckAccess("My Store", "My

Application", "My Operation", identity, DateTime.Now, false);

 Use authorization result for your business logic:

switch (authorization)

{

 case AuthorizationType.AllowWithDelegation:

 //Yes, I can ... and I can delegate

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

42

 break;

 case AuthorizationType.Allow:

 //Yes, I can

 break;

 case AuthorizationType.Deny:

 case AuthorizationType.Neutral:

 //No, I cannot

 break;

}

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

43

Tutorial 2: CheckAccessHelper

NetSqlAzMan is able to generate for you the CheckAccess client code into an helper class called CheckAccessHelper.

To generate CheckAccessHelper class:

 Open NetSqlAzMan MMC console or Web console

 Choose your application

 Right click – Generate Check Access Helper

 If you want to allow check access on Roles and Tasks to check relative options

 Copy and Paste generated code into a file class of your project

To use CheckAccessHelper:

 Create an instance of CheckAccessHelper class:

string cs = "data source=eidosis4-afr;Initial

Catalog=NetSqlAzManStorage;Integrated Security = SSPI;";

 My_Application.Security.CheckAccessHelper helper = new

My_Application.Security.CheckAccessHelper(cs, WindowsIdentity.GetCurrent());

 Open the connection:

helper.OpenConnection();

 Invoke CheckAccess on your items:

bool result =

helper.CheckAccess(My_Application.Security.CheckAccessHelper.Operation.Op1);

 Close the connection:

helper.CloseConnection();

 Use result for your business operations (i.e. to enable/disable some UI elements)

//Use result for your business logic

 if (result == true)

 {

 //Allow or AllowWithDelegation

 }

 else

 {

 //Deny or Neutral

 }

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

44

Tutorial 3: UserPermissionCache

UserPermissionCache class is able to cache all authorizations of a given Application for a given user (Windows or DB).

 To use it create an instance of a SqlAzManStorage class:

IAzManStorage storage = new SqlAzManStorage("data source=.;Initial

Catalog=NetSqlAzManStorage;Integrated Security = SSPI;");

 Create an instance of a UserPermissionCache class:

NetSqlAzMan.Cache.UserPermissionCache userPermissionCache = new

NetSqlAzMan.Cache.UserPermissionCache(storage, "My Store", "My Application",

WindowsIdentity.GetCurrent(), true, true);

 (If your application is a Web Application you can put UserPermissionCache instance into a Session variable or

in the ASP.NET Cache to cache authorizations for all the session time. This step avoid UserPermissionCache

rebuilding.)

 Invoke CheckAccess method:

AuthorizationType auth = userPermissionCache.CheckAccess("My Operation",

DateTime.Now);

 Use auth result for your business logic.

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

45

Tutorial 4: StorageCache

NetSqlAzMan.Cache.StorageCache class is able to cache an entire Storage (Stores, Applications, Items, Authorizations,

Attributes …) by retrieving all Storage data in a single set of T-SQL SELECT operations. After this, the connection is

closed.

StorageCache expose four CheckAccess methods that calculate permissions over cached elements and without opening

connection to the SQL Server Storage.

StorageCache can be used to:

 Increase CheckAccess performance (no SQL data retrieve)

 Client-side CheckAccess

To enable StorageCache cache:

 Create an instance of the NetSqlAzMan.Cache.StorageCache class:

NetSqlAzMan.Cache.StorageCache sc = new StorageCache("data source=.;initial

catalog=NetSqlAzManStorage;user id=sa;password=");

 Invoke BuildStorageCache() method to cache all Storage elements:

sc.BuildStorageCache("My Store", "My Application");

 (If you want to cache all elements of a single Store or a single Application invoke

BuildStorageCache(storeNameFilter) / BuildStorageCache(storeNameFilter, applicationNameFilter).)

