
IBM SPSS Statistics
Input/Output Module

Note: Before using this information and the product it supports, read the information in Notices on page 148.

Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.

Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Licensed Materials - Property of IBM

© Copyright IBM Corp. 1989, 2011.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

1

© Copyright IBM Corporation 1989, 2011

Input/Output Module

IBM® SPSS® Statistics data files are binary files that contain the case data on which
IBM SPSS Statistics operates and a dictionary describing the contents of the file.
Many developers have successfully created applications that directly read and write
IBM SPSS Statistics data files. Some of these developers have asked for a module to
help them manipulate the rather complex format of IBM SPSS Statistics data files.
The I/O Module documented here is designed to satisfy this need.

You can use the I/O Module to:
Read and write IBM SPSS Statistics data files
Set general file attributes, create variables
Set values for variables
Read cases
Copy a dictionary
Append cases to IBM SPSS Statistics data files
Directly access data

Developers can call I/O Module procedures in client programs written in C, , and
other programming languages. It is necessary to include the header file spssdio.h. The
specific calling convention is__stdcall for both 32-bit and 64-bit Windows programs.
The __stdcall conventions are compatible with FORTRAN, although calling I/O
Module procedures is not specifically supported for FORTRAN programs.

This appendix outlines the steps for developing an application using the I/O
Module procedures. It also contains a description of each procedure.

2

© Copyright IBM Corporation 1989, 2011

New I/O Module for Version 14.0

The I/O Module was completely rewritten for version 14.
The new architecture should facilitate further development. However, much of the
code is not used in the product itself and has not received as much testing as that
in the predecessor module.
An unintended but necessary limitation of the new module is that the
spssOpenAppend function will not work correctly on compressed data files created
by systems prior to release 14.
To assist in the handling of non-western character sets, we are now using IBM's
International Components for Unicode or ICU. As a result, the I/O Module
depends on ICU runtime libraries, which are included on the CD-ROM.
The I/O Module now uses the Microsoft Resident C Runtime. If the client
application shares this run-time, it will also share the locale. As a result, any call
to spssSetLocale will affect both the I/O Module and the client. Such a call is
unnecessary if the client has already set the locale. When the module is loaded, it
sets the locale to the system default.
Prior to version 14.0.1, the name of the multiple response set specified for
spssAddMultRespDefC or spssAddMultRespDefN was limited to 63 bytes, and the
I/O Module automatically prepended a dollar sign. In the interest of consistency,
the name is now limited to 64 bytes and must begin with a dollar sign. Also, the
length of the set label was previously limited to 60 bytes. It may now be as long as
a variable label, 255 bytes.

Using the I/O Module

The following sections list the sequence of procedures calls required to complete
specific tasks with the I/O Module. See “I/O Module Procedure Reference” on p. 15
for detailed information about each procedure.

Interface and File Encoding

A new feature in version 16 is the option to represent text in a UTF-8 Unicode
encoding rather than in the encoding of the current locale. If this option is chosen, all
text (names, labels, values, and so on) communicated between the I/O Module and the

3

© Copyright IBM Corporation 1989, 2011

client application is represented as UTF-8, and the text in any output file will be
represented as UTF-8. When in UTF-8 mode, the I/O Module can read files encoded
in either mode and will perform the necessary transcoding to deliver UTF-8 text to the
client. Conversely, when in code page mode, the I/O Module can read files encoded in
either mode.

Data files created by release 15 and subsequent releases contain information about
their encoding. When the I/O Module is operating in UTF-8 mode, it uses that
information to perform the necessary transcoding. When the I/O Module is operating
in code page mode, it will transcode from UTF-8 to the current local's encoding but
will not transcode from one non-Unicode encoding to another. See the documentation
of spssOpenAppend for some precautions when appending data to an open file.

Call spssSetInterfaceEncoding and spssGetInterfaceEncoding to set and get the
interface encoding. Call spssGetFileEncoding and spssGetFileCodePage to get the
encoding or code page of a specific file. Call spssIsCompatibleEncoding to determine
whether the file and interface encoding are compatible.

When in UTF-8 mode the following apply:
When retrieving string values--such as names, labels, or case values--values are
returned as arrays of multibyte characters encoded in UTF-8. For example, in C,
string values are returned as an array of char types encoded in UTF-8.
When writing string values to an IBM SPSS Statistics data file, be sure that values
are encoded in UTF-8. For example, in C, string values should be specified as an
array of char types encoded in UTF-8.
When creating an IBM SPSS Statistics data file, the file contains information
specifying that the data are encoded in UTF-8. When viewing such a file in IBM
SPSS Statistics, you should be working in unicode mode. You can specify unicode
mode from the General tab on the Options dialog (Edit>Options), or by using the
command syntax SET UNICODE=ON. Switching to unicode mode requires that
there are no nonempty datasets open.

Example: Reading string values in UTF-8 mode

This example gets the variable names from an IBM SPSS Statistics data file and tests
for the presence of a particular variable. It makes use of the Windows
MultiByteToWideChar API to map the variable names (encoded in UTF-8) to UTF-16
(wide character) strings to allow comparison with a string literal.

4

© Copyright IBM Corporation 1989, 2011

#include "stdafx.h"
#include "spssdio.h"
#include <iostream>
#include "atlbase.h"
#include "atlstr.h"
using namespace std;
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int numV; /* number of variables */
 int *typesV; /* variable types */
 char **namesV; /* variable names */
 int res; /* Size, in characters, of buffer for variable name in UTF-16 */
 const wchar_t* name=L"résumé"; /* UTF-16 string literal of name to match */
 const size_t namesize=SPSS_MAX_VARNAME+1; /* UTF-16 variable name size*/
 wchar_t wcstring[namesize]; /* variable name in UTF-16 */
 double handlesV[100]; /* array of variable handles */

 error = spssSetInterfaceEncoding(SPSS_ENCODING_UTF8);
 error = spssOpenRead("mydata.sav",&fH);
 error = spssGetVarNames(fH, &numV, &namesV, &typesV);
 int i;
 for (i = 0; i < numV; ++i){
 error = spssGetVarHandle(fH, namesV[i], &handlesV[i]);
 if (error == SPSS_OK){
 res = MultiByteToWideChar(CP_UTF8, 0 , namesV[i], -1, wcstring, 0);
 MultiByteToWideChar(CP_UTF8, 0, namesV[i], -1, wcstring, res);
 if (!wcscmp(wcstring,name))
 cout << "Found match" << endl;
 }
 else ...
 }
 spssFreeVarNames(namesV, typesV, numV);
 error = spssCloseRead(fH);
}

For Visual Basic developers, the following is a Visual Basic version of the above
example. It uses the spssGetVarInfo function to get the name and type of each variable,

5

© Copyright IBM Corporation 1989, 2011

one variable at a time. Also, it uses the Encoding class to handle conversions between
UTF-8 and UTF-16.

Dim fH As Long 'file handle
Dim err As Integer 'error code
Dim varType As Integer 'variable type
Dim i As Integer
Dim numVars As Integer 'number of variables
Dim varName As String 'variable name
Dim varNameU As String 'variable name in Unicode (UTF-16)
Dim name As String = "résumé" 'UTF-16 string literal of name to match
Dim uniBytes() As Byte 'byte representation of variable name in UTF-16

varName = "".PadRight(SPSS_MAX_VARNAME + 1)
err = spssSetInterfaceEncoding(SPSS_ENCODING_UTF8)
err = spssOpenRead("mydata.sav", fH)
err = spssGetNumberofVariables(fH, numVars)
i = 0
Do While i < numVars
 err = spssGetVarInfo(fH, i, varName, varType)
 If (err = SPSS_OK) Then
 uniBytes = Encoding.Convert(Encoding.UTF8, Encoding.Unicode, _
 Encoding.Default.GetBytes(varName))
 varNameU = Encoding.Unicode.GetString(uniBytes).Trim()
 If (String.Compare(name, varNameU) = 0) Then
 Console.Write("Found match")
 End If
 End If
 i = i + 1
Loop
err = spssCloseRead(fH)

Example: Writing string values in UTF-8 mode

This example writes a new IBM SPSS Statistics data file in UTF-8 mode. It makes use
of the Windows WideCharToMultiByte API to map a string literal in UTF-16 (wide

6

© Copyright IBM Corporation 1989, 2011

character) to the UTF-8 encoding required by IBM SPSS Statistics. For simplicity, it
writes a file with a single variable and a single case value.

#include "stdafx.h"
#include "spssdio.h"
#include "atlbase.h"
#include "atlstr.h"
using namespace std;
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 const wchar_t* val=L"männlich"; /* UTF-16 string to encode in UTF-8*/
 char varvalue[10]; /* character array for case value */
 double vH; /* variable handle */
 int res; /* Size, in bytes, of buffer for case value*/

 error = spssSetInterfaceEncoding(SPSS_ENCODING_UTF8);
 error = spssOpenWrite("mydata.sav", &fH);
 error = spssSetVarName(fH,"Geschlecht",SPSS_STRING(10));
 error = spssCommitHeader(fH);
 res = WideCharToMultiByte(CP_UTF8,0,val,-1,varvalue,0,NULL,NULL);
 WideCharToMultiByte(CP_UTF8,0,val,-1,varvalue,res,NULL,NULL);
 error = spssGetVarHandle(fH,"Geschlecht",&vH);
 error = spssSetValueChar(fH,vH,varvalue);
 error = spssCommitCaseRecord(fH);
 error = spssCloseWrite(fH);
}

For Visual Basic developers, the following is a Visual Basic version of the above
example. It uses the Encoding class to handle conversions between UTF-16 and UTF-
8.

Dim fH As Long 'file handle
Dim vH As Double 'variable handle
Dim err As Integer 'error code
Dim val As String = "männlich" 'String to encode in UTF-8
Dim utf8String As String 'String to pass to SPSS Statistics
Dim utf8Bytes() As Byte 'UTF-8 byte representation of string

spssSetInterfaceEncoding(SPSS_ENCODING_UTF8)
err = spssOpenWrite("mydata.sav", fH)
err = spssSetVarName(fH, "Geschlecht", 10)
err = spssCommitHeader(fH)
err = spssGetVarHandle(fH, "Geschlecht", vH)
utf8Bytes = Encoding.Convert(Encoding.Unicode, Encoding.UTF8, _
 Encoding.Unicode.GetBytes(val))

utf8String = Encoding.Default.GetString(utf8Bytes)
err = spssSetValueChar(fH, vH, utf8String)
err = spssCommitCaseRecord(fH)
err = spssCloseWrite(fH)

7

© Copyright IBM Corporation 1989, 2011

Writing IBM SPSS Statistics Data Files

The sequence of procedure calls to create IBM SPSS Statistics variables is as follows:

1. To open a physical file for output and to initialize internal data structures, call
spssOpenWrite.

2. To set general file attributes, such as file label and compression, call spssSetIdString
and spssSetCompression. These attributes may also be set anytime before the dictio-
nary is committed (see step 7).

3. To create one or more variables, call spssSetVarName.

4. To set attributes of variables, such as output formats, variable and value labels,
missing values, etc., call appropriate procedures, such as spssSetVarPrintFormat,
spssSetVarLabel, spssSetVarNValueLabel, etc. Variable creation and attribute set-
ting may be interleaved as long as no reference is made to a variable that has not
yet been created.

5. (Optional) If you want to set variable sets, Trends date variables, or multiple re-
sponse set information, call spssSetVariableSets, spssSetDateVariables, or
spssSetMultRespDefs.

