Chunker Example

Abstract

This example shows how to use invariants to explicate implicit as-
sumptions in data structures and how they allow one to satisfy contracts
on other APIs, such as System.String.

1 Adding the Contract Library Reference
1.1 Visual Studio 2008

Before getting started with the sample, we need to make sure we have the proper
reference for Microsoft.Contracts.dll. Look at the references of project Chunker:

— v References
H 0 Microsoft.Contracts
L «3 Systemn

If Visual Studio cannot find the Microsoft.Contracts.dll (indicated by the yellow
warning), delete the reference and follow the steps below. Otherwise, you are
ready to go to Section 2.

For new projects to use contracts, we need to add a reference to the Mi-
crosoft.Contracts library to the project.

Assuming you have installed the code contract tools, open the Chunker solu-
tion and right-click on References in the Chunker project and select Add Refer-
ence. Find the Microsoft.Contracts library in the .NET tab as shown below and
click OK.

@5 Add Reference @Iﬂ_hr
NET | COM | Projects | Browse | Recent|

Component I“jame Version Runtime Path o
Microsoft.Build.Engine 3500 w2.0.50727 CM\Pregram
Microsoft.Build.Framework 2.0.0.0 v2.0.50727 C:\Windows’l—l
Micresoft.Build.Framework 3,500 v2.0.50727 C\Program
Microsoft.Build. Tasks 2000 v2.0.50727 ChWindows'
Microsoft.Build. Utilities 2000 v2.0.50727 CAWindows'
Microsoft.Build. Utilitiesv3.5 3.5.00 v2.0.50727 C\Program

: Microsoft.Contracts Library 10,00 w2.0.50727 c\Program f
Microsoft.Deployment.Co... 3000 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Res... 3.0.0.0 w2.0.50727 CM\Program =
4 il | 3

0K] [Cancel

1.2 Visual Studio 2010
If you want to try the sample with Visual Studio 2010 you have two choices:

e Target the v3.5 framework (the sample default). In this case, follow the
instructions under Visual Studio 2008 as this mode will require the Mi-
crosoft.Contracts library to be referenced.

e Target the v4.0 framework. In this case, the contract class is defined in
mscorlib and no reference to Microsoft.Contracts.dll is necessary.

Thus, to target v4.0 you need to perform the following steps:
e Delete the Microsoft.Contracts.dll reference from all projects

e Change the target framework of all projects to v4.0.

2 Enabling Static Checking

After adding the proper reference, go to the Properties of project Chunker, select
the Code Contracts pane (at the bottom), and enable static checking by clicking
on the static checking box. Also enable non-null checking if you wish.

Application

Configuration: |Active (Debug) - Platform: | Active (Any CPU) -

Build Events Runtime Checking
[T] Perform Rurtime Contract Checking | Full

Build

e Custom Rewriter Methods

Resources Psgemb

Services Static Checking

Settings Perform Static Contract Checking Check in Background

Implicit Non-Null Obligations [T Show squigglies
Reference Paths
[T Implicit Array Bounds Obligations
Signing
[Baseline

[Build a Contract Referance Assembly

Code Analysis

Code Contracts™

3 Overview

The Chunker class provides a way to split a string into equal size sub-strings,
each holding a fixed number (chunkSize) of characters. The chunks are obtained
by repeated calls to NextChunk

A chunker object holds on to the original string in stringData. This value
is never modified. The size of each chunk is stored in chunkSize and also does
not vary over the running time. Finally, returnedCount holds the number of
characters returned from stringData so far. Alternatively, we can think of it as
the index into stringData at which to return the next chunk.

4 First Attempt

Build the example. The build should succeed. After a moment', the static
checker should warn about the call to Substring in NextChunk.

Error List
|Q 0 Errors“l_ﬁfi Wamings|||d) 1 Me_:sage|

Description File Line Column
u contracts: requires unproven: 0 <= startlndex m
& 2 contracts: requires unproven: 0 <= length Chunker.cs 30 7
4 3 contracts: Possibly calling 2 method on a null reference 'this.stringData’ Chunker.cs 30 7
4 4 contracts: requires unproven: startindex + length <= this.Length Chunker.cs 30 7
(i) 5 contractz Checked 14 assertions: 10 correct 4 unknown Chunker.dll 1 1

The documentation (and our corresponding contracts) on String . Substring(int , int)
state that startindex + length must be within the string extent. Furthermore,
startIndex and length must be non-negative.

