Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Stépan Sindelar

Design Patterns Support in
Development Environments

The Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Filip Zavoral, Ph.D.
Study programme: Computer Science

Specialization: Programming

Prague 2011

I would like to express sincere gratitude to my supervisor, RNDr. Filip Zavo-
ral, Ph.D., for numerous pieces of advice, corrections, and the time he spent
while guiding me during the writing of this thesis.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In ... date signature

Nazev prace: Podpora navrhovych vzoru ve vyvojovych prostredich
Autor: Stépan Sindelar

Katedra: Katedra softwarového inzenyrstvi

Vedouci bakalaiské prace: RNDr. Filip Zavoral, Ph.D.

Abstrakt: Navrhovy vzor je popis komunikujicich objektu a tfid, které jsou
prizpusobeny tak, aby resily obecny navrhovy problém v konkrétnim kontextu.
Hlavnim cilem névrhovych vzoru je dosdhnout znovu pouzitelnosti a flexibility
navrhu. Této flexibility je ovSem vétsinou dosazeno pomoci tvorby novych tiid.
Clenové vyvojového tymu Gasto nemaji dost ¢asu pro tvorbu klasické textové
dokumentace, a tedy vazba mezi tfidami a navrhovym vzorem, ktery implemen-
tuji, je ztracena. Navic nespravné pochopeni podstaty navrhového vzoru muze
zpusobit komunika¢ni chyby mezi programatory nebo dokonce chyby v softwaru.
V této praci je predstavena sada nastroju nazvanda Patters4Net urcend pro plat-
formu .NET. Programatoti mohou za pomoci PattersdNet oznacit ndvrhové vzory
ve svém kédu pomoci specidlnich atributi. Tato dokumentace muze byt nésledné
vyuzita pro verifikaci spravné implementace nékterych vzoru a ke generovani in-
teraktivnich diagramu podobnych UML tiidnim diagramum, které ale zohlednuji
vazbu mezi tfidami a implementovanymi vzory.

Klicova slova: softwarové inzenyrstvi, navrhové vzory, vyvojové nastroje

Title: Design Patterns Support in Development Environments
Author: Stépan Sindelsr

Department: The Department of Software Engineering
Supervisor: RNDr. Filip Zavoral, Ph.D.

Abstract: A design pattern is a description of communicating objects and classes
that are customized to solve a general design problem in a concrete context. The
main aim of design patterns is to make the design reusable and flexible. Howev-
er, the flexibility provided by design patterns is usually achieved by introducing
new classes into the design and developers often don’t have enough time to cre-
ate a textual documentation for them, therefore the mapping between classes and
design patterns is lost. Moreover, incorrect understanding of a specific design pat-
tern can produce communication errors, or even software bugs. In this thesis we
present Patterns4Net project that targets the .NET platform. With Patterns4Net
developers can annotate their classes using special attributes that document the
usage of design patterns in a standardized way. This documentation is then used
to verify correctness of design patterns implementation, to generate interactive
UML-like class diagrams that emphasize the connection between design patterns
and concrete classes.

Keywords: software engineering, design patters, development tools

Contents

[3.1 Design patterns documentation|
[3.1.1 Terminology|
[3.1.2 Documentation of pattern instances|
[3.1.3 Pattern instances representation|.
[3.2 Patterns structural constraints specification|
[3.2.1 Domain specific languages|
[3.2.2 'The API for pattern constraints specification|.
[3.2.3 Built-in patterns| o0

3.3 Usagel
B.3.1 Umttestsl

[3.4.1 CIL processing|
[3.4.2 Patterns representation and discovery|.
[3.4.3 CIL analysis|. L.
[3.4.4 Pattern Entorcer Design|
[3.4.5 Development infrastructure|
[3.5 Comparison|
[3.5.1 FxCop and Gendarme tools.|
[3.5.2 Pattern Enforcing Compiler (PEC) for Javal

[4.3.1 User interface logic|
[4.3.2 Diagram Classes Design|

ot Ot

15
15
15
16
16
17
18
19
20
22
24
25
28
29
30
32
34
35
37
37
37
39

[4.4.1 Pattern recognition tools|
[4.4.2 UML reverse engineering|

[> Graphviz4Net|
Is[i'l I llt!lig: ‘sl Il
[>.1.1 Graph representation|
[>.1.2 Layout builder| 0.
B2 Architecture
[b.2.1 DOT parsing.|
p.2.2 WPF Support|o

6 Conclusion|

Bibliography|

[A_Enclosed CD contentsl

[B_Installation

[C List of patterns supported by Pattern Enforcer|
[D_XML Schemasl

48
48
49
49
50
20
20

52

53

56

57

58

60

1. Introduction

The concept of a design pattern as a reusable solution to a recurring problem
was first introduced by Christopher Alexander in the field of architecture ([1]).
His book gives design patterns such as Qutdoor Room, or Arcades to architects.
Although firstly used in the domain of architecture, over last two decades, design
patterns have gained popularity also in computer science, especially in object-
oriented design and programming.

This thesis is about design patterns in object-oriented design and programming
and in the following text the term “pattern” or "design pattern” refers to these
kinds of patterns.

In general [2], a design pattern consists of

e a name to provide a common vocabulary,
e a description of a problem and it’s context,
e a proved and widely-accepted solution to this problem,

e the consequences of applying the pattern.

A design pattern provides a solution that cannot be implemented in a generic
library or a framework. The abstract ideas behind a pattern are implemented
again and again but in each concrete case a little bit differently. If we take the
Composite pattern as an example, the problem it solves is to let clients treat
individual objects and compositions of objects uniformly. The solution of the
Composite pattern suggests to create a Composite class that composes children
components and delegates it’s operations to these children components. Note
that the pattern’s solution, in this case, does not say how exactly the composite
operation must be implemented. The operation getWidth may return the width
of the largest component, or it may return the mean of all widths. But one
thing that should be fulfilled is that the composite operation uses it’s children
components to do it’s work and this fact should be transparent to the clients.
To make the example complete, let us mention one of the consequences. The
Composite pattern makes it easier to add new kinds of components.

The main aim of patterns in object-oriented design is to make the design
reusable and flexible. This is very important because changes in the functional
requirements of software during the development, or requests for new features
in an already developed software are quite usual these days. The mentioned
consequence of the Composite pattern could be an evidence for this aspiration of
design patterns.

In programming a typical mistake is to spend a consiredable amount of time
in solving something that has already been solved by someone else. Patterns, as
well as reusable libraries, frameworks and others, address and partly solves this
problem. Another advantage of patterns is the common language, or common
vocabulary. It makes communication between developers much more effective
when all of them understand what the Visitor pattern is. Even if two developers
understand the complex logic behind this pattern, it would take them some time
to find out that they both mean the same concept if they didn’t know the common
name for this pattern.

Since the first notable publication about patterns in the field of object-oriented
design by the so called Gang of Four [2], there has been a great number of books
about patterns each focusing on a different kind of pattern. For example, so
called business patterns described in [3], or the enterprise patterns from [4]. The
principles discussed in [5] might be considered as patterns as well, although on a
higher level of abstraction than the original design patterns. We could continue
to enumerate many more of them. In this thesis we mainly focus on the design
patterns as described in [2], where the authors define a design pattern as a

description of communicating objects and classes that are cus-
tomized to solve a general design problem in a particular context.

One of the disadvantages of design patterns is that they bring a new complex-
ity into the design. This complexity is caused by an introduction of new classes
and interfaces in order to provide better flexibility and reusability. Developers
often don’t have enough time to create a documentation for their classes and so
the mapping between classes and a design patterns is lost. The other members
of the development team can only study the source code, or reverse-engineered
diagrams, but neither of these emphasize the design patterns structure, which
would provide more abstract view and thus tackle some of the complexity.

Even if the code documentation includes information about implemented pat-
terns, an incorrect understanding of some design patterns by one of the develop-
ment team members may slow down the development process or even lead to an
introduction of software bugs in the system. For instance, when one part of the
system expects the objects of a specific type to be immutable, but a developer
unaware of what the immutability means changes this behavior. In this case a
formal verification might help.

While tools for a formal verification and tools for tackling the complexity
of design patterns exist, they were mainly developed as research prototypes and,
except for few of them, they didn’t get enough attention from the industry. More-
over, most of these tools target the Java platform, but only few target the .NET
platform.

Some of the reasons why the industry is not adopting design patterns verifica-
tion tools may be too much mathematical formalism involved in their usage. For
a definition of new patterns, the knowledge of formal logic is usually required.
Tools for tackling the complexity of design patterns are mostly based on an auto-
matic recognition of design patterns, whose advantage is that it does not require
additional work from developers and can be used for legacy systems, but it’s
disadvantage is that it cannot correctly recognize all the design patterns, since
the differences between some of them are only semantical (the Bridge and the
Adapter patterns) and some patterns, such as the Command pattern, are too
much abstract to be recognized only from the source code [6].

The problems described in the previous paragraphs are addressed by the Pat-
terns4Net project, whose presentation is the main aim of this thesis. Besides
this, we also provide a brief overview of existing approaches for design patterns
formalization, which is needed for formal verification and tool support, and we
give a few examples of existing tools that provide support for design patterns.

1.1 Patterns4Net

Experienced developers who use design patterns make usually this intention ex-
plicit by some kind of documentation. For instance, leaving a note ”this class
is immutable” in an API documentation may prevent the other developers in a
team from making the class mutable, or the fact that another class implements
the Composite pattern may direct the developer to implement a new operation
by delegating it to a collection of components, which should be present in the
Composite class.

An information about implemented pattern can also be helpful when a new
developer in the team tries to understand the overall architecture of the soft-
ware project. Some design patterns usually represent an infrastructural detail
rather than a domain specific code. On the other hand, if we also consider the
patterns used in the Domain-driven-design approach, these are mainly represent-
ed by domain specific classes, which are important for an overall picture of the
architecture.

Unfortunately documentation in natural language is not understandable for
software, but some kind of standardized documentation of design patterns im-
plementation would be. The main conception behind the Patterns4Net is that
developers will annotate their code using .NET attributes mechanism and the
Patterns4Net will provide tools that will take advantage of this documentation
and will support the development process.

Patterns4Net provides two main tools. Pattern Enforcer verifies some of the
structural aspects of selected design patterns implementation and Architecture
Explorer generates interactive UML-like class diagrams from .NET assemblies.
This tool uses the information about design patterns implementations to generate
more abstract and high-level diagrams than standard UML reverse engineering
tools.

1.2 Thesis structure.

In the following chapter we discuss design patterns support in development pro-
cess in general. For precise patterns support and reasoning about patterns, it is
crucial to have a formal definitions of patterns and so we explore patterns for-
malization techniques in section [2.1, The role of programming languages in the
design patterns implementation is discussed in the section Reasons for tools
support in the design patterns based development and limitations of existing tools
form the content of section 2.3

The third and fourth chapters focus on concrete tools developed as a part of
Patterns4Net; namely Pattern Enforcer in chapter [3| and Architecture Explorer
in chapter [d In both cases we firstly present features of the selected tool, then a
few use-cases, the architecture of the tool and finally comparison or related work.

A description of the Graphviz4Net a graph visualization tool for NET, which
was developed for Architecture Explorer, is provided in chapter [5

In the Conclusion, we summarize the thesis and suggest future work.

2. Design patterns support

Even though design patterns cannot be completely implemented as reusable li-
braries, there is room for some automation which can be handled by the software
to overcome some of the disadvantages of design patterns. Software tools may
enhance the implementation of design patterns on the source code level, for ex-
ample, by code generation or refactoring. On the higher level of abstraction,
during the modeling of class diagrams in UML, tools may direct a designer to
introduce suitable patterns in the design. Verification of patterns implementation
on either the source code level or the higher level object design (like UML class
diagrams) could be useful for discovering software bugs and could prevent from
communication errors, when, for instance, one of the team members is used to
use a little bit different variation of some design pattern than the others in the
team.

2.1 Patterns formalization and verification

Design patterns used to be described only in an informal manner in natural lan-
guage using graphical diagrams, usually complemented with code examples. This
representation, useful for human beings, is not suitable for a rigorous reasoning
(e.g., for formal verification) and obstructs any automation tools support. The
need for a formal specification of design patterns is obvious. In this section we
discuss the patterns formalization techniques. It is important to note that for-
malization of patterns is not intended to replace the informally written pattern
catalogs, which are ideal for learning purposes.

A pattern in object-oriented design consists of several elements. In the in-
troduction we mention a description, a solution and consequences. These parts
could also be broken down into smaller pieces. The solution part can decomposed
to a structural aspect and a behavioral aspect. In this section we focus on the
structural aspect of the solution part.

The solution part of a design pattern always contains some degree of flexi-
bility. In the introduction we provide an example of the Composite pattern and
we explain that the composite operation getWidth may be implemented as the
mean of all widths or the width of the largest children component. This kind of
flexibility is what makes the Composite pattern a pattern and not an adept for an
aspect or a generated class using meta programming E] Some authors assume that
the Composite pattern should always have the methods for adding and removing
components [6]. The ”children related operations” are indeed mentioned in [2],
but does it mean that a Composite class must always be mutable (allow to change
it’s children collection)? Does it mean that immutable quasi Composite class that
does not allow adding or removing children after it’s creation does not implement
the Composite pattern, even though it clearly solves the problem solved by the
Composite pattern and it does it in very similar way? These questions might
be another evidence for the need for a precise pattern formalization. But the
approach should balance the degree of formalization and the degree of flexibility.

L Aspects and meta programming with connection to patterns are discussed in section

We think that during the process of actual formalization of concrete patterns
the informal description should not be translated literally, because otherwise, the
formal verification would be unnecessarily strict and thus would go against the
flexibility developers expect from design patterns.

Another thing to note is that some patterns are different in the problem
part, but their solution parts are almost the same. The Bridge and the Adapter
patterns differ only in the intent: the Bridge is used during the design phase, but
the Adapter is used to wire up already existing classes.

Structural formalization

Most of the design patterns solutions involve more cooperating classes or ob-
jects. The term participant or the term role is used frequently. In the Composite
pattern solution we have a Composite class, Leaf objects and a Component, the
base interface for Composite and Leafs. This implies that if we have a set of real
classes and we choose one to play the role of the Component and one to play the
role of the Composite, the Component class must inherit from Composite class (or
implement Composite interface in the languages such as C#), otherwise it is not
a correct implementation of the Composite pattern. This is a simple example of
a structural aspect of the Composite pattern solution, whose formalization could
be rather straightforward. The same holds for the fact that in a valid implemen-
tation of this pattern the Composite class should aggregate a collection or a list
of Components.

The Composite pattern solution also guides us to implement the operations on
Composite class by delegation to the Components. This is more complicated to
formalize since a delegation to the Components can have several different forms.
The special case might be a situation when the composite operation returns a
cached value, which is refreshed after each addition or removal of a child. Besides
this very special case we could say that the composite operations should iterate
over the Components collection. Could we also say that a composite operation
should always call the corresponding operation on each of the Components? It all
depends on the degree of flexibility we want to have in our formalization. Most
of the approaches presented in [6] are relatively strict. On the other hand in
Patterns4Net we went for more flexible formal specifications of patterns solutions
and we verify only the core aspects, which should be fulfilled almost always. Thus
the users of Patterns4Net can still take the advantage of some flexibility in design
patterns implementations.

