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1. Introduction

The concept of a design pattern as a reusable solution to a recurring problem
was first introduced by Christopher Alexander in the field of architecture ([1]).
His book gives design patterns such as Outdoor Room, or Arcades to architects.
Although firstly used in the domain of architecture, over last two decades, design
patterns have gained popularity also in computer science, especially in object-
oriented design and programming.

This thesis is about design patterns in object-oriented design and programming
and in the following text the term ”pattern” or ”design pattern” refers to these
kinds of patterns.

In general, a design pattern consists of

a name to provide a common vocabulary,

a description of a problem and it’s context,

a proven and widely-accepted solution to this problem,

the consequences of applying the pattern ([2]).

A design pattern provides a solution that cannot be implemented in a generic
library or a framework. The abstract ideas behind a pattern are implemented
again and again but in each concrete case a little bit differently. If we take the
Composite pattern ([2]) as an example, the problem it solves it to let clients treat
individual objects and compositions of objects uniformly. The solution of the
Composite pattern suggests to create a Composite class that composes children
components and delegates it’s operations to these children components. Note
that the pattern’s solution, in this case, does not say how exactly the composite
operation must be implemented. The operation getWidth may return the width
of the largest component, or it may return the mean of all widths. But one
thing that should be fulfilled is that the composite operation uses it’s children
components to do it’s work and this fact should be transparent to the clients.
To make the example complete, let us mention one of the consequences. The
Composite pattern makes it easier to add new kinds of components.

The main aim of patterns in object-oriented design is to make the design
reusable and flexible. This is very important because changes in the functional
requirements of software during the development, or requests for new features
in already developed software are quite usual these days. The mentioned con-
sequence of the Composite pattern could be an evidence for this aspiration of
design patterns.
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In programming a typical mistake is to spend a fair amount of time by solv-
ing something that has already been solved by someone else. Patterns, among
reusable libraries, frameworks and others, address and partly solves this problem.
Another advantage of patterns is the common language, or common vocabulary.
It makes the communication between developers much more effective when all of
them understand what the Visitor pattern is. Even if two developers understand
the complex logic behind this pattern it would take them some time to find out
that they both mean the same concept, if they didn’t know the common name
for this pattern.

Since the first notable publication about patterns in the field of object-oriented
design by so-called Gang of Four ([2]), there has been a great number of books
about patterns each focusing on different kind of patterns. For example, so called
business patterns described in [3], or enterprise patterns from [4]. Principles
discussed in [5] might be as well considered as patterns, although on higher level
of abstraction than original design patterns. We could continue to enumerate
more of them. In this thesis we mainly focus on design patterns as described in
[2], where the authors define the design pattern as a

description of communicating objects and classes that are cus-
tomized to solve a general design problem in a particular context.

One of the disadvantages of design patterns is that they bring new complex-
ivity into the design. This complexivity is caused by introduction of new classes
and interfaces in order to provide better flexibility and reusability. Developers
often don’t have enough time to create a documentation for their classes and so
the mapping between classes and design patterns is lost. Other members of the
development team can only study the source code, or reverse-engeniereed dia-
grams, but neither of these emphasize the design patterns structure, which would
provider more abstract view and thus tackle some of the complexivity.

Even if the code documentation includes information about implemented pat-
terns, incorrect understanding of some design patterns by one of the development
team members may slow down the development process or even lead to introduc-
tion of software bugs in the system. For instance, when one part of the system
expects objects of a specific type to be immutable, but a developer unaware of
what immutability means changes this behaviour. In this case formal verification
might help.

While tools for formal verification and tools for tackling the complexivity of
design patterns exist, they were mainly developed as research prototypes and,
except for few of them, they didn’t get enough attention from the industry. More-
over, most of these tools target the Java platform, but only few target the .NET
platform.
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Some of the reasons why industry is not adopting design patterns verification
tools may be too much mathematical formalism involved in their usage. For def-
inition of new patterns, knowledge of formal logic is usualy required. Tools for
tackling the comlexivity of design patterns are mostly based on an automatic
recognition of design patterns, whose advantage is that it does not require addi-
tional work from developers and can be used for legacy systems, but it’s disadvan-
tage is that it cannot corectly recognize all the design patterns, since differences
between some of them are only semantical (the Bridge and the Adapter patterns)
and some patterns, such as the Command pattern, are too much abstract to be
recognized only from the source code ([6]).

The problems descibed in previous paragraphs are addressed by the Patterns4Net
project, whose presentation is the main aim of this thesis. Besides this, we also
provide a brief overview of existing approaches for design patterns formaliza-
tion, which is needed for formal verification and tool support, and we give a few
examples of existing tools that provide support for design patterns.

1.1 Patterns4Net

Experienced developers who use design patterns make usually this intention
explicit by some kind of documentation. For instance, leaving a note ”this class
is immutable” in an API documentation may prevent other developers in a team
from making the class mutable, or the fact that another class implements the
Composite pattern may direct the developer to implement a new operation by
delegating it to a collection of components, which should be present in the Com-
posite class.

An information about implemented pattern can also be helpful when a new
developer in the team tries to understand the overall architecture of the software
project. Some design patterns usually represent an infrastructural detail rather
than a domain specific code. On the other hand, if we also consider the patterns
used in Domain-driven-design approach, these are mainly represented by domain
specific classes, which are important for overall picture of the architecture.

Unfortunately documentation in natural language is not understandable for
software, but some kind of standardized documentation of design patterns imple-
mentation would be. The main conception behind Patterns4Net is that developers
will annotate their code using .NET attributes mechanism and Patterns4Net will
provide tools that will take advantage of this documentation and will support the
development process.

Patterns4Net provides two main tools. Pattern Enforcer verifies some of the
structural aspects of selected design patterns implementation and Architecture
Explorer generates UML-like class diagrams from .NET assemblies. This tool
uses the information about design patterns implementations to generate more
abstract and high-level diagrams than standard UML reverse engineering tools.
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1.2 Thesis structure – should be updated to fit

the new structure.

In the following chapter entitled Design patterns support (2) we discuss possi-
ble kinds of design patterns support in development process. For precise patterns
support and reasoning about patterns, it is crucial to have a formal definitions
of patterns and so we explore patterns formalization techniques in section 2.1.
Various approaches to ease the implementation of patterns on source code level
are discussed in section 2.2. Tools for design phase support (e.g., special UML
extensions) are presented in section ??. Since one of the main features imple-
mented as a part of of Patterns4Net tool set is the source code verification, we
examine it more closely in the section ??.

In the third chapter we focus on features of Patterns4Net tool set (??). Section
?? provides detailed description of Patterns4Net functionality and in section ??
we show basic usage scenarios. In section ?? titled A case study we provide a
walk-through of larger and complete example of usage of Patterns4Net. In this
section the advantages of support of patterns are presented on real world example.
Last section ?? provides a comparison of Patterns4Net to similar tools mainly for
Java platform.

Architecture of the software is analysed in fourth chapter (??).

In the conclusion we summarize the thesis and suggest future work.
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2. Design patterns support

Even though design patterns cannot be completely implemented as reusable
libraries, there is room for some automation which can be handled by software
to overcome some of the disadvantages of design patterns. Software tools may
enhance implementation of design patterns on the source code level, for example,
by code generation or refactoring. On higher level of abstraction, during the
modeling of class diagrams in UML, tools may direct a designer to introduce
suitable patterns in the design. Verification of patterns implementation on either
source code level or higher level object design (like UML class diagrams) could
be useful for discovering software bugs and could prevent from communication
errors, when for instance one of the team members is used to use a little bit
different variation of some pattern than the others.

2.1 Patterns formalization and verification

Design patterns used to be described only in an informal manner in natural
language using graphical diagrams, usually complemented with code examples.
This representation, useful for human beings, is not suitable for rigorous reason-
ing (e.g., for formal verification) and encumbers any automation tools support.
The need for a formal specification of design patterns is obvious. In this section
we discuss patterns formalization techniques. It is important to note that formal-
ization of patterns is not intended to replace informally written pattern catalogs,
which are ideal for learning purposes.

A pattern in object-oriented design consists of several elements. In the intro-
duction we mention description, solution and consequences. These parts could
also be broken down into smaller pieces. The solution part can decomposed to
structural aspect and behavioral aspect. In this section we focus on the structural
aspect of the solution part.

The solution part of a design pattern always contains some degree of flexibili-
ty. In the introduction we provide an example of the Composite pattern and we
explain that the composite operation getWidth may be implemented as mean of
all widths or width of the largest children component. This kind of flexibility
is what makes the Composite pattern a pattern and not an adept for an aspect
or a generated class using meta programming 1. Some authors assume that the
Composite pattern should always have methods for adding and removing compo-
nents ([6]). ”Children related operations” are indeed mentioned in [2], but does
it mean that a Composite class must always be mutable (allow to change it’s
children collection)? Does it mean that immutable quasi Composite class that

1Aspects and meta programming with connection to patterns are discussed in section 2.2
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does not allow adding or removing children after it’s creation does not implement
the Composite pattern, even though it clearly solves the problem solved by the
Composite pattern and it does it in very similar way? These questions might be
another evidence for the need for precise pattern formalization. But the approach
should balance the degree of formalization and the degree of flexibility. We think
that during the process of actual formalization of concrete patterns the informal
description (e.g., in [2]) should not be translated literally, because otherwise, the
formal verification would be unnecessarily strict and thus would go against the
flexibility developers expect from design patterns.

Another thing to note is that some patterns are different in the problem part,
but their solution parts are almost the same. Bridge and Adapter patterns differ
only in the intent: Bridge is used during the design phase, but Adapter is used
to wire up already existing classes.

Structural formalization

Most of the design patterns solutions involve more cooperating classes or ob-
jects. In [2] authors use the term participant for each kind of these classes and
objects, term role is used as well in literature ([6]). In the Composite pattern
solution we have a Composite class, Leaf objects and the Component the base
interface for Composite and Leafs. This implies that if we have some set of real
classes and we choose one to play the role of the Component and one to play the
role of the Composite, the Component class must inherit from Composite class (or
implement Composite interface in languages like C#), otherwise it is not correct
implementation of the Composite pattern. This is simple example of structural
aspect of the Composite pattern solution, whose formalization could be rather
straightforward. The same holds for the fact that in valid implementation of this
pattern the Composite class should aggregate a collection or list of Components.

The Composite pattern solution also guides us to implement operations on
Composite class by delegation to the Components. This is more complicated to
formalize since the delegation to the Components could have several different
forms. The special case might be a situation when the composite operation re-
turns cached value, which is refreshed after each addition or removal of a child.
Besides this very special case we could say that composite operations should iter-
ate the Components collection. Could we also say that the composite operation
should call corresponding operation on each of the Components? It all depends
on the degree of flexibility we want to have in our formalization. Most of the ap-
proaches presented in [6] are relatively strict. On the other hand in Patterns4Net
we went for more flexible formal specifications of patterns solutions and we verify
only the core aspects, which should be fullfilled almost always. Thus the users
of Patterns4Net can still take advanatage of some flexibility in design patterns
implementations.

