Patternd4Net: Efficient Development Using Design Patterns

Stépan Sindelar and Filip Zavoral

Charles University in Prague
me@stevesindelar.cz, zavoral@ksi.mff.cuni.cz

Abstract The flexibility provided by design patterns is
usually achieved by introducing new classes into the de-
sign. The complexity of design patterns oriented software
development can easily overtake the advantages of design
patterns usage, which might lead to software bugs or even
complete failure of the development. We present the Pat-
terns4Net project that targets the .NET platform. Develo-
pers can annotate their classes using special attributes that
document the usage of design patterns. This documentation
is then used by Pattern Enforcer, a tool that verifies the
correctness of design patterns implementation. Such sys-
tem improves the development process of complex design
pattern oriented software, because it helps discover com-
munication errors and violations of design patterns imple-
mentation earlier.

1 Introduction

One of the disadvantages of design patterns is the fact
that they bring a new complexity into the design. This
complexity is caused by the introduction of new classes
and interfaces, which are used to provide better flexi-
bility and reusability. Developers often do not have en-
ough time to create a documentation for their classes;
therefore, the mapping between classes and design pat-
terns is lost. Other members of the development team
can only study the source code, or reverse-engineered
diagrams, but neither of these emphasize the design
patterns structure, which would provide a more abs-
tract view and thus tackle some of the complexity.

Even if the code documentation includes informa-
tion about implemented patterns, an incorrect unders-
tanding of some design patterns by one member of the
development team may slow down the development
process or even lead to the introduction of software
bugs in the system.

While the tools for a formal verification and the
tools for tackling the complexity of design patterns
exist, they were developed mainly as research proto-
types, and, except for few of them, they did not get
enough attention from the industry. In addition, most
of these tools target the Java platform, but only few
target the .NET platform.

Such problems are addressed by the PatternsdNet
project, the presentation of which is the main aim of
this paper. The crucial component of the Patterns4Net
is Pattern Enforcer — a tool that verifies selected struc-
tural aspects of design patterns. It implements a set of

14 built-in patterns; moreover, users can add their cus-
tom patterns using the special API. Pattern Enforcer
needs to know which classes are supposed to imple-
ment which pattern in order to enforce its correct im-
plementation. For this purpose, the Patterns4Net spe-
cial documentation for pattern solution participants is
used.

The rest of the paper is structured as follows: the
patterns representation is described in Section 2. Do-
main specific languages in general and our API for
pattern constraints specification are described in Sec-
tion 3. Section 4 shows how to use the Enforcer, Sec-
tion 5 deals with the PatternsdNet Common Infra-
structure architecture. Section 6 compares our system
with other relevant work and Section 7 summarizes
the paper and suggests future work.

2 Representation and Documentation

2.1 Documentation of Pattern Instances

A design pattern is an abstract entity, which, among
other things, primarily describes a solution to a recur-
ring problem. If such design pattern is implemented by
a developer, he transforms the abstract ideas behind
the pattern into a real source code. For example, an
instance of the Composite pattern is given in Figure 1.

public class WidgetComposition : IWidget {
private IList<IWidget> children;
public int Width {
get { return children.Sum(x => x.Width); }
}
}

Figure 1: Example of the Composite pattern instance.

If we consider the example from Figure 1, Pattern
Enforcer does not know that the WidgetComposition
class should implement the Composite pattern. The-
refore, Pattern Enforcer does not know that it should
enforce the structural aspects of the correct implemen-
tation of the Composite pattern on the WidgetCom-
position class. For this purpose, we need to create a
mapping between concrete elements in a source code

and the pattern participants they are supposed to im-
plement. We call this mapping a design patterns par-
ticipants mapping.

