BinarySearch Static Checking Example

Abstract

This example shows checking of implicit non-null requirements as well
as array indexing requirements. The example consists of a binary search
routine and a small client of the search that increments a value inside an
array. To find the proper place to increment, it searches for the value first.

1 Adding the Contract Library Reference

1.1 Visual Studio 2008

Before getting started with the sample, we need to make sure we have the
proper reference for Microsoft.Contracts.dll. Look at the references of project
BinarySearch:

- | References
0 Microsoft.Contracts
- System

If Visual Studio cannot find the Microsoft.Contracts.dll (indicated by the yellow
warning), delete the reference and follow the steps below. Otherwise, you are
ready to go to Section 2.

For new projects to use contracts, we need to add a reference to the Mi-
crosoft.Contracts library to the project.

Assuming you have installed the code contract tools, open the BinarySearch
solution and right-click on References in the BinarySearch project and select Add
Reference. Find the Microsoft.Contracts library in the .NET tab as shown below
and click OK.

@5 Add Reference @Iﬂ_hr
NET | COM | Projects | Browse | Recent|

Component I“jame Version Runtime Path o
Microsoft.Build.Engine 3500 w2.0.50727 CM\Pregram
Microsoft.Build.Framework 2.0.0.0 v2.0.50727 C:\Windows’l—l
Micresoft.Build.Framework 3,500 v2.0.50727 C\Program
Microsoft.Build. Tasks 2000 v2.0.50727 ChWindows'
Microsoft.Build. Utilities 2000 v2.0.50727 CAWindows'
Microsoft.Build. Utilitiesv3.5 3.5.00 v2.0.50727 C\Program

: Microsoft.Contracts Library 10,00 w2.0.50727 c\Program f
Microsoft.Deployment.Co... 3000 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Res... 3.0.0.0 w2.0.50727 CM\Program =
4 il | 3

0K] [Cancel

1.2 Visual Studio 2010
If you want to try the sample with Visual Studio 2010 you have two choices:

e Target the v3.5 framework (the sample default). In this case, follow the
instructions under Visual Studio 2008 as this mode will require the Mi-
crosoft.Contracts library to be referenced.

e Target the v4.0 framework. In this case, the contract class is defined in
mscorlib and no reference to Microsoft.Contracts.dll is necessary.

Thus, to target v4.0 you need to perform the following steps:
e Delete the Microsoft.Contracts.dll reference from all projects

e Change the target framework of all projects to v4.0.

2 Sample Walkthrough

After adding the proper reference, go to the Properties of project BinarySearch,
select the Code Contracts pane (at the bottom), and enable static checking by
clicking on the static checking box. Also enable implicit non-null and array
checks, as shown in this screenshot:

Application
Configuration: | Active (Debug) - Platform: | Active (Any CPU) -
Build
Build Events Rurtime Checking
Perform Runtime Contract Checking
= Custom Rewriter Methods
Resources Assembly Class
Services Static Checking
Settings Perform Static Contract Checking Check in Backaground
Implicit Non-Mull Obligations [Show squigglies
Reference Paths
Implicit Aray Bounds Obligations
Signing
Code Analysis [C] Bassine
[Build a Contract Reference Assembly
Code Contracts®
Advanced
LibPaths
Altemate mscorlib
Custom Options

Then build the example. The build should succeed. After a moment', the
static checker should warn about the following problems:

Error List
|Q 0 Errors|||l_ﬂ4 Wa.mings“ (i) 4 Messages
Description File Line Celumn
M 5 contracts: Possible use of a null array 'array’ BinarySearch.cs 14 7
4 6 contracts: Possible use of a null array 'array’ Incrementer.cs 22 7
contracts: Array access might be below the lower bound Incrementer.cs

.E contracts: Array access might be above the upper bound --

The last three errors are all reported in the Incrementindex method and have to
do with the fact that the method assumes that the array passed as a parameter
is non-null. Similarly, it assumes that the index is within the array. The static
checker tells us that we should make these assumptions explicit as contracts.
If you switch to the Messages tab in Visual Studio, you see that the checker
actually suggests the proper preconditions:

Error List
(o] 4 v [e
Description File Line Celumn
i) 1 contracts: Suggested precondition: Contract.Requiresi(array != null); BinarySearch.cs 13 7
(i) 2 contracts: Suggested precondition: Contract.Requires(array != null); Incrementer.cs 22 7
(i) 3 centracts: Suggested precondition: Contract.Requires(0 <= index); Incrementer.cs
m centracts: Suggested precondition: Contract.Requires{index < array.Length); --

Add those preconditions to the Incrementindex method (remember to use the cr
TAB TAB abbreviation in C# to insert Requires):

IThe static checker runs in the background after the regular build.

Contract.Requires(array ! = null);
Contract. Requires(0 <= index);
Contract. Requires(index < array.Length);

If we build again, we get a number of new warnings. Let’s fix the one in
BinarySearch on line 14 first, as it is similar to the ones we just did. The
BinarySearch method assumes that the passed array is non-null and we make
that explicit using a precondition:

public static int BinarySearch(int[] array, int value)

{

Contract.Requires(array ! = null);

After rebuilding again, the remaining warnings are all in method IncrementValue.
Here, the checker cannot ascertain the preconditions of our calls to BinarySearch
and Incrementindex. Note that it does not warn about the first precondition
array ! = null in Incrementindex again, as the checker determines that given the
fact that it should be non-null in the call to BinarySearch, it would still be non-null
in the call to Incrementindex.

The nullness error is again easy to fix by simply adding

Contract.Requires(array ! = null);

Because this is such a common precondition, there is a special C# abbreviation
for it: crn TAB TAB. To get rid of the remaining errors, we have to make it
explicit that the BinarySearch method actually returns an index into the searched
array, so let’s add that as a postcondition to BinarySearch.

Contract. Ensures(Contract.Result<int>() >= 0);
Contract.Ensures(Contract.Result<int>() < array.Length);

Note that you can use the C# abbreviation ce TAB TAB to get a postcondition,
and within that postcondition, use crr TAB TAB to get the expression to refer
to the method result.

Rebuild the project to see if we got everything right. Lo and behold, there is
still an error. The checker should point you at the return —1 in the BinarySearch
body. Clearly, our postcondition is too strong in that the method does not
always return an index into the array, namely when the value is not found. In
that case, it returns -1. So let’s weaken the postcondition to the following:

public static int BinarySearch(int [] array, int value)

{
Contract.Requires(array ! = null);
Contract.Ensures(Contract.Result<int>() >= —1);
Contract. Ensures(Contract.Result<int>() < array.Length);

and build again. Surely now we must be done ;-) But no, the checker finds yet an-
other problem. It complains that the call to Incrementindex in the IncrementValue
method does not satisfy the precondition index >= 0. Obviously, the IncrementValue

method is not handling the case where the element is not present in the array.
We fix the code by adding a test after the BinarySearch call:

public static void IncrementValue(int[] array, int val)

{
Contract.Requires(array ! = null);
int i = Search.BinarySearch(array, val);
if (i ==-1)
// not found
return;
}

Incrementlindex(array, i);

}

Finally, a rebuild will confirm that we now handled the corner cases. One final
thing to point out is that the checker figured out the safety of the array indexing
operations within the BinarySearch automatically, by inferring the necessary loop
invariant.