In the previous two paragraphs we rather informally describe how the for-
malization of patterns structural aspects could work. To make the approach of
formalization complete we need some instrument to precisely capture the rules
which should be fulfilled by the structure of a correctly implemented pattern. The
existing formalization techniques are usually based on mathematical formalisms.
For example, the Balanced pattern specification language (BPSL, [7]) leverages
the first-order logic, because the relations between pattern roles can be easily
expressed as predicates. In BSPL a pattern is specified using the first-order lan-
guage called Spgpr, where variable and constant symbols represent classes, typed
variables and methods, sets of these are designated C, V and M. Sggp;, provides
predicates (BSPL authors use the term relation) such as Invocation(my,ms)

where my, moy € M, which evaluates to true iﬂﬂ method m; invokes method ms.
The structural specification of the Observer pattern in Spspy, is given in figure [T}
The English names of the predicates are self-describing.

dsubject, concrete_subject, observer, concrete_observer € C;
dsubject_state, observer_state € V;

dattach, detach, notify, get_state, set_state, update € M :
Defined_in(subject_state, concrete_subject) N

Defined_in(observer_state, concrete_observer) N\

Defined_in(attach, subject) A Defined_in(detach, subject) N
Defined_in(notify, subject) \ Defined_in(set_state, concrete_subject) N
Defined_in(get_state, concrete_subject) A Defined_in(update, observer) A
Reference_to_one(concrete_observer, concrete_subject) A
Reference_to_many(subject, observer) A

Inheritance(concrete_subject, subject) A Inheritance(concrete_observer, observer) A
Invocation(set_state, notify) A Invocation(notify, update) A
Invocation(update, get_state) A Argument(observer, attach) A

Argument(observer, detach) A Argument(subject, update)

Figure 1: The structural specification of the Observer pattern in Sgspr,

To employ such formalization in a practical use for a verification or a recog-
nition, we need to evaluate the predicates according to a source code or another
representation of an object oriented program. An interesting proposal is discussed
by the authors of SPINE [§]. They suggest to use Prolog language. We can rep-
resent the constraints for pattern structure as Prolog rules and those rules that
depend on source code analysis (e.g., Invocation) can be added to the Prolog
program database using assert or removed using retract. The SPINE language
they present is based on Prolog and it comes with HEDGEHOG which is a proof
engine that parses Java programs, adds the corresponding rules to the database
and then is able to answer questions such as standard Prolog program; for exam-
ple, whether specific class implements the Singleton pattern or whether a class
that implements the Composite pattern exists in the database. Figure [2| shows
structural specification of a variant of the Singleton pattern in SPINE and a Java
class that implements the Singleton pattern according to this specification.

A promising approach might be to express patterns as stereotypes in UML
and use the Object Constraint Language (OCL, [9]) to express the stereotype
constraints. UML, as a part of the Model Driven Architecture (MDA, [10]), is
widely used technology and so the OCL, also part of the MDA, might become
popular and widely used as well in the future.

Another approach leverages the semantic Web technologies [I1]. Design pat-
terns can be defined as RDF documents instantiating a vocabulary based on the
Web ontology language (OWL). This approach also promotes the usage of design

2if and only if

realises(’PublicSingleton’, [C]) :-
exists(constructors0f(C) ,true),
forAll (constructors0f(C), Cn.isPrivate(Cn)),
exists(fields0f(C) ,F.and ([
isStatic(F),
isPublic(F),
isFinal(F),
typeOf (F,C),
nonNull (F)
).

public class PublicSingleton {
public static final PublicSingleton
instance = new PublicSingleton();
private PublicSingleton() {}

Figure 2: The Singleton pattern in SPINE and Java.

patterns as a knowledge shared among software developers. Lastly the LePUS3
[12], which is one of the most accepted and well known approaches for design
patterns formalization, provides graphical notation for expressing the structural
aspects of design patterns. Figure [3[shows specification of the Composite pattern
in the LePUS3. It can be seen that graphical notation provides more lucid (in
comparison to textual forms) form of specifying the structural aspects.

2.2 The role of programming language

The choice of a programming language determines what can and what cannot
be implemented easily. In [2] the authors assume Smalltalk/C++-level language
features. If they assumed procedural languages, they might introduce patterns
such as "Inheritance” or ”Encapsulation”. But there are also important differ-
ences between object-oriented languages. For example Groovy [I3] supports the
multiple dispatch, which lessens the need for the Visitor pattern.

2.2.1 New features

Since the first publication of [2], the mainstream programming languages went
through an evolution. For example, lambda expressions are supported in C#
since version 3.0, new versions of PHP, Java and new C++ specification all in-
clude lambda functions. This is four of the top five most popular languages [14],
therefore we can say that nowadays lambda functions can be considered as an
essential feature. Let us investigate what lambda functions may bring for design
patterns. In most design patterns solutions a polymorphism is used to "inject”
some logic that will be implemented later on and can be swapped for another.
This brings flexibility to the design.

The Template method pattern might be a good example. It defines a skeleton
of an algorithm and one or more steps of the algorithm might be altered in the

Clomp onent
dns

'\ | Foriigrd

InRerit
Component
O

Aggregate
COMD Ostte J

Crormp enent
Ope
Leaies
Camposite
Ope

Figure 3: Specification of the Composite pattern in LePUS3.

component

[

Inherit

subclasses by overriding virtual methods. When we have lambda functions we
may use them to achieve the similar flexibility. The new version of the Template
method pattern with lambda functions does not invoke virtual methods, but
the lambda functions that are passed to it as parameters, or that are given to
the object as constructor parameters. This alternative imlementation does not
require to create a new class each time we want to implement a new set of steps
that alternate the algorithm. On the other hand we have to provide the lambda
functions and if they are long enough we may still end up with refactoring them
to methods and these methods to a new class. A good compromise might be
to implement the Template method as usual, but provide a subclass that invokes
lambda functions, which it gets as constructor parameters. The method ForEach(
Action) from the List class from the NET Base Class Library might be considered
as a simple example of such Template method with lambda function.

Another well known example of features that ease the Observer design pattern
implementation are delegates and events in C#. They are supported in C#
because the Observer pattern is suitable for event driven applications, which are
developed in the NET quiet often. Java and Swing, on the other side, use the
Command pattern to invoke some code in response to a GUI event. Implementing
each event response as a separate class (command) is not so tedious in Java as
it would be in C#, because Java supports anonymous classes, which are missing
from C#.

Some modern languages support advanced and innovative features in the field
of object oriented programming, which could ease the implementation of design
patterns even more. Such features include aspects or meta-programming. Special
tools can also enable these in C# or Java. The implementation of some of the
design patterns in ApectJ, aspect oriented extension for Java, is presented in [15].
[16] presents Ruby’s advanced features (e.g., meta programming) that simplifies
the implementation of design patterns.

10

interface IGraph

{
IEnumerable Vertices { get; 7}
IEdge { get; set; %}

Figure 4: Non-generic IGraph interface

interface IGraph<T>

{
IEnumerable<T> Vertices { get; }
IEdge<T> { get; set; }

Figure 5: Generic IGraph interface

2.2.2 New design problems

The new features of programming languages bring us also new design problems.
An example might be the pattern from the .NET that we call Flexible Generic
Interface, which leverages .NET feature of an explicit interface implementation to
overcome the problem of implementing non-generic interfaces (e.g., [Enumerable)
and their generic counterparts (e.g., IEnumerable<T>) in a one class.

Imagine that we implement a graph library in .NET. We have the IGraph
interface aggregating edges and vertices and we want it to be flexible, so we don’t
restrict the vertices to be objects of any specific type. This way users can create
a graph containing integers and strings at the same time. The example of such
interface is in figure [4]

Now users can add whatever they want as a vertex, but some users may want
to work with just a one type of vertices. In the case of the non-generic IGraph
they would have to cast all the objects they get from the IGraph interface. An
unnecessary casting was one of the reasons for introducing the generics into the
NET runtime. The generic version of the [Graph interface might look like in
figure

If we had these two interfaces separately, then we would have to implement
each graph algorithm in two versions — one for the generic, and the other for the
non-generic version of the IGraph interface. This is far from ideal, so what we do
is to let the generic interface implement the non-generic one. Because the names
of the members are the same, we have to use the new keyword as in figure [0]

How shall we now implement the new interface? That is where the explicit
interface implementation comes to play. The generic methods are implemented

interface IGraph<T> : IGraph
{

new IEnumerable<T> Vertices { get; }
new IEdge<T> { get; set; }

Figure 6: Generic IGraph interface implements the non-generic one.

11

class Graph<T> : IGraph<T> {
private IList<T> vertices = new List<T>();
public IEnumerable<T> Vertices {
get { return this.vertices; }
}
IEnumerable IGraph.Vertices {
get { return (IEnumerable)this.vertices; }
}
/] ...

Figure 7: Fragment of implementation of the generic IGraph interface.

as usual, but the non-generic methods are implemented using this feature. We
can see a fragment of the implementation in figure [A consequence of this
implementation is that we have to explicitly cast the class to non-generic IGraph
if we want to work with the non-generic versions of the methods, but normally
we don’t want to do so, unless we pass our graph as a parameter to an algorithm
which works only with the non-generic version of the interface, but in such case
case, the cast is done automatically.

2.2.3 Future trends

The mainstream programming languages are usually not adopting new features
because their authors want to ease the implementation of design patterns, but
they normally adopt features that help to solve more general problems such as
lambda functions. These features might make some design patterns obsolete or
almost disappear, for instance, the Observer pattern in .NET, but they also might
bring new challenges. The authors of the mainstream programming languages,
usually corporations or standardization committees, don’t want to add features
that will be only useful in some rare situations, because then the language would
be overcomplicated. Some patterns (e.g., the Flyweight pattern) are too complex,
abstract or not so widely used, so that direct support for their implementation
in languages such as Java or C# is not likely in the near future.

2.3 Tools support

Some of the complexity of implementing and maintaining design patterns is
caused by an introduction of new classes and new methods into the design. Dur-
ing the development, the connection between the classes and the concrete design
patterns roles might be lost and the system that used to be well designed, per-
fectly lucid and easily extensible becomes the exact opposite. Design patterns
might provide an abstraction that helps to develop large software systems. For
example, when a specific class hierarchy does not change often, but the opera-
tions over these classes are being constantly added or removed, then the Visitor
pattern is suitable. Developers who already know the Visitor pattern don’t need
to study how the double dispatch in this pattern is implemented. If they want
to add a new operation and they have the information that these classes can be

12

visited by an instance of the Visitor, the task becomes easy. However, if the
intent to use the Visitor pattern is not clear, some developers might start adding
new operations directly to the classes that can be visited and the system becomes
inconsistent. One could conclude that, if the system had been designed without
the Visitor pattern from the first moment, it could paradoxically be better.

The reasons for possible misunderstanding when design patterns are involved
in the code might be either a complete lack of a documentation, or either an
inaccuracy of a textual documentation in natural language. One possibility to
overcome these problems might be a standardized documentation of design pat-
terns instances. For the Java platform there is a project called JPatterns ([17]),
which provides the annotations to mark patterns in Java code. At the moment it
only provides a javadoc documentation for the annotations and the annotations
itself. We are not aware of any similar approach for the .NET platform.

The standardized documentation won’t prevent developers from violating the
principles of implemented design patterns, although it could help a lot with this
problem. To take even more advantage of the documentation, a verification tool
that would enforce some aspects of design patterns could be implemented. Such
tool might, for example, prevent a developer from direct communication with an
object of specific type, when this communication should in fact be done through
the Mediator object.

Moreover, during the process of implementing a pattern, the abstract idea be-
hind the pattern is broken down into several classes or methods. With a standard-
ized documentation we could reconstruct it back a thus provide a more abstract
view on the software system.

While tools for formal verification and tools for reconstructing abstract design
patterns from a set of concrete classes exist, most of them do not leverage stan-
dardized documentation of design patterns that is located directly in the code
and direct location of documentation in the source code may motivate developers
to keep it up to date. Moreover, except for few of these tools, they didn’t get
enough attention from the industry and most of them target the Java platform,
but only few target the .NET platform.

Some of the reasons why the industry is not adopting the design patterns ver-
ification tools may be too much mathematical formalism involved in their usage.
For definition of new patterns, knowledge of formal logic is usually required.

Tools that reconstruct abstract design patterns from a set of concrete classes
are mostly based on an automatic recognition of design patterns, whose advantage
is that it does not require additional work from developers and can be used for
legacy systems, but it’s disadvantage is that it cannot correctly recognize all the
design patterns, since some of them don’t differ in the solution part, or are too
much abstract to berecognized only from the source code.

2.3.1 Patterns4Net

In order to evaluate the ideas stated in the previous paragraphs, we implemented a
prototype project called Patterns4dNet, which is a set of tools that support the de-
velopment of an object oriented software on the .NET platform. These tools take
advantage of a special documentation about patterns solution participants (in
the following text referred as ”patterns meta-data”), which is usually expressed

13

using custom .NET attributes provided by Patterns4Net (in the following text
referred as ”PatternsdNet attributes”), but this mechanism is extensible and the
patterns meta-data may be discovered using, for example, naming conventions, or
anything else that can be inferred from CIL meta-data. There are predefined pat-
terns in the standard distribution of Patterns4Net, but users can add their own
patterns. Patterns4Net consists of Pattern Enforcer and Architecture Explorer
tools.

Pattern Enforcer checks marked pattern implementations in .NET assemblies
against constraints written in C# using special API. Users can add constraints
for their custom patterns or even just idioms or simple conventions such as ”all
methods in domain classes should invoke Logger.Log method”.

Architecture Explorer leverages the patterns documentation to generate UML-
like class diagrams that support a notion of zooming in and out which adds or
removes details from the diagram. Such way a developer can have a general
overview of the architecture or he can zoom to a specific class and see all related
classes. The decision whether class should be displayed in the general overview or
whether it should be displayed only in the highest zoom is based on the patterns
roles it implements. Some patterns represents rather an infrastructural detail, on
the other hand, for instance, patterns from [5] or from [4] are usually represented
by domain specific classes.

14

3. Pattern Enforcer

Pattern Enforcer is a tool that verifies selected structural aspects of design pat-
terns. There are several built-in patterns, but users can also add their custom
patterns using the special API. Pattern Enforcer needs to know which classes
are supposed to implement which pattern in order to enforce its correct imple-
mentation. For this purpose the Patterns4Net special documentation for pattern
solution participants is used.

This chapter starts with the explanation of Patterns4Net — the common infras-
tructure for Pattern Enforcer and Architecture Explorer. Patterns4dNet handles
discovering of the patterns meta-data and representation of design patterns in-
stances. Then the description of Pattern Enforcer tool itself follows.

3.1 Design patterns documentation

3.1.1 Terminology

A design pattern is an abstract entity, which, among other things, primarily de-
scribes a solution to a recurring problem. The description of the solution usually
contains a certain degree of flexibility. If such a design pattern is implemented
by a developer, he transforms the abstract ideas behind the pattern into a real
source code. For example, participants of the Composite pattern are transformed
into the concrete classes in real source code, or a method for the creation of a
Product object, described in the Factory Method pattern, is implemented by a
concrete method. When the participants of a certain pattern are implemented
by the concrete elements in the source code, we say that these elements form
an instance of the pattern. For better illustration, an instance of the Composite
pattern is given in figure[§ From the structural point of view the Composite pat-
tern has two roles: the Composite class (in this particular instance represented
by the WidgetComposition class) and the Component interface (in this case, the
IWidget interface), which should be implemented by the Composite class.

using System;
public class WidgetComposition : IWidget

{
private IList<IWidget> children;
public int Width
{
get { return children.Sum(x => x.Width); }
}
}

Figure 8: Example of the Composite pattern instance.