Patterns4Net provides an extensible mechanism for
the construction of design patterns participants map-
ping from .NET assemblies data. At the moment, it
supports pattern meta-data expressed as .NET attri-
butes. The class that plays the main role in a particu-
lar design pattern implementation is decorated with a
special attribute. Classes that implement other roles
in the pattern solution can be inserted as arguments of
this attribute. For a better illustration, a code example
is provided in Figure 2. Here, the WidgetComposition
class is decorated with the Composite attribute, which
also allows us to provide the type of a Component
as a constructor parameter. An explicit specification
of a Component type is required when a Composite
class implements more than one interface, otherwise
the Component type can be inferred automatically.

using Patterns4Net.Attributes;
[Composite (typeof (IWidget))]
class WidgetComposition : IWidget, ICloneable {
private IList<IWidget> children;
public int Width {
get { return children.Sum(x => x.Width); }
Y /7o
}

Figure 2: Example of attributes driven documentation of
pattern instances.

2.2 Pattern Instances Representation

In order to use the design patterns participants map-
ping, Patterns4Net needs to have data structures that
represent the mapping. For this purpose, standard C#
classes are used and instances of these classes represent
the instances of design patterns. An object that re-
presents a pattern instance provides a name of the
pattern, and the references to the elements that par-
ticipate in this pattern instance.

The classes for the pattern representation provide
the name of the pattern and the references to the pat-
tern instance participants as standard .NET proper-
ties. The references to code elements (that are classes,
interfaces, methods, etc.) are represented by the ins-
tances of Mono Cecil’s classes, which are similar to the
System.Type type from the standard library (e.g. Ty-
peReference, [1]). Mono Cecil’s types are used, because

we use Mono Cecil for parsing of .NET assemblies!.
Figure 3 demonstrates an example of the Composite
pattern definition.

public class Composite : IPattern {
public TypeDefinition Composite { get; set; }
public TypeReference Component { get; set; }
// The Name is required by IPatter interface
public string Name {

get { return "Composite"; }

}

}

Figure3: The
terns4Net.

Composite pattern definition for Pat-

3 Patterns Structural Constraints
Specification

There are two possibilities to capture the structural
constraints of a particular pattern that should be veri-
fied by Pattern Enforcer. The constraints can be hard-
coded in the Patter Enforcer itself, or they can be
located in external files and expressed in a special lan-
guage, which would ease the addition of constraints
for new design patterns.

We used a compromise approach in Pattern En-
forcer. We developed a special C# API for the spe-
cification of the structural aspects of design patterns;
therefore, the specification itself is expressed in a stan-
dard C+# (or any other .NET language) code, but the
author of the specification is provided with a set of
classes and methods that ease this task. The code
that expresses the specification can be then loaded into
Pattern Enforcer at runtime using the standard .NET
mechanisms designated for these purposes. When we
made this decision, we had considered several impor-
tant consequences: the authors of the specification would
be able to use the provided API or, if the API is not
sufficient for their purposes, they could take the ad-
vantage of the full power of C#. We did not have to
develop a parser for a special language; and, since the
users of Pattern Enforcer are .NET programmers, they
will learn the C# API with less effort than a new syn-
tax of a special language.

In the rest of this section we describe the API
for the patterns structural constraints specification in
more detail. Since this API can be considered as an
example of a Domain Specific Language (DSL, [2]) and

! Reasons why we have chosen Mono Cecil and more de-
tailed information about it are presented in the subsec-
tion 5.1

because it also uses a technique called Fluent API, we
discuss these two concepts in the following subsection.

3.1 Domain Specific Languages

A Domain Specific Language (DSL) is a programming
language of limited expressiveness focused on a parti-
cular domain. There are two types of DSLs: internal
and external. The external DSLs are completely new
languages with their own custom syntax, while the
internal DSLs are embedded into an existing general
purpose language such as C#, Java or Ruby by provi-
ding specific public API. When developing an embed-
ded DSL, programmers do not have to create a parser
for their DSL, but they can be limited by the syntax
of the "hosting” language.

