
1

Specification Property Framework

This document touches on the following three trait aspects of the specified software.

Results

= The results the user wants to get from the software.

Analysis is concerned with describing the interface of the results.

Process

= The process of producing the results.

Design is concerned with describing the interface of the process.

Platform

= The environment in which the software is used.

Architecture is concerned with describing the platform interface of the software.

Implementation

= Coding specifics of the software.

Engineering is concerned with describing the approach to the implementation of the

software.

2

Analysis Property Framework

Property Framework aims to reduce the difficulty of engineering programs on the .Net/C#|VB

platform by eliminating a considerable amount of code in business logic.

Goals

Provide an all-declarative experience for logic

Provide asynchronous experience without locks

Keep constructs as compact as possible

“You don’t use it – you don’t have it”

Make it easy to integrate with any other technology / enable a feature

Keep none of these technologies / features in the core

Make it out-of-the-box usable on a wide range of versions of the engineering platform

Keep the platform-to-platform difference of the codebase below 1%

Keep the test coverage of the components 100%

Engineer it for testability of the client code

Present State

Standard C#/VB supports the concept of property. We use properties in a class to

define how the respective private states should be read and set in its instances.

Today, all data binding mechanisms in C#/VB rely on the use of properties in the

presentation logic layer. That means that mutable states rather than sequences of immutable

values are used for data binding. To support such model of operation in asynchronous

scenarios without locks we have to introduce mechanisms for brokering state changes.

Validation and change notification are only enabled for members of objects if their

classes implement certain interfaces.

The above facts make designing presentation logic classes a challenging task. The

model of one class with 𝑛 traditional properties is be hard to implement with brokering

because there is no single model for brokering change of multiple states. In addition, inheriting

support for validation and state change may affect the code of each property. Migrating to

another validation platform will require using different events or adapting interfaces of the

base classes.

3

Approach

Assume we have a class that has a single state, brokers the change of this state, notifies

when the state is set, does the validation, and implements any other logic of handling the

state. Instances of such classes we will call self-reliant properties.

Then, our presentation logic classes will only need to contain 𝑛 read-only traditional

properties each redirecting the binding mechanism to the respective self-reliant properties.

𝐶𝑙𝑎𝑠𝑠
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦.𝑔𝑒𝑡
→ 𝑆𝑒𝑙𝑓𝑅𝑒𝑙𝑖𝑎𝑛𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦

Property Framework provides means for composition and use of self-reliant

properties.

Interface

The following diagram shows the desired interfaces of PF-properties.

4

Operation

The following diagram shows the requirements for process and operation for

PF-properties.

Additional Design Requirements

A PF-property must only change its state using an injected broker object, that we call

a reloader. Reloaders should be call-driven, i.e. their operation should be triggered using a

parameterless Go() method only. Property descriptions are composed and provide the only

means for instantiating properties.

5

Design

This section explores certain concepts that allow specifying the design of an application in a concise and relatively

generalized way.

Engineering Platform

An engineering platform is a set of tools used for programming i.e. creating and

running programs.

Applicability

Let us assume an engineering platform supports the concept of a datum or an

instance or a portion of data usable as a single unit, and it has a concept for static

categorization of such instances. Then, if the platform supports the relation of equality for

instances, we can use the following definitions and concepts to design applications on this

platform.

Type

Type 𝑇 is a set of all instances 𝑡 (instances of type 𝑇) that belong to the same

category.

Type Transition

A type transition with identifier 𝜏 from type 𝑇𝑠 to type 𝑇𝑟 is an abstract function

 𝑓𝜏,𝑇𝑠,𝑇𝑟 ∶ 𝑇𝑠 → 𝑇𝑟 for which the relation of equality is defined as follows.

Two type transitions are equal if and only if their identifiers and source types match.

 𝑓𝜏,𝑇𝑠,𝑇𝑟 = 𝑓𝜏′,𝑇𝑠′,𝑇𝑟′ ⇔ 𝑇𝑠 = 𝑇𝑠
′ ∧ 𝜏 = 𝜏′

If two type transitions are equal then their result types match.

𝑓𝜏,𝑇𝑠,𝑇𝑟 = 𝑓𝜏′,𝑇𝑠′,𝑇𝑟′ ⇒ 𝑇𝑟 = 𝑇𝑟
′

6

 Type Transition Notation

If 𝑓𝜏,𝑇𝑠,𝑇𝑟 denotes a type transition, then we say the transition has the identifier 𝜏, the

source type 𝑇𝑠 and the result type 𝑇𝑟.