In previous two paragraphs we rather informally described how the formaliza-
tion of patterns structural aspects could work. To make the approach of formal-
ization complete we need some instrument to precisely capture the rules which
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should be fulfilled by the structure of correctly implemented pattern. Existing for-
malization techniques are usually based on mathematical formalisms. For exam-
ple, the Balanced pattern specification language (BPSL, [7]) leverages first-order
logic, because relations between pattern roles can be easily expressed as pred-
icates. In BSPL a pattern is specified using first-order language called SBSPL,
where variable and constant symbols represent classes, typed variables and meth-
ods, sets of these are designated C, V and M. SBSPL provides predicates (BSPL
authors use the term relation) like Invocation(m1, m2) where m1, m2 ∈ M , which
evaluates to true iff2 method m1 invokes method m2. The structural specification
of the Observer pattern in SBSPL is given in figure 2.1. English names of the
predicates are self-describing.

∃subject, concrete subject, observer, concrete observer ∈ C;
subject state, observer state ∈ V ;
attach, detach, notify, get state, set state, update ∈M :
Defined in(subject state, concrete subject)∧Defined in(observer state, concrete observer)∧
Defined in(attach, subject) ∧ Defined in(detach, subject) ∧
Defined in(notify, subject) ∧ Defined in(set state, concrete subject) ∧
Defined in(get state, concrete subject) ∧ Defined in(update, observer) ∧
Reference to one(concrete observer, concrete subject) ∧
Reference to many(subject, observer) ∧ Inheritance(concrete subject, subject) ∧
Inheritance(concrete observer, observer) ∧ Invocation(set state, notify) ∧
Invocation(notify, update) ∧ Invocation(update, get state) ∧
Argument(observer, attach)Argument(observer, detach) ∧
Argument(subject, update)

Figure 2.1: Structural specification of the Observer pattern in SBSPL

To employ such formalization in practical use for verification or recognition,
we need to evaluate the predicates according to source code or other representa-
tion of object oriented program. Interesting proposal is discussed by authors of
SPINE ([8]). They suggest to use Prolog language. We can represent constraints
for pattern structure as Prolog rules and those rules that depend on source code
analysis (like Invocation) can be added to the Prolog program database using
assert or removed using retract. The SPINE language they present is based on
Prolog and it comes with HEDGEHOG which is a proof engine that parses Java
programs, adds corresponding rules to the database and then is able to answer
questions like standard Prolog program; for example, whether specific class im-
plements the Singleton pattern or whether a class that implements the Composite
pattern exists in the database. Figure 2.2 shows structural specification of the
variant of the Singleton pattern in SPINE and a Java class that implements the
Singleton pattern.

A promising approach might be to express patterns as stereotypes in UML and
use Object Constraint Language (OCL, [9]) to express the stereotype constraints.
UML, as a part of the Model Driven Architecture (MDA, [10]), is widely used
technology and so OCL, also part of the MDA, might become popular and widely

2if and only if
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realises(’PublicSingleton’,[C]) :-

exists(constructorsOf(C),true),

forAll(constructorsOf(C), Cn.isPrivate(Cn)),

exists(fieldsOf(C),F.and([

isStatic(F),

isPublic(F),

isFinal(F),

typeOf(F,C),

nonNull(F)

])).

public class PublicSingleton {

public static final PublicSingleton

instance = new PublicSingleton();

private PublicSingleton() {}

}

Figure 2.2: The Singleton pattern in SPINE and Java.

used as well in the future. Another approach laverages semantic Web technologies
([11]). Design patterns can be defined as RDF documents instantiating a vocab-
ulary based on the Web ontology language (OWL). This approach promote the
usage of design patterns as a knowledge shared among software developers. Last-
ly LePUS3 ([12]), which is one of the most accepted and well known approaches,
provides graphical notation for expressing the structural aspects of design pat-
terns. Figure 2.3 shows specification of the Composite pattern in LePUS3. It can
be seen that graphical notation provides more lucid (in comparison to textual
forms) form of specifing the structural aspects.

2.2 The role of programming language

The choice of programming language determines what can and what cannot
be implemented easily. In [2] authors assume Smalltalk/C++-level language fea-
tures. If they assumed procedural languages, they might introduce patterns like
”Inheritance” or ”Encapsulation”. But there are also important differences be-
tween object-oriented languages. For example Groovy supports multiple dispatch,
which lessens the need for the Visitor pattern ([2]).

New features. Since first publication of [2], mainstream programming lan-
guages went through an evolution. For example lambda expressions are supported
in C# since version 3.0, new versions of PHP, Java and new C++ specification
all include lambda functions. This is 4 of the top 5 most popular languages ([14]),
therefore we can say that nowadays lambda functions can be considered as an
essential feature. Let us investigate what lambdas may bring to design patterns.
In most design patterns solutions polymorphism is used to ”inject” some logic
that will be implemented later on and can be swapped for another. This brings
flexibility to the design.
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Figure 2.3: Specification of the Composite pattern in LePUS3 ([13]).

The Template method pattern might be a good example. It defines a skeleton
of an algorithm and one or more steps of the algorithm might be altered in
subclasses by overriding virtual methods. When we have lambda functions we
may use them to achieve the similar flexibility. The new version of the Template
method pattern with lambda functions does not invoke virtual methods, but
lambda functions that are passed to it as parameters, or that are given to the
object as constructor parameters. This alternative does not require creation of
new class each time we want to implement a new set of steps that alternate the
algorithm. On the other hand we have to provide the lambda functions and if
they are long enough we may still end up with refactoring them to a methods and
these methods to a new class. A good compromise might be to implement the
Template method as usual, but provide a subclass that invokes lambda functions
it gets as constructor parameters. Method ForEach(Action) of the class List

from .NET Base Class Library might be considered as a simple example of such
Template method with lambda function.

Another well known example of features that ease the Observer design pattern
implementation are delegates and events in .NET. They are supported in .NET
because the Observer pattern is suitable for event driven applications, which
are developed in .NET quiet often. Java and Swing, on the other side, use the
Command pattern to invoke some code in response to a GUI event. Implementing
each event response as a separate class (command) is not so tedious in Java as
it would be in C#, because Java supports anonymous classes, which are missing
from C#.

Some modern languages support advanced and innovative features in the field
of object oriented programming, which could ease the implementation of design
patterns even more. Such features include aspects or meta-programming. Special
tools can enable these also in C# or Java. Implementation of some of the design
patterns in ApectJ, aspect oriented extension for Java, is presented in [15]. An
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interface IGraph

{

IEnumerable Vertices { get; }

IEdge { get; set; }

}

Figure 2.4: Non-generic IGraph interface

interface IGraph<T>

{

IEnumerable<T> Vertices { get; }

IEdge<T> { get; set; }

}

Figure 2.5: Generic IGraph interface

article [16] presents Ruby’s advanced features, for instance meta programming,
that simplifies the implementation of design patterns.

New design problems. New features of programming languages bring us
also new design problems. An example might be pattern from .NET that we
call Flexible Generic Interface, which leverages .NET feature of explicit interface
implementation to overcome problem of implementing non-generic interfaces (e.g.,
IEnumerable) and their generic counterparts (e.g., IEnumerable< T >) in one
class.

Imagine that we implement a graph library in .NET. We have the IGraph

interface aggregating edges and vertices and we want it to be flexible, so we don’t
restrict vertices to be objects of any specific type. This way users can create a
graph containing integers and strings at the same time. The example of such
interface is in figure 2.4.

Now users can add whatever they want as a vertex, but some users may want
to work with just one type of vertices. In the case of the non-generic IGraph they
would have to cast all the objects they get from the IGraph interface. Unnecessary
casting was one of the reasons for introducing generics into the .NET runtime.
Generic version of the IGraph interface might look like in figure 2.5.

If we had these two interfaces separately, then we would have to implement
each graph algorithm in two versions – one for the generic, and the other for the
non-generic version of the IGraph interface. This is far from ideal, so what we do
is to let the generic interface implement the non-generic one. Because the names
of the members are same, we have to use new keyword as in figure 2.6.

How shall we now implement the new interface? That is where explicit in-
terface implementation comes to play. The generic methods are implemented as
usual, but the non-generic methods are implemented using this feature. We can

12



interface IGraph<T> : IGraph

{

new IEnumerable<T> Vertices { get; }

new IEdge<T> { get; set; }

}

Figure 2.6: Generic IGraph interface implements the non-generic one.

class Graph<T> : IGraph<T> {

private IList<T> vertices = new List<T>();

public IEnumerable<T> Vertices {

get { return this.vertices; }

}

IEnumerable IGraph.Vertices {

get { return (IEnumerable)this.vertices; }

}

// ...

}

Figure 2.7: Fragment of implementation of the generic IGraph interface.

see a fragment of the implementation in figure 2.7. A consequence of this imple-
mentation is that we have to explicitly cast the class to non-generic IGraph if we
want to work with non-generic versions of the methods, but normally we don’t
want to do so, unless we pass our graph as a parameter to an algorithm which
works only with non-generic version of the interface, but in this case, the cast is
done automatically.

Future trends. Mainstream programming languages are usually not adopt-
ing new features because their authors want to ease implementation of design pat-
terns, but they normally adopt features that help to solve more general problems
such as lambda functions. These features might make some patterns obsolete or
almost disappear for instance the Observer pattern in .NET, but they also might
bring new challenges. Authors of mainstream programming languages, usually
corporations or standardization committees, don’t want to add features that will
be only useful in some rare situations, because then the language would be over-
complicated. Some patterns (e.g., the Visitor pattern) are quiet complex and
not so widely used so that support for their implementation in Java, C# or C++
(double-dispatch for the Visitor pattern) is not likely in the near future.

2.3 Tools support

Some of the complexivity of implementing and maintaining design patterns is
caused by introduction of new classes and new methods into the design. During
the development the connection between classes and concrete design patterns
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roles might be lost and the system that used to be well designed, perfectly lucid
and easily extensible become the exact opposite. Design patterns might provide
an abstraction that helps to develop large software systems. For example, when
a specific class hierarchy does not change often, but operations over these classes
are being constantly added or removed, then the Visitor pattern is suitable.
Developers who already know the Visitor pattern don’t need to study how a
double dispatch in this pattern is implemented. If they want to add new operation
and they have the information that these classes can be visited by instance of
the Visitor, the task becomes easy. However, if the intent to use the Visitor
pattern is not clear, some developers might start adding new operations directly
to the classes that can be visited and the system becomes inconsistent. One could
conclude that if the system had been designed without the Visitor pattern from
the first moment, it could paradoxically be better.

The reasons for possible misunderstanding when design patterns are involved
in the code might be either complete lack of documentation, or either inaccuracy
of textual documentation in natural language. One possibility to overcome these
problems might be standardized documentation of design patterns instances. For
the Java platform there is a project called JPatterns ([17]), which provides anno-
tations to mark patterns in Java code. At the moment it only provides javadoc
documentation for the annotations and the annotations itself. We are not aware
of any similar approach for the .NET platform.