Type-safe embedded DSLs use constructs that can
be verified by a compiler rather than strings with a
special internal syntax that can be verified only du-
ring the runtime or by an additional tool. For example,
NHibernate ORM framework ([3]) has such API for
the definition of objects to database schema mapping.
Instead of expressing the names of properties as strings,
NHibernate exploits the C#’s feature of lambda ex-
pressions for this purpose, and thus the existence of
the properties used in the mapping is verified by the
C# compiler. To give a better idea of this approach,
Figure 4 shows a short example of the NHibernate DSL
usage in C#. Note that all text in this figure forms a
perfectly valid C# code, although it may seem as a
special language.

var mapper = new ModelMapper();
mapper .Class<RegisteredUser>(mapping =>
{
mapping.Id(x => x.Id,
map => map.Column("MyClassId"));
mapping.Property(x => x.Username,
map => map.Length(150));
B

Figure 4: Example of type safe DSL embedded into the C#
language.

Embedded DSLs usually leverage a technique cal-
led Fluent API, which means that a method returns
an object on which a user is expected to invoke ano-
ther method. This chaining of methods can make the
API more self describing, because the names of the me-
thods and the names of their arguments can be then
read almost as an English sentence. An example of
the Fluent API from jMock, a mock object library for
Java [4], is shown in Figure 5.

mock.expects(once()) .method("m")
.with(stringContains("hello"));

Figure 5: Example of methods chaining in Fluent API.

3.2 The API for Pattern Constraints
Specification

Since we have a strongly typed representation of de-
sign patterns instances, we can build a type safe DSL
for their constraints specification, where we use lambda
expressions.

In our conception, a constraint is any boolean func-
tion that takes a pattern instance as a parameter and
returns a boolean value, which indicates whether the
pattern instance conforms to the constraint. However,
Pattern Enforcer provides a DSL to make the specifi-
cation of these constraints easier than that. The key
part is that it enables to specify the constraints as
lambda functions. We call such function a ”check”.

A check may be performed on the whole pattern
instance; then the parameter of the lambda function
will be the object representing the pattern. A check
may verify the relations between roles, for example,
that the Composite class implements the Component
interface. Users can also set up checks only for a speci-
fic role of a pattern instance. In such case, the Pattern
Enforcer API provides a method to select the specific
property of the pattern instance object with a lambda
function in the same way NHibernate uses lambda
functions for selecting properties. After the property
is selected, a user can create a check only for the value
of the selected property (that is for a particular role).
Finally, the user can also select specific methods of the
selected role to provide a check for each of them. The
selection of these methods is also done using a lambda
filter function.

To summarize up, users can select a subject of the
check, using lambda functions, and then they can en-
ter the check itself again as a lambda function, which
takes the subject of the check as a parameter. For a
better idea, an example is shown in Figure 6.

A check expression might be anything, which en-
ables wide range of possibilities for experienced users,
but Pattern Enforcer provides an easy to use exten-
sions to underlying Mono Cecil’s API. CallsAnyOf is
an example of such extension, which returns true iff
the method invokes a member of given class.

3.3 Built-in Patterns

The constraints for the built-in patterns were chosen
less restrictively than in other tools of this type. The

// we want to work with the Composite role
this.Type(composite => composite.Composite)
// we want to check all its non-private methods
.Methods (method =>
method.IsPublic || method.IsProtected)
// on each of them perform the following check
.Check((composite, method) =>
method.CallsAnyOf (composite.Component),
(composite, method) =>
"error in " + method.Name));

Figure 6: Example of constraints configuration in Pattern
Enforcer.

alm was to enforce those aspects that are strongly si-
gnificant to a given pattern. The implementation wi-
thout them clearly cannot be called an implementa-
tion of this pattern. For example, the Factory Method
pattern, the main participant of which is the Factory
Method itself, would make no sense if the actual Fac-
tory Method was void. On the other hand, enforcing
that the method’s body contains only a constructor
invocation and a return statement seems to us as an
inappropriate restriction, because the developer might
want to prepare some data structures before returning
the Product of the Factory Method.