15

3.1.2 Documentation of pattern instances

If we consider the example from figure [§ Pattern Enforcer doesn’t know that the
WidgetComposition class should implement the Composite pattern, and therefore
Pattern Enforcer doesn’t know that it should enforce the structural aspects of
the correct implementation of the Composite pattern on the WidgetComposition
class. For this purpose we need to create a mapping between concrete elements
in a source code and the pattern participants they are supposed to implement.
We call this mapping as a design patterns participants mapping.

Since PatternsdNet and therefore Pattern Enforcer works with .NET assem-
blies the design patterns participants mapping can be created from any data
included in .NET assemblies. It can be constructed from naming conventions, for
example, classes whose name starts with "Null” can be said to be implementa-
tion of the Null Object pattern; or the mapping can be constructed from special
meta-data added into the .NET assembly by it’s author in order to explicitly
document his intentions to implement such and such pattern. We call this kind
of meta-data as patterns meta-data.

Patterns4Net provides an extensible mechanism for construction of design
patterns participants mapping from .NET assemblies data. At the moment it
supports pattern meta-data expressed as .NET attributes. Class that plays the
main role in particular design pattern implementation is decorated with a special
attribute and references to classes that implement another roles in the pattern so-
lution, if there are any, can be inserted as arguments for this attribute. For better
illustration, a code example is provided in figure [0 Here the WidgetComposition
class is decorated with the Composite attribute, which also allows us to pro-
vide a Component type as a constructor parameter. Explicit specification of a
Component type is required when a Composite class implements more than one
interface, otherwise the Component type can be inferred automatically.

using Patterns4Net.Attributes;
[Composite(typeof (IWidget))]
public class WidgetComposition : IWidget, ICloneable
{
private IList<IWidget> children;
public int Width {
get { return children.Sum(x => x.Width); }
}
/] ...
b

Figure 9: An example of attributes driven documentation of pattern instances.

3.1.3 Pattern instances representation

In order to use the design patterns participants mapping, Patterns4Net needs
to have data structures that represent the mapping. For this purpose standard
C# classes are used and instances of these classes represent the instances of
design patterns. An object that represents a pattern instance provides a name of

16

the pattern, and the references to the elements that participate in this pattern
instance. For example, the object that represents the Composite pattern instance
from figure [9) returns the string ”Composite” as the pattern name and it provides
references to the WidgetComposition as the Composite class role and to the
IWidget interface as the Component interface. Each pattern has a specific set of
participants and therefore for each pattern, there is a specific class.

The classes for the pattern representation provide the name of the pattern and
the references to the pattern instance participants as standard .NET properties.
The references to code elements (that is classes, interfaces, methods, etc.) are
represented by instances of Mono Cecil’s classes, which are similar to the System
Type type from the standard library (e.g. TypeReference, [18]). Mono Cecil’s
types are used, because we use Mono Cecil for parsing of .NET assemblied]
Figure [10] demonstrates an example of the Composite pattern definition.

public class Composite : IPattern

{
public TypeDefinition Composite { get; set; }
public TypeReference Component { get; set; }
// The Name is required by IPatter interface
public string Name {

get { return "Composite"; }

}

}

Figure 10: The Composite pattern definition for Patterns4Net.

3.2 Patterns structural constraints specification

There are two possibilities to capture the structural constraints of a particular
pattern that should be verified by Pattern Enforcer. The constraints can be hard-
coded in the Patter Enforcer itself, or they can be located in external files and
expressed in a special language, which would ease the addition of constraints for
new design patterns.

We used a compromise approach in Pattern Enforcer. We developed a special
C# API for the specification of the structural aspects of design patterns, therefore
the specification itself is expressed in a standard C# (or any other .NET language)
code, but the author of the specification is provided with a set of classes and
methods that ease this task. The code that expresses the specification can be then
loaded into Pattern Enforcer at runtime using the standard .NET mechanisms
designated for this purposes. When we made this decision, we had considered
several important consequences: the authors of the specification will be able to
use the provided API or, if the API is not sufficient for their purposes, they
can take the advantage of the full power of C#. We didn’t have to develop a
parser for a special language; and, since the users of Pattern Enforcer are .NET

'Reasons why we have chosen Mono Cecil and more detailed information about it are pre-
sented in subsection [3.4.1]

17

programmers, they will learn the C# API with less effort than a new syntax of
a special language.

In the rest of this section we describe the API for the patterns structural
constraints specification in more detail. Because this API can be considered as
an example of so called Domain Specific Language (DSL, [19]) and because it also
uses a technique called Fluent API, we discuss these two concepts in the following
subsection.

3.2.1 Domain specific languages

Domain Specific Language (DSL) is a computer programming language of limited
expressiveness focused on a particular domain. There are two types of DSLs:
internal and external. The external DSLs are completely new languages with
their own custom syntax, while the internal DSLs are embedded into existing
general purpose language such as C#, Java or Ruby by providing specific public
API. When developing an embedded DSL, a programmer do not have to create a
parser for his DSL, but he can be limited by the syntax of the "hosting” language.

In the connection with the embedded DSLs, the term type-safe DSL is often
used. Type-safe DSLs use constructs that can be verified by a compiler rather
than strings with a special internal syntax that can be verified only during the
runtime or by an additional tool. For example, NHibernate ORM framework
([20]) has such API for a definition of objects to database schema mapping.
Instead of expressing the names of properties as strings, NHibernate exploits the
C#’s feature of lambda expressions for this purpose, and thus the existence of
the properties used in the mapping is verified by the C# compiler. For a better
idea of this approach, figure 11| shows a short example of the NHibernate DSL
usage in C#. Note that all text in this figure forms a perfectly valid C# code,
although it may seem as a special language.

var mapper = new ModelMapper();
mapper .Class<RegisteredUser>(mapping =>
{
mapping.Id(x => x.Id, map => map.Column("MyClassId"));
mapping.Property(x => x.Username, map => map.Length(150));
s

Figure 11: Example of type safe DSL embedded into the C# language.

The usage of type safe DSLs also enables integrated development environments
support. Namely intellisense support can make the development more effective
and can bring a better experience for developers who don’t know the DSL syntax
yet, because they can see all the possibilities in the intellisense window together
with their API documentation. On the other hand, after every change, the code
has to be recompiled and the assembly must be deployed, which is not always
possible. An xml based configuration or an external DSL might provide more
flexible solution in such case.

Embedded DSLs usually leverage a technique called Fluent API, which means
that a method returns an object on which a user is expected to invoke anoth-
er method. This chaining of methods can make the API more self describing,

18

because methods names and their arguments names can be then read almost as
an English sentence. An example of the Fluent API from jMock, a mock object
library for Java [21], is show in figure [12]

mock . expects (once())
.method ("m")
.with(stringContains("hello"));

Figure 12: An example of methods chaining in Fluent API.

3.2.2 The API for pattern constraints specification

Because we have a strongly typed representation of design patterns instances, we
can build a type safe DSL for their constraints specification, where we will use
lambda expressions in a similar way as the authors of NHibernate.

In our conception, a constraint is any boolean function that takes a pattern
instance as a parameter and returns a boolean value, which indicates whether the
pattern instance conforms to the constraint or not. However, Pattern Enforcer
provides a DSL to make the specification of these constraints easier than that.
The key part is that it enables to specify the constraints as lambda functions.
We call such function a ”check”.

A check may be performed on the whole pattern instance, then the parameter
of the lambda function will be the object representing the pattern. These checks
may verify the relations between roles, for example, that the Composite class
implements the Component interface. Users can also set up checks only for a
specific role of a pattern instance. In such case, the Pattern Enforcer API provides
a method to select the specific property of the pattern instance object with a
lambda function the same way NHibernate uses lambda functions for selecting
properties. After the property is selected, the user can create a check only for
the value of the selected property (that is for a particular role). Finally the user
can also select specific methods of the selected role to provide a check for each of
them. The selection of these methods is also done using a lambda filter function.

To summarize it all up: users can select a subject of the check, using lambda
functions, and then they can enter the check itself again as a lambda function,
which takes the subject of the check as a parameter. For a better idea, an example
is shown in figure [13]

// we want to work with the Composite role

this.Type(composite => composite.Composite)

// we want to check all its non-private methods

.Methods (method => method.IsPublic || method.IsProtected)

// on each of them, we perform the following check

.Check((composite, method) => method.CallsAnyOf (pattern.Component),
(composite, method) => "An error in " + method.Name));

Figure 13: An example of constraints configuration in Pattern Enforcer.

A check expression might be anything, which enables wide range of possibili-
ties for experienced users, but Pattern Enforcer provides an easy to use extensions

19

to underlying Mono Cecil’s API. CallsAnyOf is an example of such extension,
which returns true iff the method invokes a member of given class. Basically
these extensions are designed to enable straightforward specification of most of
the predicates presented in section 2.1}

3.2.3 Built-in patterns

As we claim in section constraints for the built-in patterns were chosen rather
less restrictively than in the other tools of this type. The aim was to enforce
those aspects that are strongly significant to given pattern and the implementa-
tion without them cannot be clearly called as an implementation of this pattern.
For example, the Factory Method pattern, whose main participant is the Factory
Method itself, would make no sense if the actual Factory Method was void. On
the other hand, to enforce that the method’s body contains only a constructor
invocation and a return statement, seems to us as an inappropriate restriction,
because the developer might want to prepare some data structures before return-
ing the Product of the Factory Method. A list of patterns supported by Pattern
Enforcer can be found in appendix [C]

The relatively unrestrictive API for patterns constraints specification allows us
to provide more advanced verification than only verification of structural aspects.
This is the case of the Immutable pattern. The verification of it’s implementation
checks that the Immutable class does not allow to change the internal state of
it’s instance once it is available to the ”outside world”. What does this bring us?
A simple immutability in C# can be enforced by specifying all the class’s fields
as readonly, but this disables the creator of the class to provide a Simple Facto-
ry Method that would do some changes to the Immutable class instance before
the method returns it to the ”outside world”. Also auto-implemented proper-
ties, which bring a notable simplification of implementation of simple properties,
cannot be specified as readonly.

We will illustrate the process of choosing the structural constraints that should
be verified by Pattern Enforcer on the example of the Template Method pattern
and the Adapter pattern.

Template Method

The main role of the Template Method pattern is a template method, which
defines the skeleton of an algorithm. The template method invokes one or more
virtual methods, which are expected to implement certain steps of the algorithm.
Because these methods are virtual, one can override them in a sub-class and thus
alter some steps of the algorithm without the need to write the whole algorithm
from scratch.

The core of the Template Method pattern are invocations of virtual methods
that can alter the algorithm. From a first look, one could say we should enforce
that the template method invokes at least one virtual method. However, a tem-
plate method that invokes another non-virtual method that then invokes another
virtual method can be considered as an implementation of the Template Method
pattern as well, because it also allows us to alter the algorithm in sub-classes. We
can recursively check all methods that are invoked from our template method, but

20

it would be unsystematic. Instead, a simple observation can help: non-virtual
methods that invoke virtual methods are usually also implementation of the Tem-
plate Method pattern. So the conclusion is that a template method should invoke
at least one virtual method or at least one another template method.

It is considered a good practice with the Template Method pattern to declare
the template method as non-virtual (sealed) and so we enforce this too.

The specification of constraints for the Template Method pattern is shown in
figure (we stripped out the full error messages from it). As a first step we
check that the type that declares the template method is not sealed and therefore
it can be sub-classed. If this is fulfilled, we check that the template method calls
at least one virtual method or another template method.

// check that declaring type is not sealed:
this.Type(pattern => pattern.TargetMethod.DeclaringType)
.Check(type => type.IsSealed == false,
(pattern, type) => "...error message...");

// check that template method invokes at least one virtual method

// or another template method:

this.If (pattern => !pattern.TargetMethod.DeclaringType.IsSealed)
.Method(pattern => pattern.TargetMethod)

.Check(
method =>
method.GetMethodCalls() . Any(
call =>

call.TargetObject !'= null &&
call.TargetObject.IsThisParameter &&
(IsTemplateMethod(call.Method) ||
call.Method.Resolve() .IsOverriddeable())),
(pattern, method) => "...error message...");

Figure 14: The specification of the built-in Template Method pattern.

Adapter

The Adapter pattern solves the problem of two incompatible interfaces: the
Target interface and the Adaptee interface. It suggest to create an Adapter class
that uses the Adaptee interface and adapts it to the Target interface. The most
usual implementation of this pattern is done by implementing the Target interface
by the Adapter class, which holds an instance of the Adaptee interface as a private
field and delegates operations to it.

Only in rare cases the Adapter class just delegates all it’s operations to the
Adaptee. Usually it is needed to convert either parameters values or a return
method value. The Target interface might not have the same number of methods
as the Adaptee, therefore some Target’s methods might be delegated to more than
one Adaptee’s method; or a Target’s method might not have a corresponding
method in the Adaptee, so it is performed by the Adapter class without any help
from the Adaptee.

21

It would be very difficult or almost impossible to capture some useful con-
straints about methods delegation in this case. The Adapter pattern is one of the
patterns whose solution contains a certain degree of flexibility. One possibility is
to enforce that the Adapter class delegates at least one operation to the Adaptee,
but when the Adapter class has a field of the Adaptee type and does not use it at
all, the programmer will be anyway warned by the compiler. Therefore the only
two constrains that seems to us as useful, but still does allow the flexibility in
the implementation of the Adapter pattern, are: the Adapter class should have
at least one field of the Adaptee type, and the Adapter class should implement
or inherit the Target interface.

Another special case appears when the implementation of the Adapter pattern
does not adapt an interface of a class, but, for example, a procedural interface or
an interface to a device. In such case we cannot enforce even existence of the field
of the correct type. Similarly when the Target interface is not standard .NET
interface, we cannot enforce that the Adapter class implements it. Therefore, we
allow users to omit the Target or Adaptee types. If they do so, nothing is enforced,
but the documentation of patterns participants is still useful for Architecture
Explorer.

The final specification of constraints for the Adapter pattern is given in fig-
ure

this.If (pattern => pattern.TargetInterface != null)

.Check(pattern => pattern.WrapperType.Implements(pattern.Target),
pattern => "...error...");

this.If(pattern => pattern.WrappedType != null)

.Check (HasFieldOfType,
pattern => "...error...");
/...
static bool HasFieldOfType(Adapter pattern)
{

return pattern.WrapperType.HasFields &&
pattern.WrapperType.Fields.Any(x =>
x.FieldType.IsEqual (pattern.WrappedType)) ;

Figure 15: The specification of the built-in Adapter pattern.

3.3 Usage

If a user wants to take advantage of Pattern Enforcer, one possible way to achieve
it is to decorate his types with pattern attributes. For this, it is required to
add a reference to the Patterns/Net. Attributes.dll assembly in the project. This
assembly contains only the attributes definitions, thus it’s footprint should be
minimal. It is built for .NET version 2.0, so Pattern Enforcer can be basically used
in projects built for older versions of the .NET. When the reference is added, the

22

types can be decorated with patterns attributes from the namespace Patterns4Net
Attributes.

using Patterns4Net.Attributes;
[Composite (typeof (IWidget))]
public class WidgetComposition : IWidget, ICloneable
{

private IList<IWidget> children;

int IWidget.Width {

get { return 10; }

X

/] ...
b

Figure 16: An example of an annotated implementation of the Composite pattern.

Figure contains an annotated implementation of the Composite pattern,
which is not valid, because the getter method of the Width property is not using
the children collection.