 Invoke CheckAccess() method:

WindowsIdentity wid = WindowsIdentity.GetCurrent();

string user = wid.GetUserBinarySSid(); //using NetSqlAzMan.Cache needed

string[] groups = wid.GetGroupsBinarySSid(); //using NetSqlAzMan.Cache needed

AuthorizationType au = sc.CheckAccess("My Store", "My Application", "My

Operation", user, groups, DateTime.Now, false);

 Use result for your business logic:

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

46

Tutorial 5: WCF Cache Service

NetSqlAzMan Cache Service is a WCF (Windows Communication Foundation) service, hosted by a Windows NT Service

over Http/Net.Tcp protocol.

To install NetSqlAzMan Cache Service:

 Download NetSqlAzMan Cache Service from http://netsqlazman.codeplex.com

 Install the service

P.S.1: If use Integrated Security = true in the Sql connection string, service user must be granted must be in the

NetSqlAzMan_Readers sql role.

P.S.2: If you have LDAP Store/Application groups in your Storage, service user must be a DOMAIN user able to

read from your Active Directory Domain.

 Open NetSqlAzManCacheService.exe.config file and change configuration options:

<connectionStrings>

 <add

name="NetSqlAzMan.Cache.Service.Properties.Settings.NetSqlAzManStorageCacheConnectionString"

 connectionString="Data Source=(local);Initial Catalog=NetSqlAzManStorage;Integrated

Security=True"

 providerName="System.Data.SqlClient" />

 </connectionStrings>

 <appSettings>

 <add key="expirationValue" value="0 1 0 0" /> <!-- days hours minutes seconds -->

 <add key="StoreNameFilter" value="" /> <!-- leave empty for all Stores -->

 <add key="ApplicationNameFilter" value=""/> <!-- leave empty for all Applications -->

 </appSettings>

…

<!-- NET TCP SERVICE -->

 <service behaviorConfiguration="NetSqlAzMan.Cache.Service.NETTCPCacheServiceBehavior"

 name="NetSqlAzMan.Cache.Service.CacheService">

 <endpoint address="" binding="netTcpBinding"

contract="NetSqlAzMan.Cache.Service.ICacheService" />

 <endpoint address="mex" binding="mexTcpBinding" contract="IMetadataExchange" />

 <host>

 <baseAddresses>

 <add baseAddress="net.tcp://localhost:8000/NetSqlAzMan.Cache.Service/CacheService/"

/>

 <add baseAddress="http://localhost:9000/NetSqlAzMan.Cache.Service/CacheService/" />

 </baseAddresses>

 </host>

 </service>

 Start the service

 Check Application Log Events for cache build results.

To use NetSqlAzMan Cache Service:

 Create a new Web/Windows client application

 Add a Service Reference to the mex Address (default is:

http://localhost:9000/NetSqlAzMan.Cache.Service/CacheService/) and call Service reference “sr”.

 Create an instance of the WCF service proxy class:

sr.CacheServiceClient csc = new sr.CacheServiceClient();

 Open service connection

csc.Open();

http://netsqlazman.codeplex.com/

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

47

 Invoke CheckAccess methods:

- csc.CheckAccessForWindowsUsersWithAttributesRetrieve(...);

- csc.CheckAccessForWindowsUsersWithoutAttributesRetrieve(...);

- csc.CheckAccessForDatabaseUsersWithAttributesRetrieve(...);

- csc.CheckAccessForDatabaseUsersWithoutAttributesRetrieve(...);

 Alternatively you can use the GetAuthorizedItems(...) methods to recover the entire Items Set for which a

user is authorized. GetAuthorizedItems() methods also return the attributes for the various Items for which

the User has permissions of type Allow/Allow with Delegation

[OperationContract(Name="GetAuthorizedItemsForDatabaseUsers")]

 AuthorizedItem[] GetAuthorizedItems(string storeName, string applicationName, string

DBuserSSid, DateTime validFor, params KeyValuePair<string, object>[] contextParameters);

[OperationContract(Name = "GetAuthorizedItemsForWindowsUsers")]