The relatively unrestrictive API for specification of
patterns constraints allows us to provide a more ad-
vanced verification than a mere verification of structu-
ral aspects. We illustrate the process of choosing the
structural constraints that should be verified by Pat-
tern Enforcer by an example of the Template Method
pattern.

3.4 Template Method

The main role of the Template Method pattern is a
template method, which defines the skeleton of an al-
gorithm. The template method invokes one or more
virtual methods, which are expected to implement cer-
tain steps of the algorithm. Since these methods are
virtual, one can override them in a sub-class and thus
alter some steps of the algorithm without the need to
write the whole algorithm from scratch.

The core of the Template Method pattern are in-
vocations of virtual methods that can alter the algo-
rithm. From a first look, one could say we should en-
force that the template method invokes at least one vir-
tual method. However, a template method that invokes
another non-virtual method that then invokes another
virtual method can be considered an implementation
of the Template Method pattern as well, because it
also allows us to alter the algorithm in sub-classes.
We can check recursively all methods that are invoked

from our template method; however, it is unsystema-
tic. Instead, a simple observation can help: non-virtual
methods that invoke virtual methods are usually also
implementation of the Template Method pattern. The
conclusion is that a template method should invoke at
least one virtual method or at least one another tem-
plate method.

To declare the template method as non-virtual (sea-
led) is considered a good practice with the Template
Method pattern and therefore we enforce this as well.

The specification of constraints for the Template
Method pattern is shown in Figure 7. As a first step we
check that the type that declares the template method
is not sealed and therefore it can be sub-classed. If this
is fulfilled, we check that the template method calls at
least one virtual method or another template method.

// check that declaring type is not sealed:
this.Type(pattern =>
pattern.TargetMethod.DeclaringType)
.Check(type => type.IsSealed == false,
(pattern, type) => "...error message...");
// check that template method invokes at least
// one virtual method or another template method:
this.If(pattern =>
!pattern.TargetMethod.DeclaringType.IsSealed)
.Method(pattern => pattern.TargetMethod)
.Check(method =>
method.GetMethodCalls () . Any (
call =>
call.TargetObject != null &&
call.TargetObject.IsThisParameter &&
(IsTemplateMethod(call.Method) |
call.Method.IsOverrideable())),
(pattern, method) => "...error message...");

Figure 7: The specification of the built-in Template Method
pattern.

4 Usage

If a user wants to take advantage of Pattern Enfor-
cer, one possible way to achieve it is to decorate his
types with pattern attributes. For this, it is required
to add a reference to the Patterns/Net.Attributes.dll
assembly in the project. This assembly contains only
the attributes definitions; thus, its footprint should
be minimal. It is built for .NET version 2.0, so Pat-
tern Enforcer can be basically used in projects built
for older versions of the .NET. When the reference is
added, the types can be decorated with patterns at-
tributes from the namespace Patterns4Net. Attributes.
Figure 8 contains an annotated implementation of the
Composite pattern.

using Patterns4Net.Attributes;
[Composite (typeof (IWidget))]
class WidgetComposition : IWidget, ICloneable {

Figure 8: Example of an annotated implementation of the
Composite pattern.

The second possible way of taking advantage of
Pattern Enforcer does not require annotating classes
with pattern attributes. Instead, the relation between
a concrete pattern and its roles is constructed by hand
in an automatized test. Users can also define their cus-
tom patterns using the pattern constraints specifica-
tion API.

5 Architecture

In this section, the architecture and the implementa-
tion of the common Patterns4Net infrastructure and
Pattern Enforcer is discussed. We start with Common
Intermediate Language (CIL) parsing, because the ins-
truments we use for this task influence the rest of the
system. Then we describe design patterns representa-
tion and discovery architecture.