The standardized documentation won’t prevent developers from violating the
principles of implemented design patterns, although it could help a lot with this
problem. To take even more advantage of the documentation, a verification tool
that would enforce some aspects of design patterns could be implemented. Such
tool might, for example, prevent a developer from direct communication with a
object of specific type, when this communication should in fact be done throught
the Mediator object.

Moreover, during the process of implementing a pattern, the abstract idea be-
hind the pattern is broken down into several classes or methods. With a standard-
ized documentation we could reconstruct it back a thus provide a more abstract
view on the software system.

While tools for formal verification and tools for reconstructing abstract design
patterns from a set of concrete classes exist, they do not laverage standardized
documentation of design patterns that is located directly in the code and direct
location of documentation in the source code may motivate developers to keep
it up to date. Moreover, except for few of these tools, they didn’t get enough
attention from the industry and most of them target the Java platform, but only
few target the .NET platform.
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Some of the reasons why industry is not adopting design patterns verification
tools may be too much mathematical formalism involved in their usage. For
definition of new patterns, knowledge of formal logic is usualy required.

Tools that reconstruct abstract design patterns from a set of concrete classes
are mostly based on an automatic recognition of design patterns, whose advantage
is that it does not require additional work from developers and can be used for
legacy systems, but it’s disadvantage is that it cannot corectly recognize all the
design patterns, since differences between some of them are only semantical (the
Bridge and the Adapter patterns) and some patterns, such as the Command
pattern, are too much abstract to be recognized only from the source code.

2.3.1 Patterns4Net

In order to evaluate the ideas stated in previous paragraphs, we implemented
a prototype project called Patterns4Net, which is a set of tools that support the
development of object oriented software on .NET platform. These tools take
advantage of special documentation about patterns solution participants (in the
following text referred as ”patterns meta-data”), which is usually expressed using
custom .NET attributes provided by Patterns4Net (in the following text referred
as ”Patterns4Net attributes”), but this mechanism is extensible and patterns
meta-data may be discovered using, for example, naming conventions, or anything
else that can be inferred from CIL meta-data. There are predefined patterns in
the standard distribution, but users can add their own patterns. Patterns4Net
consists of Pattern Enforcer and Architecture Explorer.

Pattern Enforcer checks marked pattern implementations in .NET assemblies
against constraints written in C# using special API. Users can add constraints for
their custom patterns or even just idioms or simple conventions like ”all methods
in domain classes should invoke Logger.Log method”.

Architecture Explorer leverages the patterns documentation to generate UML-
like class diagrams that support a notion of zooming in and out which adds or
removes details from the diagram. Such way the developer can have a general
overview of the architecture or he can zoom to a specific class and see all related
classes. The decision whether class should be displayed in general overview or
whether it should be displayed only in the highest zoom is based on the patterns
roles it implements. Some patterns represents rather infrastructural detail, on the
other hand, for instance, patterns from Domain Driven Design or from Patterns
of Enterprise Architecture are usually represented by domain specific classes.
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3. Pattern Enforcer

3.1 Features

Patterns constraints specification

Pattern Enforcer is a tool for developers and it is expected to be used by devel-
opers only during the development process, not in the production builds. Because
of these facts we decided to provide internal type safe C# Domain Specific Lan-
guage (DSL, [18]) for constraints configuration instead of xml based configuration
or custom constraint language.

In [18], Martin Folwer defines DSL as a computer programming language of
limited expressiveness focused on a particular domain. There are two types of
DSLs – internal and external. External DSLs are completely new languages with
their own custom syntax, while internal DSLs are embedded into existing general
purpose language such as C#, Java or Ruby by providing specific public API.

Type safe DSLs use contructs that can be verified by a compiler rather than
strings with special internal syntax that could be verified only during the runtime
or by a additional tool. For example, NHibernate ORM framework ([19]) has
such API for a definition of objects to database schema mapping. Instead of
expressing the names of properties as a strings, NHibernate exploits the C#’s
feature of lambda expressions for this purpose and thus existence of properties
used in the mapping is verified by a compiler. For a better idea of this approach,
figure 3.2 shows a short example of the NHibernate DSL.

var mapper = new ModelMapper();

mapper.Class<RegisteredUser>(mapping =>

{

mapping.Id(x => x.Id, map => map.Column("MyClassId"));

mapping.Property(x => x.Username, map => map.Length(150));

});

Figure 3.1: Example of internal type safe DSL.

Usage of type safe DSLs also enables integrated development environments
support. Namely intellisense support could make the development more effective
and could bring better experience for developers who don’t know the DLS syntax
yet, because they can see all the possibilities in the intellisense window together
with their API documentation. On the other hand, after every change, the code
has to be recompiled and the assembly must be deployed, which is not always
possible. Xml based configuration or external DSL might provide more flexible
solution in such case.

17



DSLs usually laverages a technique called a Fluent API, which means that a
method returns an object on which a user is expected to invoke another method.
This chaining of methods may make the API more self describing, becuase the
code can be than read almost as a sentence. The exmple of Pattern Enforcer unit
tests Fluent API is show in figure ??.

patternEnforcer.AssertThat<WidgetContainer>().IsComposite();

Figure 3.2: Example of Fluent API.

For specifying constraints about a design pattern instance we need a data struc-
ture that would capture the information about the roles in this design pattern
instance. By the term design pattern instance we mean concrete classes that
implement the pattern, but not thier particular instances. For better ilustration,
an instance of the Composite pattern is given in figure 3.3. From the structural
point of view the Composite pattern has two roles: the Composite class (in this
instance represented by the WidgetComposition class) and the Component in-
terface (the IWidget interface), which should by implemented by the Composite
class.

public class WidgetComposition : IWidget

{

private IList<IWidget> children;

public int Width {

get { return children.Sum(x => x.Width); }

}

}

Figure 3.3: Example of the Composite pattern instance.

In Patterns4Net, we represent patterns as a Common Language Runtime
(CLR) classes derived from the IPattern interface. A pattern class should
contain properties whose values represent the participants of the pattern. In
case of the Composite pattern, the class for its representation would contain
properties ”Composite” and ”Component”. An instance of such class repre-
senting the pattern instance from our example would contain a reference to the
WidgetComposition type as the value of the ”Composite” property and a refer-
ence to the IWidget interface as the value of the ”Component” property.

References to types are represented as instances of the TypeReference or
the TypeDefinition classes from library Mono Cecil, which are similar to the
System.Type type from the standard library. This is because we use Mono Cecil
for processing of .NET assemblies1. A participant of a pattern might be also
a method (represented as MethodDefinition or MethodReference from Mono

1Reasons why we have chosen Mono Cecil and more detailed information about it are pre-
sented in the subsection 3.3.2
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Cecil) as in the Simple Factory Method pattern. Generally speaking class rep-
resenting a pattern might contain whatever the pattern author finds useful but
public properties of types listed above have a special meaning for Patterns4Net.
Figure 3.4 demonstrates an example of the Composite pattern definition.

public class Composite : IPattern

{

public TypeDefinition Composite { get; set; }

public TypeReference Component { get; set; }

// The Name is required by IPatter interface

public string Name {

get { return "Composite"; }

}

}

Figure 3.4: The Composite pattern definition for Patterns4Net.

Now when we have the strongly typed representation of design patterns in-
stances, we can build a type safe DSL for their constraints specification. In our
conception, a constraint is any boolean function that takes a pattern instance as
a parameter and returns a boolean value, which indicates whether the pattern
instance conforms to the constraint or not. However, Pattern Enforcer provides
a DSL to make the specification of constraints easier than that. The key part is
that it enables to specify constraints as lambda functions (we call such function
a ”check”). Check may be performed on the whole pattern instance, than the
parameter of the lambda function will be the object representnig the pattern.
These checks may verify relations between roles, for example that the Composite
class implements the Component interface. Users can also set up checks for a
specific role of a pattern instance. In such case, the Pattern Enforcer API pro-
vides a method to select the specific property of the pattern instance object with
a lambda function the same way NHibernate uses lambda functions for selecting
properties. After the property is selected, user can create check only for the value
of the selected property. Finally users can also select specific methods of the se-
lected type to provide a check for each of them. The selection of these methods is
also done using a lambda function. To summarize it up: user can select a subject
of the check, using lambda functions, and than he enters the check itself again
as a lambda function, which takes the subject of the check as a parameter. For
better idea, an example is shown in figure 3.5.

A check expression might be anything, which enables wide range of possibili-
ties for experienced users, but Pattern Enforcer provides easy to use extensions
to underlying Cecil’s API. CallsAnyOf is an example of such extension, which
returns true iff the method invokes a member of given class. Basically these
extensions are designed to enable straightforward specification of most of the
predicates presented in the section 2.1.

Supported patterns
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// we want to work with the Composite role

this.Type(composite => composite.Composite)

// we want to check all its non-private methods

.Methods(method => method.IsPublic || method.IsProtected)

// on each of them, we perform the following check

.Check((composite, method) => method.CallsAnyOf(pattern.Component),

(composite, method) => "An error in " + method.Name));

Figure 3.5: An example of constraints configuration in Pattern Enforcer.

As we claim in the section 2.1 constraints for built-in patterns were chosen
rather less restrictively than in other tools of this type. The aim was to enforce
those aspects that are strongly significant to given pattern and the implementa-
tion without them cannot be clearly called as an implementation of this pattern.
For example the Factory Method pattern, whose main participant is the Factory
Method itself, would make no sense if the actual Factory Method was void. On
the other hand, to enforce that the method’s body contains only a constructor
invocation and a return statement, seems to us as an inappropriate restriction,
because the developer might want to prepare some data structures before return-
ing the Product of the Factory Method. Patterns supported by Pattern Enforcer
by default are listed in the appendix A.

Relatively unrestrictive API for patterns constraints specification allow us also
to provide more advanced verification than only verification of structural aspects.
This is the case of the Immutable pattern. The verification of it’s implementation
checks that the Immutable class does not allow to change internal state of it’s
instance once it is available to the ”outside world”. What does this bring us?
Simple immutability in C# can be enforced by specifying the class’s fields as
readonly, but this disables the creator of the class to provide a Simple Factory
Method that would do some changes to the Immutable class instance, before
it returns it to the ”outside world”. Also backing fields of auto-implemented
properties, which brings a notable simplification of implementation of simple
properties, cannot be specified as read-only.

User Interface

Pattern Enforcer provides usual command line interface and MSBuild task that
can be used in MSBuild scripts. Visual Studio project formats (e.g., *.csproj)
are basically MSBuild scripts, so Pattern Enforcer can be easily included in build
process. In both cases the input is .NET assembly and output is text printed
to standard output in one of three supported formats (plain text, Visual Studio
format or xml).