IThe static checker runs in the background after the regular build.

The Chunker code written so far does not guarantee these conditions. E.g.,
the caller to the constructor could provide a non-positive chunkSize. Similarly,
nothing is known about the relation between stringData.Length and returnedData.

5 Writing the Object Invariant

Let’s write an object invariant that makes these relations explicit. In the Chun-
ker class, at the member level, type cim TAB TAB to get an emtpy object invari-
ant declaration:

vold CbhjectInvariant() {
Contract.Invariant |::| H

Now fill in the first invariant, stating that chunkSize is positive (we don’t want
0, as there are an infinite number of 0 length chunks we could extract).

Contract. Invariant (chunkSize > 0);

Under this invariant, write ci TAB TAB to get another empty invariant and fill
it in to specify that returnedCount is similarly non-negative.

Contract. Invariant (returnedCount >= 0);

Add one more invariant, specifying that returnedCount is never more than the
string length.

Contract. Invariant (returnedCount <= stringData.Length);

Finally, for good measure, let’s also add the invariant that stringData should
never be null.

Contract. Invariant (stringData ! = null);

In fact, you should add this invariant before the invariant accessing stringData . Length,
otherwise the checker will complain, and you might get a runtime null reference
exception. Your object invariant should now look as follows:

ContractInvariantMethod]

void ObjectInvariant() {

Invariant (chunkSize > 0);
.Invariant (returnedCount >= 0);
a3l ct.Invariant (stringData '= null);

ontract.Invariant (returnedCount <= stringData.Length):

[I

6 Establishing the Object Invariant

If you build again, you see that the checker emits a new set of warnings:

|a 0 Ermrsl |_:55 Warnings| |_!) 3 Messagesl
Description File Line Column

i1 contracts: Suggested precondition: Contract.Requires{chunkSize > 0); Chunker.cs 15 5
i) 2 contracts: Suggested precondition: Contract.Requires(source = null); Chunker.cs 45 5
& 3 contracts: requires unproven: startindex + length <= this.Length Chunker.cs 39 7
& 4 contracts: invariant unproven Chunker.cs 50 5
& 5+ location related te previous warning Chunker.cs 30 7
&y B contracts: invariant unproven Chunker.cs 50 5
& 7+ location related to previous warning Chunker.cs 32 7
i) 8 contracts: Checked 22 aszertions: 19 correct 3 unknown Chunker.dll 1 1

The two pre-conditions that length and startlndex must be non-negative are now
satisfied in NextChunk. Before focusing on the remaining issue calling Substring,
let’s look at the constructor of Chunker. The checker warns that we may not
establish the object invariant by the end of the constructor. In fact the first two
messages suggest how to make sure we do, by adding the following pre-conditions
to the Chunker constructor:

Contract.Requires(chunkSize > 0);
Contract.Requires(source ! = null);

Remember to use the shortcuts (cr TAB TAB for a general requires and crn
TAB TAB for non-null requires).

7 Handling Border Cases

If you rebuild the project after adding the requires to the constructor, we should
see the following remaining problem in NextChunk:

Description File Line Column
& 1 contracts: requires unproven: startindex + length <= this.Length Chunker.cs 39 7
i) 2 contracts: Checked 22 assertions: 21 correct 1 unknown Chunker.dll 1 1

The checker is complaining that returnedCount + chunkSize could be greater than
stringData . Length. Of course, this situation may arise when we get near the end
of the string. In that case, there may not be enough characters left. To fix this
problem, we can change the code as follows:

public string NextChunk()
{

string s;
if (returnedCount + chunkSize <= stringData.Length)

{

s = stringData.Substring (returnedCount, chunkSize);

}

else
{
s = stringData. Substring(returnedCount);
}
returnedCount += s.Length;
return s;

}

Now the checker should not issue any further warnings.
The solution contains the file ChunkerFinal.cs (not compiled) that contains
the final code and contracts.

