Patternd4Net: Efficient Development Using Design Patterns

Stépan Sindelar and Filip Zavoral

Charles University in Prague
me@stevesindelar.cz, zavoral@ksi.mff.cuni.cz

Abstract The flexibility provided by design patterns is
usually achieved by introducing new classes into the de-
sign. The complexity of design patterns oriented software
development can easily overtake the advantages of design
patterns usage, which might lead to software bugs or even
complete failure of the development. We present the Pat-
terns4Net project that targets the .NET platform. Develo-
pers can annotate their classes using special attributes that
document the usage of design patterns. This documenta-
tion is then used by Pattern Enforcer, a tool that verifies
correctness of design patterns implementation. Such sys-
tem improves the development process of complex design
pattern oriented software, because it helps to discover com-
munication errors and violations of design patterns imple-
mentation earlier.

1 Introduction

One of the disadvantages of design patterns is that
they bring a new complexity into the design. This com-
plexity is caused by an introduction of new classes
and interfaces in order to provide better flexibility
and reusability. Developers often don’t have enough
time to create a documentation for their classes and
so the mapping between classes and a design patterns
is lost. Other members of the development team can
only study the source code, or reverse-engineered dia-
grams, but neither of these emphasize the design pat-
terns structure, which would provide more abstract
view and thus tackle some of the complexity.

Even if the code documentation includes informa-
tion about implemented patterns, an incorrect unders-
tanding of some design patterns by one of the develop-
ment team members may slow down the development
process or even lead to an introduction of software
bugs in the system.

While tools for a formal verification and tools for
tackling the complexity of design patterns exist, they
were mainly developed as research prototypes and, ex-
cept for few of them, they didn’t get enough attention
from the industry. Moreover, most of these tools tar-
get the Java platform, but only few target the .NET
platform.

Such problems are addressed by the PatternsdNet
project, whose presentation is the main aim of this
paper. The crucial component of the PatternsdNet is
Pattern Enforcer — a tool that verifies selected struc-
tural aspects of design patterns. It implements a set of

14 built-in patterns; moreover, users can add their cus-
tom patterns using the special API. Pattern Enforcer
needs to know which classes are supposed to imple-
ment which pattern in order to enforce its correct im-
plementation. For this purpose the Patterns4Net spe-
cial documentation for pattern solution participants is
used.

The rest of the paper is structured as follows: the
patterns representation is described in Section 2. Do-
main specific languages in general and our API for
pattern constraints specification are described in Sec-
tion 3. Section 4 shows how to use the Enforcer, Sec-
tion 5 deals with the PatternsdNet Common Infra-
structure architecture. Section 6 compares our system
with other relevant work and Section 7 summarizes
the paper and suggests future work.

2 Representation and Documentation

2.1 Documentation of Pattern Instances

Design pattern is an abstract entity, which, among
other things, primarily describes a solution to a recur-
ring problem. If such design pattern is implemented
by a developer, he transforms the abstract ideas be-
hind the pattern into a real source code. For example,
an instance of the Composite pattern is given in the
figure 1.

public class WidgetComposition : IWidget {
private IList<IWidget> children;
public int Width {
get { return children.Sum(x => x.Width); }
}
}

Figure 1: Example of the Composite pattern instance.

If we consider the example from the figure 1, Pat-
tern Enforcer doesn’t know that the WidgetCompo-
sition class should implement the Composite pattern,
and therefore Pattern Enforcer doesn’t know that it
should enforce the structural aspects of the correct im-
plementation of the Composite pattern on the Widget-
Composition class. For this purpose we need to create

a mapping between concrete elements in a source code
and the pattern participants they are supposed to im-
plement. We call this mapping as a design patterns
participants mapping.