6. To set the case weight variable, call spssSetCaseWeightVar.

7. To commit the dictionary, call spssCommitHeader. Dictionary information may no
longer be modified.

8. To prepare to set case data values, call spssGetVarHandle once for each variable
and save the returned variable handles. A variable handle contains an index that
allows data to be updated efficiently during case processing. While setting data
values, variables must be referenced via their handles and not their names.

9. To set values of all variables for a case, call spssSetValueChar for string variables
and spssSetValueNumeric for numeric ones. To write out the case, call
spssCommitCaseRecord. Repeat from the beginning of this step until all cases are
written.

10. To terminate file processing, call spssCloseWrite.

Utility procedures such as spssSysmisVal and any of the spssConvert procedures may
be called at any time. They are useful primarily while setting case data values.

8

© Copyright IBM Corporation 1989, 2011

It is possible to construct complete cases in the form the cases would be written to an
uncompressed data file and then present them to the I/O Module for output (which will
take care of compression if necessary). Note that it is very easy to write out garbage
this way. To use this approach, replace step 8 and step 9 with the following steps:

11. To obtain the size of an uncompressed case record in bytes, call spssGetCaseSize.
Make sure that the size is what you think it should be. Allocate a buffer of that size.

12. Fill up the buffer with the correctly encoded numeric and string values, taking care of
blank padding and doubleword alignment. To write the case, call spssWholeCaseOut.
Repeat from the beginning of this step until all cases are written.

Copying a Dictionary

Developers can open a new file for output and initialize its dictionary from that of an
existing file. The function, spssOpenWriteCopy, that implements this feature is a slight
extension of spssOpenWrite. It is useful when the dictionary or data of an existing file
is to be modified or all of its data is to be replaced. The typical sequence of operations is:

1. Call spssOpenWriteCopy (newFileName, oldFileName, ...) to open a new file initial-
ized with a copy of the old file’s dictionary.

2. Call spssOpenRead (oldFileName, ...) to access the old file’s data.

Appending Cases to an Existing IBM SPSS Statistics Data File

To append cases, the existing data file must be compatible with the host system; that
is, the system that originally created the file must use the same bit ordering and the
same representation for the system-missing value as the host system. For example, a
file created on a computer that uses high-order-first bit ordering (for example,
Motorola) cannot be extended on an computer that uses low-order-first bit ordering
(for example, Intel).

When appending cases, no changes are made to the dictionary other than the number
of cases. The originating system and the creation date are not modified.

The sequence of procedure calls to append cases to an existing IBM SPSS Statistics
data file is as follows:

1. To open a physical file and to initialize internal data structures, call spssOpenAppend.

9

© Copyright IBM Corporation 1989, 2011

2. To get general file attributes, such as file label, compression, and case weight, call
spssGetIdString, spssGetCompression, and spssGetCaseWeightVar. To get the list of
variable names and types, call spssGetVarNames, or call spssGetNumberofVaribles
and spssGetVarInfo if you are using Visual Basic. To get attributes of variables,
such as output formats, variable and value labels, missing values, etc., call
spssGetVarPrintFormat, spssGetVarLabel, spssGetVarNValueLabel(s), etc.

3. To set values of all variables for a case, call spssSetValueChar for string variables
and spssSetValueNumeric for numeric variables. To append the case, call
spssCommitCaseRecord. Repeat from the beginning of this step until all cases are
written.

4. To terminate file processing, call spssCloseAppend.

Utility procedures such as spssSysmisVal and any of the spssConvert procedures may
be called at any time. They are useful primarily while setting case data values.

For step 3, it is also possible to call spssWholeCaseOut to construct complete cases
in the form in which the cases would be written to an uncompressed data file and then
present them to the I/O Module for output (which will take care of compression if
necessary). The same precaution should be taken as you write whole cases to a data
file.

Reading IBM SPSS Statistics Data Files

The sequence of procedure calls to read IBM SPSS Statistics data files is much less
restricted than the sequence of calls to write IBM SPSS Statistics data files. Cases, of
course, must be read in sequence. However, calls that report file or variable attributes
may be made anytime after the file is opened. A typical sequence of steps is:

1. To open a physical file for input and to initialize internal data structures, call
spssOpenRead.

2. To get general file attributes, such as file label, compression, and case weight, call
spssGetIdString, spssGetCompression, and spssGetCaseWeightVar. To get the list of
variable names and types, call spssGetVarNames, or call spssGetNumberofVaribles
and spssGetVarInfo if you are using Visual Basic. To get attributes of variables,
such as output formats, variable and value labels, missing values, etc., call
spssGetVarPrintFormat, spssGetVarLabel, spssGetVarNValueLabel(s), etc.

10

© Copyright IBM Corporation 1989, 2011

3. (Optional) If you want to set variable sets, Trends date variables, or multiple
response set information, call spssSetVariableSets, spssSetDateVariables, or
spssSetMultRespDefs.

4. To find out the number of cases in the file, call spssGetNumberofCases.

5. To prepare to read case values, call spssGetVarHandle once for each variable
whose values are of interest and save the returned variable handles. A variable
handle contains an index that allows data to be retrieved efficiently during case
processing. While retrieving data values, variables must be referenced via their
handles and not their names.

6. To read the next case into the library’s internal buffers, call spssReadCaseRecord.
To get values of variables for a case, call spssGetValueChar for string variables and
spssGetValueNumeric for numeric ones. Repeat from the beginning of this step un-
til all cases are read.

7. To terminate file processing, call spssCloseRead.

Utility procedures such as spssSysmisVal and any of the spssConvert procedures may
be called at any time. They are useful primarily while interpreting case data values. The
spssFree... procedures should also be used where appropriate to free dynamically
allocated data returned by the library.

Here, too, it is possible to receive from the I/O Module complete cases in the form in
which the cases would appear in an uncompressed data file. Extracting data values
from the case record is entirely up to the caller in this case. For this approach, replace
step 5 and step 6 with the following steps:

8. To obtain the size of an uncompressed case record in bytes, call spssGetCaseSize.
Allocate a buffer of that size.

9. To read the next case into your buffer, call spssWholeCaseIn. Extract the values
you need from the buffer. Repeat from the beginning of this step until all cases are
read.

Direct Access Input

The File I/O API supports direct access to the data in existing files. The basic
mechanism is to call spssSeekNextCase, specifying a zero-origin case number before
calling spssWholeCaseIn or spssReadCaseRecord. Note that direct reads from

11

© Copyright IBM Corporation 1989, 2011

compressed IBM SPSS Statistics data files require reading all of the data up to the
requested case—that is, performance may not be sparkling when retrieving a few
cases. Once an index of the cases has been constructed, performance is adequate.

Working with IBM SPSS Statistics Data Files

Variable Names and String Values

A user-definable IBM SPSS Statistics variable name must be valid in the current locale
if working with a code page file. Variable names must always obey the following rules:

The name must begin with a letter. The remaining characters may be any letter, any
digit, a period, or the symbols @, #, _, or $.
Variable names cannot end with a period. Names that end with an underscore
should be avoided (to avoid name conflicts with variables automatically created by
some procedures).
The length of the name cannot exceed 64 bytes.
Blanks and special characters (for example, !, ?, *) cannot be used.
Each variable name must be unique; duplication is not allowed. Variable names are
not case sensitive. The names NEWVAR, NewVar, and newvar are all considered
identical.
Reserved keywords (ALL, NE, EQ, TO, LE, LT, BY, OR, GT, AND, NOT, GE, and
WITH) cannot be used.

If the names in a data file created in another locale are invalid in the current locale (for
example, double-byte characters), the I/O Module will create acceptable names. These
names are returned upon inquiry and can be used as legitimate parameters in
procedures requiring variable names. The names in the data file will not be changed.

In the I/O Module, procedures that return variable names return them in upper case
as null-terminated strings without any trailing blanks. Procedures that take variable
names as input will accept mixed case and any number of trailing blanks without a
problem. These procedures change everything to upper case and trim trailing blanks
before using the variable names.

Similarly, procedures that return values of string variables return them as null-
terminated strings whose lengths are equal to the lengths of the variables. Procedures

12

© Copyright IBM Corporation 1989, 2011

that take string variable values as input accept any number of trailing blanks and
effectively trim the values to the variables’ lengths before using them.

Accessing Variable and Value Labels

Beginning with version 7.5, the limit on the length of variable labels was increased
from 120 to 256 bytes. There were two ways in which the spssGetVarLabel function
could be modified to handle the longer labels. First, it could continue to return a
maximum of 120 bytes for compatibility with existing applications. Second, it could
return a maximum of SPSS_MAX_VARLABEL bytes for compatibility with new data
files. The resolution was to continue to return a maximum of 120 bytes and to introduce
a new function, spssGetVarLabelLong, which permits the client to specify the
maximum number of bytes to return. In anticipation of possible future increases in the
maximum width of value labels, two parallel functions, spssGetVarNValueLabelLong
and spssGetVarCValueLabelLong, were added for retrieving the value labels of numeric
and short string variables.

System-Missing Value

The special floating point value used to encode the system-missing value may differ
from platform to platform, and the value encoded in a data file may differ from the one
used on the host platform (one on which the application and the I/O Module are
running). Files written through the I/O Module use the host system-missing value,
which may be obtained by calling spssSysmisVal. For files being read using the I/O
Module, data values having the system-missing value encoded in the file are converted
to the host system-missing value; the system-missing value used in the data file is
invisible to the user of the I/O Module.

Measurement Level, Column Width, and Alignment

Starting with release 8.0, IBM SPSS Statistics supports three additional variable
attributes: measurement level, column width, and alignment. These attributes are not
necessarily present IBM SPSS Statistics data files. However, when one attribute is
recorded for a variable, all three must be recorded for every variable. Default values
are assigned as necessary.

13

© Copyright IBM Corporation 1989, 2011

For example, if a new data file is being created and the measurement level attribute
is explicitly set for one variable, default values will be assigned to measurement levels
of all remaining variables, and column widths and alignments will be assigned to all
variables. If no measurement level, column width, or alignment is assigned, the file
will be written without values for any attribute.

There are six new file I/O API functions to access to these attributes:
spssGetVarMeasureLevel, spssSetVarMeasureLevel, spssGetVarColumnWidth,
spssSetVarColumnWidth, spssGetVarAlignment, and spssSetVarAlignment.

Support for Documents

IBM SPSS Statistics has a DOCUMENT command that can be used to store blocks of
text in a data file. Until release 8.0, the I/O API had no support for documents—stored
documents, if any, were discarded when opening an existing file, and there was no way
to add documents to a new file. Starting with release 8.0, limited support for stored
documents is provided that allows the user to retain existing documents.

When a file is opened for reading, its documents record is read and kept; if a file
being written out has documents, they are stored in the dictionary. Since there is still
no way to explicitly get or set documents, one may wonder how it is possible for an
output file to acquire documents. The answer is, by using spssOpenWriteCopy to
initialize a dictionary or by calling the spssCopyDocuments function to copy
documents from one file to another. If an output file is created with
spssOpenWriteCopy, the documents record of the file the dictionary is copied from is
retained and written out when the dictionary is.

