Leap Year Sample

Abstract

This sample shows how to use the static checker to do a form of “ab-
stract debugging” by examining the termination property of a loop com-
puting the year and day given the number of days since 1980. It also
exemplifies how the expressiveness of contracts enables this kind of debug-
ging across procedure boundaries by means of communicating established
invariants.

1 Adding the Contract Library Reference

1.1 Visual Studio 2008

Before getting started with the sample, we need to make sure we have the
proper reference for Microsoft.Contracts.dll. Look at the references of project
ZuneDate:

— 7 References
¢ o i@ Microsoft.Contracts
f «3 System

If Visual Studio cannot find the Microsoft.Contracts.dll (indicated by the yellow
warning), delete the reference and follow the steps below. Otherwise, you are
ready to go to Section 2.

For new projects to use contracts, we need to add a reference to the Mi-
crosoft.Contracts library to the project.

Assuming you have installed the code contract tools, open the LeapYear
solution and right-click on References in the ZuneDate project and select Add
Reference. Find the Microsoft.Contracts library in the .NET tab as shown below
and click OK.

@5 Add Reference @Iﬂ_hr
NET | COM | Projects | Browse | Recent|

Component I“jame Version Runtime Path o
Microsoft.Build.Engine 3500 w2.0.50727 CM\Pregram
Microsoft.Build.Framework 2.0.0.0 v2.0.50727 C:\Windows’l—l
Micresoft.Build.Framework 3,500 v2.0.50727 C\Program
Microsoft.Build. Tasks 2000 v2.0.50727 ChWindows'
Microsoft.Build. Utilities 2000 v2.0.50727 CAWindows'
Microsoft.Build. Utilitiesv3.5 3.5.00 v2.0.50727 C\Program

: Microsoft.Contracts Library 10,00 w2.0.50727 c\Program f
Microsoft.Deployment.Co... 3000 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Co... 3.0.0.0 v2.0.50727 C\Program
Microsoft.Deployment.Res... 3.0.0.0 w2.0.50727 CM\Program =
4 il | 3

0K] [Cancel

1.2 Visual Studio 2010
If you want to try the sample with Visual Studio 2010 you have two choices:

e Target the v3.5 framework (the sample default). In this case, follow the
instructions under Visual Studio 2008 as this mode will require the Mi-
crosoft.Contracts library to be referenced.

e Target the v4.0 framework. In this case, the contract class is defined in
mscorlib and no reference to Microsoft.Contracts.dll is necessary.

Thus, to target v4.0 you need to perform the following steps:
e Delete the Microsoft.Contracts.dll reference from all projects

e Change the target framework of all projects to v4.0.

2 Enabling Static Checking

After adding the proper reference, go to the Properties of project ZuneDate,
select the Code Contracts pane (at the bottom), and enable static checking by
clicking on the static checking box.

Build Events Runtime Checking
[Peform Runtime Contract Checking | Fu

e Custom Rewriter Methods

Resources

Services Static Checking

Settings Perform Static Contract Checking Check in Background [Show squigglies
[] Implicit Non-Null Obligations [] Implicit Arithmetic Obligations

Reference Paths
[] Implicit Aray Bounds Obligations

Signing

Code Analysis [C] Baseine

[Build a Contract Reference Assembly
Code Contracts™

3 Overview

On December 31st, 2008, some older Zune models hung during boot. The
error turned out to be in some BIOS code that computes the current year from
the number of days since 1980. Take a look at the method YearSince1980 in
ZuneDate.cs.

The method’s intention is to compute the current year and the day within
that year, given the number of days since 1980. It does so by repeatedly sub-
tracting 365 days from the days left, until the remaining days fall within a year.
Of course, the code has to take care of leap years and subtract 366 days in that
case.

4 Proving Termination with Variants

A variant of a loop is the quantity that decreases on each iteration. If a loop
has a variant and the loop exit condition triggers when the variant reaches a
certain point, then the loop terminates.

In our example, the loop variant should be the number of days left or daysLeft.
As we can see, the loop exits when we reach dayslLeft <= 365. To prove termi-
nation, all we have to do is show that daysLeft decreases on each iteration.

To do so, let’s add the following 2 lines of code around the existing loop
body:

while (daysLeft > 365)
{

var oldDayslLeft = daysLeft;
<existing loop>
Contract. Assert(daysLeft < oldDaysLeft);

}

Remember you can use the code snippet cca TAB TAB to insert a call to Contract. Assert.
Build the project. The build should succeed. After a moment', the static

IThe static checker runs in the background after the regular build.

checker should warn that the assert we just added is unproven (ignore any
warnings you might be getting from the Client project at this point).