Patterns4Net provides an extensible mechanism for
construction of design patterns participants mapping
from .NET assemblies data. At the moment it sup-
ports pattern meta-data expressed as .NET attributes.
Class that plays the main role in particular design pat-
tern implementation is decorated with a special attri-
bute and references to classes that implement another
roles in the pattern solution, if there are any, can be
inserted as arguments for this attribute. For better
illustration, a code example is provided in the figure 2.
Here the WidgetComposition class is decorated with
the Composite attribute, which also allows us to pro-
vide a Component type as a constructor parameter.
Explicit specification of a Component type is required
when a Composite class implements more than one in-
terface, otherwise the Component type can be inferred
automatically.

using Patterns4Net.Attributes;
[Composite(typeof (IWidget))]
class WidgetComposition : IWidget, ICloneable {
private IList<IWidget> children;
public int Width {
get { return children.Sum(x => x.Width); }
Y /7 ...
X

Figure 2: An example of attributes driven documentation
of pattern instances.

2.2 Pattern Instances Representation

In order to use the design patterns participants map-
ping, Patterns4Net needs to have data structures that
represent the mapping. For this purpose standard C#
classes are used and instances of these classes represent
the instances of design patterns. An object that re-
presents a pattern instance provides a name of the
pattern, and the references to the elements that par-
ticipate in this pattern instance.

The classes for the pattern representation provide
the name of the pattern and the references to the pat-
tern instance participants as standard .NET proper-
ties. The references to code elements (that is classes,
interfaces, methods, etc.) are represented by instances
of Mono Cecil’s classes, which are similar to the Sys-
tem.Type type from the standard library (e.g. Type-
Reference, [1]). Mono Cecil’s types are used, because

we use Mono Cecil for parsing of .NET assemblies!.
The figure 3 demonstrates an example of the Compo-
site pattern definition.

public class Composite : IPattern {
public TypeDefinition Composite { get; set; }
public TypeReference Component { get; set; }
// The Name is required by IPatter interface
public string Name {

get { return "Composite"; }

}

}

Figure3: The
terns4Net.

Composite pattern definition for Pat-

3 Patterns Structural Constraints
Specification

There are two possibilities to capture the structural
constraints of a particular pattern that should be veri-
fied by Pattern Enforcer. The constraints can be hard-
coded in the Patter Enforcer itself, or they can be
located in external files and expressed in a special lan-
guage, which would ease the addition of constraints
for new design patterns.

We used a compromise approach in Pattern En-
forcer. We developed a special C# API for the spe-
cification of the structural aspects of design patterns,
therefore the specification itself is expressed in a stan-
dard C+# (or any other .NET language) code, but the
author of the specification is provided with a set of
classes and methods that ease this task. The code
that expresses the specification can be then loaded
into Pattern Enforcer at runtime using the standard
.NET mechanisms designated for this purposes. When
we made this decision, we had considered several im-
portant consequences: the authors of the specification
would be able to use the provided API or, if the API
is not sufficient for their purposes, they could take the
advantage of the full power of C#. We didn’t have
to develop a parser for a special language; and, since
the users of Pattern Enforcer are .NET programmers,
they will learn the C# API with less effort than a new
syntax of a special language.

In the rest of this section we describe the API
for the patterns structural constraints specification in
more detail. Because this API can be considered as an
example of so called Domain Specific Language (DSL,

! Reasons why we have chosen Mono Cecil and more de-
tailed information about it are presented in the subsec-
tion 5.1

[2]) and because it also uses a technique called Fluent
API, we discuss these two concepts in the following
subsection.

3.1 Domain Specific Languages

Domain Specific Language (DSL) is a programming
language of limited expressiveness focused on a parti-
cular domain. There are two types of DSLs: internal
and external. The external DSLs are completely new
languages with their own custom syntax, while the
internal DSLs are embedded into existing general pur-
pose language such as C#, Java or Ruby by providing
specific public API. When developing an embedded
DSL, a programmer do not have to create a parser for
his DSL, but he can be limited by the syntax of the
“hosting” language.