Besides these two user interfaces, Pattern Enforcer provides public API de-
signed to be used inside unit tests. Through this API, developers can invoke
whole Pattern Enforcement checking process based on patterns annotations, or
they can invoke a single check of conformance of a specific class to a specific
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pattern. In the former case, it is not required to decorate the checked class with
patterns attributes.

Configuration

The configuration of constraints that are enforced on patterns implementations
can only be done in code. However, Pattern Enforcer CLI and MSBuild task can
be configured using xml. In this configuration, user can turn off all checks of
given pattern and provide paths to assemblies containing custom patterns speci-
fication. Checking by Pattern Enforcer can be turned off also by special attribute
PatternEnforcerIgnoreAttribute, which has string property Justification,
where developers should provide a description why they have disabled the checks
on this class or method.

3.2 Usage

If a user wants to take advantage of Pattern Enforcer, one possible way to
achieve it is to decorate his types with pattern attributes. For this it is re-
quired to add reference to the Patterns4Net.Attributes.dll assembly in the project.
This assembly contains only attributes definitions, thus it’s footprint should
be minimal. It is build for .NET version 2.0, so Pattern Enforcer can be ba-
sically used in projects build for older versions of the .NET. When the ref-
erence is added, the types can be decorated with attributes from the names-
pace Patterns4Net.Attributes. A code example is provided in 3.6. Here the
WidgetComposition class is decorated with the Composite attribute, which al-
so allows us to provide a Component type as a constructor parameter. Explicit
specification of a Component type is requried when a Composite class implements
more than one interface, otherwise the Component type can be inferred.

using Patterns4Net.Attributes;

[Composite(typeof(IWidget))]

public class WidgetComposition : IWidget, ICloneable

{

private IList<IWidget> children;

int IWidget.Width {

get { return 10; }

}

// ...

}

Figure 3.6: Example of internal type safe DSL.

As we can see, the implementation of the Composite pattern is not valid in this
case, because the getter method of the Width property is not using the children
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Figure 3.7: The output of Pattern Enforcer for the WidgetComposition class.

collection. Pattern Enforcer can ba run outside the Visual Studio or inside the
Visual Studio. Firstly we will describe the first option. When the Visual Studion
project is built, there should be a resulting assembly in the output folder (usu-
ally {project folder}\bin\Debug). Say it’s name is EnforcerExample.dll. Than if
the pattern-enforcer.exe is run from command line supplyed with a path to En-
forcerExample.dll as an argument, it should produce the output shown in figure
3.7.

Besides the direct execution of pattern-enforcer.exe Pattern Enforcer can be
integrated more tightly into the build process in Visual Studio. Visual Studio
project files are basically MSBuild scripts, so the only thing a user has to do is
to add a reference to Pattern Enforcer MSBuild task and invoke it in the After-
Build target, which, as its name indicates, gets always executed after the source
code is built. To enable this integration, it is needed to to open the project file
EnforcerExample.csproj in any text editor, find the xml root element Project

and just below it, insert a UsingTask tag, where the location of the PatternEn-
forcer.MSBuildTask.dll assembly should be specified. Next the AfterBuild target
should be located (it should be commented out and placed near the end of the
file), it should be uncommented, and an invocation of the Pattern Enforcer task
should be inserted as it’s child element. The figure 3.8 shows the xml code and
also a screenshot of Visual Studio displaying the warnings.

Unit tests

The second possible way of taking advantage of Pattern Enforcer does not re-
quire to annotate classes with pattern attributes. Instead the relation between
a concrete pattern and it’s roles is constructed in an automatized test. Pattern
Enforcer provides the PatternEnforcerContext class whose instance represents
an assembly loaded into memory and prepared for execution of Pattern Enforcer
checks. It is recommended to set up this object in the test fixture2 set up method,
which is a method that gets executed only once before any test from the test fix-
ture is executed. The PatternEnforcerContext provides a method AssertThat,
which has one generic parameter. This method returns an object that provides
methods with names Is{PatternName}, which perform the check of conformance
to given pattern. The type selected with call to AssertThat is used as main role

2This term is used by the NUnit framework ([20]), some of other xUnit frameworks also use
the term ”test suite” instead of a test fixture.
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<Project ToolsVersion="4.0" DefaultTargets="..." xmlns="...">

<!-- Includes the PatternEnforcerTask -->

<UsingTask TaskName="PatternEnforcerTask"

AssemblyFile=".\a\path\to\PatternEnforcer.MSBuildTask.dll"/>

<!-- ... -->

<PropertyGroup>

<PatternAssemblies>

$(OutputPath)/$(AssemblyName).dll;

</PatternAssemblies>

</PropertyGroup>

<Target Name="AfterBuild">

<PatternEnforcerTask

ToolPath="..\a\path\to\pattern-enforcer-executable\"

ConfigFile=".\enforcer-config.xml"

ShowErrorsAsWarnings="true"

InputAssemblies="$(PatternAssemblies)">

</PatternEnforcerTask>

</Target>

</Project>

Figure 3.8: Integration of Pattern Enforcer and Visual Studio 2010.

of the pattern, other additional required information, if needed, are supplied as
parameters of the Is{PatternName} method. The figure 3.10 shows an example
of such test fixture using the NUnit framework ([20]).

Specification of custom pattern

There are two possibilities to define a pattern and constraints that will be
enforced on it’s implementation. The first one is more complex, but provides
better flexibility, and thus is used internally by Pattern Enforcer. The second
one is more simple and is designed to provide an easier instrument to create
user-defined patterns. The first approach is described in the section TODO:
section number. Here we describe how to use the second one. We will describe an
implementation of pattern we will call Base Caller. It has two roles: the Target
class and the Target’s base class. The constraint we wil specify is that the Target
class is required to invoke the corresponding base methods in overridden methods
bodies.
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[TestFixture]

public class WidgetCompositionTests : IWidget, ICloneable

{

private PatternEnforcerContext patternEnforcer;

[FixtureSetUp]

public void SetUpFixture() {

this.patternEnforcer =

PatterEnforcerContext.Create("EnforcerExample.dll");

}

[Test]

public void WidgetComposition_Is_Composite() {

this.patternEnforcer

.AssertThat<WidgetComposition>()

.IsComposite(typeof(IWidget));

}

}

Figure 3.9: Example of an automatized test that invokes Pattern Enforcer.

Custom pattern is represented by a class that inherits from the IPattern inter-
face and it is recommended to also implement the IPatternAttribute interface,
which is just marker for pattern attributes. This class is used for representation
of the pattern and at the same time as an attribute for annotating the pattern
instances in code.

The IPattern interface requires just the getter of the property named Name and
the getter of AbstractionLevel property, which is used by Architecture Explorer
(null can be used as default value). The value of the Name property should be a
human readable name of the pattern, which may contain any characters including
spaces. The IPattern interface does not require any other properties, but the
creator of the pattern should add other properties for representing the pattern
participants, in this case the Target and it’s base class. Because these properties
should contain references to other types, they will be of type TypeDefinition.
The implementation is shown in figure ??.

[TestFixture]

public class BaseCaller : IPattern, IPatternAttribute

{

string IPattern.Name {

get { return "Base Caller"; }

}

public TypeDefinition TargetType { get; set; }

public TypeDefinition BaseType { get; set; }

}

Figure 3.10: Example of an automatized test that invokes Pattern Enforcer.
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During the processing of patterns attributes, Patterns4Net needs to reconstruct
the BaseCaller from CIL metadata. The metadata does not contain an instance
of the attribute, instead it contains only values of constructor arguments used for
its instantiation and names and the values of the properties that were assigned.
For example, metadata for the PatternEnforcerIgnoreAttribute in figure 3.11
would contain: zero constructor arguments, because the parameterless construc-
tor of PatternEnforcerIgnoreAttribute was used; and one property with name
Justification and it’s value.

[PatternEnforcerIgnoreAttribute(

Justification="A constant value")]

public class AnnotatedClass

{

}

Figure 3.11: A code example to illustrate CIL metadata for attributes.

For the purpose of reconstruction of pattern attributes from CIL metadata,
classes that implement both the pattern and it’s attribute are required to de-
fine a constructor with one parameter of type IDictionary<string, object> 3.
The class should be able to reconstruct it’s instance from this dictionary, which
provides the following data:

• Constructor Arguments – indexed by the number of position. For example,
the first argument, if any, will be under the index "0".

• Attribute’s target – a TypeReference instance that contains a reference
to the type that was decorated with this attribute. This value is available
under the index "Target".

• Assigned properties – the remaining entries of the dictionary are name-value
pairs representing the properties. If the property is of type System.Type,
than it’s actual value will be TypeReference from Mono Cecil refering to
the same type.

The implementation of such constructor for the BaseCaller class is shown in fig-
ure 3.13. An instance of TypeReference class can be converted to corresponding
TypeDefinition instance using method Resolve() as in the example.

The pattern, as declared in figure 3.13, can be used for annontation of class-
es that implement our Base Caller pattern. However, to verify that such class
invokes corresponding base methods in overridden methods’ bodies the last two
things are needed. First is to implement the IPatternCheckerProvider inter-
face, defined in the assembly PatternEnfocer.Core.dll. This interface contains one
method GetChecker, which should return a constraints checker for the pattern.
The last thing needed is to create the checker itself. The FluentPatternChecker
class, which implements the DSL we have described above, is inteded to be the

3More technical reasons that lead to this decision are given in section 3.3
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public class BaseCaller : IPattern, IPatternAttribute

{

public BaseCaller(IDictionary<string, object> values) {

var targetRef = (TypeDefinition)values["Target"];

this.TargetType = targetRef.Resolve();

this.BaseType = this.TargetType.BaseType.Resolve();

}

// ... as before

}

Figure 3.12: Example of an automatized test that invokes Pattern Enforcer.

base class for pattern checkers, althought a minimal pattern checker has only
to implement the IPatternChecker interface. The implementation of a checker
for the Base Caller pattern is similar to the one we describe in the section 3.1.
For completeness of the example, figure ?? shows the final implementation of the
Base Caller pattern.

Finally Pattern Enforcer has to be informed that it should load the assem-
bly that contain the custom pattern definition and search it for custom pat-
terns definitions. For this purpose, it is required to provide the assembly loca-
tion in Pattern Enforcer configuration file. A configuration is an xml file, the
pattern-enforcer-config.xsd file with definition of it’s structure is supplied
with Patterns4Net. The location of a configuration file is provided to Pattern
Enforcer as a command line option, or the parameter of the MSBuild task.

3.3 Architecture

3.3.1 Overall architecture

In this section about Pattern Enforcer architecture, we also describe common
infrastructure used by both Pattern Enforcer and Architecture Explorer tools.
Patterns4Net tools are developed in .NET platform version 4, mostly in the C#
4.0 language. Xml technologies are also used. All xml formats have their corre-
sponding xsd file.

Visual Studio solution layout

In the figure 3.14 we can see the layout of Visual Studio solution used for
Patterns4Net development.