Coding Your Program

Any source file that references I/O Module procedures must include the header
spssdio.h. The latter provides ANSI C prototypes for the I/O Module procedures and
defines useful macros; it does not require any other headers to be included beyond what
your program requires. To protect against name clashes, all I/O Module function names
start with spss and all macro names are prefixed with SPSS_. In addition to the macros
explicitly mentioned in the I/O Module procedures, spssdio.h defines macros for the
maximum sizes of various data file objects that may help to make your program a little
more readable:

SPSS_MAX_VARNAME Variable name

14

© Copyright IBM Corporation 1989, 2011

SPSS_MAX_SHORTSTRING Short string variable

SPSS_MAX_IDSTRING File label string

SPSS_MAX_LONGSTRING Long string variable

SPSS_MAX_VALLABEL Value label

SPSS_MAX_VARLABEL Variable label

Visual Basic Clients

The file spssdio.vb contains declarations of most of the API functions in a format that
can be used in Visual Basic. The file also contains definitions of symbolic constants for
all of the function return codes and the IBM SPSS Statistics format codes. Three
comments are relevant to this file:

It is necessary to have a knowledge of Chapter 26, “Calling Procedures in DLLs,”
in the Microsoft Visual Basic Programmer’s Guide. Note that where the API
function parameter should be an int, a Visual Basic application should use a long.
Also, you should be careful to make string parameters suitably long before calling
the API.
Some functions, such as spssGetVarNames, are not compatible with being called
from Visual Basic. The declarations of these functions are present only as
comments.
Only about 20% of the functions have actually been called from a working Visual
Basic program. The inference is that some of the declarations are probably
incorrect.

The function spssGetVarNames is a little difficult to call from languages other than C
because it returns pointers to two vectors. BASIC and FORTRAN are not very well
equipped to deal with pointers. Instead, use functions spssGetNumberofVariables and
spssGetVarInfo, which enable the client program to access the same information in a
little different way. Another function, spssHostSysmisVal, is provided as an alternative
to spssSysmisVal to avoid returning a double on the stack.

Borland C++

Borland C++ users can use release 8.0.1 and later of spssio32.dll and the associated
spssdio.h. They cannot, however, use the distributed spssio32.lib. It is necessary to

15

© Copyright IBM Corporation 1989, 2011

generate an import library from the distributed DLL using the implib.exe console
application, which comes with the compiler using the following syntax:

implib -w spssio32.lib spssio32.dll

The -w switch suppresses almost 100 warnings, such as the following:

Warning duplicate symbol: spssCloseAppend

16

© Copyright IBM Corporation 1989, 2011

I/O Module Procedure Reference

The procedures are listed in alphabetical order.

spssAddFileAttribute

int spssAddFileAttribute(
 const int hFile,
 const char* attribName,
 const int attribSub,
 const char* attribText)

Description

This function adds a single datafile attribute. If the attribute already exists, it is
replaced. The attribute name and its subscript are specified separately. The subscript
is unit origin. If the attribute is not subscripted, the subscript must be specified as -1.

Parameter Description

hfile Handle to the data file

attribName Name of the attribute. Not case sensitive.

attribSub Unit origin subscript or -1

attribText Text which used as the attribute's value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is read-only

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_ATTRDEF Missing name, missing text, or invalid subscript

17

© Copyright IBM Corporation 1989, 2011

SPSS_INVALID_ATTRNAME Lexically invalid attribute name

spssAddMultRespDefC

int spssAddMultRespDefC(int handle, const char *mrSetName,
const char *mrSetLabel, int isDichotomy, const char *countedValue,
const char **varNames, int numVars)

Description

This function adds a multiple response set definition over short string variables to the
dictionary.

Parameter Description

handle Handle to the data file.

mrSetName Name of the multiple response set. A null-terminated string up to
64 bytes long that begins with a dollar sign and obeys the rules for
a valid variable name. Case is immaterial.

mrSetLabel Label for the multiple response set. A null-terminated string up to
256 bytes long. May be NULL or the empty string to indicate that no
label is desired.

isDichotomy Nonzero if the variables in the set are coded as dichotomies, zero
otherwise.

countedValue A null-terminated string containing the counted value. Necessary
when isDichotomy is nonzero, in which case it must be 1–8 charac-
ters long, and ignored otherwise. May be NULL if isDichotomy is
zero.

varNames Array of null-terminated strings containing the names of the vari-
ables in the set. All variables in the list must be short strings. Case
is immaterial.

numVars Number of variables in the list (in varNames). Must be at least two.

Returns

If all goes well, adds the multiple response set to the dictionary and returns zero
(SPSS_OK) or negative (a warning). Otherwise, returns a positive error code and does
not add anything to the multiple response sets already defined, if any.

18

© Copyright IBM Corporation 1989, 2011

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_VARIABLES Fewer than two variables in list

SPSS_ EXC_STRVALUE isDichotomy is nonzero and countedValue is NULL,
empty, or longer than 8 characters

SPSS_INVALID_MRSETNAME The multiple response set name is invalid

SPSS_DUP_MRSETNAME The multiple response set name is a duplicate

SPSS_INVALID_MRSETDEF Existing multiple response set definitions are
invalid

SPSS_INVALID_VARNAME One or more variable names in list are invalid

SPSS_VAR_NOTFOUND One or more variables in list were not found in
dictionary

SPSS_SHORTSTR_EXP At least one variable in the list is numeric or long
string

SPSS_NO_MEMORY Insufficient memory to store the definition

spssAddMultRespDefExt

int spssAddMultRespDefExt(
 const int hFile,
 const spssMultRespDef* pSet)

Description

This function adds one multiple response set to the dictionary. The set is described in
a struct which is defined in spssdio.h.

Parameter Description

hFile Handle to the data file

pSet Pointer to the struct defining the set

19

© Copyright IBM Corporation 1989, 2011

The struct itself is defined as:
typedef struct spssMultRespDef_T

{

 char szMrSetName[SPSS_MAX_VARNAME+1]; /* Null-terminated MR set name */

 char szMrSetLabel[SPSS_MAX_VARLABEL+1]; /* Null-terminated set label */

 int qIsDichotomy; /* Whether a multiple dichotomy set */

 int qIsNumeric; /* Whether the counted value is numeric */

 int qUseCategoryLabels; /* Whether to use var category labels */

 int qUseFirstVarLabel; /* Whether using var label as set label */

 int Reserved[14]; /* Reserved for expansion */

 long nCountedValue; /* Counted value if numeric */

 char* pszCountedValue; /* Null-terminated counted value if string */

 char** ppszVarNames; /* Vector of null-terminated var names */

 int nVariables; /* Number of constituent variables */

} spssMultRespDef;

The items in the struct are as follows:

Item Description

szMrSetName Null-terminated name for the set. Up to 64 bytes.
Must begin with "$".

szMrSetLabel Null-terminated label for the set. Up to 256 bytes.

qIsDichotomy True (non-zero) if this is a multiple dichotomy, i.e.
an "MD" set.

qIsNumeric True if the counted value is numeric. Applicable
only to multiple dichotomies.

qUseCategoryLabels True for multiple dichotomies for which the catego-
ries are to be labeled by the value labels corre-
sponding to the counted value.

qUseFirstVarLabel True for multiple dichotomies for which the label
for the set is taken from the variable label of the
first constituent variable.

nCountedValue The counted value for numeric multiple dichoto-
mies.

pszCountedValue Pointer to the null-terminated counted value for
character multiple dichotomies.

ppszVarNames Pointer to a vector of null-terminated variable
names.

20

© Copyright IBM Corporation 1989, 2011

nVariables Number of variables in the set

When adding a set, the set name must be unique, and the variables must exist and be
of the appropriate type - numeric or character depending on qIsNumeric.

Returns

The function returns SPSS_OK or an error value.
Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is invalid

SPSS_OPEN_RDMODE The file is not open for output

SPSS_DICT_COMMIT The dictionary has already been committed

SPSS_INVALID_MRSETNAME Invalid name for the set

SPSS_INVALID_MRSETDEF Invalid or inconsistent members of the definition
struct.

SPSS_DUP_MRSETNAME A set with the same name already exists

spssAddMultRespDefN

int spssAddMultRespDefN(int handle, const char *mrSetName,
const char *mrSetLabel, int isDichotomy, long countedValue,
const char **varNames, int numVars)

Description

This function adds a multiple response set definition over numeric variables to the
dictionary.

Parameter Description

handle Handle to the data file.

mrSetName Name of the multiple response set. A null-terminated string up to
64 bytes that begins with a dollar sign and obeys the rules for a val-
id variable name. Case is immaterial.

21

© Copyright IBM Corporation 1989, 2011

mrSetLabel Label for the multiple response set. A null-terminated string up to
256 bytes long. May be NULL or the empty string to indicate no la-
bel is desired.

isDichotomy Nonzero if the variables in the set are coded as dichotomies, zero
otherwise.

countedValue The counted value. Necessary when isDichotomy is nonzero and
ignored otherwise. Note that the value is specified as a long int, not
a double.

varNames Array of null-terminated strings containing the names of the vari-
ables in the set. All variables in the list must be numeric. Case is
immaterial.

numVars Number of variables in the list (in varNames). Must be at least two.

Returns

If all goes well, adds the multiple response set to the dictionary and returns zero
(SPSS_OK) or negative (a warning). Otherwise, returns a positive error code and does
not add anything to the multiple response sets already defined, if any.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_VARIABLES Fewer than two variables in list

SPSS_INVALID_MRSETNAME The multiple response set name is invalid

SPSS_DUP_MRSETNAME The multiple response set name is a duplicate

SPSS_INVALID_MRSETDEF Existing multiple response set definitions are
invalid

SPSS_INVALID_VARNAME One or more variable names in list are invalid

SPSS_VAR_NOTFOUND One or more variables in list were not found in
dictionary

SPSS_NUME_EXP At least one variable in the list is not numeric

SPSS_NO_MEMORY Insufficient memory to store the definition

22

© Copyright IBM Corporation 1989, 2011

spssAddVarAttribute

int spssAddVarAttribute(
 const int hFile,
 const char* varName,
 const char* attribName,
 const int attribSub,
 const char* attribText)

Description

This function is analogous to spssAddFileAttribute, but it operates on a single variable's
set of attributes. If the named attribute does not already exist, it is added to the set of
attributes. If it does exist, the existing definition is replaced. If the attribute is not
subscripted, the unit origin subscript is specified as -1.

Parameter Description

hFile Handle to the data file

varName Name of the variable. Not case sensitive.

attribName Name of the attribute. Not case sensitive.

attribSub Unit origin attribute or -1

attribText Text which used as the attribute's value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_VAR_NOTFOUND Named variable is not in the file

SPSS_OPEN_RDMODE The file is read-only

23

© Copyright IBM Corporation 1989, 2011

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_ATTRDEF Missing name, missing text, or invalid subscript

SPSS_INVALID_ATTRNAME Lexically invalid attribute name

spssCloseAppend

int spssCloseAppend (int handle)

Description

This function closes the data file associated with handle, which must have been opened
for appending cases using spssOpenAppend. The file handle handle becomes invalid
and no further operations can be performed using it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not appending, cases

SPSS_FILE_WERROR File write error

24

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenAppend("bank.sav", &fH);
 ...
 error = spssCloseAppend(fH);
 ...
 /* Handle fH is now invalid */
}

See also spssOpenAppend.

spssCloseRead

int spssCloseRead (int handle)

Description

This function closes the data file associated with handle, which must have been opened
for reading using spssOpenRead. The file handle handle becomes invalid and no
further operations can be performed using it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

25

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 error = spssCloseRead(fH);
 ...
 /* Handle fH is now invalid */
}

See also spssOpenRead.

spssCloseWrite

int spssCloseWrite (int handle)

Description

This function closes the data file associated with handle, which must have been opened
for writing using spssOpenWrite. The file handle handle becomes invalid and no further
operations can be performed using it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten with spssCommitHeader

26

© Copyright IBM Corporation 1989, 2011

SPSS_FILE_WERROR File write error

Example

See spssSetValueNumeric.