Type-safe embedded DSLs use constructs that can
be verified by a compiler rather than strings with a
special internal syntax that can be verified only du-
ring the runtime or by an additional tool. For example,
NHibernate ORM framework ([3]) has such API for a
definition of objects to database schema mapping. Ins-
tead of expressing the names of properties as strings,
NHibernate exploits the C#’s feature of lambda ex-
pressions for this purpose, and thus the existence of
the properties used in the mapping is verified by the
C# compiler. For a better idea of this approach, fi-
gure 4 shows a short example of the NHibernate DSL
usage in C#. Note that all text in this figure forms
a perfectly valid C# code, although it may seem as a
special language.

var mapper = new ModelMapper() ;
mapper .Class<RegisteredUser>(mapping =>
{
mapping.Id(x => x.Id,
map => map.Column("MyClassId"));
mapping.Property(x => x.Username,
map => map.Length(150));
B

Figure 4: Example of type safe DSL embedded into the C#
language.

Embedded DSLs usually leverage a technique cal-
led Fluent API, which means that a method returns
an object on which a user is expected to invoke ano-
ther method. This chaining of methods can make the
API more self describing, because methods names and
their arguments names can be then read almost as an
English sentence. An example of the Fluent API from
jMock, a mock object library for Java [4], is shown in
figure 5.

mock.expects(once()) .method ("m")
.with(stringContains("hello"));

Figure 5: An example of methods chaining in Fluent API.

3.2 The API for Pattern Constraints
Specification

Since we have a strongly typed representation of de-
sign patterns instances, we can build a type safe DSL
for their constraints specification, where we use lambda
expressions.

In our conception, a constraint is any boolean func-
tion that takes a pattern instance as a parameter and
returns a boolean value, which indicates whether the
pattern instance conforms to the constraint. However,
Pattern Enforcer provides a DSL to make the specifi-
cation of these constraints easier than that. The key
part is that it enables to specify the constraints as
lambda functions. We call such function a ”check”.

A check may be performed on the whole pattern
instance, then the parameter of the lambda function
will be the object representing the pattern. A check
may verify the relations between roles, for example,
that the Composite class implements the Component
interface. Users can also set up checks only for a speci-
fic role of a pattern instance. In such case, the Pattern
Enforcer API provides a method to select the specific
property of the pattern instance object with a lambda
function the same way NHibernate uses lambda func-
tions for selecting properties. After the property is se-
lected, the user can create a check only for the value
of the selected property (that is for a particular role).
Finally the user can also select specific methods of the
selected role to provide a check for each of them. The
selection of these methods is also done using a lambda
filter function.

To summarize it all up: users can select a subject
of the check, using lambda functions, and then they
can enter the check itself again as a lambda function,
which takes the subject of the check as a parameter.
For a better idea, an example is shown in figure 6.

A check expression might be anything, which en-
ables wide range of possibilities for experienced users,
but Pattern Enforcer provides an easy to use exten-
sions to underlying Mono Cecil’s API. CallsAnyOf is
an example of such extension, which returns true iff
the method invokes a member of given class.

3.3 Built-in Patterns

The constraints for the built-in patterns were chosen
rather less restrictively than in the other tools of this
type. The aim was to enforce those aspects that are

// we want to work with the Composite role
this.Type(composite => composite.Composite)
// we want to check all its non-private methods
.Methods (method =>
method.IsPublic || method.IsProtected)
// on each of them perform the following check
.Check((composite, method) =>
method.CallsAnyOf (pattern.Component),
(composite, method) =>
"error in " + method.Name));

Figure 6: An example of constraints configuration in Pat-
tern Enforcer.

strongly significant to given pattern and the imple-
mentation without them cannot be clearly called as
an implementation of this pattern. For example, the
Factory Method pattern, whose main participant is the
Factory Method itself, would make no sense if the ac-
tual Factory Method was void. On the other hand,
to enforce that the method’s body contains only a
constructor invocation and a return statement, seems
to us as an inappropriate restriction, because the de-
veloper might want to prepare some data structures
before returning the Product of the Factory Method.

