

nHydrate 5
Getting Started

Getting Started with nHydrate 1

Table of Contents

Getting Started with nHydrate
About nHydrate

Objects and Databases
nHydrate as an object-relational mapper

Getting Started
Building Your First Domain Model
Modelling
Designing the Model using the Visual Studio Designer
Code Generation
Selecting Data
Querying
Updating
Deleting
Summary

Getting Started with nHydrate 2

Getting Started with nHydrate
Welcome to the Quick Start walkthrough for nHydrate. This document will introduce you to the core
concepts, classes and techniques of nHydrate. We will look at how to create a domain model, load your
domain data and make changes to that data and save it back to your database.

In this walk-through, we will be using the nHydrate Visual Studio Designer which takes care of most
routine tasks for you so you will need to have installed nHydrate prior to embarking on this document.

Getting Started with nHydrate 3

About nHydrate
nHydrate is a domain modelling and object to relational mapping framework for the .NET Framework.
Simply put, it allows you to design the business entities around which your system will be formed and
handles the retrieval and persistence of those entities allowing you to concentrate on developing the
solution at hand.

nHydrate has been designed around the idea of a domain model and the philosophy is centred on the
following guiding principles:

● Convention over configuration.
● Support idiomatic .NET domain models: validation, data binding, change notification etc.
● Highly usable API and low barrier to entry.
● Small, lightweight and fast.

Objects and Databases
When you analyse a business domain, you are creating a conceptual model of that domain. You
identify the entities in that domain, the state and behaviour of those entities, and their relationships.
However, at some point, that conceptual model has to be translated into a concrete software
implementation.

In fact, in almost all practical business applications, it has to be translated into (at least) two concrete
software implementations: one implementation in terms of programming entities (objects), and one
in terms of a relational database. This is where things start getting tedious and potentially complex,
because the object and relational worlds use quite different representations. At best, the code to query
the database, load objects and save them again is laborious and repetitive.

This is where object-relational mapping comes in. An object-relational mapper, or ORM, takes care of
the mechanical details of translating between the worlds of programmatic objects and relational data.
The ORM figures out how to load and save objects, using either explicit instructions such as an XML
configuration file, or its own heuristics, or a combination of the two. This lets you, the programmer,
focus on writing your business logic and application functionality against the domain model (in its object
representation), without having to worry about the details of the relational representation.

nHydrate as an object-relational mapper
nHydrate as an object-relational mapper uses a model top define a data system base for organizing
objects. The objects map back to specific tables, stored procedures, views, or functions in the
database, but you do not need to write any connection code for this. The whole system is Entity
Framework based and rides on top of SQL Server. Instead of being all things to all people and
being completely generic, nHydrate strives to be optimized and fast running exclusively on Microsoft
technologies.

Getting Started with nHydrate 4

Getting Started
Let’s get started with nHydrate by:

● Building up a simple domain model
● Running some queries
● Making changes to entities

This example will assume you are building using the C# language and are targeting a .NET 4.0 based
solution. This is necessary because we are using Entity Framework 4.0 and this is a minimal framework
required.

Building Your First Domain Model
To create your first domain model, start by creating a new project within Visual Studio. For the
purposes of this example we will create a ConsoleApplication to house the model, but you can add it
to any project. It is important that you click the check box “Create directory for solution”. This will add
the console application to its own folder. The reason for this is that the model is going to generate new
projects in this solution. The projects will be created off of the solution folder.

The next step is to create a nHydrate model. To do this, Add a New Item to the project and then select
nHydrate Model from the list of available item templates. Enter an appropriate name to describe the
domain for this model, or if you are only likely to use a single domain model for the entire application
the standard is to name this Model.

In this example, we will create our model using the name Model, which will generate a new file called
Model.nhydrate within our project.

Getting Started with nHydrate 5

Modelling
nHydrate supports two ways in which you can elaborate your domain model. You can either start by
describing your domain model prior to creating your database (this is known as Model First), or by
starting with an existing database and using that to create your initial model (this is known as Database
First).