Projects that start with ”Patterns4Net.PaternEnforcer” are related to Pat-
tern Enforcer tool. Classes that provide the core functionality of Pattern En-
forcer and classes that form the unit-testing public API are located in the Pat-
terns4Net.PatternEnforcer.Core project. The output of the Patterns4Net.PatternEnforcer.Cmd
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public class BaseCaller : IPatternCheckerProvider, ...

{

// ... same as before

public IPatternChecker GetChecker() {

return new Checker();

}

private class Checker : FluentPatternChecker<BaseCaller> {

public Checker() {

this.Type(pattern => pattern.TargetType)

.Methods(method => method.OverridesBaseMethod())

.Check((pattern, method) =>

method.GetMethodCalls() != null &&

method.GetMethodCalls().Any(call =>

call.HasTargetObject &&

call.TargetObject.IsThisParameter &&

call.Method.DeclaringType.IsEqual(

pattern.TargetBase) &&

call.Method.Name == method.Name),

(pattern, method) =>

string.Format(

"Method {0} does not invoke the base method.",

method.Name));

}

}

}

Figure 3.13: Definition of a checker for custom pattern.

project is command line interface for the Pattern Enforcer and the project Pat-
terns4Net.PatternEnforcer.MSBuildTask is implementation of the task for the
MSBuild engine. Core functionality and unit-testing API of Pattern Enforcer are
decoupled from command line interface and MSBuild task into separate project,
and thus separate assembly, because the Pattern Enforcer core functionality is
used also in Patterns4Net.ArchitectureExplorer. The resulting assembly is also
ment to be referenced by users in their unit-testing projects and if it had an .exe
suffix, although perfectly valid assembly that can be referenced, unusual suffix
might confuse some users.

Project Patterns4Net.ArchitectureExplorer contains the code of the Architec-
ture Explorer GUI tool. The GUI is done in Windows Presentation Foundation
(WPF) framework. In this project, besides C# classes, also XAML4 files are
included.

Automated tests are used during the development of Patterns4Net. These tests
are located in the Patterns4Net.Tests project. This project aggregates tests for
classes in all the other projects, because we don’t need to separate the tests into
several projects and a lower number of projects speeds up the build process.

4Extensible Application Markup Language
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Figure 3.14: The layout of Visual Studio solution.

The classes that deal with the discovery of patterns meta-data are located in
the Patterns4Net.Core project. Although we use only Patterns4Net attributes at
the moment, process of discovering patterns metadata for classes and methods is
fully extensible.

Finally the project Patterns4Net.Patterns contains only classes that represent
the Patterns4Net attributes. These classes inherit from System.Attribute class
and they are very simple, hence we don’t necessarily need to take advantage of
the advanced features of C# 4.0. This enables us to set the target framework
version to 2.0, which means that the resulting assembly can be referenced and
used in older .NET projects as well.

General principles

Automated tests. Every software should be tested. Besides manual test-
ing, usually a time consuming task, there is also a possibility to automate some
tests, which means that their execution is controlled by a software and the soft-
ware reports eventual errors. Execution of such tests lasts in seconds, so they
can be executed quite often. Some of the code of Patterns4Net is tested this way.
For automated tests the NUnit framework ([20]) is used.

Extensibility. For better support of extensibility the Managed Extensibili-
ty Framework (MEF, [21]) is used. The MEF provides discovery and composition
capabilities that are employed in plugins mechanism of Patterns4Net.

Code Contracts. Most of the classes define their contracts using Microsoft
Code Contracts ([22]). Contracts help us to find issues earlier. Exception is
thrown typically during the pre-conditions check, which is the real cause of the
problem, rather than later on a source code line that expects valid input param-
eters. Code Contracts also serve as a complement to the API documentation.

Design Patterns. Patterns4Net might be considered as a first example of
it’s own usage, because Patterns4Net code is annotated with patterns attributes.
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3.3.2 CIL processing

The analysis of the source code could be done using the original textual source
code, which can be parsed and represented as an abstract syntax tree (AST).
With this approach it is much easier to reconstruct higher level information such
as actual parameters for a method invocation. On the other hand, available
parsers not always support all of the most current language features and parsing
of a source code of a specific language might restrict us to support only the one
language or, if we used parsers capable of parsing more languages into the same
AST, we would still have to deal with some language specific constructs.

The other option, which we have chosen, is to analyse the intermediate lan-
guage, in case of the .NET it is Common Intermediate Language (CIL), sometimes
called Microsoft Common Intermediate Language (MSIL). The structure of CIL
is more stable than, for example, the syntax of C#. The latest version of CIL
standard [23] from 2010 has the same instruction set as the previous version from
2006. The version from 2010 only extends semantics and verification rules for
some of the instructions. Another adavantage is that intermediate language is
produced by all the compilers for .NET, thus Patterns4Net can be theoretically
used also for Visual Basic.NET, IronRuby, IronPython and others, alhought we
had tested it only on C#. One of the disadvantages of this approach is that the
CIL is stack based lower level language and reconstruction of some constructs,
such as actual parameters for a method invocation, requires special effort.

Library for CIL parsing

There are three popular, publicly available libraries that could be used to parse
.NET assemblies and get meta-data about types and CIL code of the methods.
First option is to use reflection API that is available as a part of .NET base
libraries. Second option is Microsoft Common Compiler Infrastructure (CCI),
which is developed in Microsoft Research. Last option is Mono Cecil, which is
developed as part of the Mono open-source project.

Standard .NET Reflection API looks at assemblies as a code, not as a raw data,
which has two important consequences: the code loaded through .NET Reflection
API can be excecuted; and, because the code can be executed, the runtime must
check access right and might throw Code Access Security exception. Assemblies
loaded into an AppDomain (which is a .NET object similar to a process in a
operating system) cannot be unloaded. Finally the .NET Reflection API does not
distinguish between type definition a type reference, which is an entry in assembly
metadata refering to a type located in another assembly. If we used the standard
Reflection API, there would be one notable advantage. In the public API of
Patterns4Net, in some cases, we allow to use the .NET Reflection data structures
in order to make the usage of the Patterns4Net API easier for developers used to
use the .NET Reflection. However, because we internally use another library, we
have to do a translation of the .NET Reflection data structures.
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The other two libraries (CCI and Mono Cecil) process .NET assemblies as just a
binary data, hence they do not support loading the assemblies into AppDomain
and execution of the loaded code. On the other hand they are claimed to be
faster than the standard Reflection API, however we are not aware of any serious
benchmarks. Public API and features of CCI and Mono Cecil seem to be simi-
lar, exept CCI provides AST over the intermediate language, which Mono Cecil
doesn’t provide5, however the AST the CCI generates is more complex than we
would need, therefore, for our purposes, the advantage of generated AST would
be lessen by extra work for it’s processing. Both of these two libraries have a long
list of advanced software that use them. In case of Mono Cecil it is, for example,
db4o (object database for java and .NET) or Mono’s C# compiler. On the other
side, FxCop (a bug-finding tool) or Code Contracts are both based on CCI.

Our previous experiences with Mono Cecil have resolved the choise between
Mono Cecil and CCI in favour of Mono Cecil. This choice does not only influence
the code that does the CIL analysis, but also other code because we use spe-
cific Mono Cecil’s data structures (e.g., TypeReference) in whole Patterns4Net
project.

CIL analysis

Cecil provides only data parsed from .NET assemblies, it does not provide
anything more. From CIL meta-data we can, for example, determine for a given
class what type is it’s base type, or which interfaces it implements. But Cecil
itself does not provide a method that would give us a list of types that implement
given interface, because this information cannot be inferred directly from it’s
meta-data. For such purposes there is a project Mono Cecil Rocks, which contains
a few extension methods for Cecil’s classes, but it does not have all we wanted
to support in Patterns4Net, so we also implemented our custom set of extension
methods designed for CIL analysis and patterns structure constrains specification.

For example, one of the extensions we wanted to provide was uniform API
for getting information about methods overrides. In CIL, according to ECMA
CIL specification, there is an attribute ”overrides” in meta-data of every method,
which is a list of methods that this method overrides. But this attribute is used
only in specific cases (e.g., explicit interface implementation) and normally it is
left empty, because overridden methods are determined by conventions (which
are also described in the ECMA CIL specification).

Methods invocation analysis

For purposes of discovery of relationships in Architecture Explorer and meth-
ods invocations in Pattern Enforcer, we needed classes that would help us with
analysis of CIL. We don’t need to analyse conditional statements – we just want
to know whether method M1 on field F was invoked in body of method M2, even
in dead branch of code.

5There is project Cecil Decompiler, but it not in production ready quality.
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Method calls in CIL are done by several instructions, for example .callvirt.
CIL does not distinguish between instance methods and static methods. Instance
methods has the instance as a first parameter, which is normally added by a
compiler. Each of these instructions has a method reference as an argument, so
the only difficulty is to analyse with which actual parameters the method was
called.

CIL virtual machine is a stack based machine, which means that all arguments
for operations are taken from the evaluation stack and result are pushed onto
the stack. Usually instructions pop all their arguments from the stack and push
results onto the top. Stack behaviour of each instruction is documented in the
ECMA CIL specification, however Cecil provides this information through the
enumeration StackBehaviour.

The CIL analysis is done by simulating the evaluation stack. In loop we iterate
over all instructions in the method body. For each instruction we determine how
many items it pops from the stack and we determine, which items it pushes onto
the stack. The stack is represented as a collection of instances of the StackItem
class. Each StackItem has a reference to the instruction that resulted in pushing
this item onto the stack, and with this basic information the StackItem can
provide some more additional information such as whether it represents a field
pushed onto the stack (if so, then which field), or a parameter aso. Result of
this analysis is a collection of the StackState class instances – n-th of them
represents the state of the stack after the execution of n-th instruction in the
method body. State of the stack is represented as a collection of StackItem

instances. From the signature of the method we know how many parameters it
has (we will designate it as m) and whether it is an instance method or a static
method. To get the actual parameters of a specific call instruction (say it’s n-th
instruction), we just need to take m (or m+ 1 for instance methods, which have
implicit first parameter) items from the top of the n− 1-th StackState.

The last question may be whether this correctly simulates the stack if we do
not take the control flow instructions into account (only their stack behaviour).
An answer is provided by ECMA CIL specification, which reads

Regardless of the control flow that allows execution to arrive there,
each slot on the stack shall have the same data type at any given point
within the method body.

CIL patterns matching

In order to check some more specific constraints such as the specification for
the Singleton pattern implementation, we need to check whether method body
contains a specific CIL instructions pattern6.

6here the term pattern has a slightly different meaning than a design pattern.
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The main class for CIL instructions patterns matching is CILPatternsMatcher.
It aggregates a collection of instances of the InstructionMatcher abstract class,
which controls the matching process. Interface of the InstructionMatcher class
is shown in figure 3.15. Method Matches is called in a loop on the current
instruction. If the method returns false, than the CIL instructions does not
match the pattern and the whole process ends with a negative result. Otherwise
property Found is checked and if true, then the next InstructionMatcher is
used in the next iteration, if it was the last InstructionMatcher, then process
ends with success. In the next iteration current instruction is set to the one
returned by last call of Match. Pseudo code is given in figure 3.16.

public abstract class InstructionMatcher

{

public virtual bool Found { get; protected set; }

public abstract bool Matches(

Instruction instruction,

out Instruction next);

public virtual void Reset() { ... }

}

Figure 3.15: The InstructionMatcher abstract class interface.