The relatively unrestrictive API for specification
of patterns constraints allows us to provide more ad-
vanced verification than only verification of structu-
ral aspects. We illustrate the process of choosing the
structural constraints that should be verified by Pat-
tern Enforcer on the example of the Template Method
pattern.

3.4 Template Method

The main role of the Template Method pattern is a
template method, which defines the skeleton of an al-
gorithm. The template method invokes one or more
virtual methods, which are expected to implement cer-
tain steps of the algorithm. Because these methods are
virtual, one can override them in a sub-class and thus
alter some steps of the algorithm without the need to
write the whole algorithm from scratch.

The core of the Template Method pattern are in-
vocations of virtual methods that can alter the algo-
rithm. From a first look, one could say we should en-
force that the template method invokes at least one vir-
tual method. However, a template method that invokes
another non-virtual method that then invokes another
virtual method can be considered as an implementa-
tion of the Template Method pattern as well, because
it also allows us to alter the algorithm in sub-classes.
We can recursively check all methods that are invoked
from our template method, but it is unsystematic. Ins-

tead, a simple observation can help: non-virtual me-
thods that invoke virtual methods are usually also im-
plementation of the Template Method pattern. So the
conclusion is that a template method should invoke at
least one virtual method or at least one another tem-
plate method.

It is considered a good practice with the Template
Method pattern to declare the template method as non-
virtual (sealed) and so we enforce this too.

The specification of constraints for the Template
Method pattern is shown in figure 7. As a first step we
check that the type that declares the template method
is not sealed and therefore it can be sub-classed. If this
is fulfilled, we check that the template method calls at
least one virtual method or another template method.

// check that declaring type is not sealed:
this.Type(pattern =>
pattern.TargetMethod.DeclaringType)
.Check(type => type.IsSealed == false,
(pattern, type) => "...error message...");

// check that template method invokes at least

// one virtual method or another template method:

this.If (pattern =>
!pattern.TargetMethod.DeclaringType.IsSealed)
.Method(pattern => pattern.TargetMethod)
.Check(

method =>
method.GetMethodCalls () . Any (
call =>

call.TargetObject != null &&
call.TargetObject.IsThisParameter &&
(IsTemplateMethod(call.Method) |
call.Method.IsOverrideable())),
(pattern, method) => "...error message...");

Figure 7: The specification of the built-in Template Method
pattern.

4 Usage

If a user wants to take advantage of Pattern Enfor-
cer, one possible way to achieve it is to decorate his
types with pattern attributes. For this, it is required
to add a reference to the Patterns4Net. Attributes.dll
assembly in the project. This assembly contains only
the attributes definitions, thus it’s footprint should be
minimal. It is built for .NET version 2.0, so Pattern
Enforcer can be basically used in projects built for ol-
der versions of the NET. When the reference is added,
the types can be decorated with patterns attributes
from the namespace Patterns4Net.Attributes. The fi-

gure 8 contains an annotated implementation of the
Composite pattern.

using Patterns4Net.Attributes;

[Composite(typeof (IWidget))]

class WidgetComposition : IWidget, ICloneable {
/...

Figure8: An example of an annotated implementation of
the Composite pattern.

The second possible way of taking advantage of
Pattern Enforcer does not require to annotate classes
with pattern attributes. Instead the relation between a
concrete pattern and it’s roles is constructed by hand
in an automatized test.

Users can also define their custom patterns using
the pattern constraints specification API.

5 Architecture

In this section the architecture and the implementa-
tion of the common Patterns4Net infrastructure and
Pattern Enforcer is discussed. We start with Common
Intermediate Language (CIL) parsing, because the ins-
truments we use for this task influence the rest of the
system. Then we describe design patterns representa-
tion and discovery architecture.