“Q 0 Errors|||__:51 Warning |||k_|) 1 Message|

Description File Line Celurmn
i) 2 contracts Checked 1 assertion: 1 unknown ZuneDate.dll

This tells us that indeed, there might be a problem with the termination of
this loop. If you look more closely at the loop body, you’ll see the inner if has
no else, which is suspicous. Let’s test our hypothesis that going through that
missing else is a problem by adding the following else-branch there:

if (daysLeft > 366)

daysLeft —= 366;

year +=1;
}
else
{
Contract. Assert (false);
}

Putting an Assert(false) at a particular program point is a way of saying, I expect
to never reach this point. If we build again, we get the following warning:

||Q 0 Errors|||__:‘_~.‘1 Warning |||Qj 1 Message

Descripticn File Line Celumn
g 1 contracts: assert is falze ZuneDate.cs 28 13
(i) 2 contracts: Checked 2 azsertions: 1 correct 1 false ZuneDate.dll 1 1

The Assert(false) we just added cannot be proven, meaning the checker thinks
that it is reachable. Note however that the assert at the end of the loop asserting
our variant is now proven. The checker reasons that since the Assert(false)
expresses that we should never get to the else-branch, it will only consider all
the other control flow paths. For the remaining paths, it can prove that the
loop will terminate.

5 Fixing the Code

Let’s examine what should happen in the problematic else-branch. We get into
the else branch when we have more than 365 days left, the year is a leap year,
but there are not more than 366 days left. Well, this means that daysLeft is
exactly 366. Let’s test this insight with an assertion:

else

{
Contract. Assert(daysLeft == 366);

Contract. Assert (false);

}

Build and look at the warnings. You'll see that it proves this assert correct, as
it still complains about the Assert(false). Good, our intuition is correct. Now
what should happen in this case? We are in a leap year and we have 366 days
left. This means we are on the last day of this leap year, namely December 31st.
In this case, the method should return the year and the day in the year should
be 366.

Let’s fix the code by changing the else-branch to the following:

else

daylnYear = daysleft;
return year;

}

We could of course just set daylnYear to 366, as we have just shown that it will
be the case. Now let’s rebuild and see what the checker tells us.

|a 0 Error5| |_ﬂlll] Warnings| |1) 1 Message

Description File Line Column

i)l contracts: Checked 1 assertion: 1 correct ZuneDate.dll 1 1

Now the checker proves the assert at the end of the loop that the daysLeft
decreases each time around the loop. Thus we can be assured that the loop
terminates.

So far, we have used the static checker to perform “abstract debugging”
without ever running the code. By seeing which program points are reachable
and verifying our hypotheses by inserting assertions that the checker then tries
to discharge, we discovered the missing corner case and validated our assumption
that it happens when the day is the last day of a leap year.

For this simple example, we didn’t need any further contracts. In the next
sections, we show how contracts can help provide this kind of abstract debugging
for callers of code.

6 Checking the Client

Now it is time to look at the client in Program.cs. Let’s enable static checking
on the Client project, including array bound validation:

/E:“Em"lfprogram.ceruneDate.cs | Start Page | Test List Editor |

Application

Configuration: ’Active (Debug) V] Platform: | Active (Any CPU) -
Build
Buildl Events Runtime Checking

[Perform Runtime Contract Checking | Fu

g0 Custom Rewriter Methods
Resources
Services Static Checking
Settings [¥]: Perform Static Gontract Checking? Check in Background Show sgquigglies

[Implicit Non-Mull Obligations [Implict Arthmetic Obligations

Reference Paths
Implicit Amay Bounds Obligations

Signing
Security [Baseline
[] Build a Contract Reference Assembly
Publish
Code Analysis beiEE
LibPaths

Code Contracts™

Altemate mscordib

Build the Client project (or the solution). The checker will report that it cannot
prove the array access below:

days[dayInYear] = "used”;

The client code seems to be getting a day since 1980 from the command line,
calling YearSince1980, allocating an array of days of size 366, and then assigning
to the element specified by the returned daylnYear.

Why is the static checker not able to prove the array access as safe? After
all, we just looked through the YearSince1980 method and saw that it returns the
day in the year.

We can try to narrow down the problem by inserting assertions about these
assumptions right after the method call to YearSince1980.

int year = ZuneDate.YearSince1980(daysSince1980, out daylnYear);
Contract. Assert (daylnYear >= 0);
Contract. Assert (daylnYear <= 366);

Let’s run the checker again and see what it thinks.

|QU Errorsl |L3Warnings| |\1J 1 Message|

Description File Line Column
& 1 contracts: assert unproven Program.cs 23 7
& 2 contracts: assert unproven Program.cs 24 7
& 3 contracts: Array access might be above the upper bound Program.cs 29 7
(i) 4 contracts: Checked 10 assertions: 7 correct 3 unknown Client.exe 1 1

The checker cannot prove either of our assertions. But note that it now com-
plains only about the upper bound of the array. Thus, if the Assert(daylnYear >=0)
is true, the array bound access later is at least respecting the lower bound of
the array. Why isn’t it also proving the upper bound?