Pattern Enforcer can be run outside the Visual Studio or inside the Visual
Studio. When the Visual Studio project is built, there should be a resulting
assembly in the output folder (usually {project folder}\bin\Debug). Say it’s
name is FEnforcerExample.dll. Then if the pattern-enforcer.exe is run from the
command line supplied with a path to EnforcerExample.dll as an argument, it
should produce the output shown in figure [I[7] Pattern Enforcer supports three
output formats: plain text, xml and special format for Visual Studio. The output
format could be specified with a command line option. When Pattern Enforcer
is run without arguments, it displays the help.

Besides the direct execution of pattern-enforcer.exe, Pattern Enforcer can be
integrated more tightly into the build process in Visual Studio. Visual Studio
project files are basically MSBuild scripts, so the only thing a user has to do is
to add a reference to Pattern Enforcer MSBuild task and invoke it in the After-
Build target, which, as its name indicates, gets always executed after the source
code is built. To enable this integration, it is needed to to open the project file
EnforcerExample.csproj in any text editor, find the xml root element Project
and just below it, insert a UsingTask tag, where the location of the PatternkEn-
forcer. MSBuild Task. dll assembly should be specified. Next, the AfterBuild target
should be located (it should be commented out and placed near the end of the

EX CA\Windows\system3Zicmd.exe |5|E‘—g—hj

~EnforcerExample . _%._.xintegrationsreleaszespattern—enforcer —config—file enforjh
cer—config.xml .~bhin“Debug“EnforcerExample.dl11

m

Tupe WidgetComposition, pattern Composite — ERROR. <{checked rules: 3, errors: 2>

The class WidgetComposition should contain a generic collection of components e

.g- IEnumerabhle{IWidget>> as one of it's fields.

The composite method get_Width in class WidgetComposzition seemz not to iterate t
throuwgh the collection of components. Try wusing foreach loop or Ling extension me
thods to process the collection.

Figure 17: The output of Pattern Enforcer for the WidgetComposition class.

23

file), it should be uncommented, and an invocation of the Pattern Enforcer task
should be inserted as it’s child element. Figure 18| shows the xml code fragment
and also a screenshot of Visual Studio displaying the warnings.

<Project ToolsVersion="4.0" DefaultTargets="..." xmlns="...">
<!-- Includes the PatternEnforcerTask -->
<UsingTask TaskName="PatternEnforcerTask"
AssemblyFile=".\a\path\to\PatternEnforcer.MSBuildTask.d11"/>

Rl= ., =>
<PropertyGroup>
<PatternAssemblies>
$ (OutputPath) /$ (AssemblyName) .d11;
</PatternAssemblies>
</PropertyGroup>
<Target Name="AfterBuild">
<PatternEnforcerTask
ToolPath="..\a\path\to\pattern-enforcer-executable\"
ConfigFile=".\enforcer-config.xml"
ShowErrorsAsWarnings="true"
InputAssemblies="\$(PatternAssemblies)">
</PatternEnforcerTask>
</Target>
</Project>
Error List
&) 0 Errors | B 5 Warnings | [i) 0 Messages

. . £
Description

& 2 Theimplementation of pattern Base Caller in Fancylabel seems not to be valid. Reason: The class Fancylabel does not cal
method RenderText

i The implementation of pattern Compaosite in WidgetCompaosition seems not to be valid. Reason: The class WidgetCompa

collection of compeonents, e.g. IEnumerable<IWidget>, as one of it's fields.

& 5 Theimplementation of pattern Compesite in WidgetCompesition seems not to be valid, Reason: The composite method
WidgetCompuosition seems not to iterate through cellection of components, Use foreach loop or Ling methods,

Figure 18: Integration of Pattern Enforcer and Visual Studio 2010.

Checking by Pattern Enforcer can be turned off for a specific element by
annotating it with a special attribute PatternEnforcerIgnoreAttribute, which has
a string property Justification , where developers should provide a description
why they have disabled the checks on this class or method.

3.3.1 Unit tests

The second possible way of taking advantage of Pattern Enforcer does not re-
quire to annotate classes with pattern attributes. Instead the relation between
a concrete pattern and it’s roles is constructed by hand in an automatized test.
Pattern Enforcer provides the PatternEnforcerContext class whose instance rep-
resents an assembly loaded into memory and prepared for execution of Pattern
Enforcer checks. It is recommended to set up this object in the test fixturd?] set

2This term is used by the NUnit framework ([22]), some of other xUnit frameworks also use
the term ”test suite” instead of a test fixture.

24

up method, which is a method that gets executed only once before any test from
the test fixture is executed. The PatternEnforcerContext provides a method
AssertThat, which has one generic parameter. This method returns an object
that provides methods with names Is{PatternName}, which perform the check of
conformance to given pattern. The type selected as the generic argument of the
call to AssertThat is used as main role of the pattern, other additional required in-
formation, if needed, are supplied as parameters of the Is{ PatternName} method.
Figure[19|shows an example of such test fixture using the NUnit framework ([22]).

[TestFixture]
public class WidgetCompositionTests : IWidget, ICloneable

{
private PatternEnforcerContext patternEnforcer;
[FixtureSetUp]
public void SetUpFixture() {
this.patternEnforcer =
PatterEnforcerContext.Create("EnforcerExample.dll") ;

+
[Test]
public void WidgetComposition_Is_Composite() {
this.patternEnforcer
.AssertThat<WidgetComposition>()
.IsComposite(typeof (IWidget));

Figure 19: Example of an automatized test that invokes Pattern Enforcer.

3.3.2 Specification of custom pattern

There are two possibilities to define a pattern and constraints that will be en-
forced on it’s implementation. The first one is more complex, but provides better
flexibility, and thus is used internally by Pattern Enforcer. The second one is more
simple and is designed to provide an easier instrument to create user-defined pat-
terns. The first approach is described in section [3.4.2] Here we show how to use
the second one.

We describe an example of an implementation of a simple custom pattern
from a user perspective. We will call our new pattern as the Base Caller. 1t has
two roles: the Target class and the Target’s base class. The constraint we specify
for this pattern is that the Target class is required to invoke the corresponding
base methods in the bodies of overridden methods. We describe how to create a
class that represents our pattern and attribute for it’s documentation, then we
specify the constraints for our new pattern and then we show how to load our
new pattern into Pattern Enforcer.

Representation of custom pattern

25

A custom pattern is represented by a class that implements the IPattern in-
terface and it is also recommended to implement the IPatternAttribute interface,
which is just a marker for pattern attributes. This class is used for representation
of the pattern and at the same time as an attribute for annotating the pattern in-
stances in code, therefore it should inherit from the Attribute class from standard
.NET library.

The TPattern interface requires just a getter of the property named Name
and a getter of the AbstractionLevel property, which is used by Architecture
Explorer (for now, null can be used as a default value). The value of the Name
property should be a human readable name of the pattern, which may contain
any characters including spaces. The IPattern interface does not require any
other properties, but the creator of the pattern should add other properties for
representing the pattern participants, in this case the Target and it’s base class.
Because these properties should contain references to other types, they will be of
type TypeDefinition. The implementation is shown in figure [20]

public class BaseCaller : Attribute, IPattern, IPatternAttribute
{
string IPattern.Name {
get { return "Base Caller"; }
}
public TypeDefinition TargetType { get; set; }
public TypeDefinition BaseType { get; set; }

Figure 20: The implementation of custom user-defined pattern.

Implementation of the Base Caller attribute

During the processing of patterns attributes, Patterns4Net needs to reconstruct
the BaseCaller attribute instance from CIL meta-data. The meta-data does not
contain an instance of the attribute, instead it contains only values of constructor
arguments used for its instantiation in the original source code and names and
the values of the properties that were assigned. For example, meta-data for
the standard .NET Obsolete attribute as it is used in figure |21 contains: zero
constructor arguments, because the parameterless constructor of the Obsolete
attribute is used; and one property with name Message and it’s value.

[Obsolete(Message="A constant value")]
public class AnnotatedClass

{
}

Figure 21: A code example to illustrate CIL metadata for attributes.

For the purpose of the reconstruction of pattern attributes from CIL meta-
data, classes that implement both the pattern and it’s attribute are required to

26

define a constructor with one parameter of type IDictionary<string, object> [}
The pattern attribute class should be able to reconstruct it’s instance from this
dictionary, which provides the CIL meta-data in the following format:

e Constructor Arguments — indexed by the number of the position. For ex-
ample, the first argument, if any, will be under the index ”0”.

e Attribute’s target — a TypeReference instance that contains a reference to
the type that was decorated with this attribute. This value is available
under the index 7 —Target”.

e Assigned properties — the remaining entries of the dictionary are name-value
pairs representing the properties. If the original property is of type System
.Type, than it’s actual value in the dictionary will be TypeReference from
Mono Cecil referring to the same type.

The implementation of such constructor for the BaseCaller class is shown in
figure[22] (Note: an instance of the TypeReference class from Mono Cecil can be
converted to the corresponding TypeDefinition instance using method Resolve()
as in the example.)

public class BaseCaller : Attribute, IPattern, IPatternAttribute
{
public BaseCaller(IDictionary<string, object> values) {
var targetRef = (TypeDefinition)values["-Target"];
this.TargetType = targetRef.Resolve();
this.BaseType = this.TargetType.BaseType.Resolve();
+
// ... as before
b

Figure 22: The implementation of a special constructor required by Patterns4Net.

Constraints specification

The pattern attribute, as declared in figure 22| can be used for annotation of
classes that implement our Base Caller pattern. However, to verify that such class
invokes corresponding base methods in overridden methods bodies, the last two
things are needed. The first one is to implement the [PatternCheckerProvider
interface, defined in the assembly PatternFEnfocer.Core.dll. This interface con-
tains one method GetChecker, which should return an instance of a constraints
checker for the pattern. The last thing needed is to create the checker itself.
The FluentPatternChecker class, which implements the DSL described in sub-
section [3.2.2] is intended to be the base class for pattern checkers, although a
minimal pattern checker has only to implement the [PatternChecker interface.
The implementation of a checker for the Base Caller pattern is similar to the
specification of the built-in patterns, which is described in subsection [3.2.3] For
completeness of the example, figure [23|shows the final implementation of the Base
Caller pattern.

3More technical reasons that lead to this decision are given in section

27

public class BaseCaller : IPatternCheckerProvider,

{
// ... same as before
public IPatternChecker GetChecker() {
return new Checker();

}

private class Checker : FluentPatternChecker<BaseCaller> {
public Checker() {
this.Type(pattern => pattern.TargetType)
.Methods (method => method.0OverridesBaseMethod())
.Check((pattern, method) =>
method.GetMethodCalls() !'= null &&
method.GetMethodCalls() .Any(call =>
call.HasTargetObject &&
call.TargetObject.IsThisParameter &&
call.Method.DeclaringType.IsEqual(
pattern.TargetBase) &&
call.Method.Name == method.Name),
(pattern, method) =>
string.Format (
"Method {0} does not invoke the base method.",
method.Name)) ;

Figure 23: Definition of the checker for the Base Caller pattern.

Addition of the Base Caller to Pattern Enforcer

Finally Pattern Enforcer has to be informed that it should load the assembly
that contain the custom pattern definition and search it for custom patterns
definitions. For this purpose, it is required to provide the assembly location
in a Pattern Enforcer configuration file. The configuration is an xml file (the
pattern—enforcer—config.xsd file with definition of it’s structure is supplied with
Patterns4Net and included in the appendix @ The location of a configuration
file is provided to Pattern Enforcer as a command line option, or the parameter
of the MSBuild task.

3.4 Architecture

In this section the architecture and the implementation of the common Pat-
terns4Net infrastructure and Pattern Enforcer is discussed. We start with CIL
parsing, because the instruments we use for this task influence the rest of the sys-
tem. Then we describe design patterns representation and discovery architecture
in more detail than at the beginning of this chapter. Our solution to CIL analysis
and overall Pattern Enforcer design are also presented. In the last subsection, we
provide basic information about the development infrastructure we used for the

28

development of Patterns4Net.

3.4.1 CIL processing

We have two basic options to process the source code of a .NET application or
a library. The original textual source code can be parsed and represented as an
abstract syntax tree (AST), or we can parse .NET assembly and use the Common
Intermediate Language (CIL).

When the original source code is parsed and represented as an AST it is much
easier to reconstruct higher level information such as actual parameters for a
method invocation. On the other hand, available parsers not always support all
of the most current language features and parsing of a source code of a specific
language might restrict us to support the only one language. Some parsers are
capable of parsing more source languages into the same AST structure, but the
resulting AST is still different for some language specific constructs.

The other option, which we have chosen, is to analyze the intermediate lan-
guage, in case of the .NET it is the Common Intermediate Language (CIL). The
structure of CIL is more stable than, for example, the syntax of C#. The lat-
est version of CIL standard [23] from 2010 has the same instruction set as the
previous version from 2006. The version from 2010 only extends semantics and
verification rules for some of the instructions. Another advantage is that inter-
mediate language is produced by all the compilers for .NET, thus Patterns4Net
can be theoretically used also for Visual Basic.NET, IronRuby, IronPython and
others, although we have tested it only on C#. One of the disadvantages of
this approach is that the CIL is stack based lower level language and the recon-
struction of some constructs, such as actual parameters for a method invocation,
requires special effort.

Library for CIL parsing

There are three popular, publicly available libraries that could be used to parse
NET assemblies and get meta-data about types and CIL code of the methods.
First option is to use the reflection API that is available as a part of the .NET
base libraries. Second option is the Microsoft Common Compiler Infrastructure
(CCI, [24]), which is developed in Microsoft Research. Last option is Mono Cecil
[18], which is developed as a part of the Mono open-source project.

Standard .NET Reflection API treats assemblies as a code, not as a raw da-
ta, which has two important consequences: the code loaded through the NET
Reflection API can be executed; and, because the code can be executed, the run-
time must check access rights and might throw Code Access Security exception.
Assemblies loaded into an AppDomain (a .NET object similar to an process in
a operating system) cannot be unloaded, which means that after a long session
with Architecture Explorer, when user have loaded many different assemblies,
the process memory usage will be unnecessary high. Finally the .NET Reflec-
tion API does not distinguish between a type definition and a type reference,
which is an entry in assembly meta-data referring to a type located in another
assembly. If we used the standard Reflection API, there would be one notable
advantage. In the public API of Patterns4Net, in some cases, we allow to use the

29

.NET Reflection data structures in order to make the usage of the Patterns4dNet
API easier for developers used to use the .NET Reflection. However, because we
internally use another library, we have to do a translation of the .NET Reflection
data structures.

The other two libraries (CCI and Mono Cecil) process NET assemblies as
just a binary data, hence they do not support loading the assemblies into an
AppDomain and execution of the loaded code. On the other hand they are
claimed by their authors to be faster than the standard Reflection API, however,
we are not aware of any serious benchmarks. Public API and features of CCI and
Mono Cecil seem to be similar, except CCI provides AST over the intermediate
language, which Mono Cecil doesn’t providd’} However, the AST generated by
the CCI is more complex than we would need, therefore, for our purposes, the
advantage of generated AST would be lessen by extra work for it’s processing.
Both of these two libraries have a long list of advanced software that use them. In
case of Mono Cecil it is, for example, dbdo (object database for java and .NET)
or Mono C# compiler. On the other side, FxCop (a bug-finding tool) or Code
Contracts are both based on CCI.

Our previous experiences with Mono Cecil have resolved the choice between
Mono Cecil and CCI in favor of Mono Cecil. This choice does not only influence
the code that does the CIL analysis, but also other code, because we use specific
Mono Cecil’s data structures (e.g., TypeReference) in the whole Patterns4Net
project.