5.1 CIL Processing

We have two basic options to process the source code
of a .NET application or a library. The original tex-
tual source code can be parsed and represented as an
abstract syntax tree (AST), or we can parse .NET as-
sembly and use the CIL.

When the source code is parsed and represented as
an AST it is much easier to reconstruct higher level
information such as actual parameters for a method in-
vocation. On the other hand, available parsers not al-
ways support all of the most current language features
and parsing of a source code of a specific language
might restrict us to support the only one language.
Some parsers are capable of parsing more source lan-
guages into the same AST structure, but the resul-
ting AST is still different for some language specific
constructs.

The other option, which we have chosen, is to ana-
lyze the intermediate language, in case of the .NET
it is the Common Intermediate Language (CIL). The
structure of CIL is more stable than, for example, the
syntax of C#. The latest version of CIL standard [5]

from 2010 has the same instruction set as the pre-
vious version from 2006. The version from 2010 only
extends semantics and verification rules for some of the
instructions. Another advantage is that intermediate
language is produced by all the compilers for .NET,
thus Patterns4dNet can be theoretically used also for
Visual Basic.NET, IronRuby, IronPython and others,
although we have tested it only on C+#. One of the di-
sadvantages of this approach is that the CIL is stack
based lower level language and the reconstruction of
some constructs, such as actual parameters for a me-
thod invocation, requires special effort.

Library for CIL parsing There are three popular, pu-
blicly available libraries that could be used to parse
.NET assemblies and get meta-data about types and
CIL code of the methods. First option is to use the
reflection API that is available as a part of the NET
base libraries. Second option is the Microsoft Common
Compiler Infrastructure (CCI, [6]), which is developed
in Microsoft Research. Last option is Mono Cecil [1],
which is developed as a part of the Mono open-source
project.

Standard .NET Reflection API treats assemblies
as a code, not as a raw data, which has two important
consequences: the code loaded through the .NET Re-
flection API can be executed; and, because the code
can be executed, the runtime must check access rights
and might throw Code Access Security exception.

The other two libraries (CCI and Mono Cecil) pro-
cess .NET assemblies as just a binary data, hence they
do not support loading the assemblies into an AppDo-
main and execution of the loaded code. On the other
hand they are claimed by their authors to be faster
than the standard Reflection API, however, we are
not aware of any serious benchmarks. Public API and
features of CCI and Mono Cecil seem to be similar.
Our previous experiences with Mono Cecil have resol-
ved the choice between Mono Cecil and CCI in favor
of Mono Cecil. This choice does not only influence the
code that does the CIL analysis, but also other code,
because we use specific Mono Cecil’s data structures
(e.g., TypeReference) in the whole Patterns4Net pro-
ject.

5.2 Patterns Representation and Discovery

Patterns representation is described in the section 2.
Here we just remind that a pattern instance is repre-
sented as an object that provides references to the par-
ticipants of this pattern instance. Mono Cecils struc-
tures are used for types and methods identification.
The discovery of patterns meta-data is implemented
as a flexible mechanism. There is a central class, which
aggregates several objects and each of them provides a

strategy for creation of the pattern participants map-
ping based on CIL metadata.

There are two built-in strategies for the pattern
participants mapping discovery. Both are based on
pattern meta-data (additional information added to a
.NET assembly by it’s author in order to document
patterns he has implemented). In both cases these
meta-data are expressed as .NET attributes provided
by PatternsdNet. These two strategies differ only in
way they reconstruct the pattern participants map-
ping from attributes meta-data.

The first one requires the attribute to declare spe-
cial constructor, which is used to instantiate the attri-
bute itself from a meta-data and then the creation of
the pattern instance is left to the attribute object. It
this case the attribute and the pattern instantiation
process are coupled in one class.

