

Getting Started with
Proxy Factory
On the road to WCF

This document presents you briefly the concept behind the ProxyFactory and
walks you through four quick samples. The first one covers a web service
dynamic proxy generation, the second covers a .Net Remoting dynamic proxy
generation, the third and fourth shows you additional concepts such as
asynchronous calls and proxy configuration using a mechanism similar to
dependency properties.

Version 1.1 Rev b

2007

RioterDecker
NetFxFactory.org

11/7/2006

Table of Contents

Presentation .. 3

About ProxyFactory .. 3

Concept .. 3

What can ProxyFactory do for you? .. 3

How will ProxyFactory change your life? .. 4

Walkthroughs .. 4

Setup ... 4

Sample1: Web Service ... 5

Step by step ... 6

Sample 2: .Net Remoting ... 7

Step by step ... 8

Sample 3: Going further – Asynchronous calls ..11

Step by step ..11

Sample 4: Going further: dependency properties ..13

Step by step ..14

Sample 5: WSE 3.0 secured credentials sample ..15

Step by step ..15

Sample 6: Configuration ...17

Step by step ..17

Take away ..18

Tips and tricks ...18

Interesting reading ..18

Disclaimers & copyright ..19

Presentation

About ProxyFactory

This library has been built based on Christian Weyer’s Dynamic Web Service Library in order

to provide an effective way of creating dynamic proxy’s. Although, C. Weyer addressed a

good range of problematic for web service proxy generation it does not take full advantage

of .Net 2.0 features and leaves room for improvement. This is one of the points that we

wanted to tackle with this library. Aside from the improvement does the WS road, we found

interesting to include .Net Remoting proxy generation to the library thus transforming it into

a true proxy factory that can be then used later on as a gateway to WCF.

Concept

A picture is worth a thousand words so as an introduction to the concept of ProxyFactory

here is a diagram that shows the main bricks under ProxyFactory’s hood.

What can ProxyFactory do for you?

The emergence of the WCF platform announces the unification of all communications

technologies provided by the .NET platform in a common foundation and so their decline. So

it is still a safe bet to develop a library to leverage .NET 2.0 generics and

SchemaImporterExtension mechanisms to offer a similar developer experience.

Such a library already exists and targets only web services communication, it was developed

by Christian Weyer from Thinktechture but, as opposed to the WCF

ChannelFactory<TChannel>, his library doesn’t provide an effective mechanism to handle

specific types during the proxy generation process. This is what is tackled by the

ProxyFactory by taking advantage of SchemaImporterExtension mechanisms. Futhermore,

alternative communication technologies are targeted such as Remoting and WSE. This library

offers a convenient way to provide an easy-to-use programming model that first, addresses

in a common way two heterogeneous communication channels (Asmx and Remoting) but

also help to drive existing applications towards the unification of the communication

platforms proposed by Microsoft .Net 3.0 with WCF.

How will ProxyFactory change your life?

ProxyFactory provides a seemless programming experience whether you are addressing Web

Services or .Net Remoting. Primarly, by taking full advantage of dynamic proxy generation as

well as the generated assembly caching, ProxyFactory offers a transparent, performant and

developpper friendly way to handle to common communication channels. Furthermore,

ProxyFactory drives you towards WCF by using a similar client side programming experience

thus limiting the migration cost.

Walkthroughs

Setup

By now, you should have everything setup to run both Web service and .Net Remoting

samples.

Here are the details of what has been installed by the Getting Started with ProxyFactory MSI

package:

 In your system’s program files:

o This Getting started documentation

o A folder containing the Web Service sample (with a completed solution and a

follow through)

o A folder containing the .Net Remoting sample (with a completed solution and

a follow through)

o A Reference Assemblies folder containing the ProxyFactory library as well as

an Utils library (the samples reference these assemblies).

 Code snippets to quickly create ProxyFactory instances.

 Two projects template to easily create library or console application that use

ProxyFactory.

