Using the ETW tracing preprocessor in your Application
Table of Contents
What is this ETW thing?	1
Why should I use ETW?	1
What is this preprocessor and why do we need it?	2
The NTrace API	3
Using NTrace in New Projects	3
Adding NTrace Support to Existing Projects	3
Declare an ETW Provider	3
Tweak An Existing Project	4
NTrace in Action	5
Creating a New Project	5
Using TraceView to Start a Tracing Session	7
Appendix A: An ETW performance demonstration	15

[bookmark: _Toc214030545]What is this ETW thing?
Event Tracing for Windows is a kernel-level tracing service that has been around since Windows 2000. Since it’s baked right into the kernel, it is extremely fast. Most of the developers that use ETW are writing drivers, but why should they have all the fun?
[bookmark: _Toc214030546]Why should I use ETW?
ETW Tracing has several benefits over the tracing classes provided with the .NET Framework. Most importantly, ETW tracing can be turned on and off without having to restart the application, but it also has features like built-in high performance circular logging (a circular log is one that never grows above a specified size by flushing out older trace messages), and the ability for you to capture the logs from multiple sources into a single trace session.
[bookmark: _Toc214030547]What is this preprocessor and why do we need it?
Put simply, to maximize application performance when tracing is not enabled. In a perfect world, an application’s performance when tracing is disabled would be identical to one where tracing wasn’t included at all. The problem is that your code is only compiled once; if those trace calls are in there, they’re GOING to get called, and while the ETW functions return quickly when tracing is disabled, the runtime still has to evaluate trace arguments, allocate memory, construct method call stacks, and so on. The application performance would be even faster if the functions were never called in the first place.
How much faster is it? Here’s an example: Let’s write a simple application that has a function named DoSomething.
 (
static

int
 DoSomething(
String
 arg0,
int
 arg1,
long
 arg2,
DateTime
 arg3)
{

return
 23;
}
)
As you can see, DoSomething in this case simply returns a value and does no other calculations. It should be blazingly fast, right? Well, it is, but there’s still the overhead of the method call. To demonstrate this, let’s run two loops: one that ends up in a call to DoSomething one million times, and another that will shortcut the call. To do this, we’ll create a method named DoRun that will call DoSomething unless the caller has specified that it should bypass the call entirely. If the value passed to shortcut is true, we’ll skip the DoSomething call altogether.
 (
static

void
 DoRun(
bool
 shortcut)
{

DateTime
 start, stop;
 start =
DateTime
.Now;

for
 (
int
 index = 0; index < 1000000; index++)
 {

if
 (!shortcut)
 {
 Program.DoSomething(
"Hi there!"
, 42, 42L,
DateTime
.Now);
 }
 }
 stop =
DateTime
.Now;

Console
.WriteLine(

"Shortcut {0}: {1} milliseconds"
,
 shortcut,
 (stop - start).TotalMilliseconds);
}
)