See also spssOpenWrite.

spssCommitCaseRecord

int spssCommitCaseRecord (int handle)

Description

This function writes a case to the data file specified by the handle. It must be called
after setting the values of variables through spssSetValueNumeric and
spssSetValueChar. Any variables left unset will get the system-missing value if they are
numeric and all blanks if they are strings. Unless spssCommitCaseRecord is called, the
case will not be written out.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten with spssCommitHeader

SPSS_FILE_WERROR File write error

27

© Copyright IBM Corporation 1989, 2011

Example

See spssSetValueNumeric.

See also spssSetValueNumeric, spssSetValueChar.

spssCommitHeader

int spssCommitHeader (int handle)

Description

This function writes the data dictionary to the data file associated with handle. Before
any case data can be written, the dictionary must be committed; once the dictionary has
been committed, no further changes can be made to it.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_DICT_EMPTY No variables defined in the dictionary.

SPSS_FILE_WERROR File write error. In case of this error, the file associated
with handle is closed and handle is no longer valid.

SPSS_NO_MEMORY Insufficient memory.

28

© Copyright IBM Corporation 1989, 2011

SPSS_INTERNAL_VLABS Internal data structures of the I/O Module are in-
valid. This signals an error in the I/O Module.

Example

#include "spssdio.h"

void func()

{
 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create some variables */
 error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
 ...
 /* Label variables -- Not required but useful */
 error = spssSetVarLabel(fH, "AGE", "Age of the Employee");
 ...
 /* Done with dictionary definition; commit dictionary */
 error = spssCommitHeader(fH);
 /* Handle errors... */
 ...

}

spssConvertDate

int spssConvertDate (int day, int month, int year, double *spssDate)

Description

This function converts a Gregorian date expressed as day-month-year to the internal
date format. The time portion of the date variable is set to 0:00. To set the time portion
of the date variable to another value, use spssConvertTime and add the resulting value
to *spssDate. Dates before October 15, 1582, are considered invalid.

Parameter Description

day Day of month (1–31)

month Month (1–12)

year Year in full (94 means 94 A.D.)

spssDate Pointer to date in internal format

29

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_DATE Invalid date

Example

#include "spssdio.h"

void func()

{
 int fH; /* file handle */
 int error; /* error code */
 double vH; /* variable handle */
 double sDate; /* date */
 double sTime; /* time */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create a numeric variable and set its print format
 ** to DATETIME28.4
 */
 error = spssSetVarName(fH, "TIMESTMP", SPSS_NUMERIC);
 ...
 error =
 spssSetVarPrintFormat(fH,"TIMESTMP",SPSS_FMT_DATE_TIME,4, 28);
 ...
 /* Get variable handle for TIMESTMP */
 error = spssGetVarHandle(fH, "TIMESTMP", &vH);
 ...
 /* Set value of TIMESTMP for first case to May 9, 1948,
 ** 10:30 AM. Do this by first using spssConvertDate to get
 ** a date value equal to May 9, 1948, 0:00 and adding to it
 ** a time value for 10:30:00.
 */
 error = spssConvertDate(9, 5, 1948, &sDate);
 ...
 /* Note that the seconds value is double, not int */
 error = spssConvertTime(0L, 10, 30, 0.0, &sTime);
 ...
 /* Set the value of the date variable */
 error = spssSetValueNumeric(fH, vH, sDate+sTime);
 ...

}

See also spssConvertTime.

30

© Copyright IBM Corporation 1989, 2011

spssConvertSPSSDate

int spssConvertSPSSDate (int *day, int *month, int *year, double spssDate)

Description

This function converts the date (as distinct from time) portion of a value in internal
date format to Gregorian style.

Parameter Description

day Pointer to day of month value

month Pointer to month value

year Pointer to year value

spssDate Date in internal format

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_DATE The date value (spssDate) is negative

31

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>

#include "spssdio.h"

void func()

{
 int fH; /* file handle */
 int error; /* error code */
 int day, month, year; /* date components */
 int hour, min; /* time components */
 long jday; /* Julian day */
 double sec; /* seconds component*/
 double vH /* variable handle */
 double sDate; /* date+time */
 ...
 error = spssOpenRead("myfile.sav", &fH);
 ...
 /* Get handle for TIMESTMP, a date variable */
 error = spssGetVarHandle(fH, "TIMESTMP" &vH);
 ...
 /* Read first case and print value of TIMESTMP */
 error = spssReadCaseRecord(fH);
 ...
 error = spssGetValueNumeric(fH, vH, &sDate);
 ...
 error = spssConvertSPSSDate(&day, &month, &year, sDate);
 ...
 /* We ignore jday, day number since Oct. 14, 1582 */
 error =
 spssConvertSPSSTime(&jday, &hour, &min, &sec, sDate);
 ...
 printf("Month/Day/Year: %d/%d/%d, H:M:S: %d:%d:%g\n",
 month, day, year, hour, min, sec);
 ...

}

32

© Copyright IBM Corporation 1989, 2011

spssConvertSPSSTime

int spssConvertSPSSTime
(long *day, int *hour, int *minute, double *second, double spssTime)

Description

This function breaks a value in internal date format into a day number (since October
14, 1582) plus the hour, minute, and second values. Note that the seconds value is
stored in a double since it may have a fractional part.

Parameter Description

day Pointer to day count value (note that the value is long)

hour Pointer to hour of day

minute Pointer to minute of the hour

second Pointer to second of the minute

spssTime Date in internal format

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_TIME The date value (SpssTime) is negative

Example

See spssConvertSPSSDate.

spssConvertTime

int spssConvertTime (long day, int hour, int minute, double second, double *spssTime)

33

© Copyright IBM Corporation 1989, 2011

Description

This function converts a time given as day, hours, minutes, and seconds to the internal
format. The day value is the number of days since October 14, 1582, and is typically
zero, especially when this function is used in conjunction with spssConvertDate. Note
that the seconds value is stored in a double since it may have a fractional part.

Parameter Description

day Day (non-negative; note that the value is long)

hour Hour (0–23)

minute Minute (0–59)

second Seconds (non-negative and less than 60)

spssTime Pointer to time in internal format

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_TIME Invalid time

Example

See spssConvertDate.

See also spssSetValueNumeric.

spssCopyDocuments

int spssCopyDocuments (int fromHandle, int toHandle)

34

© Copyright IBM Corporation 1989, 2011

Description

This function copies stored documents, if any, from the file associated with fromHandle
to that associated with toHandle. The latter must be open for output. If the target file
already has documents, they are discarded. If the source file has no documents, the
target will be set to have none, too.

Parameter Description

fromHandle Handle to the file documents are to be copied from.

toHandle Handle to the file documents are to be copied to. Must be open for
output.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE At least one handle is not valid

SPSS_OPEN_RDMODE The target file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called for the
target file

spssFreeAttributes

int spssFreeAttributes(
 char** attribNames,
 char** attribText,
 const int nAttributes)

Description

This function frees the memory dynamically allocated by either spssGetFileAttributes
or spssGetVarAttributes.

Parameter Description

35

© Copyright IBM Corporation 1989, 2011

attribNames Pointer to the vector of attribute names

attribText Pointer to the vector of text values

nAttributes The number of elements in each vector

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_CANNOT_FREE Program exception attempting to free the memory

spssFreeDateVariables

int spssFreeDateVariables (long* dateInfo)

Description

This function is called to return the memory allocated by spssGetDateVariables.

Parameter Description

dateInfo Vector of date variable indexes

Returns

Always returns SPSS_OK indicating success.

See also spssGetDateVariables.

spssFreeMultRespDefs

int spssFreeMultRespDefs(char *mrespDefs)

36

© Copyright IBM Corporation 1989, 2011

Description

This function releases the memory which was acquired by spssGetMultRespDefs.

Parameter Description

mrespDefs ASCII string containing the definitions

Returns

The function always succeeds and always returns SPSS_OK.

See also spssGetMultRespDefs.

spssFreeMultRespDefStruct

int spssFreeMultRespDefStruct(
 spssMultRespDef* pSet)

Description

This function releases the memory acquired by spssGetMultRespDefByIndex. It has a
single parameter, a pointer to the allocated struct.

Returns

The function returns SPSS_OK or an error code.
Error Code Description

SPSS_OK No error

SPSS_CANNOT_FREE Cannot deallocate the memory, probably an invalid
pointer

See also “spssGetMultRespDefByIndex” on page 52

spssFreeVarCValueLabels

int spssFreeVarCValueLabels (char **values, char **labels, int numLabels)

37

© Copyright IBM Corporation 1989, 2011

Description

This function frees the two arrays and the value and label strings allocated on the heap
by spssGetVarCValueLabels.

Parameter Description

values Array of pointers to values returned by spssGetVarCValueLabels

labels Array of pointers to labels returned by spssGetVarCValueLabels

numLabels Number of values or labels returned by spssGetVarCValueLabels

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_CANNOT_FREE Unable to free because arguments are illegal or
inconsistent (for example, negative numLabels)

Example

See spssGetVarNValueLabels.

See also spssFreeVarCValueLabels.

spssFreeVariableSets

int spssFreeVariableSets (char *varSets)

Description

This function is called to return the memory allocated by spssGetVariableSets.

Parameter Description

varSets The string defining the variable sets

38

© Copyright IBM Corporation 1989, 2011

Returns

Always returns SPSS_OK indicating success.

See also spssGetVariableSets.

spssFreeVarNValueLabels

int spssFreeVarNValueLabels (double *values, char **labels, int numLabels)

Description

This function frees the two arrays and the label strings allocated on the heap by
spssGetVarNValueLabels.

Parameter Description

values Array of values returned by spssGetVarNValueLabels

labels Array of pointers to labels returned by spssGetVarNValueLabels

numLabels Number of values or labels returned by spssGetVarNValueLabels

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_CANNOT_FREE Unable to free because arguments are illegal or
inconsistent (for example, negative numLabels)

Example

See spssGetVarNValueLabels.

See also spssFreeVarCValueLabels.

39

© Copyright IBM Corporation 1989, 2011

spssFreeVarNames

int spssFreeVarNames (char **varNames, int *varTypes, int numVars)

Description

This function frees the two arrays and the name strings allocated on the heap by
spssGetVarNames.

Parameter Description

varNames Array of pointers to names returned by spssGetVarNames

varTypes Array of variable types returned by spssGetVarNames

numVars Number of variables returned by spssGetVarNames

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_CANNOT_FREE Unable to free because arguments are illegal or
inconsistent (for example, negative numVars)

Example

See spssGetVarNames.

spssGetCaseSize

int spssGetCaseSize (int handle, long *caseSize)

40

© Copyright IBM Corporation 1989, 2011

Description

This function reports the size of a raw case record for the file associated with handle.
The case size is reported in bytes and is meant to be used in conjunction with the low-
level case input/output procedures spssWholeCaseIn and spssWholeCaseOut.

Parameter Description

handle Handle to the data file

caseSize Pointer to size of case in bytes

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_DICT_NOTCOMMIT The file is open for output, and the dictionary has
not yet been written with spssCommitHeader

Example

See spssWholeCaseIn.

See also spssWholeCaseIn, spssWholeCaseOut.

spssGetCaseWeightVar

int spssGetCaseWeightVar (int handle, const char *varName)

Description

This function reports the name of the case weight variable. The name is copied to the
buffer pointed to by varName as a null-terminated string. Since a variable name can be
up to 64 bytes in length, the size of the buffer must be at least 65.