3.4.2 Patterns representation and discovery

Patterns representation is described in section [3.1] Here we just remind that
a pattern instance is represented as an object that provides references to the
participants of this pattern instance. Mono Cecils structures are used for types
and methods identification.

The discovery of patterns meta-data is implemented as a flexible mechanism.
There is a central class, which aggregates several objects and each of them pro-
vides a strategy for creation of the pattern participants mapping based on CIL
metadata. The class hierarchy is show in figure 24

There are two built-in strategies for the pattern participants mapping discov-
ery. Both are based on pattern meta-data (additional information added to a
NET assembly by it’s author in order to document patterns he has implement-
ed). In both cases these meta-data are expressed as .NET attributes provided
by Patterns4Net. These two strategies differ only in way they reconstruct the
pattern participants mapping from attributes. Before we describe them in more
detail, we discuss challenges connected with .NET attributes.

Attributes based discovery

When a class is annotated with an attribute, this information is projected into
the meta-data located in the .NET assembly. These CIL meta-data are then
parsed by Mono Cecil as a raw data, so it does not contain real instances of the

4There is project Cecil Decompiler, but it is not in production ready quality.

30

k)

" PatternsLocator
Claszs

= Methods
W GetPatternsFromAssem blyAssemblyDefinition assembly) - PatternsLocationResult
¥ GetPatterns0Of<TMember>{ThMember member) : IEnumerable<IPattern>

L2

-providers

b

| IPatternsProvider
Intzrfacs

= Methods

% GatPaotterns < TMembers (THMamber member) : Enumengble<Pattern >

[PlainAttributesPatternsProvider =] {AﬂrihutesPattemsFmvider =]
Szaled Claszs

Sealed Class

Figure 24: Hierarchy of classes that are used for discovery of patterns meta-data.

classes that represent attributes, rather, Mono Cecil provides information about
the type of the attribute, the values provided as it’s constructor parameters and
provided named arguments. If a user of Mono Cecil wants to reconstruct an
identical instance of the attribute, he has to do it by hand.

There are two basic options to solve the task of attributes reconstruction.
The pattern attributes should always implement a constructor with name-value
dictionary as a parameter. The constructor is expected to reconstruct the at-
tribute instance from this dictionary and it is used to create attributes instances
according to CIL meta-data. (This approach is also used in the MEF.) The other
option is not to reconstruct the attribute instance at all, but for each attribute
provide another strategy class that will create the pattern instance based on the
attribute’s CIL meta-data, but without instantiating the attribute.

The reconstruction of an attribute using special constructor provided by the
attribute is implemented in the AttributesPatternsProvider strategy class. It
provides higher cohesion, because we don’t have to create another strategy class
for each attribute. The direct construction of pattern instances from CIL meta-
data is implemented in the PlainAttributesPatternProvider strategy class.

Attributes and pattern instances representation

Since we wanted the mechanism of the discovery of the pattern participants
mapping to be flexible, our representation of pattern instances must be inde-
pendent of whether attributes or something else is used for their documentation.
Therefore the classes that represent patterns, shouldn’t have to represent the at-
tributes for their documentation. There should be possibility decouple these two
things.

31

Because the PlainAttributesPatternProvider strategy class constructs directly
the design pattern instances, without constructing the attributes instances, there
doesn’t have to be any coupling between the pattern class and the attribute class.
However, the AttributesPatternProvider class reconstructs the attribute instance
and in order to take advantage of this instance we allow such attributes to provide
a method which creates the pattern instance. In this case an additional strategy
class for the construction of a pattern instance from the CIL meta-data is not
needed, the strategy is implemented as method of the attribute, but it also means
that the pattern and it’s attribute are coupled. The approach implemented by
the PlainAttributesPatternProvider class is used internally by Pattern Enforcer
and the second one is intended to be used for implementation of user-defined
custom patterns, because is it easier to use.

3.4.3 CIL analysis

Mono Cecil provides only data parsed from .NET assemblies, it does not provide
anything more. From CIL meta-data we can, for example, determine for a given
class what type is it’s base type, or which interfaces it implements. But Cecil
itself does not provide a method that would give us a list of types that implement
given interface, because this information cannot be inferred directly from it’s
meta-data. For such purposes there is the Mono Cecil Rocks project, which
contains a few extension methods for the Cecil’s classes, but it does not have all
we wanted to support in PatternsdNet, so we also implemented our custom set
of extension methods designed for CIL analysis and patterns structure constrains
specification.

For example, one of the extensions we wanted to provide was uniform API
for getting information about methods overrides. In CIL, according to ECMA
CIL specification [23], there is an attribute ”overrides” in the meta-data of every
method, which is a list of methods that this method overrides. But this attribute
is used only in specific cases (e.g., explicit interface implementation) and normally
it is left empty, because overridden methods are determined by conventions (which
are also described in the ECMA CIL specification).

Methods invocation analysis

For the purposes of the discovery of relationships in Architecture Explorer and
methods invocations in Pattern Enforcer, we needed classes that would help us
with analysis of CIL. We don’t need to analyze conditional statements — we just
want to know whether a method M1 on a field F is invoked in body of a method
M2, even in a dead branch of code.

Method calls in CIL are done by several instructions, for example . callvirt .
CIL does not distinguish between instance methods and static methods. Instance
methods has the instance as a first parameter, which is normally added by a
compiler. Fach of these instructions has a method reference as an operand, so
the only difficulty is to analyze with which actual parameters the method was
invoked.

The CIL virtual machine is a stack based machine, which means that all
arguments for operations are taken from the evaluation stack and results are

32

pushed onto the stack. Usually instructions pop all their arguments from the stack
and push results onto the top. Stack behavior of each instruction is documented
in the ECMA CIL specification, however, Cecil provides this information through
the enumeration StackBehaviour.

The CIL analysis is done by simulating the evaluation stack. In a loop we
iterate over all instructions in the method body. For each instruction we de-
termine how many items it pops from the stack and we determine, which items
it pushes onto the stack. The stack is represented as a collection of instances
of the Stackltem class. Fach Stackltem has a reference to the instruction that
resulted in pushing this item onto the stack, and with this basic information the
Stackltem can provide some more additional information such as whether it rep-
resents a field pushed onto the stack (if so, then which field), or a parameter aso.
The result of this analysis is a collection of the StackState class instances — n-th
of them represents the state of the stack after the execution of n-th instruction in
the method body. State of the stack is represented as a collection of StackItem
instances. From the signature of the method we know how many parameters it
has (we will designate it as m) and whether it is an instance method or a static
method. To get the actual parameters of a specific call instruction (say it’s n-th
instruction), we just need to take m (or m + 1 for instance methods, which have
implicit first parameter) items from the top of the n — 1-th StackState.

The last question may be whether this correctly simulates the stack if we do
not take the control flow instructions into account (only their stack behavior).
The answer is provided by ECMA CIL specification, which reads

Regardless of the control flow that allows execution to arrive there,
each slot on the stack shall have the same data type at any given point
within the method body.

CIL instructions sequences matching

In order to check some more specific constraints such as the specification for
the Singleton pattern implementation, we need to check whether a method body
contains a specific CIL instructions sequence.

The aim here was to be able to match sequence which, for example, contains
anything at the beginning and then it contains a sequence of instructions that
represents an if with a specific condition. For this purpose the matching process
is directed by one object that delegates its work to several strategy objects that
do the actual matching. In our example, we would have a strategy that would
match any instruction and a strategy that would match the instructions sequence
that represents an if.

The main class for instructions sequences matching is the CILPatternsMatcher
. It aggregates a collection of instances of the InstructionMatcher abstract class,
which represents an instructions sequence. Interface of the InstructionMatcher
class is shown in figure 25, The Matches method is called in a loop provid-
ed with current instruction. If the method returns false, than the CIL in-
structions does not match the expected sequence and the whole process ends
with a negative result. Otherwise property Found is checked and if true, then
the next InstructionMatcher is used in the next iteration, if it was the last

33

InstructionMatcher, then process ends with success. In the next iteration current
instruction is set to the one returned by last call of Match. A pseudo code is giv-
en in figure [20], variable matchers represents an array of the InstructionMatcher
class instances.

public abstract class InstructionMatcher

{
public virtual bool Found { get; protected set; }
public abstract bool Matches(
Instruction instruction,
out Instruction next);
public virtual void Reset() { ... }
}

Figure 25: The InstructionMatcher abstract class interface.

1: currentInstruction < first instruction of the method’s body.
2: currentMatcherIdx < 0

3: loop
4: matcher < matchers|currentMatcherlIds]

5. match < matcher.Match(currentInstruction, out next)
6: if not match then

7 return false

8

9

end if
. if matcher.Found then
10: if + + currentMatcherIdx == matchers.Length then
11: return true
12: end if
13: end if
14: currentInstruction < next
15: end loop

Figure 26: Pseudo code of CIL instructions patterns matching.

3.4.4 Pattern Enforcer Design

The basic interface in the Pattern Enforcer design is the generic IChecker<T>
interface, which defines one method Check(T). This method returns the re-
sult of the check encapsulated in an instance of the CheckerResult class. Con-
crete checkers have the generic parameter T set to the TypeDefinition class, the
MethodDefinition class or the IPattern interface.

An important class is the FluentPatternChecker. It is a base class of most of
the pattern checkers, because it provides the structural constraints specification
API. The API is formed by protected methods of the FluentPatternChecker class,
which should be invoked in the constructor of a derived class in order to specify
the constraints. Because we wanted to provide a Fluent interface (chaining of
method calls), we have to remember the parameters of chained methods, so the

34

last method in the chain can access all of them and perform the desired action.
For this purpose each chained method returns special objects that have

e a reference to the parent object (an object on which the method was in-
voked) and

e the values of the arguments the method was invoked with.

For the first method in a chain the parent object is the checker instance itself,
for others, it is a object returned by their ancestor method in the chain. As the
method calls are chaining the arguments are collected and the last method in
the chain, which is the first method that wil actually do something, has all the
arguments of previous methods available to do it’s work. The example of such
chaining of methods is given in figure [27]

this.Type(pattern => pattern.PatternRoleType)
.Methods (method => method.IsPublic || method.IsProtected)
.Check((pattern, method) => method.Name.EndsWith("42"),
(pattern, method) => "Method has not a valid name");

Figure 27: An example of methods chaining.

The whole Pattern Enforcer is encapsulated as the PatternEnforcer class. It
requires a PatternsLocator instance and an array of [PatternCheckersLocator
instances.

3.4.5 Development infrastructure

In this section about Pattern Enforcer architecture, we also describe common
infrastructure used by both Pattern Enforcer and Architecture Explorer tools.
Patterns4Net tools are developed in the .NET platform version 4.0, mostly in the
C# 4.0 language. Xml technologies are also used. All xml formats have their
corresponding xsd file.

Visual Studio solution layout

In figure 28 we can see the layout of the Visual Studio solution used for
Patterns4Net development. When we refer to the projects from this solution in
the following text, we will omit the Patterns4Net prefix.

- Solution ‘Patterns4Net’ (7 projects)
(=] PatternsdMet.ArchitectureExplorer
_E Patternsd Met.Attributes
.E PatternsdMet.Core
(=] PatternsdMet.PatternEnforcer,Cmd
_E Patternsd Met.PatternEnforcer.Core
.E Patterns4 Met.PatternEnforcer.M5BuildTask
_E Patternsd Met. Tests

Figure 28: The layout of Visual Studio solution.

35

The projects that start with ” PaternEnforcer” are related to Pattern Enforcer
tool. The classes that provide the core functionality of Pattern Enforcer and
the classes that form the unit-testing public API are located in the PatternFEn-
forcer.Core project. The output of the PatternEnforcer.Cmd project is a com-
mand line interface for Pattern Enforcer and the PatternEnforcer. MSBuildTask
project is the implementation of the task for the MSBuild engine. The core func-
tionality and the unit-testing API of Pattern Enforcer are decoupled from the
command line interface and the MSBuild task into separate project, and thus
separate assembly, because the Pattern Enforcer core functionality is also used
in the ArchitectureEzplorer project. The resulting assembly with the Pattern
Enforcer core functionality is also meant to be referenced by users in their unit-
testing projects and if it had an .exe suffix, although perfectly valid assembly
that can be referenced, an unusual suffix might confuse some users.

The ArchitectureExplorer project contains the code of Architecture Explorer
GUI tool. The GUT is done in Windows Presentation Foundation (WPF) frame-
work. In this project, besides C# classes, also XAMIE] files are included.

Automated tests are used during the development of PatternsdNet. These
tests are located in the Tests project. This project aggregates tests for the classes
from all the other projects, because we don’t need to separate the tests into several
projects and a lower number of projects speeds up the build process.

The classes that deal with the discovery of patterns meta-data and the pat-
terns representation are located in the Core project. Although we use only Pat-
terns4Net attributes at the moment, process of discovering patterns meta-data
for classes and methods is extensible.

Finally, the Patterns project contains only the classes that represent the Pat-
terns4Net attributes. These classes inherit from System.Attribute class and they
are very simple, hence we don’t necessarily need to take advantage of the ad-
vanced features of C# 4.0. This enables us to set the target framework version
to 2.0, which means that the resulting assembly can be referenced and used by
older NET projects as well.

General principles

Automated tests. Every software should be tested. Besides manual test-
ing, usually a time consuming task, there is also the possibility to automate some
tests, which means that their execution is controlled by a software and the soft-
ware reports eventual errors. Execution of such tests lasts in seconds, so they
can be executed quite often. Some of the code of PatternsdNet is tested this way.
For automated tests the NUnit framework [22] is used.

Extensibility. For better support of extensibility the Managed Extensibil-
ity Framework (MEF, [25]) is used. Most of the classes in Patterns4Net get their
dependencies as constructor arguments so the composition of all the objects by
hand would be tedious. Instead the composition capabilities of the MEF are
employed. A type whose instance should be used anywhere the interface IFace is

5Extensible Application Markup Language

36

expected must be decorated with attribute [Export(typeof(IFace))], the depen-
dencies of such type will be resolved by MEF recursively. Because assemblies with
custom patterns loaded by Pattern Enforcer are also added to the MEF composi-
tion process, users can add custom plugins, for example, custom implementation
of TPatternsProvider. However, this experimental feature was not extensively
tested and is not further documented.

Code Contracts. Most of the classes define their contracts using Microsoft
Code Contracts [26]. Contracts help us to find the issues earlier. An exception is
typically thrown during the pre-conditions check, which is the real cause of the
problem, rather than later on the source code line that expects valid input pa-
rameters. Code Contracts also serve as a complement to the API documentation.

Design Patterns. Patterns4Net can be considered as a first example of it’s
own usage, because Patterns4Net code is annotated with patterns attributes.

3.5 Comparison

There are several existing tools that provide verification of design patterns im-
plementation. The most similar approach to Pattern Enforcer is the Pattern
Enforcing Compiler (PEC) for Java.

3.5.1 FxCop and Gendarme tools.

It may not be obvious, but Pattern Enforcer is similar to static analysis bug-
hunting tools such as FxCop [27] or Gendarme [28]. These tools search the source
code for the idioms that are generally considered as bad. For example strings
should be, in most cases, compared using string . CompareOrdinal, but not using
== operator. There are two main differences between Pattern Enforcer and these
tools

e Pattern Enforcer checks only the code that is annotated,

e Pattern Enforcer checks structural aspects and code idioms, but Gendarme
and FxCop check only code idioms.

e Gendarme and FxCop are looking for bad idioms, but Pattern Enforcer
verifies that expected idiom is present.