To denote a type transition we can use the transition operator
𝜏
→ , thus, presenting

𝑓𝜏,𝑇𝑠,𝑇𝑟 as 𝑇𝑠
𝜏
→ 𝑇𝑟.

To define a composite transition 𝑓𝜏2,𝑇𝑟,𝑇𝑟′ ∘ 𝑓𝜏1,𝑇𝑠,𝑇𝑟 (meaning “𝑓𝜏2,𝑇𝑟,𝑇𝑟′

after 𝑓𝜏1,𝑇𝑠,𝑇𝑟”) we can conveniently use the semicolon notation 𝑓𝜏1,𝑇𝑠,𝑇𝑟; 𝑓𝜏2,𝑇𝑟,𝑇𝑟′ which

presented in the transition operator notation 𝑇𝑠
𝜏1
→ 𝑇𝑟; 𝑇𝑟

𝜏2
→ 𝑇𝑟

′ is finally reduced to

 𝑇𝑠
𝜏1
→ 𝑇𝑟

𝜏2
→ 𝑇𝑟

′ or 𝑇𝑠
𝜏1;𝜏2
→ 𝑇𝑟

′ depending on the required level of detail.

Solution

Solution 𝑈 is a set of all type transitions specified for the designed system.

Scope

Scope 𝑆 is a subset of solution 𝑈.

Two scopes are mutually exclusive if they intersect.

Language

Language 𝐿𝑈 is a set of identifiers of all type transitions in solution 𝑈. Members of

𝐿𝑈 we will call words.

∃𝑓𝜏,𝑇𝑠,𝑇𝑟 ∈ 𝑈 ⟺ 𝜏 ∈ 𝐿𝑈

Word

A word is a member of the language 𝐿𝑈.

7

Design Property Framework

In this section, we will define a solution for Property Framework according to the analysis-defined

requirements.

𝑆 = {𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇
𝐸𝑎𝑐ℎ
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 , 𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

 𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇
𝐹𝑖𝑟𝑠𝑡
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 , 𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇

𝑂𝑑𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇
𝐷𝑒𝑙𝑎𝑦𝑒𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇, 𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇
𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇, 𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇

𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒
→ 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇 ,

𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇
𝐴𝑠𝑦𝑛𝑐
→ 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇, 𝑅𝑒𝑙𝑜𝑎𝑑𝑎𝑏𝑙𝑒𝑇

𝑊𝑜𝑟𝑘𝑒𝑟
→ 𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑎𝑡𝑐ℎ
→ 𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝑅𝑒𝑡𝑟𝑦
→ 𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝑇𝑖𝑚𝑒𝑜𝑢𝑡
→ 𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐸𝑎𝑐ℎ
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐹𝑖𝑟𝑠𝑡
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝑂𝑑𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐷𝑒𝑙𝑎𝑦𝑒𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇
𝑀𝑜𝑑𝑖𝑓𝑦
→ 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇, 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇

𝐶𝑎𝑡𝑐ℎ
→ 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇 ,

𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇
𝑅𝑒𝑡𝑟𝑦
→ 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇, 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇

𝑇𝑖𝑚𝑒𝑜𝑢𝑡
→ 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇,

𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇
𝐴𝑠𝑦𝑛𝑐
→ 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇, 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟

𝐸𝑎𝑐ℎ
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇
𝐹𝑖𝑟𝑠𝑡
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇, 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇

𝑂𝑑𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇
𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 , 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇

𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐹𝑖𝑟𝑠𝑡
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇, 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇

𝑂𝑑𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐷𝑒𝑙𝑎𝑦𝑒𝑑
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐼𝑛𝑝𝑢𝑡
→ 𝐼𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 , 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇

𝐺𝑒𝑡
→ 𝐼𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑎𝑙𝑙
→ 𝐼𝐶𝑎𝑙𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑎𝑙𝑙𝐺𝑒𝑡
→ 𝐼𝐶𝑎𝑙𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑝𝑢𝑡
→ 𝐼𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇,

8

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑝𝑢𝑡
→ 𝐼𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇 ,

𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑇, 𝐼𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟𝑇

𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒𝑇 ,

𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝑅𝑒𝑙𝑜𝑎𝑑𝑒𝑟𝑇 ,, 𝐼𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇

𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇 ,

𝐼𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇 ,

𝐼𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇 ,

𝐼𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇
𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇 , 𝐼𝐶𝑎𝑙𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒𝑇

𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝐶𝑎𝑙𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑇}

The following package diagram shows the scopes defined for type transitions. The
𝐶𝑟𝑒𝑎𝑡𝑒
→

transitions are not shown on the diagrams and they are expected to be available wherever

the respective source prototype types are.