41

© Copyright IBM Corporation 1989, 2011

Parameter Description

handle Handle to the data file

varName Pointer to the buffer to hold name of the case weight variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_NO_CASEWGT A case weight variable has not been defined for this
file (warning).

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_INVALID_CASEWGT The given case weight variable is invalid. This error
signals an internal problem in the implementation
of the I/O Module and should never occur.

Example

#include <stdio.h>

#include "spssdio.h"

void func()

{
 int fH; /* file handle */
 int error; /* error code */

 char caseWeight[9]; /* case weight variable */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get and print the case weight variable of this file */
 error = spssGetCaseWeightVar(fH, caseWeight);
 if (error == SPSS_NO_CASEWGT)
 printf("The file is unweighted.\n");
 else if (error == SPSS_OK)
 printf("The case weight variable is: %s\n", caseWeight);
 else /* Handle error */
 ...

}

42

© Copyright IBM Corporation 1989, 2011

spssGetCompression

int spssGetCompression (int handle, int *compSwitch)

Description

This function reports the compression attribute of a data file.

Parameter Description

handle Handle to the data file.

compSwitch Pointer to compression attribute. Upon return, *compSwitch is 1 if
the file is compressed; 0 otherwise.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

43

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>

#include "spssdio.h"

void func()

{
 int fH; /* file handle */
 int error; /* error code */
 int compSwitch; /* compression switch */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Print whether the data file is compressed. */
 error = spssGetCompression(fH, &compSwitch);
 if (error == SPSS_OK)
 {
 printf("File is ");
 if (compSwitch)
 printf("compressed.\n");
 else
 printf("uncompressed.\n");
 }

}

spssGetDateVariables

int spssGetDateVariables (int handle, int *numofElements, long **dateInfo)

Description

This function reports the Forecasting (Trends) date variable information, if any, in IBM
SPSS Statistics data files. It places the information in a dynamically allocated long
array, sets *numofElements to the number of elements in the array, and sets *dateInfo to
point to the array. The caller is expected to free the array by calling
spssFreeDateVariables when it is no longer needed. The variable information is copied
directly from record 7, subtype 3. Its first six elements comprise the “fixed”
information, followed by a sequence of one or more three-element groups.

Parameter Description

handle Handle to the data file

numofElements Number of elements in allocated array

dateInfo Pointer to first element of the allocated array

44

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_DATEINFO There is no Trends date variable information in the
file (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_MEMORY Insufficient memory

Example

#include <stdio.h>

#include <stdlib.h>

#include "spssdio.h"

void func()

{
 int fH; /* file handle */
 int numD; /* number of elements */
 long *dateInfo; /* pointer to date variable info. */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get & print TRENDS date variables info. */
 error = spssGetDateVariables(fH, &numD, &dateInfo);
 if (error == SPSS_NO_DATEINFO)
 printf("No TRENDS information.\n");
 else if (error == SPSS_OK)
 {
 if (numD < 6 || numD%3 != 0)
 {
 /* Should never happen */
 printf("Date info format error.\n");
 free(dateInfo);
 return;
 }
 /*Print the first six elements followed by groups of three */
 ...
 /* Remember to free array */
 spssFreeDateVariables(dateInfo);
 }
 ...

}

See also spssSetDateVariables, spssFreeDateVariables.

45

© Copyright IBM Corporation 1989, 2011

spssGetDEWFirst

int spssGetDEWFirst (const int handle, void *pData, const long maxData, long *nData)

Description

The client can retrieve DEW information (file information that is private to the Data
Entry product) from a file in whatever increments are convenient. The first such
increment is retrieved by calling spssGetDEWFirst, and subsequent segments are
retrieved by calling spssGetDEWNext as many times as necessary. As with
spssGetDEWInfo, spssGetDEWFirst will return SPSS_NO_DEW if the file was written
with a byte order that is the reverse of that of the host.

Parameter Description

handle Handle to the data file

pData Returned as data from the file

maxData Maximum bytes to return

nData Returned as number of bytes returned

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_DEW File contains no DEW information (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_FILE_BADTEMP Error accessing the temporary file

See also spssGetDEWInfo, spssGetDEWNext.

spssGetDEWGUID

int spssGetDEWGUID (const int handle, char* asciiGUID)

46

© Copyright IBM Corporation 1989, 2011

Description

Data Entry for Windows maintains a GUID in character form as a uniqueness indicator.
Two files have identical dictionaries and DEW information if they have the same
GUID. Note that the spssOpenWriteCopy function will not copy the source file's
GUID. spssGetDEWGUID allows the client to read a file's GUID, if any. The client
supplies a 257 byte string in which the null-terminated GUID is returned.

Parameter Description

handle Handle to the data file

asciiGUID Returned as the file's GUID in character form or a null string if the
file contains no GUID

Returns

The GUID is returned as a null-terminated string in parameter asciiGUID. If the file
does not contain a GUID (and most do not), a null string is returned. When a null string
is returned, the function result will still be SPSS_OK.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

See also spssSetDEWGUID.

spssGetDEWInfo

int spssGetDEWInfo (const int handle, long *pLength, long *pHashTotal)

Description

This function can be called before actually retrieving DEW information (file
information that is private to the Data Entry product) from a file, to obtain some
attributes of that information—specifically its length in bytes and its hash total. The
hash total is, by convention, contained in the last four bytes to be written. Because it is
not cognizant of the structure of the DEW information, the I/O Module is unable to
correct the byte order of numeric information generated on a foreign host. As a result,

47

© Copyright IBM Corporation 1989, 2011

the DEW information is discarded if the file has a byte order that is the reverse of that
of the host, and calls to spssGetDEWInfo will return SPSS_NO_DEW.

Parameter Description

handle Handle to the data file

pLength Returned as the length in bytes

pHashTotal Returned as the hash total

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_DEW File contains no DEW information (warning)

spssGetDEWNext

int spssGetDEWNext (const int handle, void *pData, const long maxData, long *nData)

Description

The client can retrieve DEW information (file information that is private to the Data
Entry product) from a file in whatever increments are convenient. The first such
increment is retrieved by calling spssGetDEWFirst, and subsequent segments are
retrieved by calling spssGetDEWNext as many times as necessary. As with
spssGetDEWInfo, spssGetDEWFirst will return SPSS_NO_DEW if the file was written
with a byte order that is the reverse of that of the host.

Parameter Description

handle Handle to the data file

pData Returned as data from the file

maxData Maximum bytes to return

48

© Copyright IBM Corporation 1989, 2011

nData Returned as number of bytes returned

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_DEW_NOFIRST spssGetDEWFirst was never called

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_FILE_BADTEMP Error accessing the temporary file

See also spssGetDEWInfo, spssGetDEWFirst.

spssGetEstimatedNofCases

int spssGetEstimatedNofCases(const int handle, long *caseCount)

Description

Although not strictly required for direct access input, this function helps in reading
IBM SPSS Statistics data files from releases earlier than 6.0. Some of these data files
did not contain number of cases information, and spssGetNumberofCases will return
–1 cases. This function will return a precise number for uncompressed files and an
estimate (based on overall file size) for compressed files. It cannot be used on files
open for appending data.

Parameter Description

handle Handle to the data file

caseCount Returned as estimated n of cases

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

49

© Copyright IBM Corporation 1989, 2011

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE The file is open for writing, not reading

SPSS_FILE_RERROR Error reading the file

See also spssGetNumberofCases.

spssGetFileAttributes

int spssGetFileAttributes(
 const int hFile,
 char*** attribNames,
 char*** attribText,
 int* nAttributes)

Description

This function returns all the datafile attributes. It allocates the memory necessary to
hold the attribute names and values. For subscripted attributes, the names include the
unit origin subscripts enclosed in square brackets, for example Prerequisite[11]. The
acquired memory must be released by calling spssFreeAttributes.

Parameter Description

hFile handle to the data file

attribNames Returned as a pointer to a vector of attribute names

attribText Returned as a pointer to a vector of attribute values

nAttributes Returned as the number of element in each vector

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

50

© Copyright IBM Corporation 1989, 2011

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_MEMORY Insufficient memory for the vectors

spssGetFileCodePage

int spssGetFileEncoding(
 const int hFile,
 int* nCodePage)

Description

This function provides the Windows code page number of the encoding applicable to
a file. For instance, the Windows code page for ISO-8859-1 is 28591. Note that the
Windows code page for UTF-8 is 65001.

Parameter Description

hFile Handle to the file

nCodePage Returned as the code page of the file

Returns

The function returns SPSS_OK or an error value:
Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is invalid

SPSS_INCOMPATIBLE_DICT There is no Windows code page equivalent for the
file’s encoding

spssGetFileEncoding

int spssGetFileEncoding(
 const int hFile,
 char* pszEncoding)

51

© Copyright IBM Corporation 1989, 2011

Description

This function obtains the encoding applicable to a file. The encoding is returned as an
IANA encoding name, such as ISO-8859-1. The maximum length of the returned
string is SPSS_MAX_ENCODING plus a null terminator.

Parameter Description

hFile Handle to the file

pszEncoding Returned as the encoding of the file

Returns

The function returns SPSS_OK or an error value:
Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is invalid

spssGetIdString

int spssGetIdString (int handle, char *id)

Description

This function copies the file label of the IBM SPSS Statistics data file associated with
handle into the buffer pointed to by id. The label is at most 64 characters long and null-
terminated. Thus, the size of the buffer should be at least 65. If an input data file is
associated with the handle, the label will be exactly 64 characters long, padded with
blanks as necessary.

Parameter Description

handle Handle to the data file

id File label buffer

52

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 char id[65]; /* file label */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 error = spssGetIdString(fH, id);
 if (error == SPSS_OK)
 printf("File label: %s\n", id);
 ...
}

spssGetInterfaceEncoding

int spssGetInterfaceEncoding()

Description

This function returns the current interface encoding.

Returns

The function returns SPSS_ENCODING_CODEPAGE or SPSS_ENCODING_UTF8.

spssGetMultRespCount

int spssGetMultRespCount(
 const int hFile,
 int* nSets)

53

© Copyright IBM Corporation 1989, 2011

Description

This function obtains a count of the number of multiple response sets stored in the
dictionary.

Parameter Description

hFile Handle to the data file

nSets Returned as the number of sets

Returns

The function returns SPSS_OK or an error value:
Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is invalid

SPSS_OPEN_WRMODE The file is not open for input

spssGetMultRespDefByIndex

int spssGetMultRespDefByIndex(
 const int hFile,
 const int iSet,
 spssMultRespDef** ppSet)

Description

This function obtains a description of a single multiple response set. The set is
specified via a zero origin index, and the description is returned in a struct for which
the memory is allocated by the function.

Parameter Description

hFile Handle to the data set

iSet Zero origin index of the set

ppSet Returned as a pointer to the set's description

For information on the set description struct, see “spssAddMultRespDefExt” on
page 17. The memory for the struct must be freed by calling
spssFreeMultRespDefStruct.

54

© Copyright IBM Corporation 1989, 2011

Returns

The function returns SPSS_OK or an error code.
Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is invalid

SPSS_OPEN_WRMODE The file is not open for input

SPSS_INVALID_MRSETINDEX The index is out of range

SPSS_NO_MEMORY Insufficient memory to allocate the struct

spssGetMultRespDefs

int spssGetMultRespDefs (const int handle, char **mrespDefs)

Parameter Description

handle Handle to the data file

mrespDefs Returned as a pointer to a string

Description

This function retrieves the multiple response set definitions from IBM SPSS Statistics
data files. The definitions are stored as a null-terminated code page or UTF-8 string
based on whether the spssGetInterfaceEncoding() type is
SPSS_ENCODING_CODEPAGE or SPSS_ENCODING_UTF8. The memory allocated
by this function to contain the string must be freed by calling spssFreeMultRespDefs.
If the file contains no multiple response definitions, *mrespDefs is set to NULL, and the
function returns the warning code SPSS_NO_MULTRESP.