Gendarme is open-source tool that is meant to be an alternative to FxCop.
It uses Mono Cecil for CIL analysis. If we look at Gendarme’s source code, it
has a similar structure to Pattern Enforcer’s code. It has also ”checker” classes,
that perform checks on a code element, which might be, for example, Cecil’s
TypeDefinition.

3.5.2 Pattern Enforcing Compiler (PEC) for Java

Because the Pattern Enforcing Compiler (PEC) for Java [29] has been the main
source of an inspiration for our thesis, we discuss it a little bit more in detail.

37

PEC for Java is an extended Java compiler that formalizes patterns. Develop-
ers can use standard Java syntax to annotate their classes as an implementation
of specific design pattern. The PEC then checks whether the classes actually
implement the specified patterns.

Annotation. For annotation of patterns instances, PEC uses so called mark-
er interfaces. The authors have chosen this technique, because implemented in-
terfaces are listed in generated API documentation and so an integration with an
API documentation didn’t require any additional work to be done. On contrary,
interfaces can only be used for annotation of classes, but not methods, and even
when interfaces can have arguments — generic arguments —, these can capture
only a limited number of additional information. The authors of PEC admit
these weaknesses of interfaces as a technique for the annotation of patterns and
in [29], they propose to introduce the standard java annotations, similar to .NET
attributes, in PEC. However, we are not aware of any updated version of PEC
that uses standard Java annotations.

Pattern Enforcement. PEC uses static analysis and it also enforces the
rules dynamically by inserting assertions into the resulting program, which we
don’t support in our Pattern Enforcer. Dynamical enforcement provides more
accurate results, because, for example, uniqueness of the one Singleton instance
cannot be proved statically, but one simple assertion in it’s constructor is enough
to enforce it dynamically. The disadvantage of dynamical enforcement is that it
slows down the resulting program and the program still has to be manually tested
in order to discover possible bugs.

Code generation. PEC provides also code generation capabilities. For
example, a body of a void method in a Composite class can be generated by PEC
— it just creates a loop over all components and on each of them it invokes the
corresponding method. However, an implementation of the Composite pattern is
usually not so straightforward, so these capabilities turn to be not so useful.

Patterns specification. Two APIs for patterns specification are supported
in PEC. It is the standard Java reflection API and Javaasist, which is similar to
Mono Cecil. In Pattern Enforcer we support the standard .NET reflection only
partly. In PEC a method that checks a pattern implementation must be a static
method with specific signature declared in a marker interface of the pattern. This
introduces coupling between a pattern annotation and a pattern enforcement,
which we tried to avoid in Patterns4dNet. PEC uses exceptions to to signal the
errors during the check of pattern implementation. This means that usually when
a first violation is found, an exception is thrown and the verification process does
not continue. In our Pattern Enforcer we use a return value of the special type
CheckerResult as the result of the check and this object can aggregate more
erTors.

Integration with development environment. The authors of PEC claim
that it is an extended compiler, which means that Java source code is compiled

38

only with PEC, although PEC internally uses javac. This provides a seamless
integration with the Java environment, but at the same moment PEC becomes
an essential requirement for successful build. Our Pattern Enforcer is standalone
tool, which can be easily taken out from the build process. PEC does not provide
any other usage possibilities, but our Pattern Enforcer has the MSBuild task and
the unit-testing API.

3.5.3 Other tools

CoffeeStrainer [30] is a tool that is somewhere between static analysis bug-hunting
tools whose objects of interest are idioms, smaller pieces of code, and pattern
enforcement tools. Unlike other static analysis bug-hunting tools CoffeeStrainer
enforces rules that result from particular design decisions, for this it provides
means for custom rules specification. CoffeeStrainer targets the Java platform.

Pattern-Lint [31] can check conformance to variety of design principles from
coding style rules to design patterns. Pattern-Lint targets C++ and has been
successfully evaluated during development of a multimedia operating system.

Most of the approaches described in [6] are connected with some prototype
tool that enforces the specification represented according to the formalization
approach. However, most of them are not publicly available and all of them
target either Java or C++4 languages. The most interesting tools from this book
include the HEDGEHOG engine, which we also discuss in section and tools
that come with LePUS3, which we also present in the same section.

To close this section, we can conclude that we are not aware of any design
patterns verification tool for the .NET platform. Pattern Enforcer is, among all of
these tools, also extraordinary with it’s special C# API for structural constraints
specification, because most of the other approaches uses special language for
patterns formalization, or, in case of the Pattern Enforcing Compiler for Java,
they don’t provide special means for structural constraints specification at all.

39

4. Architecture Explorer

Architecture Explorer provides UML-like class diagrams generated from .NET
assemblies. Instead of a one large diagram with lots of unnecessary infrastructural
classes, it uses the information about implemented design patterns to create more
diagrams with different levels of abstraction. Users can browse the diagrams in
an interactive graphical user interface.

Similarly to UML class diagrams, the diagrams generated by Architecture Ex-
plorer can contain classes, interfaces and structures, which can be grouped into
packages. But packages, in the case of Architecture Explorer, cannot be hier-
archical, instead, Architecture Explorer provides a concept of a Layer, which is
a container for packages. Standard types of UML relationship are supported in
Architecture Explorer. For elements that implement a design pattern Architec-
ture Explorer provides a documentation of the design pattern displayed in a side
panel.

The data for diagrams construction are reverse engineered from .NET assem-
blies. In some cases, Architecture Explorer uses special meta-data, for example
the Patterns4Net documentation of design patterns or special attributes that al-
low users to document other aspects, such as types of relationships. Therefore
we can say that Architecture Explorer performs a human aided reverse engineer-
ing. Important to note is that all the documentation, which helps Architecture
Explorer with the reverse engineering, is located directly in the source code.

4.1 Features

4.1.1 Abstraction levels

Information about implemented patterns allows Architecture Explorer to provide
more levels of abstraction. The top level, for example, shows only the high level,
domain specific classes that are important for understanding of the overall ar-
chitecture. However, if a user ”zooms” to a particular class, all related classes,
even infrastructural, are displayed. The rules that defines which elements will be
displayed and which not, were chosen according to our opinion on what should be
considered as important and what is rather infrastructural. However, the mech-
anism for definition of these rules is easy to change. In the following subsection
we describe these rules, but before that we introduce a related terminology.

Classes that implement higher level patterns such as Entity, AggregateRoot
or ValueObject known from Domain-Driven-Design approach are level 0 classes.
Classes that implement an infrastructural pattern such as Null Object or Helper
Class are level 2 classes. Other classes belong to level 1. Users can define their
own patterns and assign them into any level. The levels of built-in patterns are
defined in an xml configuration file and can be changed by users as well.

Now we can define four levels of abstraction that Architecture Explorer pro-
vides. Some of the rules are applied only, if there are enough elements of given
level, because otherwise the diagram will be unnecessarily half-empty:.

e Layers level — all layers are displayed each one contains it’s packages. If
there is a class in a layer A which is in relation with a class in a layer B,

40

then the relation is displayed between the layers A and B. If there are more
relations of the same type between A and B, only one is displayed.

e Layer level — if the layer contains at least as many classes of level zero
as packages, then these classes are displayed. Otherwise first level classes
from the layer are displayed. The classes have labels with their names, but
their members are not displayed. Packages are displayed as rectangles and
contain corresponding classes.

e Package level — classes from the package are displayed.

— If the package contains at least one class of level zero, then classes of
level zero and one are displayed.

— If the package does not contain any class of level zero, then classes of
level one and two are displayed.

e Class level — selected class is displayed with all it’s methods and properties.
All classes from any package or any layer that are in any relationship with
this class are displayed. Classes are gathered in rectangles that represent
packages.

4.1.2 Further meta-information

Architecture Explorer displays relations that are part of some pattern implemen-
tation, and it also displays standard relations from object oriented design. These
are the inheritance, the association, the aggregation, the composition and uses.
Architecture Explorer reverse engineer these relations using source code analysis,
but difference between some of them are just semantical. For the purpose of the
differentiation of these relationships Patterns4Net provides, besides attributes for
patterns participants annotation, also attributes for annotating relations. Rules
for reverse engineering of relations are summarized in the following listing.

e When a class A has a field of type B without any annotation, then the
association from A to B is constructed. (The construction of the cardinality
of associations and other relationships is described below.)

e When a class A has a field of type B annotated with attribute Composition,
Aggregation or Uses, then the relationship of composition, aggregation or
uses from A to B is constructed.

e When at least one of class’s A methods invokes the constructor of class B,
has a parameter of type B or invokes a static method or property from B,
then uses relation from A to B is constructed.

A uses relation from A to B is not added when a composition or an aggregation
relation from A to B was discovered. The default cardinality is one-to-one. If
the field of a class A is of a type which is assignable to IEnumerable then
the type B will be used in relation, and the cardinality of the relation will be set
according to the rules below.

o If there is also field of type IEnumerable<A> in B, then the relation’s
cardinality will be many-to-many.

41

e Otherwise the cardinality will be one-to-many.

Architecture Explorer is not capable of discovering a uses relation if a con-
structor or a static member invocation is hidden in reflection API calls. A uses
relation is constructed even if a constructor or a static member invocation is in
the dead branch of code, which means that the constructor or the static member
will actually never be invoked. Architecture Explorer also does not check whether
method’s parameters are actually used inside the method’s body.

4.2 User Interface

The user interface of Architecture explorer consists of the content area in the
center of the window, where the diagram is displayed, a toolbox on the top and
various dockable panels. The toolbox contains buttons that serves to control the
program and the panels display additional information about the diagram.

Architecture Explorer displays only one diagram at once. If an assembly is
loaded, it’s content is added into the current diagram. Therefore, if two assemblies
are consequently loaded, the diagram will contain all elements from both of them.
A user can browse through the diagram and let the Architecture Explorer to
display him various levels of abstraction.

The basic input for Architecture Explorer is an assembly or set of assemblies
to analyze. Instead of an assembly file, users can also choose a Visual Studio
C# project file or a Visual Studio solution, in this case the tool will extract
information about assemblies location from these files.

Dockable side panels contain additional information. There are five of them

e The Diagram Browser panel displays all diagram elements in the treeview.

e The Pattern Documentation panel displays the descriptions of all patterns
where the currently selected class plays the main role.

e The Properties panel displays information about the current element. This
information may also contain an API documentation if available.

e The Output window displays warnings and informal messages for user.
These messages are generated during the loading of an assembly or when
Pattern Enforcer is running.

e The Errors window contains a grid that displays errors from Pattern En-
forcer.

Architecture Explorer can display an API documentation generated from a
source code. The source of this documentation is an xml file produced by the C#
compiler. Architecture Explorer expects the documentation file to have a default
name and to be located in the same folder as the assembly.

The patterns documentation is loaded from the patterns.xml file, whose for-
mat is described in the patterns.xsd file. Patterns in the patterns.xml file are
identified by the full name of the class that represents the pattern. For the pattern
documentation an xml dialect based on the standard .NET API documentation

42

format is used. A documentation for a custom pattern can be added by editing
this xml file.

When Pattern Enforcer is invoked from Architecture Explorer, errors are dis-
played in a special side panel and when a user clicks on the error, the diagram
will zoom to a class, where the error has occurred.

Normally Layers correspond to each .NET assembly when reverse engineered,
but users can define Layers on their own using an assembly attribute as in fig-
ure 29 First level namespaces in a layer are reverse engineered as packages.

using Patterns4Net.Attributes;
[assembly:Layer("Layer Name", "Namespace")]

// safer definition using reflection,

// a namespace of MyType will be used.
[assembly:Layer("Layer Name", typeof (MyType))]

Figure 29: Definition of Layer using assembly attributes.

Definition of a custom pattern

The definition of a custom pattern is described in section [3.3] The IPattern
interface, which is required to be implemented by a class that represents a pattern,
has the readonly AbstractionLevel property. Value of this property is used by
Arcitecture Explorer to decide at which abstraction level it will display classes
that play the main role in this pattern.

A class that represents a pattern can have properties that represent the pat-
tern roles. To direct Architecture Explorer to emphasize relationships between
the main role of the pattern and the other roles, the properties representing the
roles should be annotated with the PatternRoleAttribute attribute. This at-
tribute allows us to define the type of the relation (composition, aggregation, ...),
an abstraction level of the relation, a cardinality, and a name. If a default value
is provided for any of these properties, Architecture Explorer tries to infer the
value from the source code.

To inform Architecture Explorer about assemblies that contain custom pat-
terns an xml configuration file can be used. This xml file is an extension of the
format used for Pattern Enforcer and thus can be used for both these tools.

4.3 Architecture

Architecture Explorer is developed in Windows Presentation Foundation (WPF,
[32]). There are two reasons for the choice of WPF. We wanted to use so called
Model-View- ViewModel [33] pattern and implementation of this pattern is easier
in WPF than in Windows Forms. The second reason involves possible future
work on Architecture Explorer. WPF applications can be, with some effort,
ported to Silverlight, which can run in a Web browser and is supported also on
other platforms than Windows.

43

A large portion of Architecture Explorer functionality is a creation of "nice
looking” graphs. For this purpose the Graphviz [34] tool is used, but it’s adoption
to WPF is not as easy as it might seem, so it resulted in the introduction of a
separate project called Graphviz4Net, which is discussed in the following chapter.

4.3.1 User interface logic

Model-View-ViewModel

The Model-View-ViewModel pattern is a variation of well known Model- View-
Controller pattern. The ViewModel is an object that supplies the data to be
displayed in the View as the values of regular properties and it provides the
actions that could be invoked from the View (e.g., by clicking on a button) as
regular methods. The ViewModel encapsulates all the user interface logic, but
it does not handle displaying the data and therefore it could be an instance of
a plain C# class. The connection between the ViewModel and the View, which
is a WPF specific user control, is not handled by the objects themselves but is
driven by the powerful data-binding features of WPF.

To ease the implementation of the Model- View- ViewModel pattern even more,
Caliburn.Micro framework [35] is used. It is capable of applying the ViewModel to
View binding, ViewModel data to View visual elements binding and actions bind-
ing only according to naming conventions. For example, for the ShellViewModel
class there is the ShellView WPF control and their binding is handled by Cal-
iburn.Micro.

Figure shows the layout of the graphical user interface of Architecture
Explorer. The ViewModel classes are located approximately in the same place,
where they will be displayed by their corresponding View WPF controls. The
whole window is represented by the ShellViewModel class, which aggregates all
the other ViewModel objects.

Communication between ViewModels

The ViewModel objects communicate either directly, or through events. The
events are represented by C# classes. When an object wants to publish an event
it invokes the Publish method on the EventAggreator object, which is a singleton.
This method has one argument, which is an object that represents the event and
the arguments of the event. If an object wants to be notified when an event of
a certain type T is published, it has to implement the IHandle<T> interface
and register itself to the EventAggreator object. This events mechanism is used
for handling the selection of current element and the navigation in the diagram,
because these actions might be invoked from several panels and might result into
an update of several GUI elements.

Documentation processing

An interesting aspect of the implementation is displaying of an API documen-
tation from source code and patterns documentation from special xml file. The

44

/ShellViewMaodel

+ Dizgramiieabodel I_IJJ
+ DizgramBrowser
+ PatternDocumentztion
+ Viewhodels of other panels
+ LoadAssembily([] L]
+ GoBack]) |
+ GoForward() p q_\"
o R Sl boas [\‘_ Pattern DocumentationPane/ViewMode|
e K
the toolbo : S
s
_/I I\ DiagramBrowserViewhModel)
s ™ |
i ViewModel s
L agramyiEwiio EJ (_ DetailPanelviewModel)
I [
(; ErrorsWindowViewModel ,i CutputWindowViewModel ;l

Figure 30: The decomposition of the user interface into several ViewModel classes.

format of patterns documentation was chosen to be compatible with the stan-
dard format of the API documentation. The fact that in both cases the format
is an xml dialect allows us to create a XSL template that transforms the xml
representation into the XAML, which is then parsed and displayed by WPF.