(Continued on the next page)

9

Scopes (continued)

10

The solution 𝑆 has a language and describes the grammar of this language

unambiguously. The grammar we describe is actually the main purpose of the design we

provide here. Types are only means to this end. To illustrate the desired grammar we will use

the railroad diagrams and EBNF expressions.

IFunctionWorkerPrototype ::= Reloadable 'Worker' ('Catch' | 'Retry' | 'Timeout')*

ISequenceConveyor ::= Reloadable ('Reactive' | 'Async') ('Modify' | 'Async' | 'Catch' | 'Retry' | 'Timeout')*

IReloaderPrototype ::= (ISequenceConveyor | IFunctionWorkerPrototype | Reloadable) ('Each' | 'First' | 'Odd' |

'Delayed' | 'Throttle' | 'Conditional' | 'Filtered') ('First' | 'Odd' | 'Delayed' | 'Throttle' | 'Conditional' | 'Filtered')*

11

IPropertyPrototype ::= IReloaderPrototype 'Get'

ICallPropertyPrototype ::= IReloaderPrototype ('Call' | 'CallGet')

IInputPropertyPrototype ::= IReloaderPrototype 'Input'

ICheckInputPropertyPrototype ::= IReloaderPrototype 'CheckInput'

IValidationInputPropertyPrototype ::= IReloaderPrototype 'ValidationInput'

IFunctionWorker ::= IFunctionWorkerPrototype 'Create'

IObservable ::= ISequenceConveyor 'Create' | (IProperty | ICallProperty | IInputProperty | ICheckInputProperty |

IValidationInputProperty) 'ToObservable'

file:///C:/Users/user/Desktop/Project%20Fermi/Language%20design.xhtml%23IReloaderPrototype

12

IReloader ::= IReloaderPrototype 'Create'

IProperty ::= IPropertyPrototype 'Create'

ICallProperty ::= ICallPropertyPrototype 'Create'

IInputProperty ::= IInputPropertyPrototype 'Create'

ICheckInputProperty ::= ICheckInputPropertyPrototype 'Create'

IValidationInputProperty ::= IValidationInputPropertyPrototype 'Create'

IDisposable ::= (IProperty | ICallProperty | IInputProperty | ICheckInputProperty | IValidationInputProperty) (

'OnChanged' | 'OnChanging' | 'FromObservable')

13

Engineering C#

This section explores an approach to the engineering of solutions in C#. It illustrates how the design

translates into C# engineering in the form of engineering patterns that reflect the respective patterns

discoverable in the type transitions we use for design.

Lazy Creation

𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑

Duck is the class the instances of which we seek to produce. We want to return the

instances as IFlySwimBird, however, we also want this class to be usable with other

interfaces not convertible to IFlySwimBird.

 public interface IFlySwimBird : IFly, ISwim {}

 public class Duck : IFly, ISwim

 {

 protected Duck(int initialPosition)

 {

 Position = initialPosition;

 }

 public virtual int Position{get; protected set;}

 public virtual void Fly(){Position+=100;}

 public virtual void Swim(){Position+=1;}

 }

We want Duck to be only used as a part of a product hierarchy. The product classes

like Duck cannot be instantiated directly, however, in this case we did not use the modifier

abstract on Duck thus showing that the direct subclasses of the class would only need an

empty public constructor and no other code to be constructible. The abstract we will use

to signify that the class will use both means of creation and some functionality of its

subclasses. We will not use public constructors in products or their subclasses outside

prototypes.

14

Abstract classes and inheritance we will use to reduce code duplication in subclasses.

 public abstract class FlySwimBird : IFly, ISwim

 {

 protected FlySwimBird(int initialPosition)

 {

 Position = initialPosition;

 }

 public virtual int Position{get; protected set;}

 public abstract void Fly();

 public abstract void Swim();

 }

 public class Duck : FlySwimBird

 {

 protected Duck(int initialPosition): base(initialPosition)

 { }

 public override void Fly(){Position+=100;}

 public override void Swim(){Position+=1;}

 }

 public class Goose : FlySwimBird

 {

 protected Goose(int initialPosition): base(initialPosition)