The answer is of course that arrays are 0 indexed, but days in the year are
between 1..366. Our array has valid indices between 0..365. This is a classical
“off-by-one” error. Let’s correct it:

days[dayInYear — 1] = "used”;

and rebuild the project.

|a 0 Errurs| |J}3Wamings| |yl Message

Descripticn File Line Column
& 1 contracts: assert unproven Program.cs 23 7
4 2 contracts: assert unproven Program.cs 24 7
& 3 contracts: Array access might be below the lower bound Prograrm.cs 29 7
4 contracts: Checked 10 assertions: 7 correct 3 unknown Client.exe 1 1

Look at the third warning about the array access: now the checker is complainng
that the lower bound may not be respected, but the upper bound is now okay.
Looking back at our assertions, we can see that we only asserted daylnYear >= 0,
where as the code later assumes daylnYear >= 1. Let’s fix the assert.

Contract. Assert (daylnYear >= 1);

and rebuild. Now the checker should only warn about the two assertions, but
no longer about the array accesses, since the assertions are now enough to imply
that the array access will be within bounds.

How can we prove these asserts correct now? The static checker works
modularly, one method at a time, using the contracts of called methods to
understand what is going on at method call sites. In this case, there are no
contracts on YearSincel1980, and thus the static checker will assume that daylnYear
in the Main method could be any integer. That’s why the assertions are not
proven. To fix this, we need to go back to YearSince1l980 and add contracts
there.

7 Contracts on YearSincel980

The assumption the client is making about the return value of daylnYear is that
it is between 1 and 366. Let’s make this explicit as a post condition of the
method:

public static int YearSincel980(int daysSincel980, out int daylnYear)

{

Contract. Ensures(Contract.ValueAtReturn(out daylnYear) >= 1);
Contract. Ensures(Contract.ValueAtReturn(out daylnYear) <= 366);

Note how we need to use the method Contract.ValueAtReturn to refer to the final
value of out-parameters of a method. Currently the tools do not check to make
sure that out parameters are initialized properly disregarding their mention in
the postcondition. Thus, in the above example, if the code after the contracts
uses the value of daylnYear before assigning to it, the C# compiler would not
issue the error that it should. However, on a build where the CONTRACTS_FULL
is not defined (such as Release), the compiler will issue an error.
Build the ZuneDate project and observe the output:

“QU Errors“@lWaminqu@) 1L Message|

Description File L. Celumn
A1 contracts: ensures unproven ZuneDatecs 44 7
Ay 2+ lecation related te previcus warning ZuneDate.cs 13 7
(i) 3 contracts: Checked 5 aszertions: 4 correct1 unknown Zunelatedll 1 1

The checker validates the upper bound (366) on the final value of daylnYear, but
not the lower bound of 1. If you consider the code for a second, you will notice
that indeed a negative parameter would cause that problem, as the loop would
then never execute.

To avoid this, let’s add the necessary pre-condition:

public static int YearSincel980(int daysSincel980, out int daylnYear)

{

Contract. Requires(daysSincel1980 >= 1);

Now rebuild the entire solution. You should see that the checker validates all
contracts on the ZuneDate project, but that there is now a violated requires in
the client.

|Q 0 Errorsl”_ﬁlWarningsHlQ) 2 Messagesl

Description File Line Column
e S
& 2 contracts: requires unproven: days5incel980 >=1 Program.cs 22
& 3+ location related to previous warning ZuneDate.cs 13 7
i) 4 contracts: Checked 11 assertions: 10 correct 1 unknown Client.exe 1 1

The client code does not perform any validation on the parsed daysSince1980 value
before passing it to YearsSince1980, thus, the value may not be positive. We can
easily fix the client code by writing the extra return below before computing
the year:

int daysSincel980 = Int32.Parse(args [0]);
if (daysSincel980 <= 0) return;

When you rebuild, the checker should now validate the client code as well.

8 More Detailed Contracts

Now suppose the client code programmer were really worried about memory
consumption and wants to allocate an array that matches the number of days
needed exactly, rather than overprovisioning for leap years. In other words, the
client code in Main changes as follows:

int dayInYear;
int year = ZuneDate.YearSince1980(daysSince1980, out daylnYear);

string [| days;

if (DateTime.lsLeapYear(year))
{ days = new string[366];

}

else

{

days = new string[365];

days[dayInYear — 1] = "used”;

As you can see, we now allocate either 366 or 365 elements for the days array,
depending on the leap year status of the returned year. When you build, the
checker will report that it no longer proves the upper bound on the array access.

The reason for this warning is the same as at the beginning of this sample.
The contract on method YearSince1980 is not detailed enough to specify that in
case the returned year is not a leap year, then the daylnYear is bounded by 365.

Fortunately, if we want to, we can actually specify this and also check that
the implementation satisfies this property. Going back to the implementation
of YearSince1980, add the following postcondition:

Contract.Ensures(DateTime.IsLeapYear(Contract.Result<int>())
|| Contract.ValueAtReturn(out daylnYear) <= 365);

The specification states that either the returned year is a leap year, or the final
dayInYear value is bounded by 365. When you rebuild the solution, you should
see that the new postcondition is proven, meaning our date computation is
looking pretty solid.