5.1 CIL Processing

We have two basic options to process the source code
of a .NET application or a library. The original tex-
tual source code can be parsed and represented as an
abstract syntax tree (AST), or we can parse .NET as-
sembly and use the CIL.

When the source code is parsed and represented as
an AST, it is much easier to reconstruct higher level
information, such as actual parameters for a method
invocation. On the other hand, available parsers do
not always support all of the most current language
features and the parsing of a source code of a spe-
cific language might restrict us to a support of only
the one language. Some parsers are capable of parsing
more source languages into the same AST structure;
however, the resulting AST is still different for some
language specific constructs.

The other option, which we have chosen, is to ana-
lyze the intermediate language, in case of the .NET
it is the Common Intermediate Language (CIL). The
structure of CIL is more stable than, for example, the
syntax of C#. The latest version of CIL standard [5]
from 2010 has the same instruction set as the previous
version from 2006. The version from 2010 extends only
semantics and verification rules for some of the instruc-
tions. Another advantage is that an intermediate lan-
guage is produced by all the compilers for .NET, and
thus Patterns4Net can be theoretically used also for

Visual Basic.NET, IronRuby, IronPython and others,
although we have tested it only on C#. One of the
disadvantages of this approach is that the CIL is a
stack based lower level language and the reconstruc-
tion of some constructs, such as actual parameters for
a method invocation, requires special effort.

Library for CIL parsing There are three popular, pu-
blicly available libraries that could be used to parse
.NET assemblies and get meta-data about the types
and CIL code of the methods. First option is to use the
reflection API that is available as a part of the .NET
base libraries. Second option is the Microsoft Common
Compiler Infrastructure (CCI, [6]), which is developed
in Microsoft Research. Last option is Mono Cecil [1],
which is developed as a part of the Mono open-source
project.

Standard .NET Reflection API treats assemblies
as a code, not as a raw data, which has two important
consequences: the code loaded through the .NET Re-
flection API can be executed; and, because the code
can be executed, the runtime must check access rights
and might throw Code Access Security exception.

The other two libraries (CCI and Mono Cecil) pro-
cess .NET assemblies as just binary data, hence they
do not support loading the assemblies into an App-
Domain and execution of the loaded code. On the
other hand, they are claimed by their authors to be
faster than the standard Reflection API. However, we
are not aware of any serious benchmarks. Public API
and features of CCI and Mono Cecil seem to be simi-
lar. Our previous experiences with Mono Cecil have
resolved the choice between Mono Cecil and CCI in
favor of Mono Cecil. This choice does not only in-
fluence the code that does the CIL analysis, but it
also influences the other code, because we use specific
Mono Cecil’s data structures (e.g., TypeReference) in
the whole Patterns4Net project.

5.2 Patterns Representation and Discovery

Patterns representation is described in Section 2. Here,
we just remind that a pattern instance is represented
as an object that provides references to the partici-
pants of this pattern instance. Mono Cecils structures
are used for types and methods identification.

The discovery of patterns meta-data is implemented
as a flexible mechanism. There is a central class which
aggregates several objects and each of them provides
a strategy for the creation of the pattern participants
mapping based on CIL metadata.

There are two built-in strategies for the pattern
participants mapping discovery. Both are based on
pattern meta-data (additional information added to a

.NET assembly by its author in order to document pat-
terns he has implemented). In both cases these meta-
data are expressed as .NET attributes provided by
Patterns4Net. These two strategies differ only in the
way they reconstruct the pattern participants map-
ping from attributes meta-data.

The first one requires the attribute to declare spe-
cial constructor, which is used to instantiate the attri-
bute itself from meta-data, and then the creation of
the pattern instance is left to the attribute object. In
this case, the attribute and the pattern instantiation
process are coupled in one class.

The other one uses the CIL meta-data to create the
pattern instance directly. It means that the attribute
itself can be only a dummy data-holder class, which
does not actually participate in the pattern instance
creation. This approach provides a better flexibility;
however, it requires more work to be done.