Sample1: Web Service

The completed sample is available via the start menu at: Start

Menu\Programs\NetFxFactory \Getting started with ProxyModel\ Web Service Sample –

Completed

The goal of this sample is to create a simple web service allowing interacting with someone’s

bank account and then interact with this web service using the ProxyFactory.

The following diagram summarizes the web service contract:

Figure 1: Web service contract.

The following diagram details the data structure exchanged between clients and WS:

Figure 2: Data structures.

Step by step

Open the solution “Named Web Service Sample – Step by step” in your start menu Start

Menu\Programs\NetFxFactory \Getting started with ProxyModel\ Web Service Sample –

Step by step This opens up a Visual Studio solution containing 3 projects: a web project

hosting the web service, a library that contains the contracts and data structures and finally

a console application that will be a client application. These projects are mostly empty shells

that you will have to complete.

1. Implement the contracts and data structures required in this sample.

a. In the Sample.Contracts project, create the data strucuture described in figure

2.

b. Again in Sample.Contracts, create the web service contract described in figure

1

2. Create the web service.

a. In the web service project, add a reference to the Sample.Contracts project,

b. Then add a new web service named AccountManager to the project.

c. Finally implement the IAccountManager contract that you created in 1.b.

Trick: In the web service constructor insert a call to CustomerRepository.LoadCustomers();

in order to simulate db access. Then use CustomerRepository.Repository.TryGetValue(…)

to access customer’s info in the web methods.

Now comes the most interesting part of this sample which is how to use the ProxyFactory.

3. Create the web service client

a. In the WSClient project, add references to :

 ProxyFactory assembly located under:

<Program files>\NetFxFactory\Getting started with ProxyFactory\Referenced

Assemblies

 Sample.Contract project

b. Now that all the plumbing is done, you can start the interesting stuff, i.e.

create the proxy and call the web methods. So, in the DoIt() method:

i. First define the Uri where the web service WSDL can be found in order

to get all the information to generate the dynamic proxy.

Uri __wsHumanResourceUri = new

Uri("http://localhost:1141/WebService/AccountManager.asmx?WSDL");

ii. Then instantiate a new ProxyFactory providing the web service’s

contract.

ProxyFactory<IAccountManager> __proxyFactory = new

ProxyFactory<IAccountManager>(__wsHumanResourceUri);

iii. Finally explicitly create the strongly typed proxy with the following

statement:

IAccountManager __proxy = __proxyFactory.CreateProxy();

iv. From now you can call any WebMethod for this web service like

shown below:

ICustomer __customer = __proxy.GetCustomerDetails("PTarker");

Sample 2: .Net Remoting

The completed sample is available via the start menu at: Start

Menu\Programs\NetFxFactory \Getting started with ProxyModel\ Net Remoting Sample -

Completed

The goal of this sample is the same as before, i.e. access bank account information. The only

difference is that instead of using web services it uses .Net Remoting.

The following diagram summarizes the Remoting object:

Figure 3: .Net Remoting contract.

The following diagram details the data structure used to interact with the remote object:

Figure 4: Data structures.

Step by step

Open the solution named “Net Remoting Sample – Step by step” in your start menu Start

Menu\Programs\NetFxFactory \Getting started with ProxyModel\ Net Remoting Sample –

Step by step. This opens up a Visual Studio solution containing 3 projects: a console

application hosting the remote object, a library that contains the contracts and data

structures and finally a console application that will be a client application. These projects

are mostly empty shells that you will have to complete.

1. Implement the contracts and data structures required in this sample.

a. In the Sample.Contracts project, create the data structure described in figure

4.

b. Again in Sample.Contracts, create the remote object along with its interface

described in figure 3.

2. Create the remote object.

a. In the Server project, add a reference to the Sample.Contracts project,

b. Then add the following configuration information in the application’s config file

 <system.runtime.remoting>
 <application>
 <service>
 <wellknown
 mode="SingleCall"
 type="Sample.Contracts.AccountManager, Sample.Contracts"
 objectUri="AccountManager.rem"/>
 <activated type="Sample.Contracts.AccountManager, Sample.Contracts"/>

 </service>
 <channels>
 <!--<channel ref="tcp" secure="true" port="9000"/>-->
 <channel ref="tcp" port="9000"/>
 </channels>
 </application>

 </system.runtime.remoting>.

c. Finally implement the IAccountManager contract that you created in 1.b.