To get our results, we will now call DoRun twice; once with shortcut set to False, and again with shortcut set to True. On my machine (a 2GHz Core2Duo running Windows Vista x86), the results are:
 (
Shortcut False: 546 milliseconds
Shortcut True: 15.6 milliseconds
)
In other words, it was 35 times faster to completely bypass the function call. That’s nearly two orders of magnitude! Now, imagine if you were doing something even more complicated there such as calling ToString() on an exception or dumping a string containing the values of all of the properties of the object you are working on and you should be able to see that you get a rather large performance boost by skipping those calls completely.
[bookmark: _Toc214030548]The NTrace API
The NTrace API is actually quite simple: there is a single class named EtwTrace with a method named Trace. This method can take an optional trace level to indicate the “severity” of a message (e.g.: Verbose, Information, Warning, etc.), an optional bit-flag that can be used to indicate a functional “area” of tracing (e.g.: Disk I/O, Workflow activities, network communications, etc.), and a format string + arguments similar to that of String.Format. In fact, the format of the format string used for NTrace was deliberately lifted straight from String.Format so that prospective developers wouldn’t have to learn yet another new (well, technically, old, but that’s another story) set of formatting rules.
[bookmark: _Toc214030549]Using NTrace in New Projects
If you’re one of the lucky few who never need to maintain existing applications, then you can leverage the project templates that ship out of the box with NTrace. As of the time this document was written, there are currently templates for C# Console applications, class libraries, and WinForms applications with plans for project templates for WCF, ASP.NET, and WPF applications soon. Starting a project using the project templates sets everything up for you: all you need to do is write your code and add tracing calls.
[bookmark: _Toc214030550]Adding NTrace Support to Existing Projects
[bookmark: _Toc214030551]Declare an ETW Provider
In order to have your application publish events to ETW, you must add a reference to the NTrace library to your project (in the %ProgramFiles%\NTrace folder or in your machine’s GAC) and include a static field that is of type NTrace.ClassicProvider. The name you use for the variable isn’t really important, but the fact that it can be accessed by all of the classes in your assembly is. In practice, it is advised to use internal so that it is accessible from all of the classes in your assembly.
[bookmark: _Toc214030552]Tweak An Existing Project
In many cases, you’ll want to add the preprocessor to your existing code. In order to have the preprocessor kick in and do its magic, you’ll have to import the build instructions into your C# project. To do this, simply add properties registering your ETW provider and replace your existing reference to Microsoft.CSharp.targets with one to NTrace.CSharp.Targets from the $(MSBuildExtensionsPath)\NTrace\<<version>> folder like so:
 <!—
 These values "register" your provider and tells the preprocessor how
 To hook things up when it’s time to build.
 -->
 <PropertyGroup>
 <EtwProviderVariable>
 <<fully-qualified provider variable name>>
 </EtwProviderVariable>
 <EtwProviderId>96B47F82-971F-4644-821F-B55FB2439DAD</EtwProviderId>
 </PropertyGroup>

 …

 <!—There will already be an Import at the bottom of your project, pointing to Microsoft.CSharp.targets. Change it to the following -->
 <Import Project="$(MSBuildExtensionsPath)\NTrace\v1.0\NTrace.CSharp.targets" />

[bookmark: _Toc214030553]NTrace in Action
[bookmark: _Toc214030554]Creating a New Project
Let’s walk through a demonstration. First, install NTrace. This will install the tracing library, the preprocessor, and Visual Studio 2008 project templates. Once everything’s installed, open Visual Studio and create a new Instrumented Console Application project:
[image:]
This will create the project and add the necessary assembly/MSBuild references. Due to an unfortunate bug in the current bits, you will be presented with a dialog informing you that the project has been customized. Until we can fix this issue, the first time you load an NTrace-enabled project, you’ll see this dialog:
[image:]
When you are presented with this dialog, simply choose “Load project normally” and click OK. Visual Studio will then complete the project creation process. At this point, you will have a new project (in this case, named ‘NTraceTest’):
[image:]
At this point, we can edit Program.cs and add some tracing! As we mentioned before, an NTrace call looks like EtwTrace.Trace(…), so let’s add a trace message that logs the classic “Hello, World!” message:
 (
using
 System;
using
 System.Collections.Generic;
using
 NTrace;
namespace
 NTraceTest
{

class

Program
 {

static

void
 Main(
string
[] args)
 {

EtwTrace
.Trace(
"Hello, world!"
);
 }
 }
}
)
At this point, we’re ready to compile and run. Assuming everything is working properly, you’ve got an application that is now using NTrace to log messages. Or so you hope, at least – you certainly aren’t seeing anything to indicate that anything is really happening yet. So, let’s prove to ourselves that we’ve actually succeeded.
[bookmark: _Toc214030555]Using TraceView to Start a Tracing Session
NTrace uses the same tools that WPP tracing uses to capture trace logs: traceog.exe starts and stops tracing sessions, tracefmt.exe transforms the binary logs that ETW generates into human-readable text, and TraceView.exe is a GUI that performs the same functions as the previous two command-line apps. In this case, let’s use TraceView to start a new real-time logging session.
 (
Sidebar: Installing the Tracing Tools
While we’d love to serve up the binaries for tracelog.exe,
et.Al
.

from
 the project’s
CodePlex
 site, we haven’t yet found anything that explicitly allows us to do so
.