 AuthorizedItem[] GetAuthorizedItems(string storeName, string applicationName, string userSSid,

string[] groupsSSid, DateTime validFor, params KeyValuePair<string, object>[] contextParameters);

 Invoke InvalidateCache if you want to force cache re-building (i.e. if authorizations are changed on SQL

Storage):

csc.InvalidateCache();

 Close service connection (VERY IMPORTANT !)

csc.Close();

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

48

Tutorial 6: NetSqlAzMan Aspect Oriented Programming (Check permissions through .NET attributes)

NetSqlAzMan provide 2 classes to implement AOP (Aspect Oriented Programming):

 NetSqlAzManAuthorizationContext

 NetSqlAzManAuthorizationAttribute

Example:

[Form1.Designer.cs]

[NetSqlAzManAuthorization("My operation", " Visible", false)]

//If NOT CheckAccess(...) => button1.Visible = false

private System.Windows.Forms.Button button1;

…

[NetSqlAzManAuthorization("My Role", "Enabled", false)]

//If NOT CheckAccess(...) => saveToolStripMenuItem.Enabled = false

private System.Windows.Forms.ToolStripMenuItem saveToolStripMenuItem;

[Form1.cs]

private void Form2_Load(object sender, EventArgs e)

{

//Initialize the NetSqlAzMan Context

 NetSqlAzManAuthorizationContext ctx = new NetSqlAzManAuthorizationContext("data

source=(local);Initial Catalog=NetSqlAzManStorage;User id=sa;password=", "My Store", “My

Application", WindowsIdentity.GetCurrent(),true);

//True to use StorageCache, false to direct check access

 //Optionally you can intercept events before and after the Access Check

 //ctx.BeforeCheckAccess += new

BeforeCheckAccessHandler(NetSqlAzManAuthorizationContext_BeforeCheckAccess);

 //ctx.AfterCheckAccess += new

AfterCheckAccessHandler(NetSqlAzManAuthorizationContext_AfterCheckAccess);

 //If using the Storage Cache … you can also invalidate the cache

 //ctx.InvalidateCache();

[…]

//Finally … check the security for all Attributes

 ctx.CheckSecurity(this);

}

//void NetSqlAzManAuthorizationContext_AfterCheckAccess(NetSqlAzManAuthorizationContext context,

NetSqlAzManAuthorizationAttribute attribute, ref bool partialResult)

 //{

 // //Do something before checking the access

 //}

 //void NetSqlAzManAuthorizationContext_BeforeCheckAccess(NetSqlAzManAuthorizationContext

context, NetSqlAzManAuthorizationAttribute attribute)

 //{

// //Do something after access check

//}

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

49

Tutorial 7: NetSqlAzMan Role Provider

To use the NetSqlAzManRoleProvider inside your web application you must:

Modify your web.config file as the following and change parameters as your needs:

<?xml version="1.0"?>
<configuration>
 <system.web>

<roleManager defaultProvider="NetSqlAzManRoleProvider" enabled="true" cacheRolesInCookie="false"
cookieName=".ASPROLES" cookieTimeout="30" cookiePath="/" cookieRequireSSL="false"
cookieSlidingExpiration="true" cookieProtection="All">
 <providers>
 <clear/>
 <add
 name="NetSqlAzManRoleProvider"
 type="NetSqlAzMan.Providers.NetSqlAzManRoleProvider"
 connectionStringName="NetSqlAzManConnectionString"
 storeName="My Store Name"
 applicationName="My Application Name"
 userLookupType="LDAP"
 defaultDomain="MYDOMAIN"
 UseWCFCacheService="True" />
 <!--
 UseWCFCacheService:
 False: use a local instance of the StorageCache class.
 True: use the NetSqlAzMan WCF Cache Service (remember to add the
<system.serviceModel>...</system.serviceModel> section to your web.config file)
 -->
 <!-- UserLookupType options: { LDAP, DB } -->
 <!-- Leave DefaultDomain blank if userLookupType=="DB" (DB users) -->
 </providers>
 </roleManager>
…

