
Invariants Runtime Checking Example

Abstract

This example shows the runtime checking of invariants. It also points
out a subtle issue of when an invariant check is not done. The exam-
ple consists of three classes: a base class BasicBankAccount, a subtype
WallStreetAccount, and a client, Client that creates bank accounts and
calls methods on them.

1 Adding the Contract Library Reference

1.1 Visual Studio 2008

Before getting started with the sample, we need to make sure we have the
proper reference for Microsoft.Contracts.dll. Look at the references of project
Invariants:

If Visual Studio cannot find the Microsoft.Contracts.dll (indicated by the yellow
warning), delete the reference and follow the steps below. Otherwise, you are
ready to go to Section 2.

For new projects to use contracts, we need to add a reference to the Mi-
crosoft.Contracts library to the project.

Assuming you have installed the code contract tools, open the Invariants
solution and right-click on References in the Invariants project and select Add
Reference. Find the Microsoft.Contracts library in the .NET tab as shown below
and click OK.

1

1.2 Visual Studio 2010

If you want to try the sample with Visual Studio 2010 you have two choices:

• Target the v3.5 framework (the sample default). In this case, follow the
instructions under Visual Studio 2008 as this mode will require the Mi-
crosoft.Contracts library to be referenced.

• Target the v4.0 framework. In this case, the contract class is defined in
mscorlib and no reference to Microsoft.Contracts.dll is necessary.

Thus, to target v4.0 you need to perform the following steps:

• Delete the Microsoft.Contracts.dll reference from all projects

• Change the target framework of all projects to v4.0.

2 Sample Walkthrough

After adding the proper reference, go to the Properties of project BasicBankAc-
count, select the Code Contracts pane (at the bottom), and enable runtime
checking by clicking on the runtime checking box, as shown in this screenshot:

2

Then build the entire solution. The build should succeed. Now let’s look at
some of the code in the solution.

First, take a look at MainStreet.cs which contains the very simple class
BankAccount. It has one method for putting money into the account, Deposit, an-
other for removing money from the account, Withdraw, and a property, Balance,
that has only a getter for returning the amount of money that is in the account.

What is different (aside from the contracts in each of those methods) is that
an object invariant has been added to the class, a method named GoodAccount.
(The full details about invariant methods and how to write them can be found
in the general documentation.) This method gets checked at the end of every
public method in the class.

Now run the program by, e.g., pressing F5 to start the debugger. You should
see the following “assert” dialog box:

3

This failed contract is easily explained if you look at the code in Deposit:

public virtual void Deposit(int amount) {
Contract.Requires(0 < amount);
this .balance += amount;

}

and then notice that the client was calling it with a negative number. Fix that
in Program.cs by changing −5 to some positive number. To see it in action, press
F10 to start the debugger and have it start at the first line in the program.
Press F10 twice to get to the call to Deposit. Now press F11 to step into the
method call. Pres F11 four more times and you’ll see that you are now entering
the object invariant:

Continue execution by pressing F5 and the program will run to completion
without an error.

However, if you look at the code in WallStreet . cs, you’ll see that the override
it has for Deposit does not maintain the invariant of its supertype.

public override void Deposit(int amount) {
if (100 < amount) {

this .slushFund += amount;
this .balance −= amount;

} else {
base.Deposit(amount);
}

4

}

The problem is that runtime checking was enabled for the base class, but not
for the subtype. So now turn on the runtime checking for the project WallStreet

and press F5 to run the program again. This time you should see another error
dialog, this time for the invariant violation:

Note that the invariant check is injected into the subtype even though it has no
contracts at all — not even a reference to the contract library!

The subtle point that is important to realize is that if you go back to the
settings for the BasicBankAccount project and now turn off the runtime checking,
then even though runtime checking is turned on for WallStreet, the invariant
check will not be injected into the code and no invariant violation will be found.

5