 { }

 public override void Fly(){Position+=200;}

 public override void Swim(){Position+=2;}

 }

Each prototype we make is made up of two parts, the first one being home for a private

constructible subclass of a product class.

 public partial class DuckPrototype

 {

 private class BirdInstance : Duck, IFlySwimBird

 {

 public BirdInstance(int initialPosition): base(initialPosition)

 { }

 }

 }

15

The second part of the prototype is directly responsible for the type transition it is

made for.

 public partial class DuckPrototype : IFlySwimBirdPrototype

 {

 public IFlySwimBird Create(int initialPosition)

 {

 return new BirdInstance(initialPosition);

 }

 }

The method Create(…) here is the engineering representation of the type transition

𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
𝐶𝑟𝑒𝑎𝑡𝑒
→ 𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑. Using prototypes to create instances of

classes, we call lazy creation of instances.

Decoration

𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
𝑇𝑎𝑚𝑒
→ 𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Product classes can accept prototypes as constructor parameters. If the interface of

the product class and the interface of instances the prototype produces match we call such

product class a decorator.

 public class TameFlySwimBirdDecorator : IFlySwimBird

 {

 protected TameFlySwimBirdDecorator(

 IFlySwimBirdPrototype compositionBasePrototype,

 int initialPosition, Func<bool> allow)

 {

 _CompositionBase = compositionBasePrototype.Create(initialPosition);

 _Allow = allow;

 }

 private readonly IFlySwimBird _CompositionBase;

 private readonly Func<bool> _Allow;

 public override void Fly(){if(_Allow())_CompositionBase.Fly();}

 public override void Swim(){if(_Allow())_CompositionBase.Swim();}

 }

16

It is worth noting that constructor parameters should always be tested in classes where

they are referenced. Guard clauses in constructors serve this purpose. No need to test an

object where it is only passed along and not used.

 … protected TameFlySwimBirdDecorator(

 IFlySwimBirdPrototype compositionBasePrototype,

 int initialPosition, Func<bool> allow)

 {

 if(compositionBasePrototype==null)

 throw new ArgumentNullException("compositionBasePrototype");

 if(allow==null) throw new ArgumentNullException("allow");

 _CompositionBase = compositionBasePrototype.Create(initialPosition);

 if(_CompositionBase==null)throw new NotSupportedException();

 _Allow = allow;

 } …

Prototypes and not readymade products are used as constructor parameters in

decorators because sometimes disposing an object and instantiating another one is the only

way to manage it (as it is with BackgroundWorker) and we do not want to change the code if

such a requirement arises. Besides, this approach allows keeping all the guard clauses in one

place removing virtually all the functionality from the prototype.

 public partial class TameFlySwimBirdDecoratorPrototype : IFlySwimBirdPrototype

 {

 public TameFlySwimBirdDecoratorPrototype(

 IFlySwimBirdPrototype compositionBasePrototype, Func<bool> allow)

 {

 _CompositionBasePrototype = compositionBasePrototype;

 _Allow = allow;

 }

 private readonly IFlySwimBirdPrototype _CompositionBasePrototype;

 private readonly Func<bool> _Allow;

 public IFlySwimBird Create(int initialPosition)

 {

 return new DecoratorInstance(_CompositionBasePrototype,

 initialPosition, _Allow);

 }

 }

17

 public partial class TameFlySwimBirdDecoratorPrototype

 {

 private class DecoratorInstance : TameFlySwimBirdDecorator

 {

 public DecoratorInstance(

 IFlySwimBirdPrototype compositionBasePrototype,

 int initialPosition, Func<bool> allow)

 : base(compositionBasePrototype, initialPosition, allow)

 { }

 }

 }

The type transition 𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
𝑇𝑎𝑚𝑒
→ 𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 is

represented by a specifically designed extension method Tame(…).

 public static class FlySwimBirdPrototypeExtensions

 {

 public static IFlySwimBirdPrototype Tame(

 this IFlySwimBirdPrototype source, Func<bool> allow)

 {

 return new TameFlySwimBirdDecoratorPrototype(source, allow);

 }

 }

Composition

𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
𝐺𝑟𝑜𝑢𝑝
→ 𝐼𝐹𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

We build our products on top of other products. Product classes that accept prototypes

as constructor parameters we will call composites. Decorators are among special cases of

the composite.