It is recommened that you start with a model first and let the nHydrate generated installer project create
your database. Of course this may not be possible if you are upgrading a legacy system. You can
import an existing database as a starting point and from that point on manage your database with the
nHydrate installer.

For the purposes of this example, we will be designing a sample which has 2 entities, a Movie and a
Comment. There is a relationship between Movie and Comment in that a movie may have one or more
comments about it.

We will model this in nHydrate using a Model First approach which means we will use the nHydrate
designer to describe our model and then commit this to a database. You could equally achieve the
same goal by using the Database First approach as well.

Designing the Model using the Visual Studio Designer

Getting Started with nHydrate 6

Designing your domain model using the Model First approach is simple using the nHydrate Design
Surface. To get started, double click on the Model.nhydrate file which opens up the design surface in
Visual Studio.

Expanding the Toolbox pane gives you access to the objects with which you can use to model. We will
start by dragging on 2 entity shapes, one for each of the domain entities we described above.

After you drag these entities on the canvas, you can their properties using the standard property dialog
window that all .NET components use.

The next step is to add the fields to the entities. To Movie I have added Title and Description. They
both default to varchar of length 50 and I have left them like this. Notice that Movie already has a
primary key defined as ID that is a database identity. I have left the default name and settings here as
well. On the Comment entity, in addition to the primary key already being added I add the Body and
PostedBy fields as well. I want to create a link between these two entities so I add a new field MovieID
to Comment. This will be the foreign key that links Movie to Comment.

Now we need to add the actual relation. Drag an association shape from the toolbox on to Movie and
then link it to Comment, this will create a relationship between these entities. A relationship properties
screen will appear allowing you to setup the fields that define this relation.

Getting Started with nHydrate 7

After we have created the the two entities and defined the relation, the canvas should look like the
following image.

Getting Started with nHydrate 8

Now that we have defined a model, we can generate some code. There are some non-essential
projects that you can create like mocks and data transfer objects; however for this example, we will
generate the three bare minimal projects to manage your database and access these objects in code.
These projects are the Entity Framework data access layer (EFDAL), the interface project that defines
the entity objects, and the installer.

Before we proceed we need to set two more properties. Click on the canvas and you see the properties
for the model. There is a company name and project name. These are used to define namespaces of
the generated projects so they are required. I have set the company name to Acme and the project
name to MovieTest. This will create a namespace in the EFDAL of Acme.MovieTest.EFDAL.

To generate, right click on the canvas free space to get a pop-up menu. Open the Model menu and
choose the Generate option. You will see the following dialog.

Getting Started with nHydrate 9

After you generation is complete there will be three new projects in your solution. The solution explorer
will look like the following image.

Getting Started with nHydrate 10

Now to create a new database with this schema directly from Visual Studio, simply setup the installer
project to run with the .NET tool InstallUtil.exe. Open the property window of the installer project and
setup the debugging section. Setup the external program to be this application which on my machine is
located at the following location.

“C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe”.

Afterwards setup the command line parameters to be output assembly which is
Acme.MovieTest.Install.dll.

Getting Started with nHydrate 11

Now all you need to do is right-click the project and click the Debug|Start New Instance menu. This
action will run the InstallUtil application with the installer as target assembly and you will get a user
interface to create or upgrade a database.

The following graphic shows the default UI for database interaction. If there is no existing database, you
can use the Create tab to make one. If you are upgrading a database, then use the Upgrade tab.

Getting Started with nHydrate 12

This project can be used in your own custom application installation to upgrade a production database.
The model tracks changes as you make them and it creates incremental upgrade scripts upon
generation. After generation you may upgrade your database. It does not matter how long it has been
since your last upgrade. The installer tracks the last database version and only runs the upgrade scripts
necessary to bring the existing database version up to the latest level.

Code Generation
By using the nHydrate Designer you are actually generating code for the classes represented by
your models. All nHydrate domain models are ultimately represented in C# code. The design surface
provides the productivity boost and convenience in creating these, however you can craft your own
custom code as extension of the generated code.