Other strategies for the discovery of patterns meta-
data (e.g., based on naming conventions) can be easily
added; therefore, we do not restrict Patterns4Net only
to attributes driven documentation of design patterns
instances.

5.3 CIL Analysis

Mono Cecil provides only data parsed from .NET as-
semblies, it does not provide anything more. From
CIL meta-data we can, for example, determine for a
given class what type is its base type, or which in-
terfaces it implements. However, Cecil itself does not
provide a method that would give us a list of types
that implement given interface, because this informa-
tion cannot be inferred directly from its meta-data.
For such purposes, there is the Mono Cecil Rocks pro-
ject, which contains a few extension methods for the
Cecil’s classes; nevertheless, it does not have all we
want to support in PatternsdNet, so we also imple-
mented our custom set of extension methods designed
for CIL analysis and patterns structure constrains spe-
cification.

For example, one of the extensions we wanted to
provide was a uniform API for getting information
about methods overrides. In CIL, according to ECMA
CIL specification [5], there is an attribute ”overrides”
in the meta-data of every method, which is a list of me-
thods that this method overrides. This attribute, ho-
wever, is used only in specific cases (e.g., explicit inter-
face implementation) and normally it is left empty, be-
cause overridden methods are determined by conven-
tions described in the ECMA CIL specification.

Methods invocation analysis For the purposes of the
discovery of methods invocations in Pattern Enforcer,
we needed classes that would help us with the analysis

of CIL. We do not need to analyze conditional state-
ments — we just want to know whether a method M1
on a field F is invoked in body of a method M2, even
in a dead branch of code.

Method calls in CIL are done by several instruc-
tions, for example . callvirt . CIL does not distinguish
between instance methods and static methods. Ins-
tance methods have the instance as a first parameter,
which is normally added by a compiler. Each of these
instructions has a method reference as an operand, so
the only difficulty is to determine the values of the
actual parameters of the method.

The CIL virtual machine is a stack based machine,
which means that all arguments for operations are ta-
ken from the evaluation stack and results are pushed
onto the stack. Usually, instructions pop all their ar-
guments from the stack and push results onto the top.
Stack behavior of each instruction is documented in
the ECMA CIL specification, however, Cecil provides
this information through the enumeration StackBeha-
viour.

The CIL analysis is done by simulating the evalua-
tion stack. In a loop we iterate over all instructions in
the method body. For each instruction we determine
how many items it pops from the stack and which
items it pushes onto the stack. The stack is represen-
ted as a collection of instances of the Stackltem class.
Each StackItem has a reference to the instruction that
resulted in pushing this item onto the stack, and with
this basic information the StackItem can provide ad-
ditional information, such as whether it represents a
field pushed onto the stack (if so, then which field),
or a parameter aso. The result of this analysis is a
collection of the StackState class instances — n-th of
them represents the state of the stack after the exe-
cution of n-th instruction in the method body. State
of the stack is represented as a collection of Stackltem
instances. From the signature of the method we know
how many parameters it has (we will designate it as
m) and whether it is an instance method or a static
method. To get the actual parameters of a specific call
instruction (say its n-th instruction) we just need to
take m (or m + 1 for instance methods, which have
an implicit first parameter) items from the top of the
n — 1-th StackState.

The last question may be whether this simulates
the stack correctly if we do not take the control flow
instructions into account (only their stack behavior).
The answer is provided by ECMA CIL specification,
which reads

Regardless of the control flow that allows
execution to arrive there, each slot on the stack
shall have the same data type at any given
point within the method body.

CIL instructions sequences matching In order to check
some more specific constraints, such as the specifica-
tion for the Singleton pattern implementation, we need
to check whether a method body contains a specific
CIL instructions sequence.