For multiple category sets the string contains the following:
$setname=C {label length} {label} {variable list}

For multiple dichotomy sets, the string contains the following:
$setname=D{value length} {counted value} {label length} {label} {variable list}

All multiple multiple category and multiple dichotomy sets in the data file are
returned as single string, with a newline character (\n) between each set.

55

© Copyright IBM Corporation 1989, 2011

All multiple response set names begin with a dollar sign and follow variable
naming rules.
For mulitple dichotomy sets, there is no space between the “D” and the integer that
represents the length of the counted value.
If there is no label for the set, the label length is 0, and there is a single blank space
for the label. (So there are two blank spaces between the label length value of 0 and
the first variable name.)

For example:
$mcset=C 21 Multiple Category Set mcvar1 mcvar2 mcvar3 mcvar4 \n
$mdset1=D1 1 22 Multiple Dichotomy Set mdvar1 mdvar2 mdvar3 mdvar4 \n
$mdset2=D3 Yes 0 mdvar5 mdvar6 mdvar7

Note: For multiple dichotomy sets that use counted values as category labels
(CATEGORYLABELS=COUNTEDVALUES in SPSS Statistics command syntax) or the
variable label of the first set variable as the set label (LABELSOURCE=VARLABEL in
SPSS Statistics command syntax), use the method spssGetMultRespDefsEx.

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_MULTRESP No definitions on the file (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_MEMORY Insufficient memory to contain the string

See also spssFreeMultRespDefs, spssGetMultRespDefsEx.

spssGetMultRespDefsEx

int spssGetMultRespDefsEx (const int handle, char **mrespDefs)

Parameter Description

handle Handle to the data file

56

© Copyright IBM Corporation 1989, 2011

mrespDefs Returned as a pointer to a string

Description

This function retrieves the multiple response set definitions for from IBM SPSS
Statistics data files for “extended” multiple dichotomy sets. The definitions are stored
as a null-terminated code page or UTF-8 string based on whether the
spssGetInterfaceEncoding() type is SPSS_ENCODING_CODEPAGE or
SPSS_ENCODING_UTF8. The memory allocated by this function to contain the string
must be freed by calling spssFreeMultRespDefs. If the file contains no multiple
response definitions, *mrespDefs is set to NULL, and the function returns the warning
code SPSS_NO_MULTRESP.

An “extended” multiple dichotomy is a set that uses counted values as category
labels (CATEGORYLABELS=COUNTEDVALUES in SPSS Statistics command syntax)
or the variable label of the first set variable as the set label
(LABELSOURCE=VARLABEL in SPSS Statistics command syntax).

The string contains the following:
$setname=E {flag1}[flag2] {value length} {counted value} {label length} {label} {variable list}

All extended dichotomy sets in the data file are returned as single string, with a
newline character (\n) between each set.
All multiple response set names begin with a dollar sign and follow variable
naming rules.
flag1 always has a value of 1 and indicates that counted values are used as category
labels.
flag2 has a value of 1 if the variable label of the first variable in the set is used as
the label; otherwise flag2 is not included. There is no space between flag1 and
flag2.
If there is no label for the set, the label length is 0. The label length is always 0 if
flag2 is present (and set to 1). If the label length is 0, there is a single blank space
for the label. (So there are two blank spaces between the label length value of 0 and
the first variable name.)

For example:
$meset=E 11 1 1 0 mevar1 mevar2 mevar3 \n
$meset=E 1 3 Yes 38 Enhanced set with user specified label mevar4 mevar5 mevar6

57

© Copyright IBM Corporation 1989, 2011

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_MULTRESP No definitions on the file (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_MEMORY Insufficient memory to contain the string

See also spssFreeMultRespDefs, spssGetMultRespDef.

spssGetNumberofCases

int spssGetNumberofCases (int handle, long *numofCases)

Description

This function reports the number of cases present in a data file open for reading.

Parameter Description

handle Handle to the data file

numofCases Pointer to number of cases

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

58

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 long count; /* Number of cases */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get & print the number of cases present in the file. */
 error = spssGetNumberofCases(fH, &count);
 if (error == SPSS_OK)
 printf("Number of cases: %ld\n");
 ...
}

spssGetNumberofVariables

int spssGetNumberofVariables (int handle, long *numVars)

Description

This function reports the number of variables present in a data file.

Parameter Description

handle Handle to the data file

numVars Pointer to number of variables

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_DICT_NOTCOMMIT Dictionary has not been committed

SPSS_INVALID_FILE Data file contains no variables

59

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 long count; /* Number of variables*/
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get & print the number of variables present in the file. */
 error = spssGetNumberofVariables(fH, &count);
 if (error == SPSS_OK)
 printf("Number of variables: %ld\n");
 ...
}

spssGetReleaseInfo

int spssGetReleaseInfo (int handle, int relinfo[])

Description

This function reports release- and machine-specific information about the file
associated with handle. The information consists of an array of eight int values copied
from record type 7, subtype 3 of the file, and is useful primarily for debugging. The
array elements are, in order, release number (index 0), release subnumber (1), special
release identifier number (2), machine code (3), floating-point representation code (4),
compression scheme code (5), big/little-endian code (6), and character representation
code (7).

Parameter Description

handle Handle to the data file.

relinfo Array of int in which release- and machine-specific data will be
stored. This array must have at least eight elements.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values (with one exception noted below).

60

© Copyright IBM Corporation 1989, 2011

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_NO_TYPE73 There is no type 7, subtype 3 record present. This
code should be regarded as a warning even though
it is positive. Files without this record are valid.

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int relInfo[8]; /* release info */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get & print release and machine-specific info. */
 error = spssGetReleaseInfo(fH, relInfo);
 if (error == SPSS_OK)
 {
 printf("Release & machine information:\n");
 int i;
 for (i = 0; i < 8; ++i)
 printf(" Element %d: %d\n", i, relInfo[i]);
 }
 ...
}

spssGetSystemString

int spssGetSystemString (int handle, char *sysName)

Description

This function returns the name of the system under which the file was created. It is a
40-byte blank-padded character field corresponding to the last 40 bytes of record type
1. Thus, in order to accommodate the information, the parameter sysName must be at
least 41 bytes in length plus the terminating null character.

Parameter Description

handle Handle to the data file

61

© Copyright IBM Corporation 1989, 2011

sysName The originating system name

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 char sysName[41]; /* orignating system */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 error = spssGetIdString(fH, sysName);
 if (error == SPSS_OK)
 printf("Originating System: %s\n", sysName);
 ...
}

spssGetTextInfo

int spssGetTextInfo (int handle, char *textInfo)

Description

This function places the text data created by TextSmart as a null-terminated string in
the user-supplied buffer textInfo. The buffer is assumed to be at least 256 characters
long; the text data may be up to 255 characters long. If text data are not present in the
file, the first character in textInfo is set to NULL.

Parameter Description

handle Handle to the data file

62

© Copyright IBM Corporation 1989, 2011

textInfo Buffer for text data

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

spssGetTimeStamp

int spssGetTimeStamp (int handle, char *fileDate, char *fileTime)

Description

This function returns the creation date of the file as recorded in the file itself. The
creation date is a null-terminated 9-byte character field in dd mmm yy format (27 Feb
96), and the receiving field must be at least 10 bytes in length. The creation time is a
null-terminated 8-byte character field in hh:mm:ss format (13:12:15), and the receiving
field must be at least 9 bytes in length.

Parameter Description

handle Handle to the data file

fileDate File creation date

fileTime File creation time

63

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

spssGetValueChar

int spssGetValueChar (int handle, double varHandle, char *value, int valueSize)

Description

This function gets the value of a string variable for the current case, which is the case
read by the most recent call to spssReadCaseRecord. The value is returned as a null-
terminated string in the caller-provided buffer value; the length of the string is the
length of the string variable. The argument valueSize is the allocated size of the buffer
value, which must be at least the length of the variable plus 1.

Parameter Description

handle Handle to the data file

varHandle Handle of the variable

value Buffer for the value of the string variable

valueSize Size of value

64

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_WRMODE File is open for writing, not reading.

SPSS_INVALID_CASE Current case is not valid. This may be because no
spssReadCaseRecord calls have been made yet or
because the most recent call failed with error or en-
countered the end of file.

SPSS_STR_EXP Variable associated with the handle is numeric.

SPSS_BUFFER_SHORT Buffer value is too short to hold the value.

65

© Copyright IBM Corporation 1989, 2011

Example
#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int numV; /* number of variables */
 int *typesV; /* variable types */
 char **namesV; /* variable names */
 double handlesV[100]; /* assume no more than 100 variables */
 char cValue[256]; /* long enough for any string variable */
 long nCases; /* number of cases */
 long casesPrint; /* number of cases to print */
 long case; /* case index */
 double nValue; /* numeric value */
 int i; /* variable index */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get variable names and types */
 error = spssGetVarNames(fH, &numV, &namesV, &typesV);
 ...
 if (numV > 100)
 {
 printf("Too many variables; increase program capacity.\n");
 spssFreeVarNames(namesV, typesV, numV);
 return;
 }
 /* Get & store variable handles */
 for (i = 0; i < numV; ++i)
 {
 error = spssGetVarHandle(fH, namesV[i], &handlesV[i]);
 if (error != SPSS_OK) ...
 }
 /* Get the number of cases */
 error = spssGetNumberofCases(fH, &nCases);
 ...
 /* Print at most the first ten cases */
 casesPrint = (nCases < 10) ? nCases : 10;
 for (case = 1; case <= casesPrint; ++case)
 {
 error = spssReadCaseRecord(fH);
 ...
 printf("Case %ld\n", case);
 for (i = 0; i < numV; ++I)
 {
 if (typesV[i] == 0)
 {
 /* Numeric */
 error = spssGetValueNumeric(fH, handlesV[i], &nValue);
 if (error == SPSS_OK)
 printf(" %ld\n", nValue);
 else ...
 }
 else
 {
 /* String */
 error = spssGetValueChar(fH, handlesV[i], cValue, 256);
 if (error == SPSS_OK)
 printf(" %s\n", cValue);
 else ...
 }
 }
 }

66

© Copyright IBM Corporation 1989, 2011

 /* Free the variable names & types */
 spssFreeVarNames(namesV, typesV, numV);
}

spssGetValueNumeric

int spssGetValueNumeric (int handle, double varHandle, double *value)

Description

This function gets the value of a numeric variable for the current case, which is the case
read by the most recent call to spssReadCaseRecord.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Pointer to the value of the numeric variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_WRMODE File is open for writing, not reading.

SPSS_INVALID_CASE Current case is not valid. This may be because no
spssReadCaseRecord calls have been made yet or
because the most recent call failed with error or en-
countered the end of file.

SPSS_NUME_EXP Variable associated with the handle is not numeric.

Example

See spssGetValueChar.

67

© Copyright IBM Corporation 1989, 2011

spssGetVarAttributes

int spssGetVarAttributes(
 const int hFile,
 const char* varName,
 char*** attribNames,
 char*** attribText,
 int* nAttributes)

Description

This function is analogous to spssGetFileAttributes. It returns all the attributes for a
single variable.