1: currentInstruction← first instruction of the method’s body.
2: currentMatcherIdx← 0
3: loop
4: matcher ← matchers[currentMatcherIds]
5: match← matcher.Match(currentInstruction, out next)
6: if not match then
7: return false
8: end if
9: if matcher.Found then
10: if ++ currentMatcherIdx == matchers.Length then
11: return true
12: end if
13: end if
14: currentInstruction← next
15: end loop

Figure 3.16: Pseudo code of CIL instructions patterns matching.

3.3.3 Patterns representation and discovery

Patterns representation is described in section ??. Here we just remind that
a pattern is represented as a CLR class derived from PatternBase. It contains
properties representing the participants of the pattern and any other information
that the pattern’s author finds useful. Mono Cecils structures are used for types
and methods identification.
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Discovery of patterns meta-data is implemented as a flexible mechanism. There
is a central class named PatternsLocator, which aggregates objects that imple-
ment interface IPatternsProvider. Each of these objects provide a strategy
method GetPatterns, which for given type or a method returns a list of pat-
terns. The method or the type is then considered as a main role of the returned
pattern instances. However, the pattern instances may contain other roles. The
main role of a pattern is usually used in Pattern Enforcer’s error messages, in the
section about Architecture Explorer we also refer to this term several times.

The two implementations of IPatternsProvider that are supplied with Pat-
terns4Net provide location of patterns meta-data based on Patterns4Net at-
tributes. Diagram in the figure 3.17 shows the class hierarchy. The collection
of IPatternsProvider instances is supplied to the PatternsLocator class as
constructor parameter. The PatternsLocator class is usually constructed via
MEF container and thus the constructor parameter is resolved automatically by
MEF. If we want an instance of some class to be registered in the container as
IPatternsProvider implementor, the only thing we have to do is to decorate
such class with attribute [Export(typeof(IPatternsLocator))].

Figure 3.17: Hierarchy of classes that are used for discovery of patterns meta-
data.

The PlainAttributesPatternProvider and AttributesPatternProvider class-
es responsibility is to transform CIL meta-data information about attributes into
objects that represent the discovered patterns. This task is not as easy as it may
seem.
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Firstly classes that represent the Pattern4Net attributes are not identical to
classes that represent the patterns. This decoupling provides flexibility, because
patterns meta-data does not have to be based only on attributes, but in this case
it causes some additional work to be done.

Secondly CIL meta-data parsed by Mono Cecil are not real instances of the
classes that represent Patterns4Net attributes. Rather Mono Cecil provides in-
formation about what the type of the attribute is, which values are provided
as it’s constructor parameters and which named arguments were provided. If
the user of Mono Cecil wants to construct an identical instance of the attribute,
he has to do it by hand. Actually the PlainAttributesPatternProvider class
even does not have to construct Patterns4Net attributes instances, instead the
PlainAttributesPatternProvider class constructs objects representing the pat-
terns directly.

There are two basic options to solve this task. We could say that Pattern4Net
attributes should always implement a constructor with name-value dictionary as
a parameter. The constructor would reconstruct the attribute object from this
dictionary. (This approach is also used in the MEF.) Finally the attribute object
itself would represent the pattern instance. The other option is to absolutely
decouple the creation of an object representing the pattern and the attribute
itself. In this case, there would be a separate class that would construct the
object representing the pattern instance from Cecil’s meta-data structures and
the attribute would be just a dummy data holder.

First option provides higher cohesion – we don’t have to create another class,
but the attribute and the process of creation of an object representing the pat-
tern are coupled. This approach could be suitable for scenario when a user wants
to implement his custom pattern and so Patterns4Net provide this possibility,
which is implemented in the AttributesPatternProvider class. But internally
Patterns4Net uses the former approach, because it cuts down the code need-
ed in Pattern4Net attributes classes and thus minimizes the footprint of the
assembly containing Pattern4Net attributes, which has to be referenced by a
project that makes use of Pattern4Net. The former approach is implementd in
PlainAttributesPatternProvider.

3.3.4 Pattern Enforcer Design

The basic interface in the Pattern Enforcer design is generic IChecker<T> in-
terface, which defines one method Check(T). This method returns the result
of the check encapsulated in an instance of the CheckerResult class. Con-
crete checkers have the generic parameter T set to the TypeDefinition class,
the MethodDefinition class or the PatternBase class.

An important class is the FluentPatternChecker. It is a base class of most of
the pattern checkers, because it provides the structural constraints specification
DSL. The DLS is formed by protected methods of the FluentPatternChecker

class, which should be invoked in the constructor of derived class in order to
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specify the constraints. Because we wanted to provide a Fluent interface (chaining
of method calls), these methods return special objects that have

• a reference a to the parent object and

• the values of the arguments the method was invoked with.

For the first method in a chain the parent object is the checker instance itself,
for others, it is a object returned by their ancestor method in the chain. As the
method calls are chaining the arguments are collected and the last method in
the chain, which is the first method that wil actually do something has all the
arguments of previous methods available to do it’s work. The example of such
chaining of methods is given in example 3.18.

this.Type(pattern => pattern.PatternRoleType)

.Methods(method => method.IsPublic || method.IsProtected)

.Check((pattern, method) => method.Name.EndsWith("42"),

(pattern, method) => "Method has not a valid name");

Figure 3.18: An example of methods chaining.

The whole Pattern Enforcer is encapsulated as the PatternEnforcer class. It
requires a PatternsLocator instance and an array of IPatternCheckersLocator
instances. These classes have also their dependencies requested as constructor
arguments so composition of all the objects by hand would be tedious. Instead
the composition capabilities of the MEF are employed. A type whose instance
should be used anywhere the interface IFace is expected must be decorated with
attribute [Export(typeof(IFace))], dependencies of such type will be resolved
by MEF recursively.

3.4 Comparison

FxCop and Gendarme tools.

It may not be obvious at the first look, but Pattern Enforcer is similar to static
analysis bug-hunting tools such as FxCop or Gendarme ([24]). These tools search
the source code for idioms that are generaly considered as bad. For example
strings should be, in most cases, compared using string.CompareOrdinal, but
not using == operator. There are two main differences between Pattern Enforcer
and these tools

• Pattern Enforcer checks only code that is annotated,

• Pattern Enforcer checks structural aspects and code idioms, but Gendarme
and FxCop check only code idioms.

• Gendarme and FxCop are looking for bad idioms, but Pattern Enforcer is
verifies that expected idiom is present.
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Gendarme is open-source tool that is ment to be an alternative to FxCop.
It uses Mono Cecil for CIL analysis. If we look at Gendarme’s source code, it
has a similar structure to Pattern Enforcer’s code. It has also ”checker” classes,
that perform checks on a code element, which might be, for example, Cecil’s
TypeDefinition.

A Pattern Enforcing Compiler (PEC) for Java.

Because a Pattern Enforcing Compiler (PEC) for Java ([25]) has been the main
source of inspiration for our thesis, we discuss it a little bit more in detail.

PEC for Java is an extended Java compiler that formalizes patterns. Developers
can use standard Java syntax to annotate their classes as an implementation
of specific design pattern. The PEC than checks whether the classes actually
implement specified patterns.

Annotation. For annotation of patterns instances, PEC uses so called mark-
er interfaces. The authors have choosen this technique, because implemented in-
terfaces are listed in generated API documentation and so an intergration with
an API documentation didn’t require any additional work to be done. On con-
trary, interfaces can only be used for annotation of classes, but not methods,
and even when interfaces can have arguments – generic arguments –, these can
capture only limited number of additional information. Authors of PEC admit
these weakneses of interfaces as a technique for the annotation of patterns and in
[25], they propose to introduce the standard java annotations, similar to .NET
attributes, in PEC. However, we are not aware of any updated version of PEC
that uses stndard Java annotations.

Pattern Enforcement. PEC uses static analysis and it also enforces the
rules dynamicaly by inserting assertions into the resulting program, which we
don’t support in our Pattern Enforcer. Dynamical enforcement provides more
accurate results, because, for example, uniqueness of the one Singleton instance
cannot be proved statically, but dynamically one simple assetion is enough to
enforce it. The disadvantage of dynamical enforcement is that it slows down
the resulting program and to discover bugs the program still has to be manually
tested.

Code generation. PEC provides also code generation capabilies. For ex-
ample, a body of a void method in a Composite class can be generated by PEC –
it will just create a loop over all components and on each of them it invokes the
corresponding method. However, an implementation of the Composite pattern is
usualy not so straightforward, so these capabilities turn to be not so useful.

Patterns specification. Two APIs for patterns specification are supported
in PEC. It is standard Java reflection API and Javaasist, which is similat to
Mono Cecil. In Pattern Enforcer we support the standard .NET reflection only
partly. In PEC a method that checks a pattern implementation must be a static
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method with specific signature declared in a marker interface of the pattern. This
introduces coupling between a pattern annotation and a pattern enforcement,
which we tried to avoid in Patterns4Net. PEC uses exceptions to to signal the
errors during the check of pattern implementation. This means that usually when
first violation is found, an exception is thrown and the verification process does
not continue. In our Pattern Enforcer we use a return value of special type
CheckerResult as the result of the check and this object can aggregate more
errors.

Integration with development environment. The authors of PEC claim
that it is an extended compiler, which means that Java source code is compiled
only with PEC, although PEC internally uses javac. This provides seamless
integration with the Java environment, but at the same moment PEC becomes
an essential requirement for successful build. Our Pattern Enforcer is standalone
tool, which can be easily taken out from the build process. PEC does not provide
any other usage possibilities, but our Pattern Enforcer has a MSBuild task and
unit-testing API.

Other tools.

CoffeeStrainer ([26]) is a tool that is somewhere between static analysis bug-
hunting tools whose objects of interrest are idioms, smaller pieces of code, and
pattern enforcement tools. Unlike other static analysis bug-hunting tools Cof-
feeStrainer enforces rules that result from paticular design desions, for this it
provides means for custom rules specificatoin.

Pattern-Lint ([27]) can check conformance to variety of design principles from
coding style rules to design patterns. Pattern-Lint targets C++ and has been
successfuly evaluated during development of a multimedia operating system.

Most of the approaches described in [6] are connected with some prototype tool
that enforces the specification represented accoring to the formalization approach.
However, most of them are not publicly available and all of them target either
Java or C++ languages. The most interesting tools from this book include the
HEDGEHOG engine, which we discuss also in section 2.1, and tools that come
with LePUS3, which we also present in the same section.
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4. Architecture Explorer

4.1 Features

Further meta-information

Relationships. Architecture Explorer does not only display relations that
are part of some pattern implementation, but it also displays standard relations
from object oriented design. These are inheritance, association, aggregation, com-
position and uses. Architecture Explorer reverse engineer these relations using
source code analysis, but difference between some of them might be just seman-
tic. For the purpose of the differentiation of these relationships Patterns4Net
provides, besides attributes for patterns participants annotation, also attributes
for annotating relations. Rules for reverse engineering of relations are summarized
in the following listing.