The aim here was to be able to match sequence
which, for example, contains anything at the begin-
ning and then it contains a sequence of instructions
that represents an if with a specific condition. For
this purpose, the matching process is directed by one
object that delegates its work to several strategy ob-
jects that do the actual matching. In our example, we
would have a strategy that would match any instruc-
tion and a strategy that would match the instructions
sequence that represents an if.

The main class for CIL instructions sequences mat-
ching is the CILPatternsMatcher. It aggregates a col-
lection of instances of the InstructionMatcher abstract
class, which represents an instructions sequence. In-
terface of the InstructionMatcher class is shown in Fi-
gure 9. The Matches method is called in a loop provi-
ded with the current instruction. If the method returns
false, than the CIL instructions do not match the ex-
pected sequence and the whole process ends with a
negative result. Otherwise, property Found is checked
and if true, then the next InstructionMatcher is used
in the next iteration; if it was the last Instruction-
Matcher, then process ends with success. In the next
iteration the current instruction is set to the one re-
turned by last call of Match. A pseudo code is given
in Figure 10, variable matchers represent an array of
instances of the InstructionMatcher class.

public abstract class InstructionMatcher {
public virtual bool Found { get; set; }
public abstract bool Matches(
Instruction instruction,
out Instruction next);
public virtual void Reset() { ... }
}

Figure9: The InstructionMatcher abstract class interface.

6 Related Work

There are several existing tools that provide verifi-
cation of design patterns implementation. The most
similar approach to Pattern Enforcer is the Pattern
Enforcing Compiler (PEC) for Java.

1: currentInst < first instruction of the method’s body.
2: matcherldz < 0

3: loop
4: matcher < matchers|matcherldzx]

5: match < matcher.Match(currentInst, out next)
6: if not match then

T return false

8

: end if
9: if matcher.Found then
10: if + + matcherldx == matchers.Length then
11: return true
12: end if
13: end if
14: currentInst < next
15: end loop

Figure 10: Pseudo code of instructions patterns matching.

6.1 FxCop and Gendarme Tools.

It may not be obvious, but Pattern Enforcer is similar
to static analysis bug-hunting tools such as FxCop [7]
or Gendarme [8]. These tools search the source code
for the idioms that are generally considered as bad. For
example, strings should be, in most cases, compared
using string . CompareOrdinal, but not using == ope-
rator. There are two main differences between Pattern
Enforcer and these tools

— Pattern Enforcer checks only the code that is an-
notated.

— Pattern Enforcer checks structural aspects and code
idioms; however, Gendarme and FxCop check only
code idioms.

— Whereas Gendarme and FxCop look for bad idioms,
Pattern Enforcer verifies that expected idiom is
present.

Gendarme is an open-source tool that is meant to
be an alternative to FxCop. It uses Mono Cecil for CIL
analysis. It has a similar structure to Pattern Enfor-
cer’s code. It has also ”checker” classes, that perform
checks on a code element, which might be, for example,
Cecil’s TypeDefinition.

6.2 Pattern Enforcing Compiler (PEC) for
Java

PEC for Java is an extended Java compiler that forma-
lizes patterns. Developers can use standard Java syn-
tax to annotate their classes as an implementation of
specific design pattern. The PEC then checks whether
the classes actually implement the specified patterns.

For the annotation of patterns instances, PEC uses
marker interfaces, which can only be used for annota-
tion of classes, but not methods, and even when inter-
faces can have arguments (generic arguments), these

can capture only a limited number of additional infor-
mation. The authors of PEC admit these weaknesses
of interfaces as a technique for the annotation of pat-
terns and in [9], they propose the standard java anno-
tations, similar to .NET attributes, in PEC. However,
we are not aware of any updated version of PEC that
uses standard Java annotations.

PEC uses a static analysis and it also enforces the
rules dynamically by inserting assertions into the re-
sulting program, which we do not support in our Pat-
tern Enforcer. Dynamical enforcement provides more
accurate results. On the other hand, dynamical en-
forcement slows down the resulting program and the
program still has to be manually tested in order to
discover possible bugs.