The other one uses the CIL meta-data to directly
create the pattern instance. It means that the attri-
bute itself can be only a dummy data-holder class,
which does not actually participate in the pattern ins-
tance creation. This approach provides better flexibi-
lity, but requires more work to be done.

Other strategies for discovery of patterns meta-
data (e.g., based on naming conventions) can be easily
added, therefore we do not restrict Patterns4Net only
to attributes driven documentation of design patterns
instances.

5.3 CIL Analysis

Mono Cecil provides only data parsed from .NET as-
semblies, it does not provide anything more. From CIL
meta-data we can, for example, determine for a given
class what type is it’s base type, or which interfaces it
implements. But Cecil itself does not provide a method
that would give us a list of types that implement given
interface, because this information cannot be inferred
directly from it’s meta-data. For such purposes there
is the Mono Cecil Rocks project, which contains a few
extension methods for the Cecil’s classes, but it does
not have all we wanted to support in Patterns4Net, so
we also implemented our custom set of extension me-
thods designed for CIL analysis and patterns structure
constrains specification.

For example, one of the extensions we wanted to
provide was uniform API for getting information about
methods overrides. In CIL, according to ECMA CIL
specification [5], there is an attribute ”overrides” in
the meta-data of every method, which is a list of me-
thods that this method overrides. But this attribute
is used only in specific cases (e.g., explicit interface
implementation) and normally it is left empty, be-
cause overridden methods are determined by conven-
tions described in the ECMA CIL specification.

Methods invocation analysis For the purposes of the
discovery of relationships in Architecture Explorer and
methods invocations in Pattern Enforcer, we needed
classes that would help us with analysis of CIL. We
don’t need to analyze conditional statements — we just
want to know whether a method M1 on a field F is
invoked in body of a method M2, even in a dead branch
of code.

Method calls in CIL are done by several instruc-
tions, for example . callvirt . CIL does not distinguish
between instance methods and static methods. Ins-
tance methods has the instance as a first parameter,
which is normally added by a compiler. Each of these
instructions has a method reference as an operand, so
the only difficulty is to determine the values of the
actual parameters of the method.

The CIL virtual machine is a stack based machine,
which means that all arguments for operations are ta-
ken from the evaluation stack and results are pushed
onto the stack. Usually instructions pop all their ar-
guments from the stack and push results onto the top.
Stack behavior of each instruction is documented in
the ECMA CIL specification, however, Cecil provides
this information through the enumeration StackBeha-
viour.

The CIL analysis is done by simulating the evalua-
tion stack. In a loop we iterate over all instructions
in the method body. For each instruction we deter-
mine how many items it pops from the stack and we
determine, which items it pushes onto the stack. The
stack is represented as a collection of instances of the
Stackltem class. Each StackItem has a reference to the
instruction that resulted in pushing this item onto the
stack, and with this basic information the Stackltem
can provide some more additional information such
as whether it represents a field pushed onto the stack
(if so, then which field), or a parameter aso. The re-
sult of this analysis is a collection of the StackState
class instances — n-th of them represents the state of
the stack after the execution of n-th instruction in the
method body. State of the stack is represented as a
collection of StackItem instances. From the signature
of the method we know how many parameters it has
(we will designate it as m) and whether it is an ins-
tance method or a static method. To get the actual
parameters of a specific call instruction (say it’s n-th
instruction), we just need to take m (or m + 1 for ins-
tance methods, which have implicit first parameter)
items from the top of the n — 1-th StackState.

The last question may be whether this correctly
simulates the stack if we do not take the control flow
instructions into account (only their stack behavior).
The answer is provided by ECMA CIL specification,
which reads

Regardless of the control flow that allows
execution to arrive there, each slot on the stack
shall have the same data type at any given
point within the method body.

CIL instructions sequences matching In order to check
some more specific constraints such as the specification
for the Singleton pattern implementation, we need to
check whether a method body contains a specific CIL
instructions sequence.