Until we can,
we
will just
have to play it
safe. In the meantime, t
he easiest way to get these tools is to download the Windows 2003 DDK, and just install the tracing tools:
http://www.microsoft.com/whdc/DevTools/ddk/default.mspx
)
When we created our application, the project template, generated a unique identifier to be used as the application’s ETW provider ID. We’ll need to get that in order to tell TraceView what provider to listen for. To do that, merely open the .csproj file in your favorite text editor and copy the value of the EtwProviderId property:
[image:]
Then we can start TraceView and choose “Create New Trace Session” from the File Menu:
[image:]
Once we’ve clicked that menu item, we will be presented with a “Create New Log Session” dialog. Now we need to add our provider ID to the list by clicking the “Add Provider” button.
[image:]
We are then presented with a dialog asking us what trace provider we’ll be using. In this case, we have our provider ID:
[image:]
After we click the OK, button, we are then prompted for where TraceView will get the formatting information. In this case, we’ll choose “Select TMF Files.”
[image:]
At this point, we are prompted with a dialog requesting the location TraceView should use to search for TMF files to use to generate the human-readable text. The NTrace preprocessor currently places the TMF and TMC files in the Trace folder for the current configuration’s output folder. In this case, we’ll use the files generated during the Debug build, so we’ll navigate to the bin\Debug\Trace folder and click OK.
[image:]
This returns us to the “Create New Log Session” dialog:
[image:]
After clicking the Next button, we are presented with the final step: we need to choose whether we’ll view the trace session in real time, or if we will log to a file. In this case, we want to see the log messages in real time, so we’ll ensure that checkbox is checked:
[image:]
There! We’ve created our log session and it is now waiting for trace messages to arrive:
[image:]
We can now run our application and see trace messages appear in the console:

[image:]

[bookmark: _Toc214030556]Appendix A: An ETW performance demonstration

namespace TestMWPP
{
 using System;
 using System.Diagnostics;

 static class Program
 {
 internal static NTrace.ClassicProvider tracer;
 private static TraceSource traceSource =
 new TraceSource("Program");

 static int Main(String[] args)
 {
 const int NumIterations = 1000000;
 int dummy = 0;
 DateTime start, stop;
 start = DateTime.Now;
 for (int index = 0; index < NumIterations; index++)
 {
 dummy = dummy / (index + 1);
 }
 stop = DateTime.Now;
 Console.WriteLine("No Tracing: {0} milliseconds.", (stop - start).TotalMilliseconds);

 start = DateTime.Now;
 for (int index = 0; index < NumIterations; index++)
 {
 dummy = dummy / (index + 1);
 traceSource.TraceEvent(TraceEventType.Information, 1, "Test " + index.ToString());
 }
 stop = DateTime.Now;
 Console.WriteLine(".NET Tracing: {0} milliseconds.", (stop - start).TotalMilliseconds);

 start = DateTime.Now;
 for (int index = 0; index < NumIterations; index++)
 {
 dummy = dummy / (index + 1);
 ETWTrace.Trace(EtwTraceLevel.Information, EtwTraceFlag.Component, "Test {0}", index);
 }
 stop = DateTime.Now;
 Console.WriteLine("WPP Tracing: {0} milliseconds.", (stop - start).TotalMilliseconds);

 String bar = "hi";
 int foo = 1;
 EtwTrace.Trace(EtwTraceLevel.Information, EtwTraceFlag.Diagnostic, "Hi there! This is a {0} test.{1}", foo, bar);
 EtwTrace.Trace(EtwTraceLevel.Warning, EtwTraceFlag.Component, "Howdy! This is another {0} test.{1}", bar, foo);
 EtwTrace.Trace(EtwTraceFlag.Component, "Hi! This is another {0} test.{1}", bar, foo);
 return 0;
 }
 }
}
image6.png
Create New Log Session

Provider it for Current Log Session
Each active trace log session must have minimum of one trace provider.

A trace provider generates trace event messages.

< | >

image7.png
Provider Control GUID Setup

Select Method To Obtain Control GUID Information

) PDB (Debug Information) Fie

CTL (Control GUID) Fie

Manually Entered Control GUID
(example: 00D00D0D-0D00-0D0D-0000-000000000000)
055ffad4-cfoe-47d-208d-3804daze 157

) Named Provider

) Kernel Logger
Process Thread Hard Fault
Fie1/0 Page Fault [image Load
Registry Disk Net

image8.png
Format Information Source Select
Choose Source Of Format Information

©) Select TV Fies:

B

image9.png
Select Directory
Directory Name: =
i projects Wirace\runkiTestiTrac,
B NTrace 2
& trunk

E=bin

(B TestNTrace U
5 Debug

teb

image10.png
Create New Log Session

Provider it for Current Log Session
Each active trace log session must have minimum of one trace provider.