 </system.web>
 …
<system.serviceModel>
 <bindings>
 <netTcpBinding>
 <binding name="NetTcpBinding_ICacheService" closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
 transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions"
 hostNameComparisonMode="StrongWildcard" listenBacklog="10"
 maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10"
 maxReceivedMessageSize="65536">
 <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <reliableSession ordered="true" inactivityTimeout="00:10:00"
 enabled="false" />
 <security mode="Transport">
 <transport clientCredentialType="Windows" protectionLevel="EncryptAndSign" />
 <message clientCredentialType="Windows" />
 </security>
 </binding>
 </netTcpBinding>
 </bindings>
 <client>
 <endpoint address="net.tcp://localhost:8000/NetSqlAzMan.Cache.Service/CacheService/"
 binding="netTcpBinding" bindingConfiguration="NetTcpBinding_ICacheService"
 contract="NetSqlAzManWCFCacheService.ICacheService" name="NetTcpBinding_ICacheService">
 <identity>
 <userPrincipalName value="" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

50

To access all NetSqlAzMan Role Provider:

NetSqlAzMan.Providers.NetSqlAzManRoleProvider provider =
((NetSqlAzMan.Providers.NetSqlAzManRoleProvider)Roles.Provider);

var dbUser = provider.GetApplication().GetDBUser("Arianna");
 string randomRoleName = String.Format("Random Role {0}",
Guid.NewGuid().ToString());
 provider.CreateRole(randomRoleName);
 provider.AddUsersToRoles(new[] { "EIDOSIS4-AFR\\Andrea" }, new[] {
randomRoleName });
 provider.InvalidateCache(true);
 bool isInRole = provider.IsUserInRole("EIDOSIS4-AFR\\Andrea", randomRoleName);

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

51

Conclusions

 I think we all agree if we say that a lot of applications need or have needed, in the past, of a centralized

system to manage authorizations. Who of you has needed, almost once, to have such kind of management for an

application? How is it gone? All by hand? And every time do it again? All custom in the DB ? Draw the conclusions.

There are a lot of other features in NetSqlAzMan, among them:

 Asynchronous CheckAccess (BeginCheckAccess / EndCheckAccess)

 Store Attributes, Application Attributes, Item Attributes.

 NetSqlAzMan custom Exceptions.

 All the operations on Storage can be transactional

 (Storage.BeginTransaction/CommitTransaction/RollBackTransaction)

 Import/Export in XML format directly from the console.

 Import from MS Authorization Manager.

 LDAP query test for dynamical groups from the console (Store Group and Application Group).

 All the operations executed in the console are logged in the machine Application Log.

The only fact that is.NET 4.0 native and supports Sql Server for its authorizations Storage, let’s consider this product

surely interesting and worth to test it.

At last, I remember you that the source code (C#.NET) is available, both for the console and the run-time engine, as

well the setup package (see riff.).

http://netsqlazman.codeplex.com

 NetSqlAzMan
Andrea Ferendeles

aferende@hotmail.com

52

Thanks to

A special thank to “Catho”, who gave me precious suggestions during NetSqlAzMan design time, besides doing a

meticulous testing job. Thanks “Catho”.

Another special thank to Giacinta (my wife) and to Nagireddy Tamalapudi for English translation of this document.

Thanks guys !!!

Andrea Ferendeles.

References

[1] SQLAudit home site: http://sqlaudit.sourceforge.net (documentation and quickstart).