The aim here was to be able to match sequence
which, for example, contains anything at the begin-
ning and then it contains a sequence of instructions
that represents an if with a specific condition. For
this purpose the matching process is directed by one
object that delegates its work to several strategy ob-
jects that do the actual matching. In our example, we
would have a strategy that would match any instruc-
tion and a strategy that would match the instructions
sequence that represents an if.

The main class for CIL instructions sequences mat-
ching is the CILPatternsMatcher. It aggregates a col-
lection of instances of the InstructionMatcher abstract
class, which represents an instructions sequence. In-
terface of the InstructionMatcher class is shown in fi-
gure 9. The Matches method is called in a loop pro-
vided with current instruction. If the method returns
false, than the CIL instructions does not match the
expected sequence and the whole process ends with a
negative result. Otherwise property Found is checked
and if true, then the next InstructionMatcher is used
in the next iteration, if it was the last Instruction-
Matcher, then process ends with success. In the next
iteration current instruction is set to the one retur-
ned by last call of Match. A pseudo code is given in
the figure 10, variable matchers represents an array of
instances of the InstructionMatcher class.

public abstract class InstructionMatcher {
public virtual bool Found { get; set; }
public abstract bool Matches(
Instruction instruction,
out Instruction next);
public virtual void Reset() { ... }
}

Figure 9: The InstructionMatcher abstract class interface.

6 Related Work

There are several existing tools that provide verifi-
cation of design patterns implementation. The most

1: currentInst < first instruction of the method’s body.
2: matcherldr < 0
3: loop

4: matcher < matchers|matcherldzx]

5: match < matcher.Match(currentInst, out next)
6: if not match then

T return false

8: end if

9: if matcher.Found then

10: if + + matcherldx == matchers.Length then
11: return true

12: end if

13: end if

14: currentInst < next

15: end loop

Figure 10: Pseudo code of instructions patterns matching.

similar approach to Pattern Enforcer is the Pattern
Enforcing Compiler (PEC) for Java.

6.1 FxCop and Gendarme Tools.

It may not be obvious, but Pattern Enforcer is similar
to static analysis bug-hunting tools such as FxCop [7]
or Gendarme [8]. These tools search the source code
for the idioms that are generally considered as bad.
For example strings should be, in most cases, compa-
red using string . CompareOrdinal, but not using ==
operator. There are two main differences between Pat-
tern Enforcer and these tools

— Pattern Enforcer checks only the code that is an-
notated,

— Pattern Enforcer checks structural aspects and code
idioms, but Gendarme and FxCop check only code
idioms.

— Gendarme and FxCop are looking for bad idioms,
but Pattern Enforcer verifies that expected idiom
is present.

Gendarme is open-source tool that is meant to be
an alternative to FxCop. It uses Mono Cecil for CIL
analysis. It has a similar structure to Pattern Enfor-
cer’s code. It has also ”checker” classes, that perform
checks on a code element, which might be, for example,
Cecil’s TypeDefinition.

6.2 Pattern Enforcing Compiler (PEC) for
Java

PEC for Java is an extended Java compiler that forma-
lizes patterns. Developers can use standard Java syn-
tax to annotate their classes as an implementation of
specific design pattern. The PEC then checks whether
the classes actually implement the specified patterns.

For annotation of patterns instances, PEC uses so
called marker interfaces, which can only be used for
annotation of classes, but not methods, and even when
interfaces can have arguments (generic arguments),
these can capture only a limited number of additional
information. The authors of PEC admit these weak-
nesses of interfaces as a technique for the annotation
of patterns and in [9], they propose to introduce the
standard java annotations, similar to .NET attributes,
in PEC. However, we are not aware of any updated
version of PEC that uses standard Java annotations.

PEC uses static analysis and it also enforces the
rules dynamically by inserting assertions into the re-
sulting program, which we don’t support in our Pat-
tern Enforcer. Dynamical enforcement provides more
accurate results. On the other hand, dynamical en-
forcement slows down the resulting program and the
program still has to be manually tested in order to
discover possible bugs.