• When a class A has a field of type B without any annotation, then the
association from A to B is constructed. (The construction of cardinality of
associations and other relationships is described below.)

• When a class A has a field of type B annotated with attribute Composition,
Aggregation or Uses, then the relationship of composition, aggregation or
uses from A to B is constructed.

• When at least one of class’s A methods invokes the constructor of class B,
has a parameter of type B or invokes a static method or property from B,
then uses relation from A to B is constructed.

Uses relation from A to B is not added when the composition or aggregation
relation from A to B was discovered. Default cardinality is one-to-one. If the field
of a class A is of a type which is assignable to IEnumerable<B> then the type B

will be used in relation, and the cardinality of the relation will be set according
to the rules below.

• If the field is annotated with ManyToMany attribute then the relation’s car-
dinality will be many-to-many.

• If the field is not annotated with ManyToMany attribute, but there is also
field of type IEnumerable<A> in B, then the relation’s cardinality will be
many-to-many.

• Otherwise the cardinality will be one-to-many.

Architecture Explorer is not capable of discovering the uses relation if the
constructor or static member invocation is hidden in reflection API calls. Uses
relation is constructed even if the constructor or static member invocation is in
the dead branch of code, which means that the constructor or static member will
actually never be invoked. Architecture Explorer also does not check whether
method’s parameters are actually used inside the method’s body.
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Layers and packages. Architecture Explorer does not support hierarchical
packages like UML does, but instead provides a concept of Layer which is a
container for packages. Normally Layers correspond to each .NET assembly, but
users can define Layers on their own using assembly attribute as in the figure 4.1.
First level namespaces in a layer are reverse engineered as packages.

using Patterns4Net.Attributes;

[assembly:Layer("Layer Name", "Namespace")]

// safer definition using reflection,

// a namespace of MyType will be used.

[assembly:Layer("Layer Name", typeof(MyType))]

Figure 4.1: Definition of Layer using assembly attributes.

Inputs

Basic input for Architecture Explorer is an assembly or set of assemblies to
analyze. Instead of a assembly file, users can also choose Visual Studio C# project
files or Visual Studio solutions, in this case the tool will extract information about
assemblies location from these files.

Outputs

Architecture Explorer has interactive graphical user interface (GUI). It displays
class diagrams on the four levels of abstraction allowing user to view the archi-
tecture from higher level overview (Layers level) to detailed diagram of specific
class and all it’s collaborators (Class level). Relationships and classes that play
a role in some pattern implementation are graphically remarked. In the following
paragraph we describe how the Architecture Explorer chooses which classes will
be displayed at which level. Before that we introduce a related terminology.

Classes that implement patterns Entity, AggregateRoot or ValueObject known
from Domain-Driven-Design approach are level 0 classes. Classes that implement
some infrastructural pattern like Null Object or Helper Class are level 2 classes.
Other classes belong to level 1. Users can define their own patterns and assign
them into any level. Levels of build in patterns are defined in xml configuration
file and can be changed by users as well. Term element denotes a class, a class
member, a package or a layer.

Now we can define all four levels of abstraction that Architecture Explorer
provides.

• Layers level – layers are displayed as rectangles. Each one contains it’s
packages, which are displayed as well as rectangles. All elements have labels.
If there is a class in a layer A which is in relation with a class in a layer B,
then the relation is displayed between the layers A and B. If there are more
relations of the same type between A and B, only one is displayed.
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• Layer level – if the layer contains at least one class of level zero, then
these classes are displayed. Otherwise first level classes from the layer are
displayed. Classes have labels with their names, but members are not dis-
played. Packages are displayed as rectangles and contain corresponding
classes.

• Package level – classes from the package are displayed.

– If the package contains at least on class of level zero, then classes of
level zero and one are displayed.

– If the package does not contain any class of level zero, then classes of
level one and two are displayed.

• Class level – selected class is displayed with all it’s methods and properties.
All classes from any package or any layer that are in any relationship with
this class are displayed. Classes are gathered in rectangles that represent
packages.

4.2 User Interface

User interface of Architecture explorer consists of the content area in the center
of the window, where the diagram is displayed, a toolbox on the top and various
dockable panels. The toolbox contains buttons that serves to control the the
program and the panels display additional information about the diagram.

Architecture Explorer displays only one diagram at once. If an assembly is
loaded, it’s content is added into the current diagram. Therefore, if two assem-
blies are consequently loaded, the diagram will contain all elements from both of
them. If there are some already loaded elements in the diagram and a user wants
Architecture Explorer to display only elements from another assembly, he must
use a button that clears the diagram before loading the new assembly.

A user can browse through the diagram using either buttons in the toolbar, or
by clicking on elements displayed in the diagram. A click on a diagram element
causes that approriate level is displayed – if the click was on a class, a class level
is displayed, and likewise for other element types. A button intended to go up to
next higher level is available in the toolbar as well as the buttons intended to go
back and foward during the navigation through the diagram.

Dockable side panels display additional information. There are five of them

• Diagram Browser displays all diagram elements in the treeview.

• Pattern Documentation displays descriptions of all patterns where the cur-
rently selected class plays the main role.
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• Properties panel displays information about current element. These infor-
mation may also contain an API documentation if available.

• Output window displays warning and informal messages for user. These
messages are generated during loading of an assembly or when Pattern
Enforcer is runnig.

• Errors window contains a gird that displays errors from Pattern Enforcer.

Architecture Explorer can display API documentation generated from source
code. Source of this documentation is a xml file produced by C# compiler. In
Visual Studio to set up the compiler to produce this file, a user has to open the
project properties panel, switch to the build tab and check the option ”XML
documentation file”. Architecture Explorer expects the documentation file to
have a default name and to be located in the same folder as the assembly.

Patterns documentation is loaded from the patterns.xml file, whose format
is described in the patterns.xsd file. Patterns in the patterns.xml file are
identified by the full name of the class that represents the pattern. For pattern
documentation an xml dialect based on standard .NET API documentation for-
mat is used. To add a documentation for a custom pattern, a user should edit
this xml file.

When Pattern Enforcer is invoked from the Architecture Explorer, errors are
displayed in special side panel and when a user clicks on the error, the diagram
will zoom to class, where the error occured.

Definition of custom pattern.

The definition of a custom pattern is described in section 3.2. The IPattern

interface, which is required to be implemented by a class that represents a pattern,
has the readonly AbstractionLevel property. Value of this property is used by
Arcitecture Explorer to decide at which abstraction level it will display classes
that play the main role in this pattern.

The class that represents a pattern might have properties that represent the
pattern roles. To direct Architecture Explorer to emphasize relationships between
the main role of the pattern and the other roles, the properties representing
the roles might be annotated with the PatternRoleAttribute attribute. This
attribute allows to define the type of the relation (composition, aggregation, ...),
the abstraction level of the relation, a cardinality, and a name. If a default value
is provided for any of these properties, Architecture Explorer tries to infer the
value from the source code.

To inform Architecture Explorer about assemblies that contain custom pat-
terns a xml configuration file can be used. This xml file is an extension of the
format used for Pattern Enforcer only and thus can be used for both tools. All
configuration files and their schema definitions are located in the Config folder.
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4.3 Architecture

Architecture Explorer is developed inWindows Presentation Foundation (WPF).
There are two reasons for choice of WPF. We wanted to use so called Model-View-
ViewModel ([28]) pattern and implementation of this pattern is easier in WPF
than in Windows Forms. The second reason involves possible future work on
Architecture Explorer. WPF applications can be, with some effort, ported to Sil-
verlight, which can run in a Web browser and is supported also on other platforms
than Windows.

A large portion of Architecture Explorer functionality is generation of ”nice
looking” graphs. For this purpose the Graphviz ([29]) tool is used, but it’s adop-
tion to WPF is not as easy as it might seem at first look, so it resulted in an
introduction of separate project called Graphviz4Net, which is discussed in the
following chapter.

4.3.1 Model-View-ViewModel

The Model-View-ViewModel pattern is a variation of well known Model-View-
Controller pattern. It’s detailed description could be found in the article [28].
The ViewModel is an object that supplies data to be displayed in the View as
values of regular properties and it provides actions that could be invoked from
the View (e.g., by clicking on a button) as regular methods. The ViewModel
encapsulates all the user interface logic, but it does not handle displaying the
data and therefore it could be an instance of a plain C# class. The connection
between the ViewModel and the View, which is WPF specific user control, is not
handled by the objects themselfs but is driven by powerful data-binding features
of WPF.

To ease the implementation of the Model-View-ViewModel pattern even more,
Caliburn.Micro framework ([30]) is used. It is capable of applying the View-
Model to View binding, ViewModel data to View visual elements binding and
actions binding only according to naming conventions. For example, for the
ShellViewModel class there is the ShellView WPF control and their binding is
handled by Caliburn.Micro.

The figure 4.2 shows the layout of the graphical user interface of Architecture
Explorer. The ViewModel classes are located approximately in the same place,
where they will be displayed by their corresponding View WPF controls. The
whole window is represented by the ShellViewModel class, which aggregates all
the other ViewModel objects.
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Figure 4.2: Decomposition of the user interface into several ViewModel classes.

The ViewModel objects communicate either directly, or through events. Events
are represented by C# classes. When an object wants to publish an event it
invokes the Publish method on the EventAggreator object, which is a singleton.
This method has one argument, which is an object that represents the event and
it’s arguments. If an object wants to be notified when an event of certain type
T is published, it has to implement the IHandle<T> interface and register itself
to the EventAggreator object. Events mechanizm is used for handling selection
of current element and navigation in diagram, because these actions might be
invoked from several panels and might cause an update of several GUI elements.

4.3.2 Diagram Classes Design

A diagram is represented by hierarchy of classes that are depicted in the figure
4.3. Each of these classes inherits from the base class DiagramElement, which
means that each instance of these classes have a reference to it’s parent object.
The top level Diagram object returns a reference to itself as the value of this
property.

Each type of relationship is represented as a separate class, because graphical
templates for

Becuase the diagram class structure is not likely to change often, the Visitor
pattern is used to add new operations of the diagram elements. The base class
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for all Visitors is the DiagramVisitor class. The Visitor ’s traversing algorithm
is implemented in the diagram elements Visit method.

When an assembly should be loaded into the diagram, the CecilDiagramLoader
loads all the layers, packages, types, methods and properties, but it does not
add any additional information such as implemented patterns or relations be-
tween them. These additional information should be added by instances of
IDiagramUpdater interface, whose method UpdateDiagram is always invoked
when a new assembly is added to the diagram. Most of the classes that implement
the IDiagramUpdater interface are also diagram visitors and the implementation
of the UpdateDiagram method is just call to the diagram’s Visit method sup-
plying itself as an argument. These ”diagram updaters” implement discovery of
relations and implemented design patterns.