Parameter Description

hFile Handle to the data file

varName The name of the variable

attribNames Returned as a pointer to a vector of attribute names

attribText Returned as a pointer to a vector of attribute values

nAttributes Returned as the number of element in each vector

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_VAR_NOTFOUND Named variable is not in the file

SPSS_NO_MEMORY Insufficient memory for the vectors

spssGetVarAlignment

int spssGetVarAlignment (int handle, const char *varName, int *alignment)

68

© Copyright IBM Corporation 1989, 2011

Description

This function reports the value of the alignment attribute of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

alignment Pointer to alignment. Set to SPSS_ALIGN_LEFT,
SPSS_ALIGN_RIGHT, or SPSS_ALIGN_CENTER.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarCMissingValues

int spssGetVarCMissingValues
(int handle, const char *varName, int *missingFormat,
char *missingVal1, char *missingVal2, char *missingVal3)

Description

This function reports the missing values of a short string variable. The value of
*missingFormat will be in the range 0–3, indicating the number of missing values. The
appropriate number of missing values is copied to the buffers missingVal1,
missingVal2, and missingVal3. The lengths of the null-terminated missing value strings
will be the length of the short string variable in question. Since the latter can be at most
8 characters long, 9-character buffers are adequate for any short string variable.

69

© Copyright IBM Corporation 1989, 2011

Parameter Description

handle Handle to the data file

varName Variable name

missingFormat Pointer to missing value format code

missingVal1 Buffer for first missing value

missingVal2 Buffer for second missing value

missingVal3 Buffer for third missing value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

70

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int type; /* missing format type */
 int numV; /* number of variables */
 int *typesV; /* variable types */
 char **namesV; /* variable names */
 char cMiss1[9]; /* first missing value */
 char cMiss2[9]; /* second missing value*/
 char cMiss3[9]; /* third missing value */

 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Print missing value information for all short string ** variables
*/
 error = spssGetVarNames(fH, &numV, &namesV, &typesV);
 if (error == SPSS_OK)
 {
 int i;
 for (i = 0; i < numV; ++i)
 {
 if (0 < typesV[i] && typesV[i] <= 8)
 {
 /* Short string variable */
 error = spssGetVarCMissingValues
 (fH, namesV[i], &type, cMiss1, cMiss2, cMiss3);
 if (error != SPSS_OK) continue; /* Ignore error */
 printf("Variable %s, missing values: ", namesV[i]);
 switch (type)
 {
 case 0:
 printf("None\n");
 break;
 case 1:
 printf("%s\n", cMiss1);
 break;
 case 2:
 printf("%s, %s\n", cMiss1, cMiss2);
 break;
 case 3:
 printf("%s, %s, %s\n", cMiss1, cMiss2, cMiss3);
 break;
 default: /* Should never come here */
 printf("Invalid format code\n");
 break;
 }
 }
 }
 spssFreeVarNames(namesV, typesV, numV);
 }
}

See also spssGetVarNMissingValues.

71

© Copyright IBM Corporation 1989, 2011

spssGetVarColumnWidth

int spssGetVarColumnWidth (int handle, const char *varName, int *columnWidth)

Description

This function reports the value of the column width attribute of a variable. A value of
zero is special and means that the IBM SPSS Statistics Data Editor, which is the
primary user of this attribute, will set an appropriate width using its own algorithm.

Parameter Description

handle Handle to the data file.

varName Variable name.

columnWidth Pointer to column width. Non-negative.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarCompatName

int spssGetVarCompatName (const int handle, const char* longName, char* shortName)

Description

When writing IBM SPSS Statistics data files, the I/O Module creates variable names
which are compatible with legacy releases. These names are no more than 8 bytes in
length, are all upper case, and are unique within the file. spssGetVarCompatName

72

© Copyright IBM Corporation 1989, 2011

allows access to these "mangled" name for input files and for output files after
spssCommitHeader has been called.

Parameter Description

handle Handle to the data file

longName The variable's extended name as a null-terminated string

shortName A 9 byte character variable to receive the mangled name as a null-
terminate string

Returns
Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_DICT_NOTCOMMIT spssCommitHeader has not been called for an out-
put file

SPSS_VAR_NOTFOUND Variable longName does not exist

spssGetVarCValueLabel

int spssGetVarCValueLabel
(int handle, const char *varName, const char *value, char *label)

Description

This function gets the value label for a given value of a short string variable. The label
is copied as a null-terminated string into the buffer label, whose size must be at least 61
to hold the longest possible value label (60 characters plus the null terminator). To get
value labels more than 60 characters long, use the spssGetVarCValueLabelLong
function.

Parameter Description

handle Handle to the data file

varName Variable name

value Short string value for which the label is wanted

73

© Copyright IBM Corporation 1989, 2011

label Label for the value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_NO_LABEL There is no label for the given value (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

SPSS_EXC_STRVALUE The value is longer than the length of the variable

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 char vLab[61]; /* label for the value */
 ...
 error = spssOpenRead("myfile.sav", &fH);
 ...
 /* Get and print the label for value "IL" of variable STATE */
 error = spssGetVarCValueLabel(fH, "STATE", "IL", vLab);
 if (error == SPSS_OK)
 printf("Value label for variable STATE, value \"IL\": %s\n", vLab);
 ...
}

74

© Copyright IBM Corporation 1989, 2011

spssGetVarCValueLabelLong

int spssGetVarCValueLabelLong
(int handle, const char *varName, const char *value, char *labelBuff,
int lenBuff, int *lenLabel)

Description

This function returns a null-terminated value label corresponding to one value of a
specified variable whose values are short strings. The function permits the client to
limit the number of bytes (including the null terminator) stored and returns the number
of data bytes (excluding the null terminator) actually stored. If an error is detected, the
label is returned as a null string, and the length is returned as 0.

Parameter Description

handle Handle to the data file

varname Null-terminated variable name

value Null-terminated value for which label is requested

labelBuff Returned as null-terminated label

lenBuff Overall size of labelBuff in bytes

lenLabel Returned as bytes stored excluding terminator

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_NO_LABEL The given value has no label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

75

© Copyright IBM Corporation 1989, 2011

SPSS_STR_EXP The specified variable has numeric values

SPSS_SHORTSTR_EXP The specified variable has long string values

SPSS_EXC_STRVALUE The specified value is longer than the variable’s
data

spssGetVarCValueLabels

int spssGetVarCValueLabels
(int handle, const char *varName, char ***values, char ***labels, int *numLabels)

Description

This function gets the set of labeled values and associated labels for a short string
variable. The number of values is returned as *numLabels. Values are stored into an
array of *numLabels pointers, each pointing to a char string containing a null-
terminated value, and *values is set to point to the first element of the array. Each value
string is as long as the variable. The corresponding labels are structured as an array of
*numLabels pointers, each pointing to a char string containing a null-terminated label,
and *labels is set to point to the first element of the array.

The two arrays and the value and label strings are allocated on the heap. When they
are no longer needed, spssFreeVarCValueLabels should be called to free the memory.

Parameter Description

handle Handle to the data file

varName Variable name

values Pointer to array of pointers to values

labels Pointer to array of pointers to labels

numLabels Pointer to number of values or labels

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

76

© Copyright IBM Corporation 1989, 2011

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

SPSS_NO_MEMORY Insufficient memory

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int numL; /* number of values or labels */
 char **cValuesL; /* values */
 char **labelsL; /* labels */
 ...
 error = spssOpenRead("myfile.sav", &fH);
 ...
 /* Get and print value labels for short string variable STATE */
 error = spssGetVarCValueLabels(fH, "STATE",
 &cValuesL, &labelsL, &numL);
 if (error == SPSS_OK)
 {
 int i;
 printf("Value labels for STATE\n");
 for (i = 0; i < numL; ++i)
 {
 printf("Value: %s, Label: %s\n", cValuesL[i], labelsL[i]);
 }
 /* Free the values & labels */
 spssFreeVarCValueLabels(cValuesL, labelsL, numL);
 }
}

See also spssFreeVarCValueLabels.

spssGetVarHandle

int spssGetVarHandle (int handle, const char *varName, double *varHandle)

77

© Copyright IBM Corporation 1989, 2011

Description

This function returns a handle for a variable, which can then be used to read or write
(depending on how the file was opened) values of the variable. If handle is associated
with an output file, the dictionary must be written with spssCommitHeader before
variable handles can be obtained via spssGetVarHandle.

Parameter Description

handle Handle to the data file.

varName Variable name.

varHandle Pointer to handle for the variable. Note that the variable handle is
a double, and not int or long.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten with spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NO_MEMORY No memory available

Example

See spssGetValueChar.

spssGetVariableSets

int spssGetVariableSets (int handle, char **varSets)

78

© Copyright IBM Corporation 1989, 2011

Description

This function reports the variable sets information in the data file. Variable sets
information is stored in a null-terminated string and a pointer to the string is returned
in *varSets. Since the variable sets string is allocated on the heap, the caller should free
it by calling spssFreeVariableSets when it is no longer needed.

Parameter Description

handle Handle to the data file

varSets Pointer to pointer to variable sets string

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_VARSETS There is no variable sets information in the file
(warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_NO_MEMORY Insufficient memory

79

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>
#include <stdlib.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 char *vSets; /* ptr to variable sets info.*/
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get & print variable sets information. */
 error = spssGetVariableSets(fH, &vSets);
 if (error == SPSS_NO_VARSETS)
 {
 printf("No variable sets information in file.\n");
 }
 else if (error == SPSS_OK)
 {
 /* In real life, we would format the variable sets
 ** information better
 */
 printf("Variable sets:\n%s", vSets);
 /* Remember to free variable set string */
 spssFreeVariableSets(vSets);
 }
 ...
}

See also spssFreeVariableSets.

spssGetVarInfo

int spssGetVarInfo (int handle, int iVar, char *varName, int *varType)

Description

This function gets the name and type of one of the variables present in a data file. It
serves the same purpose as spssGetVarNames but returns the information one variable
at a time and, therefore, can be passed to a Visual Basic program. The storage to receive
the variable name must be at least 65 bytes in length because the name is returned as a
null-terminated string. The type code is an integer in the range 0–32767, 0 indicating
a numeric variable and a positive value indicating a string variable of that size.

Parameter Description

handle Handle to the data file

80

© Copyright IBM Corporation 1989, 2011

iVar Zero-origin variable number

varName Returned as the variable name

varType Returned as the variable type

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_FILE The data file contains no variables

SPSS_NO_MEMORY Insufficient memory

SPSS_VAR_NOTFOUND Parameter iVar is invalid

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 long count; /* number of variables */
 int *typeV; /* variable type */
 char *nameV; /* variable name */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get number of variables */
 error = spssGetNumberofVariables(fH, &count);
 if (error == SPSS_OK)
 /* Get & print variable names and types */
 {
 int i;
 for (i = 0; i < count; ++i)
 {error = spssGetVarInfo(fH, i, nameV, typeV);
 if (error == SPSS_OK)
 printf("Variable name: %s, type: %d\n", nameV, typeV);
 }
 }
}

81

© Copyright IBM Corporation 1989, 2011

spssGetVarLabel

int spssGetVarLabel (int handle, const char *varName, char *varLabel)

Description

This function copies the label of variable varName into the buffer pointed to by
varLabel. Since the variable label is at most 120 characters long and null-terminated,
the size of the buffer should be at least 121. To get labels more than 120 characters
long, use the spssGetVarLabelLong function.