If you wish to extend these classes with custom behaviour or additional fields and properties, simply
open the generated partial class. In the EFDAL project, there is an Entity folder. This houses all entities
defined in your model. Notice that there is a partial gen-once file and a sub-file with the same name
except that it is suffixed with the Generated keyword. This is a gen-always file. Never make changes in
file that ends with generated as it will be re-created on each generation. In the partial class, you may
add any extension functionality you wish. The changes will not be overwritten.

Getting Started with nHydrate 13

Selecting Data
Now that we have a a generated API, we can now interact with the database. First setup the solution
dependencies. Right-click on the EFDAL project and select the Project Dependencies menu. Once
open, check the interfaces assembly to notify the solution that it is a dependency. Now select the
console application and setup the EFDAL project as a dependency. Press OK and build the solution.

In the console application add a reference to Widgetsphere.Core.dll as well as the EFDAL and
interfaces assemblies in the Bin folder. Ensure that your console project is a Full 4.0 framework
application and not a Client Profile application in the project properties sheet. Now we can create some
Entity Framework database access code.

First we must setup the connection string. With Entity Framework this can be tricky, because they are
quite complicated. I have chosen to use the App.Config file but you can set the connection string in
code as well.

Sample connection string configuration block in the App.Config

<?xml version="1.0"?>
<configuration>

 <connectionStrings>

<add name="MovieTestEntities" connectionString="metadata=res://*/
Acme.MovieTest.EFDAL.MovieTest.csdl|res://*/Acme.MovieTest.EFDAL.MovieTest.ssdl|res://*/
Acme.MovieTest.EFDAL.MovieTest.msl;provider=System.Data.SqlClient;provider connection
string="Data Source=localhost;Initial Catalog=MovieTest;Integrated Security=SSPI;Connection
Timeout=60;"" providerName="System.Data.EntityClient" />
 </connectionStrings>

</configuration>

Querying
From this point forward the API is mostly Entity Framework. However there are many special features
not addressed in this document. I will stick mostly to standard Entity Framework. The following code
creates an Entity Framework context and selects all Movies from the database.

Query all movies

using (var context = new MovieTestEntities())
{
 var movieList = context.Movie.ToList();
 foreach (var item in movieList)

Getting Started with nHydrate 14

 {
 System.Diagnostics.Debug.WriteLine(item.Description);
 }
}

Updating
Of course, you can update objects as well. All entities can be updated unless they are marked
Immutable. Immutable objects are a special case mainly for well-defined type tables or some other
read-only data that never changes. The modifier are all private on these objects so a develop can never
update these objects through the API. However all other entities can be modified.

The following code selects the first movie from the database and appends some text to the Description
field. After the change the context’s SaveChanges method is called to persist this change back to the
database.

Update a movie

using (var context = new MovieTestEntities())
{
 var movie = context.Movie.FirstOrDefault();
 if (movie != null)
 {
 movie.Description += " and more...";
 context.SaveChanges();
 }
}

Deleting
Deleting objects is very standard as well. Simply call the context’s DeleteItem method with a loaded
entity object.

Delete a movie

using (var context = new MovieTestEntities())
{
 var movie = context.Movie.FirstOrDefault();
 if (movie != null)
 {
 context.DeleteItem(movie);
 context.SaveChanges();
 }
}

Getting Started with nHydrate 15

Of course this seems ridiculous to load an object from the database just to issue back a deletion.
Once of the non-standard features that is not present in standard Entity Framework is issuing delete
commands with LINQ without loading the objects in memory. This is also nice, because with it you
could remove thousands or millions of objects with no adverse memory usage by your application.

Remove multiple rows without loading

Movie.DeleteData(x => x.Description.Contains("some data"));

There is a static method named DeleteData on each Entity type. You can issue a LINQ statement that
is converted to a SQL statement with no object loading.

Summary
There are many features not covered in this document. The nHydrate system allows you to create
Entity Framework APIs with a lot of additional functionality. The meta data defined in the model is used
for binding, validation, and other advanced functionality. The visual modeler makes it easy to define
and manage a complete data model.

Conceive, Model, Generate!

Getting Started with nHydrate 16

