
Simple CSV

This document describes the SimpleCSV library for reading and writing CSV data files. This

documentation only briefly describes and explains the library, for more examples look at UnitTest

library or in examples. With Simple CSV library for .NET You can write and read CSV documents and

serialize/deserialize objects to and from CSV file format. This documentation can be outdated or the

source code can contain more functions.

Library version : 1.0.0 RC2
Supported Library : .NET 3.5

Web : http://simplecsv.codeplex.com/
Blog : http://marcind.spaces.live.com

Licence : Ms-RL

http://simplecsv.codeplex.com/
http://marcind.spaces.live.com/

Changes
1.0.0 RC  Added string indexers in SimpleCSVReader

 Added ISimpleCSVSerializationCallback

 Added events to serializer (OnSerialization and OnDeserialization)

 Added Format property to SimpleCSVAttribute for DateTime

1.0.0 RC2  Nullable types serialization

 Serialization of enumeration types

 Line (row) counters in reader and writer

 Bug fixes

Reading CSV files
The easiest and simplest way to read an CSV file describes the code below:

using (SimpleCSVReader reader = new SimpleCSVReader(@".\BasicReadWrite.csv")) {
 while (reader.ReadLine()) {
 // To read a column value use: reader[i]
 }
}
Just access the value by using the indexer reader[i], where i is the number of column.

Remember!
Columns in the SimpleCSV are indexed from 1. If the columns does not exists, then
reader[i] will return a null value. If the column is empty, then reader[i] will return an
empty string.

If the file contains a header, You can set HasHeader property to true. But remember, you can change

this value only before any read.

using (SimpleCSVReader reader = new SimpleCSVReader(@".\BasicReadWrite.csv")) {
 reader.HasHeader = true;
 // Your code
}
In this scope, when You access the reader.ReadLine() method, and a HasReader property was set to

true, then the reader will first read a header line, and then the record. You can manually read a

header by executing a ReadHeader() method before any other read – this does not require to setting

the HasHeader property (it will be set automatically after read)

When You read the file with a header, then You can access the cells values by a header name:

using (SimpleCSVReader reader = new SimpleCSVReader(@".\BasicReadWrite.csv")) {
 reader.HasHeader = true;
 while (reader.ReadLine()) {
 // To read a column value use: reader[“ColumnName”]
 }
}

Remember!
When You access the cell value by header name and without specifying to read the
Header before, then an InvalidOperationException will be thrown.

You can change the value of a cell using indexers – this will change only values in memory without

modifying the CSV stream.

Writing CSV files
Writing CSV files is as simple as reading. You access for example a WriteLine of the writer instance,

that’s accepts a string array (line 4).

On line 3 we are writing a Header to CSV. If You will define, that only 10 columns should be in the

exported file, then set MaxColumns property to the desired value. If You write less or more columns,

then only MaxColumns will be saved – when there are less columns saved, then the writer will fill the

line with empty columns. Remember, to execute WriteLine() (with no parameters) when using Write

method. The result (in raw in Notepad and in Microsoft Excell 2010) is presented below (Excell

formatted this values automatically)

01
02
03
04
05
06
07
08
09
10
11

using (SimpleCSVWriter writer = new SimpleCSVWriter(@".\simple.csv")) {
 writer.MaxColumns = 10;
 writer.WriteHeader(new string[] { "A", "B", "C", "D" });
 writer.WriteLine(new string[] { "1", "2", "3", "4" });
 for (int i = 1; i < 5; i++) {
 for (int j = 0; j < 20; j++) {
 writer.Write(i + ":" + j);
 }
 writer.WriteLine();
 }
}

You can also use indexers to write data to a cell. Like in reader there are two types of indexer. The
first one available all the time is the numeric (integer) indexer, and an string indexer, available only
when CSV header is specified.

From the previous example we will change only the double loops. The inner loop we will decrease
from 20 down to 0, what means, that column 20 will be written first. Outside the loop is used an
string indexer with a header label “A” (in the example is the same like numeric indexer with value 1).
You can modify indexers till WriteLine is executed.

Remember!
It’s safer to use numeric indexer, because when using string indexers there is a little
overhead (with mapping the header to colum), when the header does not match any
colum (is not found), then an IndexOutOfRangeException is thrown and what is more,
string indexer works only when the header is specified, otherwise an
InvalidOperationException will be thrown.