4.3.2 Diagram Classes Design

A diagram is represented by a hierarchy of classes that is depicted in figure
Each of these classes inherits from the base class DiagramElement, which means
that each instance of these classes have a reference to it’s parent object. The top
level Diagram object returns a reference to itself as the value of this property.

Typelnfo

. +Methods Relati
+lypes +Properties +Source 1 elation
+Name
| +SourceCardinality q
DiagramElement 1 +TargetCardinality Composition
D+Pare|\t +IsBidirectional
Package +Target
* +Relations
Inheritance
* +Packages
Layer +Layers Diagram
. Other relations

Figure 31: The hierarchy of classes that represent a diagram.

45

Each type of relationships is represented as a separate class, because, in WPF,
the graphical templates for objects are selected according to the object’s type.
This way we can have several separate templates for each type of the relationship.

Because the diagram class structure is not likely to change often, the Visitor
pattern is used to add new operations of the diagram elements. The base class
for all Visitors is the DiagramVisitor class. The Visitor’s traversing algorithm is
implemented in the diagram elements’ Visit method.

When an assembly should be loaded into the diagram, the CecilDiagramLoader

class loads all the layers, packages, types, methods and properties, but it does
not add any additional information such as implemented patterns or relations
between them. These additional information should be added by instances of
[DiagramUpdater interface, whose method UpdateDiagram is always invoked
when a new assembly is added to the diagram. Most of the classes that implement
the IDiagramUpdater interface are also diagram visitors and the implementation
of the UpdateDiagram method is just call to the diagram’s Visit method sup-
plying itself as an argument. These ”diagram updaters” implement discovery of
relations and they add information about implemented design patterns into the
diagram.

All the objects are, as in the case of Pattern Enforcer, composed together
using the Managed Extensibility Framework (MEF).

4.4 Related Work

According to [36] only a few approaches to a reverse engineering that uses addi-
tional information provided by developers exist. We are not aware of any reverse
engineering tool that explicitly supports design patterns and use additional infor-
mation provided by human beings. The tools that support UML standard might
be, however, extended with stereotypes that could express implemented design
patterns.

To provide more views on the same system each of them with a different level
of abstraction is the main idea behind the Model Driven Development (MDA,
[T0]). In contrast to Architecture Explorer, MDA does not only address design
patterns but also a platform independence, the transformation from higher ab-
stract models to more specific models or a source code, and other issues. MDA is
a standard maintained by Object Management Group and this standard has to
be implemented by concrete tools.

4.4.1 Pattern recognition tools

The tool presented in [37] provides design patterns instances recognition based on
static and dynamic analysis. It can be interesting in the context of Patterns4Net,
because it is one of the few design patterns tools that target the .NET platform.
Authors also process the intermediate language, but they use standard .NET
reflection.

The idea that information about implemented design patterns might help to
provide several views on the same system but with different level of abstraction
is also discussed in [38]. The authors propose an Eclipse plug-in called MARPLE

46

(Metrics and Architecture Reconstruction Plug-in for Eclipse), which could au-
tomatically recognize design patterns in Java code and then display special di-
agrams. The authors of MARPLE also plan to take advantage of Graphviz — a
graph visualization tool.

4.4.2 UML reverse engineering

UMLGraph ([39]) provides an automated drawing of UML diagrams extracted
from java source code. It also uses Graphviz for visualization and call graph anal-
ysis for discovery of relationships in similar way we do in Architecture Explorer.
UMLGraph uses Graphviz directly to generate SVG images. On contrary, in Ar-
chitecture Explorer we process the output of Graphviz and convert it to WPF
controls in order to provide interactivity in the user interface.

47

5. Graphviz4Net

Graphviz [34] is an open-source graph visualization tool, which we use in Pat-
tersdNet to create class diagrams. Graphviz is implemented as a typical UNIX
filter [40]. For graphs representation, Graphviz uses the special language called
DOT. An example of a DOT file is given in figure [32] Graphviz expects a graph
in the DOT language on the input, it generates the layout for given graph and
then it renders it in a selected image format on standard output, or it can print
the same graph in the DOT language format on the standard output, but with
attributes that provide information about the generated layout. Output format
can be set up by command line option. Examples of the output are shown in
figure 33|

digraph G {
node [shape=rect];
nodel [label="A", width=2, height=1];
node2 [label="B"];
node3; nodeb;
nodel -> node2 [label="Edge from A to B"];
node3 -> nodel; node3 -> nodeb5;
nodel -> node5; node5 -> node2;

Figure 32: An example of a DOT file.

To employ Graphviz in visualization of class diagrams, we have to convert
our internal representation into the DOT language, then we have to parse the
output of Graphviz and finally do some coordinates transformation and scaling
to convert the layout in Graphviz representation to the WPF coordinates system.

During the development, it turned out that this process can be modularized
and we can segregate an independent library that provides .NET interface to the
Graphviz filter and means to use the layout information generated by Graphviz
for generating layouts in WPF or other GUI framework. Such library can be
helpful for other projects than PatternsdNet. This resulted into the separate
library called Graphviz4Net.

With Graphviz4Net users can define a graph and then display it in a WPF
application, or provide a custom Layout Builder for other GUI framework (e.g.,
Windows Forms). Graphviz (and thus Graphviz4Net) is capable of rendering
graph clusters, curved edges with labels and arrows on both sides (arrows can have
also labels) and much more. With built-in WPF Layout Builder, a graph node
can any WPF control and even edges and labels rendering can be customized,
although not as much as rendering of nodes.

5.1 Public API

Public API that GraphvizdNet provides can be divided up into two parts: graphs
representation (the input for Graphviz) and layout processing (the output of
Graphviz).

48

node3

Edge from Ato B | nodes

digraph G {
node [label="\N", shape=rect];
graph [bb="0,0,199,294"];
nodel [label=A, width=2, height=1, pos="72,184"];
node2 [label=B, width="0.75", height="0.5", pos="68,18"];
node3 [width="0.75", height="0.5", pos="141,276"];
nodeb5 [width="0.75", height="0.5", pos="172,92"];

nodel -> node2 [label="Edge from A to B", pos="..."];
node3 -> nodel [pos="e,99.022,220.03 ..."];
node3 -> nodeb [pos="e,169.66,110.29 ..."];
nodel -> nodeb5 [pos="e,152.4,110.03 ..."];
node5 -> node2 [pos="e,93.539,36.172 ..."];

Figure 33: Graphviz output.

5.1.1 Graph representation

The conversion of graphs into the input format of Graphviz works with interfaces
IGraph, ISubGraph and IEdge, nodes may be of any type. However, for conve-
nient use Graphviz4Net offers generic versions of these interfaces and classes that
implement them. So the user of Graphviz4Net may implement his own structures,
he just have to make them implement the interfaces mentioned above; or he can
use the predefined generic classes.

A graph aggregates list of it’s nodes and sub-graphs, which aggregate list of
their own nodes. Edges are aggregated by a graph object, but not by subgraphs,
because edges may cross sub-graph boundaries.

Users may add custom attributes to the resulting DOT graph representation.
The only thing which is needed for this is that the element (node, edge or sub-
graph) implements the TAttributed interface, which defines the Attributes prop-
erty — a name-value collection of DOT attributes. The default graph structures
supplied with Graphviz4Net implement this interface and also have properties for
setting and getting the usual DOT attributes such as Label. These properties
provide a type-safe access to the Attributes collection, which can also be modified
by hand in non type-safe manner to set up less usual DOT attributes.

5.1.2 Layout builder

When a graph is processed by Graphviz and the output is parsed by Graphviz4Net,
we need to convert the layout data to actual elements on the screen or in the gen-

49

erated picture. For this purpose the Builder pattern is employed. Graphviz4Net
takes care of parsing the output, but when it has a piece of layout information
for example ”the position of the node with id 2 is [34, 55]”, it passes this piece
of information to the appropriate method of the Layout Builder and this method
can then create an element on the screen or anything else.

Next to the graphical elements building, the Layout Builder is also responsible
for suppling the sizes of the graph nodes, so that Graphviz can produce precise
layout where nodes and edges do not overlap.

Graphviz4Net has one built-in Layout Builder for WPF applications (we sup-
pose that it could build Siverlight layouts as well, however it hasn’t been tested
yet). Users even don’t have to directly use this Layout Builder, the whole process
of layouting is encapsulated in the GraphLayout WPF control. The only thing
needed is to set up the Graph dependency property and provide data templates
for nodes types.

5.2 Architecture

5.2.1 DOT parsing.

One of the tasks Graphviz4Net has to deal with is parsing of the Graphviz output,
which is a text in the DOT language. We developed a parser based on the
ANTLR parser generator ([41]) that is able to parse most of the the DOT language
constructs that Graphviz produces as an output (it is a subset of the full DOT
language, because we know that some DOT constructs, e.g., comments are never
produced by Graphviz).

Graphviz provides also the plain-text output format, which is line oriented
language suitable for parsing. However, we found out that this format does not
support some features of Graphviz that we wanted to support in our library (e.g.,
node clusters).

5.2.2 WPF Support

Graphviz generates the layout information in format where lengths are in inches,
coordinates are in points (1/72 of an inch) and refer to the center of the element,
the origin [0, 0] is in the bottom left corner, coordinate values increase up and to
the right and curved edges are represented as B-spline points. All these pieces
have to be adopted to the WPF formats where, e.g., positions can refer to one
of the corners of the element, but not to it’s center. There are two possible
approaches for this adoption: convert all the values; or make use of the render
transformations in WPF to overcome the problem of different coordinate systems,
but other values would still have to be converted. In Graphviz4Net we went
with the first option, because the render transformations might slow down the
application and there is not much difference between the two approaches in the
amount of work.

The main work of the WPF Layout Builder is to adopt the values from
Graphviz to WPF format. It gets a Canvas instance as a constructor param-
eter and it places all the elements into this Canvas using the Canvas dependency
properties Top and Left. The decision which WPF elements should be used for

50

the graphical representation of each of the elements in the graph is leaved to an
Abstract Factory object, which is also a parameter of the constructor of the WPF
Layout Builder. In the default implementation of the factory for nodes we just
create a ContentPresenter with the Content set to the node type. This enables
users of Graphviz4Net to define a data template for each type of a node (remem-
ber that nodes may be of any type, so a data structure with complex information
or just simple string for label may be used).

The WPF Layout Builder should also provide the sizes of the nodes for
Graphviz. For this purpose it uses the WPF layout system. Every instance
of the FrameworkElement class has a method Measure(availableSize), in which it
should determine it’s size requirements by using an availableSize parameter. For
the availableSize we use the double. Infinity and thus allow the element to set up
any size. Desired size of the element is then accessible via property DesiredSize
and the transformed value of this property is given to Graphviz.

Graphviz4Net provides also a WPF control that encapsulates this logic. The
control uses standard WPF mechanisms of dependency properties and templates.

51

6. Conclusion

The aim of this work was to explore existing approaches for the design patterns
support in development environments and to present the Patterns4Net project.
Most of the existing tools for the support of design patterns enabled development
target Java platform or C++, but PatternsdNet provides this form of support
for the .NET platform. With Patterns4Net users can explicitly document their
intent to implement a particular design pattern. Pattern Enforcer, part of the
Patterns4Net project, is able to verify some of the structural aspects of select-
ed design patterns. The second tool included in Patterns4Net is Architecture
Explorer, which provides interactive UML-like class diagrams that emphasize im-
plemented design patterns.

Patterns4Net might enhance the development process of complex design pat-
terns oriented systems that are created by a larger team, because it helps to
discover communication errors and violations of design patterns implementations
earlier and it provides visual tool to tackle some of the design complexity that is
caused by design patterns usage.

During the development and testing of Architecture Explorer, it turned out
that rules for hiding and displaying various elements in the diagram in order to
provide better abstraction are crucial for the appropriate user experience. These
rules should be reevaluated after more extensive testing on real projects. Archi-
tecture Explorer user interface could be also enhanced to provide more additional
information, for example, for every relationship it could show a panel with de-
tailed information on which code fragments lead to establishing this relationship
during the reverse engineering phase. Finally, the attributes for Graphviz can be
fine-tuned to avoid some not so nice looking graphs (e.g., when a high number
of classes inherit from the same parent, or when there are many orphan nodes in
the graph).

Some of the more general rules from Pattern Enforcer, such as immutability
check, could be extracted from it’s source and proposed to open-source community
as additional rules for well-established open-source project Gendarme, which is
an extensible rule-based tool used to find problematic code in .NET assemblies.

Software systems are getting larger and more complex and this trend will
continue. Changes in requirements are usual and reusability is important. Design
patterns provide widely accepted approach for tackling the complexity of large
systems and with tools such as Patterns4Net we can get even more advantages
from their usage.

52

Bibliography

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King,
and S. Angel, A pattern language. Oxford Univ. Pr., 1977.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements
of reusable object-oriented software. Addison-wesley Reading, MA, 1995.

P. Hruby, J. Kiehn, and C. Scheller, Model-driven design using business
patterns. Springer-Verlag, 2006.

M. Fowler, Patterns of enterprise application architecture. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2002.

E. Evans, Domain-driven design: tackling complexity in the heart of software.
Longman, 2004.

T. Taibi, Design patterns formalization techniques. Igi Global, 2007.

T. Taibi, Design patterns formalization techniques, ch. An Integrated Ap-
proach to Design Patterns Formalization. Igi Global, 2007.

A. Blewitt, Design patterns formalization techniques, ch. Spine: Language
for Pattern Verification. Igi Global, 2007.

J. Warmer and A. Kleppe, “The object constraint language: precise model-
ing with uml,” Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, p. 112, 1998.

A. Kleppe, J. Warmer, and W. Bast, MDA explained: the model driven
architecture: practice and promise. Addison-Wesley Longman Publishing
Co., Inc., 2003.

J. Dietrich and C. Elgar, Design patterns formalization techniques, ch. An
Ontology Based Representation of Software Design Patterns. Igi Global,
2007.

J. Nicholson, E. Gasparis, A. Eden, and R. Kazman, “Automated Verifi-
cation of Design Patterns with LePUS3,” in Methods Symposium, p. 76,
Citeseer, 2009.

“Groovy: an agile dynamic language for the java platform.” http://groovy.
codehaus.org/, May 2011.

“Tiobe programming community index for april 2011.” http://www.tiobe.
com/index.php/content/paperinfo/tpci/index.html, may 2011.

J. Hannemann and G. Kiczales, “Design pattern implementation in Java and
AspectJ,” in ACM Sigplan Notices, vol. 37, pp. 161-173, ACM, 2002.

T. Osterlie, “Ruby,” Linuz Journal, vol. 2002, no. 95, p. 4, 2002.

93

http://groovy.codehaus.org/
http://groovy.codehaus.org/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[17]

[18]
[19]
[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

“Jpatterns: Java design patterns.” http://www.jpatterns.org/, May
2011.

“Cecil — mono.” http://www.mono-project.com/Cecil, May 2011.
M. Fowler, Domain Specific Languages. Addison-Wesley Professional, 2010.
“Nhibernate forge.” http://nhforge.org, May 2011.