6.3 Other Tools

CoffeeStrainer [10] is a tool that is somewhere between
static analysis bug-hunting tools whose objects of in-
terest are idioms, smaller pieces of code, and pattern
enforcement tools. Unlike other static analysis bug-
hunting tools CoffeeStrainer enforces rules that result
from particular design decisions, for this it provides
means for custom rules specification. CoffeeStrainer
targets the Java platform.

Pattern-Lint [11] can check conformance to variety
of design principles from coding style rules to design
patterns. Pattern-Lint targets C+4 and has been suc-
cessfully evaluated during development of a multime-
dia operating system.

Most of the approaches described in [12] are connec-
ted with some prototype tool that enforces the specifi-
cation represented according to the formalization ap-
proach. However, most of them are not publicly avai-
lable and all of them target either Java or C++ lan-
guages. The most interesting tools from this book in-
clude the HEDGEHOG engine (Prolog-based solution
for design patters formalization and verification) and
tools that come with LePUS3 (visual approach to for-
malization).

We can conclude that we are not aware of any de-
sign patterns verification tool for the .NET platform.
Pattern Enforcer is, among all of these tools, also ex-
traordinary with it’s special C# API for structural
constraints specification, because most of the other ap-
proaches uses special language for patterns formaliza-
tion, or, in case of the Pattern Enforcing Compiler for
Java, they don’t provide special means for structural
constraints specification at all.

7 Conclusion

The aim of this work was to explore existing approaches
for design patterns support in development environ-
ments and to present the Patterns4Net project. With
Patterns4Net users can explicitly document their intent
to implement a particular design pattern. Pattern En-
forcer is able to verify most of the structural aspects
of design patterns. There are 14 built-in patterns (e.g.,
Singleton, Visitor), but custom patterns can be added
using special API for specification of their structural
constraints.

Future versions of Pattern Enforcer should sup-
port more enhanced features. Some of the more gene-
ral rules from Pattern Enforcer, such as immutability
check, could be extracted from it’s source and propo-
sed to open-source community as additional rules for
well-established open-source project Gendarme.

Software systems are getting larger and more com-
plex and this trend will continue. Changes in require-
ments are usual and reusability is important. Design
patterns provide widely accepted approach for tackling
the complexity of large systems and with tools such as
PatternsdNet we can get even more advantages from
their usage.

References

1. “Cecil — mono.” http://mono-project.com/Cecil, May
2011.

2. M. Fowler, Domain Specific Languages.
Wesley Professional, 2010.

3. “Nhibernate forge.” http://nhforge.org, May 2011.

4. “jmock - an expressive mock object library for java.”
http://www.jmock.org/, May 2011.

5. T. Ecma, “Tg3. common language infrastructure (cli).
standard ecma-335,” 2010.

6. “Common compiler infrastructure: Metadata api.”
http://ccimetadata.codeplex.com/, May 2011.

7. “Fxcop.” http://msdn.microsoft.com/bb429476.aspx,
Aug. 2010.

8. “Gendarme.”
May 2011.

9. H. Lovatt, A. Sloane, and D. Verity, “A pattern en-
forcing compiler (pec) for java: A practical way to for-
mally specify patterns,” 2007.

10. B. Bokowski, “Coffeestrainer: statically-checked
constraints on the definition and use of types in java,”
in Software EngineeringESEC/FSE99, pp. 355-374,
Springer, 1999.

11. M. Sefika, A. Sane, and R. Campbell, “Monitoring
compliance of a software system with its high-level
design models,” in Proceedings of the 18th internatio-
nal conference on Software engineering, pp. 387-396,
IEEE Computer Society, 1996.

12. T. Taibi, Design patterns formalization techniques. Igi
Global, 2007.

Addison-

http://mono-project.com/Gendarme,