All the objects are, as in the case of Pattern Enforcer, composed together using
the Managed Extensibility Framework (MEF).

4.4 Related Work

According to [31] published in the year 2010 only a few approaches to reverse
engineering that use additional information provided by developers exist. We are
not aware of any reverse engineering tool that explicitly supports design patterns
and use additional information provided by human beings. Tools that support
UML standard might be, however, extended with stereotypes that could express
implemented design patterns.

To provide more views on the same system each of them with different level
of abstraction is the main idea behind Model Driven Development (MDA). In
contrast to Architecture Explorer, MDA does not only address design patterns but
also platform independence, transformation from higher abstract models to more
specific models or source code, and other issues. MDA is a standard maintained by
Object Management Group and this standard has to be implemented by concrete
tools.

Pattern recognition tools.

A tool presented in [32] provides design patterns instances recognition based
on static and dynamic analysis. It might be interesting in the context of Pat-
terns4Net, because it one of the few design patterns tools that targets the .NET
platform. Authors also process the intermediate language, but they use standard
.NET reflection.

The idea that information about implemented design patterns might help to
provide several views on the same system but with different level of abstraction
is also discussed in [33]. The authors propose an Eclipse plug-in called MARPLE
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(Metrics and Architecture Reconstruction Plug-in for Eclipse), which could au-
tomatically recognize design patterns in Java code and then display special di-
agrams. The authors of MARPLE also plan to take advantage of Graphviz – a
graph vizualization tool.

UML reverse engineering.

The software called UMLGraph ([34]) provides automated drawing of UML
diagrams extracted from java source code. It uses Graphviz for vizualization and
call graph analysis for discovery of relationships in similar way we do in Architec-
ture Explorer. UMLGraph uses Graphviz directly to generate SVG images. On
contrary, in Architecture Explorer we process the output of Graphviz and convert
it to WPF controls in order to provide interactivity in the user interface.
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Figure 4.3: Hierarchy of classes that represent a diagram.
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5. Graphviz4Net

Graphviz ([29]) is an open-souce graph visualization tool, which we use in Pat-
ters4Net to create class diagrams. Graphviz is implemented as typical UNIX
filter. Filters read data from standard input and write results to standard out-
put. For graphs representation, Graphviz uses special language called DOT. An
example of DOT file is given in figure 5. Graphviz expects a graph in the DOT
language on the input, it generates the layout for given graph and then it renders
it in a selected image format on standard output, or it can print the same graph
in the DOT language, but with attributes that provide information about the
generated layout. Output format can be set up by command line option.

digraph G {

node [shape=rect];

node1 [label="A", width=2, height=1];

node2 [label="B"];

node3; node5;

node1 -> node2 [label="Edge from A to B"];

node3 -> node1; node3 -> node5;

node1 -> node5; node5 -> node2;

}

Figure 5.1: An example of DOT file.

To employ Graphviz in generation of class diagrams, we have to convert our
internal representation into the DOT language, then we have to parse the output
of Graphviz and finally do some coordinates transformation and scaling to convert
the layout in Graphviz representation to the WPF coordinates system.

During the development, it turned out that this process can be modularized
and we can segregate an independent library that provides .NET interface to the
Graphviz filter and means to use the layout information genereated by Graphviz
for generating layouts in WPF or other GUI framework. Such library might be
helpful for other projects than Patterns4Net. This resulted into separate library
called Graphviz4Net.

With Graphviz4Net users can define a graph and then display it into WPF
application, or provide custom Layout Builder for other GUI framework (e. g.
Windows Forms). Graphiz (and thus Graphviz4Net) is capable of rendering graph
clusters, curved edges with labels and arrows on both sides (arrows can have also
labels) and much more. With built-in WPF Layout Builder, graph node can any
WPF control and even edges and labels rendering can be customized, although
not as much as rendering of nodes.
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digraph G {

node [label="\N", shape=rect];

graph [bb="0,0,199,294"];

node1 [label=A, width=2, height=1, pos="72,184"];

node2 [label=B, width="0.75", height="0.5", pos="68,18"];

node3 [width="0.75", height="0.5", pos="141,276"];

node5 [width="0.75", height="0.5", pos="172,92"];

node1 -> node2 [label="Edge from A to B", pos="..."];

node3 -> node1 [pos="e,99.022,220.03 ..."];

node3 -> node5 [pos="e,169.66,110.29 ..."];

node1 -> node5 [pos="e,152.4,110.03 ..."];

node5 -> node2 [pos="e,93.539,36.172 ..."];

}

Figure 5.2: Graphviz output for graph from figure 5.

5.1 Public API

Public API that Graphviz4Net provides can be divided up into two parts:
graphs representation (input for Graphviz) and layout processing (output of
Graphviz).

Graph representation

Conversion of graphs into the input format of Graphviz works with interfaces
IGraph, ISubGraph and IEdge, nodes may be of any type. However, for con-
venient use Graphviz4Net offers generic versions of these interfaces and classes
that implement them. So the user of Graphviz4Net may: implement his own
structures, he just have to make them implement interfaces mentioned above; or
he may use the predefined generic classes.

A graph aggregates list of it’s nodes and sub-graphs, which aggregate list of
their own nodes. Edges are aggregated by the graph structure, but not by sub-
graphs, because edges may cross sub-graph boundaries. A diagram of discussed
classes and interfaces is shown in figure ??.

User may add custom attributes to the resulting DOT graph representation.
The only thing which is needed for this is that the element (node, edge or
subgraph) implements the IAttributed interface, which defines one property
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Attributes – a name-value collection of DOT attributes. Default graph struc-
tures supplied with Graphviz4Net implement this interface and have properties
for setting and getting the usual DOT attributes such as Label. These properties
provide type-safe access to the Attributes collection, which can also be modified
by hand in non type-safe manner to set up less usual DOT attributes.

Layout builder

When the graph is processed by Graphviz and the output is parsed by Graphviz4Net,
we need to convert the layout data to actual elements on the screen or in the gen-
erated picture. For this purpose the Builder pattern is employed. Graphviz4Net
takes care of parsing the output, but when it has a piece of layout information
for example ”the position of the node with id 2 is [34, 55]”, it passes this piece
of information to the appropriate method of the Layout Builder and this method
may then create an element on the screen or anything else.

Next to the building of graphical elements, the Layout Builder is responsible
for suppling the sizes of the graph nodes, so that Graphviz can produce precise
layout where nodes and edges do not overlap.

Graphviz4Net has one built-in Layout Builder for WPF applications (it is prob-
able that it could build Siverlight layouts as well, however it hasn’t been tested
yet). Users even don’t have to directly use this Layout Builder, the whole process
of layouting is encapsulated in the GraphLayout WPF control. The only thing
needed is to set up the dependency property Graph and provide data templates
for nodes types.

5.2 Architecture

Graphs representation is described in the previous section, here we just remark
that all the interfaces presented there follow the Flexible Generic Interface pattern
as described in section ??.

DOT parsing. One of the tasks Graphviz4Net has to deal with is parsing
the Graphviz output, which is a text in the DOT language. The grammar of the
DOT language is defined in the documentation ([35]). We developed a parser
based on ANTLR parsers generator that is able to parse most of the the DOT
language constructs that Graphviz produces as an output (it is a subset of the
full DOT language, because we know that some DOT constructs e. g. comments
are never produced by the Graphviz).

Graphviz provides also plain-text output format, which is line oriented language
suitable for parsing. However, we found out that this format does not support
some features of Graphviz that we wanted to support in our library (e. g. node
clusters).

WPF Support
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Graphviz generates layout information in format where lengths are in inches,
coordinates are in points (1/72 of an inch) and refer to the center of the ele-
ment, the origin [0, 0] is in the bottom left corner, coordinate values increase up
and to the right and curved edges are represented as B-spline points. All these
pieces have to be adopted to the WPF formats where e. g. positions can refer to
one of the corners of the element, but not to it’s center. There are two possible
approaches for this adoption: convert all the values; or make use of render trans-
formations in WPF to overcome the problem of different coordinate systems, but
other values would still have to be converted. In Graphviz4Net we went with the
first option, because the render transformations might slow down the application
and there is not much difference between the two approaches in the amount of
work.

The main work of theWPF Layout Builder is to adopt the values from Graphiviz
to WPF format. It gets a Canvas instance as a constructor parameter and it
places all the elements into this Canvas using Canvas dependency properties Top
and Left. The decision which WPF elements should be used for each of the
elements in the graph is leaved to an Abstract Factory object, which is also a
parameter of the constructor of the WPF Layout Builder. Part of the default
implementation of the factory is shown in figure ??. Note that for nodes we just
create ContentPresenter with Content set to the node type. This enables users of
Graphviz4Net to define a data template for each type of a node (remember that
nodes may be of any type, so a data structure with complex information or just
simple string for label may be used).

TheWPF Layout Builder should also provide the sizes of the nodes for Graphviz.
For this purpose it uses the WPF layout system. Every FrameworkElement has a
method Measure(availableSize), in which the FrameworkElement should de-
termine it’s size requirements by using an availableSize parameter. For the
availableSize we use double.Infinity and thus allow the element to set up
any size. Desired size of the element is then accessible via property DesiredSize

and value of this property is given to Graphviz.

Graphviz4Net provides also a WPF control that encapsulates this logic. The
control uses standard WPF mechanisms of dependency properties and templates.
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6. Conclusion

The aim of this work was to explore possible approaches for design patterns sup-
port in development environments and to develop Pattern4Net a set of tools that
support pattern oriented development of .NET programs. Patterns4Net provide
a standardized way to document design patterns instances in the source code and
two tools that take adavantage of this documentation. Pattern Enforcer verifies
some of the structural aspects of design patterns implementations and Archi-
tecture Explorer provides UML-like class diagrams that emphasize implemented
design patterns.

Patterns4Net might enhance the development process of complex design pat-
terns oriented systems that are created by a team of several programmers, be-
cause it helps to discover communication errors and violations of design patterns
implementations erlier and it provides visual tool to tackle some of the design
complexity that is caused by design patterns usage. However, a comprehensive
evaluation of this approach is beyond the scope of this thesis.

During the development and testing of Architecture Explorer, it turned out
that rules for hiding and displaying various elements in the diagram in order to
provide better abstraction are crucial for the appropriate user experience. These
rules should be reevaluated after more extensive testing on real projects. Archi-
tecture Explorer user interface could be also enhanced to provide more additional
information, for example, for every relationship it could show a panel with detailed
infomation on which code fragments were lead to establishing this relationship
during the reverse engineering phase.

Some of the more general rules from Pattern Enforcer, such as immutability
check, could be extracted from it’s source and proposed to open-source community
as additional rules for well-established open-source project Gendarme, which is
an extensible rule-based tool used to find problematic code in .NET assemblies.
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