01
02
03
04
05
06
07
08
09

for (int i = 1; i < 5; i++)
{
 for (int j = 20; j >= 0; j--)
 {
 writer[j] = i + ":" + j;
 }
 writer["A"] = "String indexer";
 writer.WriteLine();
}

CSV Serialization
For better simplification, there is also an CSV serialization mechanism available. All object properties

described with SimpleCSVAttribute will be handled during serialization. Let’s look on a class

example, that should be handled with the serializer:

First property ID described with SilmpleCSV attribute will be saved to CSV, and if specified

HasHeader, then the column’s header name will be named ID. To change the name, just set the value

in Label, like in line 6 and 9. What is more, when You will force the position of the columns, then use

the Index value like in lines 9 and 12. Property NotForExport will not be handlerd during

serialization.

Remember!
When the column position defined by Index is not specified, then the column is the
position of property in the class described with SimpleCSVAttribute. In the example
above, when You change the Index property in line 9, from 4 to 1, then an
SimpleCSVSerializationException will be thrown with the message: There already is
defined a ID column on position 1.

In the example above, ID and Title will be placed in first and second column, and the Date and Data

will be placed in fourth and third column. When You remove the Index properties, then the Date will

be placed in third, and Data in fourth column.

Serializing
Now let’s serialize our class to a CSV file named serialized.csv . The example is presented below:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

 public class MyObject
 {
 [SimpleCSV]
 public decimal ID { get; set; }

 [SimpleCSV(Label="Name")]
 public string Title { get; set; }

 [SimpleCSV(Label="Created", Index=4)]
 public DateTime Date { get; set; }

 [SimpleCSV(Label="Description", Index=3)]
 public string Data { get; set; }

 public string NotForExport { get; set; }
 }

01
02
03
04
05
06
07
08
09

using (SimpleCSVSerializer<MyObject> serializer = new
 SimpleCSVSerializer<MyObject>()) {
 using (SimpleCSVWriter writer = new SimpleCSVWriter(@".\serialized.csv")) {
 writer.HasHeader = true;
 writer.QuoteAll = true;
 serializer.Serialize(writer, new MyObject {
 ID = 1,
 Title = @"The title is ""The title""",
 Data = "This is an example;wow!",

On line 4 we are defining, that our CSV file will contain a header. In this example the header will be

generated from the class. Line 5 determines, that all cells will be Quoted in the file. Let’s look on

results viewed in notepad and in Microsoft Excell 2010.

Deserializing
Deserializing is similar to serializing. Look at the example below which uses the same serializer

instance like in previous example:

10
11
12
13
14
15
16
17
18
19

 Date = DateTime.Now,
 NotForExport = "My specified data"
 });
 serializer.Serialize(writer, new MyObject {
 ID = 2,
 Date = DateTime.Now,
 NotForExport = "No more!"
 });
 }
}

01
02
03
04
05
06
07
08
09
10
11
12

using (SimpleCSVReader reader = new SimpleCSVReader(@".\serialized.csv")) {
 reader.HasHeader = true;
 MyObject record;

 while (serializer.DeserializeLine(reader, out record)) {
 Console.WriteLine("{0}-{1}-{2}-{3}",
 record.ID,
 record.Title,
 record.Date,
 record.Data);
 }
}

The result, presented on the screen below shows correctly these values:

Modifying serialization
Sometimes the data should be modified before and after serialization or deserialization. For example

to map values or change the data representation. Imagine, that You have an CSV file with 5 columns

like below:

This CSV file represents a list of cartoons grouped by animal type (CATS or DOGS) some cartoon ID,

name, date when the cartoon was created and info if the cartoon was filmed .

It’s more readable for human to view text data with some meaning like CATS or DOGS nor than

numbers 1 or 2 or info yes/no rather than true/false. Let’s look on object representation of one row

01
02
03
04
05
06
07

 public class CartoonItem
 {
 [SimpleCSV(Label="GROUP")]
 public int GroupID { get; set; }

 [SimpleCSV]
 public int ID { get; set; }

You can see some properties labeled with SimpleCSV attribute. Look at line 12, where is presented

additional attribute property named Format, where You can place the DateTime format, in what will

be serialized or deserialized.1

Now we should be able to change integer GroupID and bool Filmed properties to string values that

represent group name and yes/no values rather than true/false. To enable modifying those values

implement ISimpleSerializationCallback interface like below

This interface enables You to modify serialization (SimpleCSVSerialization) and deserialization

(SimpleCSVDeserialization) of Your class to CSV representation. To explain more this functions we will

implement SimpleCSVSerialization. First let’s explain the handler attribute in the function. It’s

represents user defined class that will be used during serialization and deserialization. This class can

define some data source in our example this will be CartoonDataHanlder with two mapping methods.