A trace provider generates trace event messages.

Name
055ffad4-cloe-487d-208d 23804dase 157

Remove Provider

image11.png
Log Session Options.

Real Time Display.

[7]Log Trace Event Data To Fie

Log Fie Name
Logsession_10808_211424.28

Append To Bxistng Log Fle SetFlags and
Level

>

image12.png
File Help

Group D/ Session Nome _ State Event Count _Lost Events BuffersRecd Flags MoxBuf MinBuf Level WinDbg_ Ignore T|
0 LogSessiond RUNNING 0 0 0 OFFFF 21 ¢ OFF FALSE FALSE
R i v
|[Msge Nome ProcessID ThreadID CPUZ Sequences System Time Message
D
o

For Help, Press FL

image13.png
(=] |

Eile_Help
Group ID / Session Name State Event Count LostEvents BuffersRead Flags MaxBuf MinBuf Level WinDbg Ignore]
0 LogSessiond RUNNING 1 0 1 OcFFFF 21 4 OFF FALSE FALSE
R i v
|| Msg# Name ProcessID ThresdID CPUZ Sequence® System Time Message
D|o00... Debug 115% 18808 0 11\09\2008-... Hello, world!
o
Eh i v
For Help, Press FL

image1.png
| et ypes T NET Framework35_ +
|[e Visus! Studio instaled templates
Windows {FWindows Forms Application {3 Class Library
Web [WPF Application P WPF Browser Application
;"’:‘W 2 Console Application [Empty Project
o peiee FWindows Servce & WPF Custom Control Library
e WP User Control Loy BWindows Forms Contrl Library
Reporing (W irsiramenied Comeaia Project 5 Instrumented Library Project
Test ‘5 Instrumented WinForms Project
wer My Templates
Workflow {5earch Online Templates...
wix
I Other Languages
i Other Project Types
Test Projects
A G project forcreating a console application using ETW tracing.
Nome: NTraceTest
Location: \Projects ~ [Browse
I sotution Name: NTraceTest | [Creste girectory for solution
i [C]Add to Source Control
oK Cancel

image2.png
‘Security Warning for NTraceTest o |
i

‘The NTraceTest project fle has been customized and could present a security isk by executing customn build steps
when opened in Microsoft Visual Studio. f this project came from an untrustwrthy source, it could cause damage
to your computer or compromise your private information.

Project load options

) Load project for browsing
‘Opens the project in Microsoft Visual Studio with increased security. This option allows you to browse the
contents of the project, but some functionality, such as IntelliSense, i restrcted. When 2 project i loaded
for browsing, actions such as building, cleaning, publishing, or opening designers could still remain unsafe.

© [53d project normally

‘Opens the project normall in Microsoft Visual Studio. Use this option if you trust the source and
understand the potential risks involved. Microsoft Visual Studio does not restrict any project
functionality and will not prompt you again for this project.

sk me for every project in this solution

oK Cancel

image3.png
b E s Bl

- x

BloEA
[5] Solution NTraceTest' L project)
[cnToceTes]
[l References.
&) Program.cs
&) TraceHelper.cs

gSolution b, [jTesm Bpio.. [Cias

image4.png
View Project Buld Debug XML Tooks Text Window Help
A s am LBy e Tl e Frorex
EAeEa® 38 %0Eae 21080363881

NTraceTest.csproj Start Page | Source Control Exporer | Objectbrowser]

1E <Project DefaultTarget: ‘http://schemas.microsoft.con/developer,
28 <PropertyGroup>
<EruProviderla /EvwProviderid>
<EtuProviderVariable>NTraceTest.Tracefelper.provider</Etubrovidervariables
<Configuration Condition=" '§(Configuration)' == '' ">Debug</Configuratior
'$(Placform) ' == ' ">AnyCPU</Platform>

<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>{52732846-F313-442E-5985-74575814C2E5)</ ProjectGuid>
<OutputType>Exe</OutputType>

E
4
E
. <Platform Conditio
4
E
E
o RootNamespacesNTraceTest</Rootlamespaces

image5.png
Wi I e ——

[Fie] Help
(
Open Bisting Log il

Open Workspace.
Delete Workspace.

Bit

Create New Log Session

|Create 2 new log session