In the following example, Flock contains a collection of birds. It also has the crucial

information needed to produce them and control as a single unit.

 public interface IFlock : IFly {}

 public interface IFlockPrototype

 {

 IFlock Create(int initialPosition, int count)

}

18

The engineering of all composites is based on the same principle of injection.

public class Flock : IFly

 {

 protected Flock (IFlySwimBirdPrototype birdPrototype,

 int initialPosition, int count)

 {

 if(count < 0)throw new ArgumentOutOfRange("count");

 _Birds = Enumerable.Repeat(initialPosition, count)

 .Select(o => birdPrototype.Create(o));

 }

 private readonly IEnumerable<IFlySwimBird> _Birds;

 public void Fly(){_Birds.ToList().ForEach(o => o.Fly());}

}

 public partial class FlockPrototype : IFlockPrototype

{

 public FlockPrototype(IFlySwimBirdPrototype birdPrototype)

 {

 _BirdPrototype = birdPrototype;

 }

 private readonly IFlySwimBirdPrototype _BirdPrototype;

 public IFlock Create(int initialPosition, int count)

 {

 return new FlockInstance(_BirdPrototype, initialPosition, count);

 }

}

public partial class FlockPrototype

{

 private class FlockInstance: Flock, IFlock

 {

 public FlockInstance (IFlySwimBirdPrototype birdPrototype,

 int initialPosition, int count)

 : base(birdPrototype, initialPosition, count)

 { }

 }

}

19

The type transition 𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒
𝐺𝑟𝑜𝑢𝑝
→ 𝐼𝐹𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 from one

prototype to always engineered as an extension method. Please notice how we group the

extension methods.

 public static class FlySwimBirdPrototypeExtensions

 {

 public static IFlySwimBirdPrototype Tame(

 this IFlySwimBirdPrototype source, Func<bool> allow)

 {

 return new TameFlySwimBirdDecoratorPrototype(source, allow);

 }

 public static IFlockPrototype Group(

 this IFlySwimBirdPrototype source)

 {

 return new FlockPrototype(source);

 }

 }

Singularities

Marker

 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛
𝐷𝑢𝑐𝑘
→ 𝐼𝐹𝑙𝑦𝑆𝑤𝑖𝑚𝐵𝑖𝑟𝑑𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

A class or interface that participates in type transitions but is never referenced we will

call a marker. Marker classes/interfaces serve as roots for expressions. Below is an example

of a marker class.

 public abstract class Description

 {

 private class Instance : Description { }

 public static Description Start()

 {

 return new Instance();

 }

 }

20

What is the best way to create an instance of IFlySwimBirdPrototype from scratch?

We could allow using constructors of some implementers of this interface, or we could make

a class with static factory methods one for each bird. However, a much more beneficial

alternative to the above would be using a marker class and defining extension methods to this

class one method for each bird.

 public static class DescriptionExtensions

 {

 public static IFlySwimBirdPrototype Duck(

 this Description source)

 {

 return new DuckPrototype();

 }

 public static IFlySwimBirdPrototype Goose(

 this Description source)

 {

 return new GoosePrototype();

 }

 }

Extension methods are miles ahead of any other C# feature in terms of extensibility.

With extension methods we do not have to care about where (in which class or even assembly)

they are defined. We know that they can all be used as a single language.

var flock = Description.Start().Duck().Group().Create(1, 10);

Singularities

Conveyor

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛
𝐵𝑖𝑟𝑑𝑂𝑓𝑃𝑟𝑒𝑦
→ 𝐼𝐵𝑖𝑟𝑑𝑂𝑓𝑃𝑟𝑒𝑦𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟

A class that acts like a prototype but is ignorant of the concrete product it creates we

will call conveyor.

Conveyors are usually used to construct interfaces or classes for which a convenient

extension method language has already been developed, and thus their instantiation can be

easily and safely implemented right in our own extension methods.

21

public class BirdOfPreyConveyor : IBirdOfPreyConveyor

{

 public BirdOfPreyConveyor(Func<int,IBirdOfPrey> getBird)

 {

 _GetBird = o == null ? null : getBird(o);

 }

 private readonly Func<int,IBirdOfPrey> _GetBird;

 public IBirdOfPrey Create(int initialPosition)

 {

 return _GetBird(initialPosition);

 }

}

 public static class DescriptionExtensions

 {

 public static IBirdOfPreyConveyor BirdOfPrey(

 this Description source)

 {

 return new BirdOfPreyConveyor(o => Birds.OfPrey.Create(1,o));