Configuration __configuration =
ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None);
RemotingConfiguration.Configure(__configuration.FilePath, false);

That’s all server side.

Now comes the most interesting part of this sample which is how to use the ProxyFactory

with Remoting.

1. Create the client

a. In the RemotingClient project, add references to :

 ProxyFactory assembly located under:

<Program files>\NetFxFactory\Getting started with ProxyFactory\Referenced

Assemblies

 Sample.Contracts project

b. Now that all the plumbing is done, you can start the interesting stuff, i.e.

create the proxy and call the remote object. So, in the DoIt() mehod:

i. The first step is to define the remote object configuration in the config

file:

 <system.runtime.remoting>
 <application name="RemotingClient">
 <client url="tcp://localhost:9000">
 <wellknown
 type="Sample.Contracts.IAccountManager, Sample.Contracts"
 url="tcp://localhost:9000/AccountManager.rem"/>
 <!--<activated
 type="Sample.Contracts.AccountManager, Sample.Contracts"/>-->
 </client>
 <channels>
 <channel ref="tcp" port="0" />
 <!--<channel

ref="tcp"
secure="true"
port="0"
useDefaultCredentials="true"/>-->

 </channels>
 </application>
 </system.runtime.remoting>

ii. Then in the Program.DoIt(…) method, instantiate a new ProxyFactory

providing the remote object contract.

ProxyFactory<IAccountManager> __proxyFactory = new

ProxyFactory<IAccountManager>();

iii. Finally explicitly create the strongly typed proxy with the following

statement:

IAccountManager __proxy = __proxyFactory.CreateProxy();

iv. From now you can call directly the remote object:

ICustomer __customer = __proxy.GetCustomerDetails("PTarker");

Well, if you have previously completed the web service sample you probably noticed that,

except for ProxyFactory ctor, client side code this is the exact same steps () weither you are

accesing web services or .Net Remote objects.

Sample 3: Going further – Asynchronous calls

The goal of this third sample is to dig into more details of what can be done with

ProxyFactory. Even if ProxyFactory is based on a business contract it doesn’t break any

functionalities available to asmx. The well-known asynchronous support still works;

furthermore using interface inheritance it is trivial to add the methods allowing asynchronous

calls to the original contract client side. This is what will be demonstrated in the first section

of this sample.

The completed sample is available via the start menu at:

Start Menu\Programs\NetFxFactory \Getting started with ProxyModel\ Going Further –

Asynchronous calls - Completed

The goal of this sample is the same as before, i.e. access bank account information. The only

difference is that the call to the GetCustomerDetails method is done asynchronously.

Step by step

Open the solution named “Asynchronous Web Service Sample - Step by step” in your start

menu Start Menu\Programs\NetFxFactory \Getting started with ProxyModel\

Asynchronous Web Service Sample - Step by step. This opens up a Visual Studio solution

containing 3 projects: a web project hosting the web service, a library that contains the

contracts and data structures and finally a console application that will be a client

application. These projects are exactly the same as what you get at the end of the Sample 1.

The only thing you have to include in this step by step is the interface exposing

IAccountManager asynchronously.

The interface is described bellow:

Figure 5: IAccountManager asynchronous interface

1. First, create the interface described figure 5 in the WSClient project, this interface is

directly derived from the IAccountManager and apply the asynchronous call pattern

defined by asmx (i.e. for each method of the interface you need to add a method

with prefix Begin + method name along with the original parameters and two

additional ones specific to async calls (callback and asyncState) and another method

prefixed with End + methodname with a AsyncResult parameter).

2. In WSClient.Program.DoIt() method, create a new ProxyFactory templated with the

interface you created in the previous step instead of using directly IAccountManager.

