GCD Static Checking FExample

Abstract

This example shows how to use contracts to prove some arithmetic
properties of the greatest common denominator computation.

1 Adding the Contract Library Reference
1.1 Visual Studio 2008

Before getting started with the sample, we need to make sure we have the
proper reference for Microsoft.Contracts.dll. Look at the references of project
BinarySearch:

_+ References
v+l Microsoft.Contracts
L <3 System

If Visual Studio cannot find the Microsoft.Contracts.dll (indicated by the yellow
warning), delete the reference and follow the steps below. Otherwise, you are
ready to go to Section 2.

For new projects to use contracts, we need to add a reference to the Mi-
crosoft.Contracts library to the project.

Assuming you have installed the code contract tools, open the BinarySearch
solution and right-click on References in the BinarySearch project and select Add
Reference. Find the Microsoft.Contracts library in the .NET tab as shown below
and click OK.

@5 Add Reference @Iﬂ_hr
NET | COM | Projects | Browse | Recent|

Component I“jame Version Runtime Path o
Microsoft.Build.Engine 3500 w2.0.50727 CM\Pregram
Microsoft.Build.Framework 2.0.0.0 v2.0.50727 C:\Windows’l—l
Micresoft.Build.Framework 3,500 v2.0.50727 C\Program
Microsoft.Build. Tasks 2000 v2.0.50727 ChWindows'
Microsoft.Build. Utilities 2000 v2.0.50727 CAWindows'
Microsoft.Build. Utilitiesv3.5 3.5.00 v2.0.50727 C\Program

: Microsoft.Contracts Library 10,00 w2.0.50727 c\Program f
Microsoft.Deployment.Co... 3000 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Res... 3.0.0.0 w2.0.50727 CM\Program =
4 il | 3

0K] [Cancel

1.2 Visual Studio 2010
If you want to try the sample with Visual Studio 2010 you have two choices:

e Target the v3.5 framework (the sample default). In this case, follow the
instructions under Visual Studio 2008 as this mode will require the Mi-
crosoft.Contracts library to be referenced.

e Target the v4.0 framework. In this case, the contract class is defined in
mscorlib and no reference to Microsoft.Contracts.dll is necessary.

Thus, to target v4.0 you need to perform the following steps:
e Delete the Microsoft.Contracts.dll reference from all projects

e Change the target framework of all projects to v4.0.

2 Sample Walkthrough

After adding the proper reference, go to the Properties of project GCD, select
the Code Contracts pane (at the bottom), and enable static checking by clicking
on the checkbox as shown in this screenshot:

Application

Configuration: | Active (Debug) - Platform: | Active (Any CPU) -

Build
Build Events

Runtime Checking e NI
Debug [] Perform Runtime Cortract Checking | Ful

Custom Rewriter Methods

Resources
Services

Static Checking
Settings

Perform Static Contract Checking Check in Background [C] Show squigglies
Reference Paths [Implict Non-Null Obligations [Implicit Arithmetic Obligations

| 5 [Implicit Aray Bounds Cbligations [] Redundant Assumptions
igning

Code Analysis [Baseline

| Code Contracts*
Contract Reference Assembly

[T Build a Contract Reference Assembly
Advanced

LibPaths

Altemiate mscorib

Custom Options

Then build the example. There should be no warnings or errors at this point.
To get static checking of arithmetic properties, such as division by zero, we
need to enable that explicitly by checking the “Implicit Arithmetic Obligations”
checkbox as shown in the following screen shot:

Static Checking

Perform Static Contract Checking
[T Implicit Non-Null Obligations
[7] Implicit Amay Bounds Obligations

eck in Background [Show squigglies

Redundant Assumptions
Go ahead and add this option, then build again. The warning list should now

display three warnings about possible divisions by zero:

Error List > 1 x
|a 0 Errors| |_;53 Warnings| |_|) i Message‘

Description File Line Column Project
4 1 contracts: Possible division by zero GCD.cs 22 11 GCD
4y 2 contracts: Possible division by zero GCDhucs 14 1 GCD
4 3 contracts: Possible division by zero GCD.cs 45 7 GCD

Let’s try to write some contracts to make sure we won’t run into these division
by zero problems. Double click on the first warning. To avoid the division by
zero of the code x %=y, we can add the following precondition to method GCD

Contract.Requires(y > 0);

The second warning is about the similar division by x, so we add a similar
precondition for it:

Contract.Requires(x > 0);

Add those two preconditions and build again. You should now get the following
warnings:

Error List ~ 0 x
|a 0 Errors| |_;55 Warnings| |1) 3 Messages

Description File Line Column Project
)1 contracts: Suggested precondition: Contract.Requires(x > 0); GCD.cs 41 7 GCD
i) 2 contracts: Suggested precondition: Contract.Requires(y = 0); GCDucs 41 7 GCD
4 3 contracts: Possible division by zero GCDucs 47 7 GCD
4 4 contracts: requires unproven GCDucs 46 7 GCD
4 5+ location related to previous warning GCD.cs 10 7 GCD
4 6 contracts: requires unproven GCDucs 46 7 GCD
& 7+ location related to previous warning GCDucs 11 7 GCD
i) 8 contracts: Checked 6 assertions: 3 correct 3 unknown GCDdI 1 1 GCD

The possible division by zero remaining is in the NormalizedRational method,
when dividing by the ged value. The GCD should never be zero, and in fact due
to our preconditions on the GCD method, our GCD will always be positive. So
let’s write a postcondition on GCD that makes this explicit. The contracts on
GCD should now look as follows:

public static int GCD(int x, int y)

{
Contract.Requires(x > 0);
Contract.Requires(y > 0);
Contract.Ensures(Contract.Result<int>() > 0);

Write the Ensures and rebuild. Now we are left with two warnings that the
preconditions of the call in NormalizedRational to GCD are not satisfied. We can
easily push these requirements onto the callers of this method by making them
explicit preconditions of the normalized NormalizedRational method. In fact, the
checker suggests this automatically, as you can see in the informational messages
in the Error List. We can weaken the condition on x, as the code explicitly
handles the case when x is zero. So we add the following:

static public Rational NormalizedRational(bool pos, int x, int y)

{

Contract.Requires(x >= 0);
Contract.Requires(y > 0);

If we build again now, the checker issues no more warnings.