 }

 }

Sometimes, we also need to decorate a conveyor. The only reason for that is keeping

our grammar simple and cohesive. Otherwise, we could allow the user to specify everything

when using the source conveyor.

public class BirdOfPreyConveyorDecorator : IBirdOfPreyConveyor

{

 public BirdOfPreyConveyorDecorator(IBirdOfPreyConveyor compositionBase,

 Func<IBirdOfPrey,IBirdOfPrey> modification)

 {

 _CompositionBase = compositionBase;

 _Modification = modification;

 }

 private readonly IBirdOfPreyConveyor _CompositionBase;

 private readonly Func<IBirdOfPrey,IBirdOfPrey> _Modification;

 public IBirdOfPrey Create(int initialPosition)

 {

 return _Modification(_CompositionBase.Create(initialPosition));

 }

}

22

We are now able to define the type transition

 𝐼𝐵𝑖𝑟𝑑𝑂𝑓𝑃𝑟𝑒𝑦𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟
𝑆𝑜𝐻𝑖𝑔ℎ
→ 𝐼𝐵𝑖𝑟𝑑𝑂𝑓𝑃𝑟𝑒𝑦𝐶𝑜𝑛𝑣𝑒𝑦𝑜𝑟.

 public static class BirdOfPreyConveyorExtensions

 {

 public static IBirdOfPreyConveyor SoHigh(

 this IBirdOfPreyConveyor source)

 {

 return new BirdOfPreyConveyorDecorator

 (source, o => o.SoHigh());

 }

 }

Engineering C# Style

The patterns described above are enough to build a library like Property Framework. However, to improve the

perception of code and stimulate the use of accepted practices the following minimalist coding style can be used.

Related – keep together

Unrelated – keep apart

PascalCaseState private mutable fields;

_PascalCase private immutable fields;

TPascalCase type parameters;

camelCase method parameters;

IPascalCase interface declaration;

ALL_CAPITAL constants;

PascalCase everything else;

//=// ‘grass’ is used after constructors to attract attention;

/// <Comments/> comments are used on whatever users are supposed to use.

23

Engineering Property Framework

Property Framework will be based on the engineering patterns we described in the previous section.

In this section, we will provide some more details on the C# specific implementation details of PF.

In C# scoping is achieved through the use of namespaces. In the design section, we

have defined a number of scopes that determine the availability of type transitions. When

implementing the type transitions with extension methods we should define namespaces that

would provide the implementation context for the type transitions. The following diagram

shows the namespaces used for extension methods in PF. Other classes should be placed in

namespaces that have minimal interference with the following ones.

24

Architecture Property Framework

This section provides information on the packaging of Property Framework and its platform specifics.

Property Framework is shipped as a set of DLL assemblies. Each assembly enables a

certain subset of the PF functionality and thus serves as another scoping instrument. The main

reason for dividing the functionality is to provide the user with only the features that they

want to use and avoid the distraction that comes from seeing unneeded extension methods

on the list. The following diagram shows the assemblies that make up Property Framework.

25

The other reason for using multiple assemblies is the need for scalability and portability

of Property Framework. Property Framework is supported on Windows Phone 8,

.Net Framework versions 3.5, 4.0, and 4.5. Each of these platforms has its own limitations that

we can address by including or excluding assemblies. Windows Phone 8 applications will

hardly need legacy validation techniques, .Net 3.5 has not support for Reactive Extensions and

like .Net 4.0 does not allow us to use INotifyDataErrorInfo. We will package the

platform-specific versions of PF according to the following diagram.

26

Dependencies

Some parts of the PF source code / compiled assemblies may require third-party

components. Below is the list of such dependencies.

Test projects - Moq

All the test projects that come with PF source code require Moq. Moq assemblies are

included into the source code package under \Lib directory. Moq license is shipped together

with the assemblies.

Property.Reactive - Rx

To use the features of the Property.Reactive assembly you will need Reactive

Extensions assemblies installed. The Rx package is obtainable from the Microsoft download

site at http://www.microsoft.com/en-us/download/details.aspx?id=30708.

Showcase.ScrollAsYouLoad for .NET 3.5 - Blend 3.0 SDK

To run the Showcase.ScrollAsYouLoad demonstration app for .Net 3.5 you will need

Blend SDK installed on your system. The SDK is available for download at:

http://www.microsoft.com/en-us/download/details.aspx?id=22829.

http://www.microsoft.com/en-us/download/details.aspx?id=30708
http://www.microsoft.com/en-us/download/details.aspx?id=22829