(remember, you can use the snippets deployed with this getting started package)

3. Create the GetCustomerDetail callback method like described below in pseudo code:

Method signature:

public static void GetCustomerDetailsCallback(IAsyncResult asyncResult)

Logic:

Get the proxy out of the asyncResult parameter (AsyncState property)

Get the completed result by calling the EndGetCustomerDetails method.

4. In the WebService project, add a 10s Thread.Sleep in the AccountManager.

GetCustomerDetails in order to simulate a high latency.

5. Back in the WSClient project, Instantiate an AsyncCallback delegate after the

ProxyFactory’s CreateProxy method,

6. Finally, call the BeginGetCustomerDetails and pass in the AsyncCallback,

7. You are now ready to test your code!

Sample 4: Going further: dependency properties

Where the third sample demonstrated that using ProxyFactory no functionalities where lost,

the goal of this last sample is to demonstrate the same level of parameterization of each

CommunicationPlatform is still available. It is important to keep in mind that the

ProxyFactory federates where WCF unifies; therefore each CommunicationPlatform has its

own parameters. These are exposed via a Dependency Properties mechanism inspired by

.Net 3.0’s. Furthermore, this mechanism allows to define the cache policy associated to the

dynamically generated assembly.

Here are the cache policies available:

Member name Description

CheckWsdlForInvalidation (Default Value). Clears the assembly cached

locally only if the wsdl do not match the one

used to generate this assembly.

LocalCacheOnly Satisfies a request using the locally cached

proxy assembly; does not send a request for

an item that is not in the cache. When this

cache policy level is specified, a

TemporaryCacheException exception is

thrown if the proxy assembly is not in the

client cache.

LocalCacheIfAvailable Satisfies a request using the locally cached

proxy assembly but sends a request for an

item that is not in the cache.

ClearAllCachedAssemblies Clears all the assemblies cached locally

before satisfying a request.

ClearMatchingCachedAssembly Clears only the assembly cached locally that

matches the request's wsdl.

Note: this is the way you can set the credentials or the web proxy information when using

WSE 3.0.

Here is how to do set credentials in a WSE 3.0 scenario:

ProxyFactory<IService> __serviceFactory = new
ProxyFactory<IService>("MyService");

 ICredentials __credentials = new NetworkCredential("username", "password");

__serviceFactory.SetPropertyValue(WebServicesPropertyMetadata.CredentialsPro
perty, __credentials);

 IService __service = __serviceFactory.CreateProxy();
 string __text = __service.HelloWorld();

The completed sample is available via the start menu at:

Start Menu\Programs\NetFxFactory \Getting started with ProxyModel\ Going Further –

Dependency property - Completed

The goal of this sample is the same as sample 1, i.e. access bank account information. The

only difference is that now you set explicitly the caching policy.

Step by step

Open the solution named “Asynchronous Web Service Sample - Step by step” in your start

menu Start Menu\Programs\NetFxFactory \Getting started with ProxyModel\ Dependency

Property Sample - Step by step. This opens up a Visual Studio solution containing 3

projects: a web project hosting the web service, a library that contains the contracts and

data structures and finally a console application that will be a client application. These

projects are exactly the same as what you get at the end of the Sample 1. The only thing

you have to include in this step by step is a call to the proxy’s SetPropertyValue in order to

define the cache policy associated with this proxy.

1. Open WSClient then program.cs

2. In order to set the ProxyFactory cache policy, you only need the following:

__proxyFactory.SetPropertyValue(WebServicesPropertyMetadata.CachePolicyProperty

, cachePolicy);

 Where cachePolicy is passed as parameter to the DoIt method. This allows you to

clear the cache on the first call to DoIt and then use the cached assembly for the next

calls to improve performances.

3. You’re done!

Sample 5: WSE 3.0 secured credentials sample

The goal of this sample is to demonstrate how to use ProxyFactory in a WSE 3.0 scenario by

implementing a secured connection via WSE 3.0 credentials.