[2] NetSqlAzMan home site: http://netsqlazman.codeplex.com (sources, installer, documentation).

http://sqlaudit.sourceforge.net/
http://netsqlazman.codeplex.com/

	NetSqlAzMan is Open Source
	Requirements

	Security within the applications
	Ms Authorization Manager (AzMan) vs .NET Sql Authorization Manager (NetSqlAzMan)
	The NetSqlAzMan structure
	Store and Store Group
	Application and Application Group
	Item Definitions
	Biz Rules
	Item Authorizations
	Database Users Custom-Authentication
	NetSqlAzMan Database roles and Delegates
	NetSqlAzMan is Time-dependant
	Authorization Attribute
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	...
	string cs = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated Secuirty = SSPI;";
	IAzManStorage storage = new SqlAzManStorage(cs);
	System.Security.Principal.WindowsIdentity identity = System.Security.Principal.WindowsIdentity.GetCurrent();
	//For each Operation …
	//Can I do "My Operation" ?
	AuthorizationType authorization = storage.CheckAccess("My Store", "My Application", "My Operation", identity, DateTime.Now, true);
	switch (authorization)
	{
	case AuthorizationType.AllowWithDelegation:
	//Yes, I can ... and I can delegate
	break;
	case AuthorizationType.Allow:
	//Yes, I can
	break;
	case AuthorizationType.Deny:
	case AuthorizationType.Neutral:
	//No, I cannot
	break;
	}
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	...
	Dim cs As String = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated Secuirty = SSPI;"
	Dim storage As IAzManStorage = New SqlAzManStorage(cs)
	Dim identity As System.Security.Principal.WindowsIdentity = System.Security.Principal.WindowsIdentity.GetCurrent()
	'For each Operation …
	'Can I do "My Operation" ?
	Dim authorization As AuthorizationType = storage.CheckAccess("My Store", "My Application", "My Operation", identity, DateTime.Now, True)
	Select Case authorization
	Case AuthorizationType.AllowWithDelegation
	'Yes, I can ... and I can delegate
	Case AuthorizationType.Allow
	'Yes, I can
	Case AuthorizationType.Deny Or AuthorizationType.Neutral
	'No, I cannot
	End Select

	Applicative Delegation
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	...
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	...
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	...
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	using System.Security.Principal;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	Imports System.Security.Principal
	...
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	using System.Security.Principal;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	Imports System.Security.Principal
	...
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	using System.Security.Principal;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	Imports System.Security.Principal
	...
	del.CreateAuthorizationAttribute("My Key", "My Value")
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	using System.Security.Principal;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	Imports System.Security.Principal
	...
	Next
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	using System.Security.Principal;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	Imports System.Security.Principal
	...

	Manipulating the NetSqlAzMan Storage by .NET code
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	using System.Security.Principal;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	Imports System.Security.Principal
	...

	ENS (Event Notification System)
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	using NetSqlAzMan.ENS;
	...
	Imports NetSqlAzMan
	Imports NetSqlAzMan.Interfaces
	Imports NetSqlAzMan.ENS
	...
	...

	Building Applications with NetSqlAzMan
	Tutorial 1: CheckAccess inside Windows/Web Applications
	using NetSqlAzMan;
	using NetSqlAzMan.Interfaces;
	...
	string cs = "Data Source=(local);Initial Catalog = NetSqlAzManStorage;Integrated Secuirty = SSPI;";
	IAzManStorage storage = new SqlAzManStorage(cs);
	System.Security.Principal.WindowsIdentity identity = System.Security.Principal.WindowsIdentity.GetCurrent();
	//Can I do "My Operation" (or my Task … or my Role) ?
	AuthorizationType authorization = storage.CheckAccess("My Store", "My Application", "My Operation", identity, DateTime.Now, false);
	switch (authorization)
	{
	case AuthorizationType.AllowWithDelegation:
	//Yes, I can ... and I can delegate
	break;
	case AuthorizationType.Allow:
	//Yes, I can
	break;
	case AuthorizationType.Deny:
	case AuthorizationType.Neutral:
	//No, I cannot
	break;
	}

	Tutorial 2: CheckAccessHelper
	Tutorial 3: UserPermissionCache
	Tutorial 4: StorageCache
	Tutorial 5: WCF Cache Service
	Tutorial 6: NetSqlAzMan Aspect Oriented Programming (Check permissions through .NET attributes)
	Tutorial 7: NetSqlAzMan Role Provider
	Conclusions
	Thanks to
	References