1
 Full list of available values is presented on http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx

08
09
10
11
12
13
14
15
16
17

 [SimpleCSV(Label = "NAME")]
 public string Name { get; set; }

 [SimpleCSV(Label = "CREATED", Format = "yyyy")]
 public DateTime Created { get; set; }

 [SimpleCSV(Label = "FILMED")]
 public bool Filmed { get; set; }
 }

01
02
…
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public class CartoonItem: ISimpleCSVSerializationCallback
{
 …
 #region ISimpleCSVSerializationCallback Members

 public bool SimpleCSVDeserialization(SimpleCSVReader reader,
 SimpleCSVSerializationState state, object handler)
 {
 …
 }

 public bool SimpleCSVSerialization(SimpleCSVWriter writer,
 SimpleCSVSerializationState state, object handler)
 {
 …
 }

 #endregion
}

01
02
…
17
18
19
20
21
22
23
24
25
26

public class CartoonItem: ISimpleCSVSerializationCallback
{
 …

 public bool SimpleCSVSerialization(SimpleCSVWriter writer,
 SimpleCSVSerializationState state, object handler)
 {
 if (state == SimpleCSVSerializationState.AfterSerialization)
 {
 writer[1] = (handler as CartoonDataHandler).MapIDToGroup(GroupID);
 writer[5] = Filmed ? "yes" : "no";
 }

http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx

Like You see we are mapping yes/no values (from column 5) and group ID to human readable label in

column 1. Returning true in means, that the CSV line was serialized properly if You return false then

serializer will return nothing (this function is useful when You will filter serialization).

Now let’s examine the opposite function – SimpleCSVDeserialization. It looks similarly to

SimpleCSVSerialization the difference is, that we are using writer rather than reader function

argument, we are mapping from ID to Label and from true/false to yes/no.

State AfterSerialization means, that the serializer has serialized objects to string representations –

this is the best way to change and modify values before saving them to stream.

Using Serializer Events

If You will not implement ISimpleCSVSerializationCallback interface in class but will still be able to

modify serialization and deserialization You, then the best way is to add events to serializerEvents

Event Meaning

OnDeserialization Event raised when CSV is deserialized

OnSerialization Event raised when object is serialized to CSV

An short example is presented below (using lambda expressions):

Events are good example to enable CSV filtering. Above we are deserializing only records (cartoons)

that has yes value in FILMED column.

27
28
29

 return true;
 }
}

01
02
…
30
31
32
33
34
35
36
37
38
39
40

public class CartoonItem: ISimpleCSVSerializationCallback
{
 …
 public bool SimpleCSVSerialization(SimpleCSVWriter writer,
 SimpleCSVSerializationState state, object handler)
 {
 if (state == SimpleCSVSerializationState.AfterSerialization)
 {
 writer[1] = (handler as CartoonDataHandler).MapIDToGroup(GroupID);
 writer[5] = Filmed ? "yes" : "no";
 }
 return true;
 }
}

01
02
03
04
05
06
07
08

serializer.OnDeserialization += (sender, eventArgs) =>
{
 if (eventArgs.State == SimpleCSVSerializationState.BeforeDeserialization)
 {
 return "yes".Equals(eventArgs.CSVStream["FILMED"]);
 }
 return true;
};

Enumeration serialization

SimpleCSV allows You to serialize enumerations too. If Your class contains a custom enum type, then

You can label enum values with SimpleCSVEnum like in example below:

 public enum MyEnum
 {
 [SimpleCSVEnum(Label="GROUP_A")]
 GroupA,

 GroupB,

 [SimpleCSVEnum(Label = "GROUP_C")]
 GroupC
 }

Serialization Graph
This graph presents what methods or events are executed (in what order) during serialization

and deserialization. During serialization, first is executed OnSerialization with BeforeSerialization

status then SimpleCSVSerialization (implemented by ISimpleCSVSerializationCallback) and so on. In

serialization, if You return false then the serialization is ignored and nothing is saved to stream. In

deserialization if You return false then serializer will read from stream until end of stream occurs or if

true is returned in deserialization callback methods or events (exceptions of course has higher status

and will be returned to the nearest catch).

OnSerialization
BeforeSerialization

OnSerialization
AfterSerialization

Write to stream

SimpleCSVSerialization
BeforeSerialization

SimpleCSVSerialization
AfterSerialization

Serialization

OnDeserialization
AfterDeserialization

OnDeserialization
BeforeDeserialization

Read from stream

SimpleCSVDeserialization
AfterDeserialization

SimpleCSVDeserialization
BeforeDeserialization

Deserialization

User Code

Other useful examples

Change the CSV column separator
To change the CSV column separator use the Splitter property of SimpleCSVReader and

SimpleCSVWriter that’s accepts a character. This property can be changed only before any read and

write.

01
02
…

using (SimpleCSVWriter writer = new SimpleCSVWriter(@".\simple.csv")) {
 writer.Splitter = ',';