Step by step

Open the solution named “Web service WSE Sample – Step by step” in the start menu \

Programs \ NetFxFactory \Getting started with ProxyModel\ Samples\ 5. WSE. The solution

contains 3 projects: a web project hosting the WSE web service, a library containing

contracts and data structures and finaly a console application acting as a client.

The first step consists of deploying the X509 certificates from the Quickstart WSE sample

by running setup.bat located in the following folder: <Program files>\Microsoft

WSE\3.0\Samples. Those certificates will used to authenticate the secured connection.

Figure 6: IStockService Interface

1. In the SampleBase project,

a. Code the interface described figure 6,

b. Have a look at Documents.cs describing the data structures involved,

2. In the SecureConversationPolicyService web project

a. Open wse3policycache.config and add the following configuration inside the

<usernameForCertificateSecurity> element:

 <serviceToken>
 <x509 storeLocation="LocalMachine"

 storeName="My"
 findValue="CN=WSE2QuickStartServer"
findType="FindBySubjectDistinguishedName" />

 </serviceToken>

This configuration allows to use the certificates deployed earlier.
b. Have a look at the SecureConversationService.cs file

Figure 7 : IStockServiceClient Interface

3. In the SecureConversationPolicyClient project,
a. Create the IStockServiceClient interface described figure 7,
b. Open Program.cs and instantiate a new PrxoFactory in Program.Main un as

described below:

ProxyFactory<IStockServiceClient> __proxyFactory = new

ProxyFactory<IStockServiceClient>(new Uri(WSDL));
IStockServiceClient __proxy = __proxyFactory.CreateProxy();

c. Then type the following code to create the token and set the policy to apply
and finally call the web method:

 // This is the username security token
//which is used by the service proxy

 UsernameToken token =
new UsernameToken(Environment.UserName, GetPassword(true));

 // Username and password are set through code.

//X509 is set through policy.
 __proxy.SetClientCredential(token);

 // Set the ClientPolicy onto the proxy
 // NB: Think to install the WSE QuickStart Sample X509 certificates.

__proxy.SetPolicy("ClientPolicy");

// Call the service
 Console.WriteLine("Calling {0}", WSDL);

 String[] symbols = { "FABRIKAM", "CONTOSO" };
 StockQuote[] quotes = __proxy.StockQuoteRequest(symbols);

d. Finaly, open up app.config and add the following configuration in the
<microsoft.web.services3> section:

<policy fileName="wse3policyCache.config" />

Sample 6: Configuration

The goal of this sample is to demonstrate how to take advantage of the configuration

flexibility when using ProxyFactory..

Step by step

Open the solution named “Configuration – Step by step” in the start menu \ Programs \

NetFxFactory \Getting started with ProxyModel\ Samples\ 6. Configuration. The solution

contains 4 projects: a web project hosting the asmx web service, a server project hosting the

remoting object, a library containing contracts and data structures and finally a console

application acting as a client.

Everything is wired up so the only thing to complete in this sample is the client configuration

and the client’s calls.

1. Open app.config located in the client project and add the following configuration

information inside de <client></client> elements as described below:

 <endpoint
 binding="Remoting"
 contract="thinktecture.ProxyModel.Test.IStockService, Contract" />
 <endpoint
 name="RemotingStockServiceOverWS"
 binding="WebServices"
 contract="thinktecture.ProxyModel.Test.IStockService, Contract"
 address="http://localhost:51640/WebService/StockService.asmx?WSDL" />
 <endpoint
 name="RemotingStockServiceOverRemoting"
 binding="Remoting"
 contract="thinktecture.ProxyModel.Test.IStockService, Contract" />

2. Open program.cs located in the client project. In the Main method, add the following

code to the corresponding place:

TestIt(new ProxyFactory<IStockService>());

This statement uses the first configuration element matching the IStockService
contract found in the configuration file.

TestIt(new ProxyFactory<IStockService>("RemotingStockServiceOverWS"));

This statement uses the endpoint configuration named “RemotingStockServiceOverWS”.

TestIt(new ProxyFactory<IStockService>("RemotingStockServiceOverRemoting"));

This statement uses the endpoint configuration named
“RemotingStockServiceOverRemoting”.