“jmock - an expressive mock object library for java.” http://www. jmock.
org/, May 2011.

“Nunit - home.” http://www.nunit.org/, Aug. 2010.

T. Ecma, “Tg3. common language infrastructure (cli). standard ecma-335,”
2010.

“Common compiler infrastructure: Metadata api.” http://ccimetadata.
codeplex.com/, May 2011.

“Managed extensibility framework.” http://mef.codeplex.com/, Aug.
2010.

“Contracts - microsoft research.” http://research.microsoft.com/
en-us/projects/contracts/, Aug. 2010.

“Fxcop.” http://msdn.microsoft.com/en-us/library/bb429476.aspx,
Aug. 2010.

“Gendarme — mono.” http://www.mono-project.com/Gendarme, May
2011.
H. Lovatt, A. Sloane, and D. Verity, “A pattern enforcing compiler (pec) for

java: A practical way to formally specify patterns,” 2007.

B. Bokowski, “Coffeestrainer: statically-checked constraints on the definition
and use of types in java,” in Software Engineering—ESEC/FSE’99, pp. 355—
374, Springer, 1999.

M. Sefika, A. Sane, and R. Campbell, “Monitoring compliance of a software
system with its high-level design models,” in Proceedings of the 18th inter-
national conference on Software engineering, pp. 387-396, IEEE Computer
Society, 1996.

“Windows presentation foundation.” http://msdn.microsoft.com/en-us/
library/ms754130.aspx, May 2011.

J. Smith, “Wpf apps with the model-view-viewmodel design pattern.” http:
//msdn.microsoft.com/en-us/magazine/dd419663.aspx, Aug. 2010.

“Graphviz - graph visualization software.” http://www.graphviz.org/,
Aug. 2010.

“Caliburn micro: A micro-framework for wpf, silverlight and wp7.” http:
//caliburnmicro.codeplex.com/, Aug. 2010.

54

http://www.jpatterns.org/
http://www.mono-project.com/Cecil
http://nhforge.org
http://www.jmock.org/
http://www.jmock.org/
http://www.nunit.org/
http://ccimetadata.codeplex.com/
http://ccimetadata.codeplex.com/
http://mef.codeplex.com/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://www.mono-project.com/Gendarme
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://www.graphviz.org/
http://caliburnmicro.codeplex.com/
http://caliburnmicro.codeplex.com/

[36]

[40]

[41]
[42]

A. Br
“uhlmann, T. Girba, O. Greevy, and O. Nierstrasz, “Enriching reverse en-

gineering with annotations,” Model Driven Engineering Languages and Sys-
tems, pp. 660-674, 2010.

L. Majtas, “Contribution to the creation and recognition of the design pat-
terns instances,” Information Sciences and Technologies Bulletin of the ACM
Slovakia, vol. 3, pp. 84-92, march 2011.

F. Arcelli Fontana and M. Zanoni, “A tool for design pattern detection
and software architecture reconstruction,” Inf. Sci., vol. 181, pp. 1306-1324,
April 2011.

“Automated drawing of uml diagrams.” http://www.umlgraph.org/, May
2011.

“Wikipedia: Filter (unix).” http://en.wikipedia.org/wiki/Filter_
(Unix)|, May 2011.

“Antlr parser generator.” http://www.antlr.org/, May 2011.

J. Skeet, “C# in depth: Implementing the singleton pattern.” http://
csharpindepth.com/Articles/General/Singleton.aspx, July 2010.

95

http://www.umlgraph.org/
http://en.wikipedia.org/wiki/Filter_(Unix)
http://en.wikipedia.org/wiki/Filter_(Unix)
http://www.antlr.org/
http://csharpindepth.com/Articles/General/Singleton.aspx
http://csharpindepth.com/Articles/General/Singleton.aspx

A. Enclosed CD contents

+ |, doc
.- | install
patternsdnet

----- ﬁ! graphviz.rmsi
i ﬁ' net-frarmework-4.0.msi

=- b source
+ | examples
+ integration
3 lib

| SIC
| go.bat
L7 release.bat

Figure 34: Contents of the enclosed CD.

In figure [34) we can see the content of the enclosed CD in explorer. The CD
contains this document in the doc folder. Everything that is needed to install
Patterns4Net is in the install folder: it contains Graphviz installer and .NET
framework version 4.0 installer. The source folder contains the source code of
Patterns4Net and all libraries needed to build it. If the .NET framework is
installed on the hard drive C, batch scripts go.bat and release.bat will build the
sources, otherwise they need to be edited and the valid path to the MSBuild
must be provided. The go.bat script builds the sources and runs unit tests.
The release.bat script builds the sources and creates patternsdnet release in the
integration\release folder. The ezample folder contains full source code of Pattern
Enforcer example discussed in this document and an example of source code
prepared to be visualized by Architecture Explorer.

o6

B. Installation

Patterns4Net depends on the Graphviz tool and .NET framework version 4.0,
installers of this software can be found on the enclosed CD.

Patterns4Net itself does not require classical installation, instead the pat-
terns4net folder, which contains all the binaries and default configuration files,
can be just copied to hard drive. However, in order to save configuration file,
Architecture Explorer needs access rights for a folder with configuration.

57

C. List of patterns supported by
Pattern Enforcer

In this list we informally describe structural aspects that are enforced by Pat-
tern Enforcer. Formal specification expressed in Pattern Enforcer constraints
specification API, can be found in the source code.

e Composite

— The Composite class should implement the Component interface.

— The Composite class should contain a collection of Component objects
as a field.

— Each method of the Composite class should use the collection of Com-
ponent objects either in a loop, or as a parameter for Ling extension
method.

Factory Method

— The type that declares the method should not be sealed.
— The method should be virtual.
— The method should not be void.

Immutable

— The Immutable object should not allow to change it’s internal state
once it is accessible to other objects.

— When the pattern option Deep is set to true, all objects that are con-
tained in the Immutable object, must be also Immutable.

Null Object
— The class that implements Null Object should implement some inter-
face or inherit from another class different from Syste.Object.
— All methods that can be overridden should be overridden.

— Void methods has empty body and non-void methods contain only
return statement with constant value.

Prototype

— The Prototype class implements IColeable interface.

Adapter

— If the Adaptee role is set, then the Adapter class should contain field
of type Adaptee.

— If the Target role is set, then the Adapter should implement or inherit
the Target interface or class.

58

e Bridge
— If the WrappedType role is set, then the Bridge class should contain
field of this type.
— If the Implementor role is set, then the Bridge should implement or
inherit the Implementor interface or class.
e Proxy
— If the RealSubject role is set, then the Proxy class should contain field
of type RealSubject.

— If the Subject role is set, then the Proxy should implement or inherit
the Subject interface or class.

— If both roles are set, then RealSubject should implement or inherit
from Subject.

e Decorator

— If the Decorated role is set, then the Decorator class should contain
field of this type and at the same time implement or inherit from the
Decorated interface or class.

e Simple Factory Method
— The method should not be void.
e Singleton

— The class should implement exactly one of the Singleton implementa-
tions described in [42].

e Strategy

— The Strategy should be non-sealed class or interface.

— The Strategy should contain exactly one method, which should be
virtual.

e Template Method

— The type that declares the Template Method should not be sealed.
— The Template Method should not be virtual.

— The Template Method should invoke at least one virtual method or
another Template Method.

e Visitor The Visitor may be implemented using Reflection, in such case noth-
ing is enforced. The Visiteable ElementsRoot role represents the base class
or interface of for all elements that the Visitor can wvisit. If this role is set,
then:

— Each sub-class C of VisiteableElementsRoot should define a method
that has the Visitor as one of it’s parameters and in the body it should
invoke a Visitor’'s methods that takes C as a parameter supplying it
itself as the parameter actual value.

99

D. XML Schemas

Pattern Enforcer configuration

<!-- file: pattern-enforcer-types.xsd -->

<!-- Defines types for pattern-enforcer-config and for
architecture-explorer-config schemas -->

<?xml version="1.0" encoding="utf-8"7>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType name="Config">
<xs:annotation>
<xs:documentation>
The root element of Pattern Enforcer configuration.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="plugins" type="AssembliesList"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="AssembliesList">
<xs:annotation>
<xs:documentation>
The list of assemblies that will be loaded
as plugins into Pattern Enforcer.
These assemblies are expected to contain
custom design patterns definitions and
plugins registered via MEF.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="assembly" type="Assembly"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="Assembly">
<xs:annotation>
<xs:documentation>
Assembly with patterns definitions or pluging.
The filename attribute can be either full path,
or relative to the directory from which
Pattern Enforcer was run.
</xs:documentation>
</xs:annotation>
<xs:attribute name="filename" use='"required" type='"xs:string"/>
</xs:complexType>
</xs:schema>

60

<l-- file: pattern-enforcer-config.xsd -->

<?xml version="1.0" encoding="utf-8"7>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemalocation="pattern-enforcer-types.xsd"/>

<xs:element name="config" type="Config">

</xs:element>
</xs:schema>

61

Architecture Explorer configuration

<!-- file: architecture-explorer-config.xsd -—>

<?xml version="1.0" encoding="utf-8"7>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemalocation="pattern-enforcer-types.xsd"/>

<xs:element name="config" type="ArchitectureExplorerConfig"/>

<xs:complexType name="ArchitectureExplorerConfig">
<xs:annotation>
<xs:documentation>
The root element of Architecture Explorer configuration,
which is an extension to Pattern Enforcer configuration.
</xs:documentation>
</xs:annotation>

<xs:complexContent>
<xs:extension base="Config"> <!-- Pattern Enforcer Config type -—>
<xs:sequence>

<xs:element name="ignore-namespaces" type="NamespacesIgnoreList"
nillable="false" maxOccurs="1"/>

<xs:element name="ignore-types" type="TypesIgnoreList"
nillable="false" maxOccurs="1"/>

<xs:element name="ignore-members" type="MembersIgnoreList"

nillable="false" maxOccurs="1"/>

<xs:element name="dot" nillable="false" maxOccurs="1">

<xs:complexType>
<xXs:sequence>
<xs:element name="graph-attributes" type="DotAttributesList"
nillable="false" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="NamespacesIgnoreList">
<xs:annotation>
<xs:documentation>
The list of beginnings of namespaces that
should be ignored during the reverse engineering.
If Architecture Explorer finds a namespace that
starts with one of these strings, it will ignore it.
No wildcars are supported.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name='"namespace" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

62

<I-- file: pattern-enforcer-config.xsd
(continues from previous page) -->
<xs:complexType name="TypesIgnoreList">
<xs:annotation>
<xs:documentation>
The list of regular expressions for matching
names of types that should be ignored during
the reverse engineering. Remember that
use of dot ’.’ must be escaped.
If Architecture Explorer finds a type
that matches one these expressions,
it will ignore it.
</xs:documentation>
</xs:annotation>
<Xs:sequence>
<xs:element name="type" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="MembersIgnoreList">
<xs:annotation>
<xs:documentation>
The list of regular expressions for matching
names of members (properties, methods, field, etc.)
that should be ignored during the reverse engineering.
Remember that use of dot ’.’ must be escaped.
If Architecture Explorer finds a member that
matches one these expressions, it will ignore it.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="member" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="DotAttributesList">
<xs:annotation>
<xs:documentation>
The list of key-value pairs.
These will be added to the input file
for the Graphviz as graph attributes.
For more information about supported
attributes, see the DOT documentation.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="attribute" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:schema>

63

Patterns documentation

<!-- file: patterns-description.xsd -->
<I-- Defines format of patterns documentation that
is compatible with .NET API doc format. -->
<?xml version="1.0" encoding="utf-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="description" type="description-type"/>

<xs:complexType name='"description-type">
<xs:sequence>
<xs:element name="content" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="summary" type="summary-type"
minOccurs="1" maxOccurs="1"/>
<xs:element name="remarks" type='"remarks-type"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="sources" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="source" type="xs:string"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:complexType name="remarks-type" mixed="true">
<xs:complexContent>
<xs:extension base="content-type">
<Xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded"
name="para" type="para-type"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="summary-type" mixed="true">
<xs:complexContent>
<xs:extension base="content-type">
<Xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded"
name="para" type="para-type"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

64

<I-- file: patterns-description.xsd
(continues from previous page) -—>
<xs:complexType name='"content-type" mixed="true">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element minOccurs="0" maxOccurs="unbounded"
name="c" type="c-type"/>
<xs:element minOccurs="0" maxOccurs="unbounded"
name="code" type="code-type"/>
<xs:element minOccurs="0" maxOccurs="unbounded"
name="1list" type="list-type"/>
</xs:choice>
</xs:sequence>
</xs:complexType>

<xs:complexType name="para-type" mixed="true">
<xs:complexContent>
<xs:extension base="content-type" />
</xs:complexContent>
</xs:complexType>

<xs:complexType name="c-type" mixed="true">
</xs:complexType>

<xs:complexType name="code-type" mixed="true">
<xs:attribute name="language" use="optional"
type="xs:string"/>
</xs:complexType>

<xs:complexType name="list-type">
<Xs:sequence>
<xs:element name="listheader" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="term" type='"xs:string"
minOccurs="0" />
<xs:element name="description"
type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="item" minOccurs="0"
max0Occurs="unbounded">
<xs:complexType mixed="true">
<xs:sequence>
<xs:element name="term" type='"xs:string"
minOccurs="0" />
<xs:element name="description"
type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="type" type="xs:string" />
</xs:complexType>
</xs:schema>

65

<l-- file: patterns.xsd -->

<?xml version="1.0" encoding="utf-8"7>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:include schemalocation="pattern-description.xsd"/>

<xs:simpleType name="abstraction-level">
<xs:restriction base="xs:string">
<xs:enumeration value="low"/>
<xs:enumeration value="higher"/>
<xs:enumeration value="normal"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="pattern-type'">
<Xs:sequence>
<xs:element name="class" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:attribute name="full-name"
type="xs:string" use="required" />
</xs:complexType>
</xs:element>
<xs:element name="level" type="abstraction-level"
minOccurs="0" maxOccurs="1"/>
<xs:element name="description" minOccurs="1"
maxOccurs="1" type="description-type"/>
</xs:sequence>
</xs:complexType>

<xs:element name="patterns'">
<xs:complexType>
<xs:sequence>
<xs:element name="pattern" maxOccurs="unbounded"
type="pattern-type">
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

66

	Introduction
	Patterns4Net
	Thesis structure.

	Design patterns support
	Patterns formalization and verification
	The role of programming language
	New features
	New design problems
	Future trends

	Tools support
	Patterns4Net

	Pattern Enforcer
	Design patterns documentation
	Terminology
	Documentation of pattern instances
	Pattern instances representation

	Patterns structural constraints specification
	Domain specific languages
	The API for pattern constraints specification
	Built-in patterns

	Usage
	Unit tests
	Specification of custom pattern

	Architecture
	CIL processing
	Patterns representation and discovery
	CIL analysis
	Pattern Enforcer Design
	Development infrastructure

	Comparison
	FxCop and Gendarme tools.
	Pattern Enforcing Compiler (PEC) for Java
	Other tools

	Architecture Explorer
	Features
	Abstraction levels
	Further meta-information

	User Interface
	Architecture
	User interface logic
	Diagram Classes Design

	Related Work
	Pattern recognition tools
	UML reverse engineering

	Graphviz4Net
	Public API
	Graph representation
	Layout builder

	Architecture
	DOT parsing.
	WPF Support

	Conclusion
	Bibliography
	Enclosed CD contents
	Installation
	List of patterns supported by Pattern Enforcer
	XML Schemas