6.3 Other Tools

CoffeeStrainer [10] is a tool that is somewhere between
static analysis bug-hunting tools whose objects of in-
terest are idioms, smaller pieces of code, and pattern
enforcement tools. Unlike other static analysis bug-
hunting tools CoffeeStrainer enforces rules that result
from particular design decisions; for this it provides
means for custom rules specification. CoffeeStrainer
targets the Java platform.

Pattern-Lint [11] can check conformance to a va-
riety of design principles from coding style rules to
design patterns. Pattern-Lint targets C+4 and has
been successfully evaluated during development of a
multimedia operating system.

Most of the approaches described in [12] are connec-
ted with some prototype tool that enforces the specifi-
cation represented according to the formalization ap-
proach. However, most of them are not publicly avai-
lable and all of them target either Java or C++ lan-
guages. The most interesting tools from this book in-
clude the HEDGEHOG engine (Prolog-based solution
for design patters formalization and verification) and
tools that come with LePUS3 (visual approach to for-
malization).

We can conclude that we are not aware of any de-
sign patterns verification tool for the .NET platform.
Pattern Enforcer is, among all of these tools, also ex-
traordinary with its special C# API for structural
constraints specification, because most of the other
approaches use special language for patterns forma-
lization, or, in case of the Pattern Enforcing Compiler
for Java, they do not provide special means for struc-
tural constraints specification at all.

7 Conclusions

The aim of this work was to explore existing approaches

for design patterns support in development environ-

ments and to present the Patterns4Net project. With
Patterns4Net users can explicitly document their intent
to implement a particular design pattern. Pattern En-
forcer is able to verify most of the structural aspects
of design patterns. There are 14 built-in patterns (e.g.,
Singleton, Visitor), but custom patterns can be added
using special API for specification of their structural
constraints.

Future versions of Pattern Enforcer should sup-
port more enhanced features. Some of the more general
rules from Pattern Enforcer, such as the immutability
check, could be extracted from its source and propo-
sed to open-source community as additional rules for
well-established open-source project Gendarme.

Software systems are getting larger and more com-
plex and this trend will continue. Changes in require-
ments are usual and reusability is important. Design
patterns provide widely accepted approach for tackling
the complexity of large systems and with tools such as
Patterns4Net we can get even more advantages from
their usage.

Acknowledgements

This work was supported by the grant SVV-2010-261312.

References

1. “Cecil — mono.” http://mono-project.com/Cecil, May
2011.

2. M. Fowler, Domain Specific Languages.

Wesley Professional, 2010.

“Nhibernate forge.” http://nhforge.org, May 2011.

4. “jmock - an expressive mock object library for java.”
http://www.jmock.org/, May 2011.

5. T. Ecma, “Tg3. common language infrastructure (cli).
standard ecma-335,” 2010.

6. “Common compiler infrastructure: Metadata api.”
http://ccimetadata.codeplex.com/, May 2011.

7. “Fxcop.” http://msdn.microsoft.com/bb429476.aspx,
Aug. 2010.

8. “Gendarme.”
May 2011.

9. H. Lovatt, A. Sloane, and D. Verity, “A pattern en-
forcing compiler (pec) for java: A practical way to for-
mally specify patterns,” 2007.

10. B. Bokowski, “Coffeestrainer: statically-checked
constraints on the definition and use of types in java,”
in Software EngineeringESEC/FSE99, pp. 355-374,
Springer, 1999.

11. M. Sefika, A. Sane, and R. Campbell, “Monitoring
compliance of a software system with its high-level
design models,” in Proceedings of the 18th internatio-
nal conference on Software engineering, pp. 387-396,
IEEE Computer Society, 1996.

12. T. Taibi, Design patterns formalization techniques. Igi
Global, 2007.

Addison-

w

http://mono-project.com/Gendarme,