TestIt(new ProxyFactory<IStockService>(CommunicationTechnology.WebServices,
new Uri("http://localhost:51640/WebService/StockService.asmx?WSDL")));

This statement does not rely on configuration information but uses explicit
parameters.

Take away

Tips and tricks
Be aware that when using the ProxyFactory constructor with the wsdl location, the wsdl is

generated each and every time if accessed at http://<machine>/mywebservice.asmx?wsdl

where it is generated only once, timestamped and cached when accessed at

http://<machine>/mywebservice.wsdl. So be careful when setting the cache policy on the

ProxyFactory using the dependency property

WebServicesPropertyMetadata.CachePolicyProperty.

Interesting reading

From .NET Remoting to the Windows Communication Foundation (WCF)

ASP.NET Web services to the Windows Communication Foundation

WSE->WCF

Migrating .NET Remoting to WCF (and even ASMX!)

Remoting Style Distributed Objects with WCF

Security Practices: .NET Framework 2.0 Security Practices at a Glance

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/NETremoteWCF.asp
http://wcf.netfx3.com/content/TheFutureofASPNETWebServicesintheContextoftheWindowsCommunicationFoundation.aspx
http://wcf.netfx3.com/content/WindowsCommunicationFoundationWCFInteroperabilityandMigrationwithWSE20.aspx
http://blogs.msdn.com/mattavis/archive/2005/10/10/479280.aspx
http://friends.newtelligence.net/clemensv/PermaLink,guid,6fed9c00-fdfa-436c-8a51-192b1f48634d.aspx
http://msdn.microsoft.com/library/en-us/dnpag2/html/PAGPractices0002.asp

Disclaimers & copyright

Copyright (c) 2002-2006, thinktecture (http://www.thinktecture.com).

All rights reserved.

Copyright (c) 2006, netfxfactory (http://www.netfxfactory.org).

All rights reserved.

Copyright

The software and all other content of the distributed package, if not otherwise stated, is Copyright

2002-2006 thinktecture (http://www.thinktecture.com/).

All rights reserved.

2006 netfxfactory (http://www.netfxfactory.org/).

All rights reserved.

Terms of Use

Permission is hereby granted to use this software, for both commercial and non-commercial purposes,

free of charge. Permission is hereby granted to copy and distribute the software for non-commercial

purposes. A commercial distribution is NOT allowed without prior written permission of the author(s).

Further, redistribution and use in source and binary forms, with or without modification, are permitted

only provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and

the following warranty disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions

and the following warranty disclaimer in the documentation and/or other materials provided with the

distribution.

(3) Neither the name of thinktecture, netfxfactory, rioterdecker nor the names of its author(s) may be

used to endorse or promote products derived from this software without specific prior written

permission.

Warranty

This software is supplied "AS IS". The author(s) disclaim all warranties, expressed or implied,

including, without limitation, the warranties of merchantability and of fitness for any purpose. The

author(s) assume no liability for direct, indirect, incidental, special, exemplary, or consequential

damages, which may result from the use of this software, even if advised of the possibility of such

damage.

Submissions

The author(s) encourage the submission of comments and suggestions concerning this software.

All suggestions will be given serious technical consideration. By submitting material to the author(s),

you are granting the right to make any use of the material deemed appropriate, i.e. any

communication or material that you transmit to the author(s) by electronic mail or otherwise,

including any data, questions, comments, suggestions or the like, is, and will be treated as, non-

confidential and nonproprietary information. The author(s) may use such communication or material

for any purpose whatsoever including, but not limited to, reproduction, disclosure, transmission,

http://www.thinktecture.com/
http://www.netfxfactory.org/
http://www.thinktecture.com/
http://www.netfxfactory.org/

publication, broadcast and further posting. Further, the author(s) are free to use any ideas, concepts,

know-how or techniques contained in any communication or material you send for any purpose

whatsoever, including, but not limited to, developing, manufacturing and marketing products.