Parameter Description

handle Handle to the data file

varName Variable name

varLabel Variable label buffer

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABEL The variable does not have a label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

82

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 char vLabel[121]; /* variable label */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get and print the label of the variable AGE */
 error = spssGetVarLabel(fH, "AGE", vLabel);
 if (error == SPSS_OK)
 printf("Variable label of AGE: %s\n", vLabel);
 ...
}

spssGetVarLabelLong

int spssGetVarLabelLong (int handle, const char *varName, char *labelBuff,
int lenBuff, int *lenLabel)

Description

This function returns the null-terminated label associated with the specified variable
but restricts the number of bytes (including the null terminator) returned to lenBuff
bytes. This length can be conveniently specified as sizeof(labelBuff). The function also
returns the number of data bytes (this time excluding the null terminator) stored. If an
error is detected, the label is returned as a null string, and the length is returned as 0.

Parameter Description

handle Handle to the data file

varName Null-terminated variable name

labelBuff Buffer to receive the null-terminated label

lenBuff Overall size of labelBuff in bytes

lenLabel Returned as bytes stored excluding terminator

83

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABEL The variable does not have a label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarMeasureLevel

int spssGetVarMeasureLevel (int handle, const char *varName, int *measureLevel)

Description

This function reports the value of the measurement level attribute of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

measureLevel Pointer to measurement level. Set to SPSS_MLVL_NOM,
SPSS_MLVL_ORD, or SPSS_MLVL_RAT, for nominal, ordinal,
and scale (ratio), respectively.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

84

© Copyright IBM Corporation 1989, 2011

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarNMissingValues

int spssGetVarNMissingValues
(int handle, const char *varName, int *missingFormat,
double *missingVal1, double *missingVal2, double *missingVal3)

Description

This function reports the missing values of a numeric variable. The value of
*missingFormat determines the interpretation of *missingVal1 , *missingVal2, and
*missingVal3. If *missingFormat is SPSS_MISS_RANGE, *missingVal1 and *missingVal2
represent the upper and lower limits, respectively, of the range, and *missingVal3 is not
used. If *missingFormat is SPSS_MISS_RANGEANDVAL, *missingval1 and *missingVal2
represent the range and *missingVal3 is the discrete missing value. If *missingFormat is
neither of the above, it will be in the range 0–3, indicating the number of discrete missing
values present. (The macros SPSS_NO_MISSVAL, SPSS_ONE_MISSVAL,
SPSS_TWO_MISSVAL, and SPSS_THREE_MISSVAL may be used as synonyms for 0–3.)

Parameter Description

handle Handle to the data file

varName Variable name

missingFormat Pointer to missing value format code

missingVal1 Pointer to first missing value

missingVal2 Pointer to second missing value

missingVal3 Pointer to third missing value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

85

© Copyright IBM Corporation 1989, 2011

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

86

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{
 int fH; /* file handle */
 int error; /* error code */
 int type; /* missing format type */
 int numV; /* number of variables */
 int *typesV; /* variable types */
 char **namesV; /* variable names */
 double nMiss1; /* first missing value */
 double nMiss2; /* second missing value*/
 double nMiss3; /* third missing value */

 ...

 error = spssOpenRead("bank.sav", &fH);
 ...
 /*Print missing value information for all numeric variables */
 error = spssGetVarNames(fH, &numV, &namesV, &typesV);
 if (error == SPSS_OK)
 {
 int i;
 for (i = 0; i < numV; ++i)
 {
 if (typesV[i] == 0)
 {
 /* Numeric variable */
 error = spssGetVarNMissingValues
 (fH, namesV[i], &type, &nMiss1, &nMiss2, &nMiss3);
 if (error != SPSS_OK) continue; /* Ignore error */
 printf("Variable %s, missing values: ", namesV[i]);
 switch (type)
 {
 case SPSS_MISS_RANGE:
 printf("%e through %e\n", nMiss1, nMiss2);
 break;
 case SPSS_MISS_RANGEANDVAL:
 printf("%e through %e, %e\n", nMiss1, nMiss2, nMiss3);
 break;
 case 0:
 printf("None\n");
 break;
 case 1:
 printf("%e\n", nMiss1);
 break;
 case 2:
 printf("%e, %e\n", nMiss1, nMiss2);
 break;
 case 3:
 printf("%e, %e, %e\n", nMiss1, nMiss2, nMiss3);
 break;
 default: /* Should never come here */
 printf("Invalid format code\n");
 break;
 }
 }
 }
 spssFreeVarNames(namesV, typesV, numV);
 }
}

87

© Copyright IBM Corporation 1989, 2011

See also spssGetVarCMissingValues.

spssGetVarNValueLabel

int spssGetVarNValueLabel
(int handle, const char *varName, double value, char *label)

Description

This function gets the value label for a given value of a numeric variable. The label is
copied as a null-terminated string into the buffer label, whose size must be at least 61
to hold the longest possible value label (60 characters) plus the terminator. To get value
labels more than 60 characters long, use the spssGetVarNValueLabelLong function.

Parameter Description

handle Handle to the data file

varName Variable name

value Numeric value for which the label is wanted

label Label for the value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_NO_LABEL There is no label for the given value (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

88

© Copyright IBM Corporation 1989, 2011

Example
#include "spssdio.h"

void func()
{

 int fH; /* file handle */
 int error; /* error code */
 char vLab[61]; /* label for the value */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get and print the label for value 0.0 of variable SEX */
 error = spssGetVarNValueLabel(fH, "SEX", 0.0, vLab);
 if (error == SPSS_OK)
 printf("Value label for variable SEX, value 0.0: %s\n", vLab);
 ...
}

spssGetVarNValueLabelLong

int spssGetVarNValueLabelLong
(int handle, const char *varName, double value, char *labelBuff, int lenBuff, int *lenLabel)

Description

This function returns a null-terminated value label corresponding to one value of a
specified numeric variable. It permits the client to limit the number of bytes (including
the null terminator) stored and returns the number of data bytes (excluding the null
terminator) actually stored. If an error is detected, the label is returned as a null string,
and the length is returned as 0.

Parameter Description

handle Handle to the data file

varName Null-terminated variable name

value Value for which label is requested

labelBuff Returned as null-terminated label

lenBuff Overall size of labelBuff in bytes

lenLabel Returned as bytes stored excluding terminator

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

89

© Copyright IBM Corporation 1989, 2011

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_NO_LABEL The given value has no label (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The specified variable has string values

spssGetVarNValueLabels

int spssGetVarNValueLabels
(int handle, const char *varName, double **values, char ***labels, int *numLabels)

Description

This function gets the set of labeled values and associated labels for a numeric variable.
The number of values is returned as *numLabels. Values are stored into an array of
*numLabels double elements, and *values is set to point to the first element of the array.
The corresponding labels are structured as an array of *numLabels pointers, each
pointing to a char string containing a null-terminated label, and *labels is set to point to
the first element of the array.

The two arrays and the label strings are allocated on the heap. When they are no
longer needed, spssFreeVarNValueLabels should be called to free the memory.

Parameter Description

handle Handle to the data file

varName Variable name

values Pointer to array of double values

labels Pointer to array of pointers to labels

numLabels Pointer to number of values or labels

90

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_NO_LABELS The variable has no labels (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

SPSS_NO_MEMORY Insufficient memory

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int numL; /* number of values or labels */
 double *nValuesL; /* values */
 char **labelsL; /* labels */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get and print value labels for numeric variable SEX */
 error = spssGetVarNValueLabels(fH, "SEX",
 &nValuesL, &labelsL, &numL);
 if (error == SPSS_OK)
 {
 int i;
 printf("Value labels for SEX\n");
 for (i = 0; i < numL; ++i)
 {
 printf("Value: %g, Label: %s\n", valuesL[i], labelsL[i]);
 }
 /* Free the values & labels */
 spssFreeVarNValueLabels(nValuesL, labelsL, numL);
 }
}

See also spssFreeVarNValueLabels.

91

© Copyright IBM Corporation 1989, 2011

spssGetVarNames

int spssGetVarNames (int handle, int *numVars, char ***varNames, int **varTypes)

Description

This function gets the names and types of all the variables present in a data file. The
number of variables is returned as *numVars. Variable names are structured as an array
of *numVars pointers, each pointing to a char string containing a variable name, and
*varNames is set to point to the first element of the array. Variable types are stored into
a corresponding array of *numVars in elements, and *varTypes is set to point to the first
element of the array. The type code is an integer in the range 0–32767, 0 indicating a
numeric variable and a positive value indicating a string variable of that size.

The two arrays and the variable name strings are allocated on the heap. When they
are no longer needed, spssFreeVarNames should be called to free the memory.

Parameter Description

handle Handle to the data file

numVars Pointer to number of variables

varNames Pointer to array of pointers to variable names

varTypes Pointer to array of variable types

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_FILE The data file contains no variables

SPSS_NO_MEMORY Insufficient memory

92

© Copyright IBM Corporation 1989, 2011

Example
#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int numV; /* number of variables */
 int *typesV; /* variable types */
 char **namesV; /* variable names */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get & print variable names and types */
 error = spssGetVarNames(fH, &numV, &namesV, &typesV);
 if (error == SPSS_OK)
 {
 int i;
 for (i = 0; i < numV; ++i)
 {
 printf("Variable name: %s, type: %d\n", namesV[i], typesV[i]);
 }
 /* Free the variable names & types */
 spssFreeVarNames(namesV, typesV, numV);
 }
}

See also spssFreeVarNames.

spssGetVarPrintFormat

int spssGetVarPrintFormat
(int handle, const char *varName, int *printType, int *printDec, int *printWid)

Description

This function reports the print format of a variable. Format type, number of decimal
places, and field width are returned as *printType, *printDec, and *printWid, respectively.

Parameter Description

handle Handle to the data file

varName Variable name

printType Pointer to print format type code (file spssdio.h defines macros of
the form SPSS_FMT_... for all valid format type codes)

printDec Pointer to number of digits after the decimal

printWid Pointer to print format width

93

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int type; /* print format type */
 int dec; /* digits after decimal */
 int wid; /* print format width */

 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get & print the print format of variable AGE */
 error = spssGetVarPrintFormat(fH, "AGE", &type, &dec, &wid);
 if (error == SPSS_OK)
 {
 printf("Variable AGE, format code %d, width.dec %d.%d\n",
 type, wid, dec);
 }
}

spssGetVarRole

int spssGetVarRole
(const int hFile, const char *varName, int *varRole)

Description

This function reports the role of a variable. The role is returned as *varRole.

Parameter Description

94

© Copyright IBM Corporation 1989, 2011

hFile Handle to the data file

varName Variable name

varRole Pointer to variable role. Set to SPSS_ROLE_INPUT,
SPSS_ROLE_TARGET, SPSS_ROLE_BOTH,
SPSS_ROLE_NONE, SPSS_ROLE_PARTITION, or
 SPSS_ROLE_SPLIT.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssGetVarWriteFormat

int spssGetVarWriteFormat
(int handle, const char *varName, int *writeType, int *writeDec, int *writeWid)

Description

This function reports the write format of a variable. Format type, number of decimal
places, and field width are returned as *writeType, *writeDec, and *writeWid,
respectively.

95

© Copyright IBM Corporation 1989, 2011

Parameter Description

handle Handle to the data file

varName Variable name

writeType Pointer to write format type code (file spssdio.h defines macros of
the form SPSS_FMT_... for all valid format type codes)

writeDec Pointer to number of digits after the decimal

writeWid Pointer to write format width

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int type; /* write format type */
 int dec; /* digits after decimal */
 int wid; /* write format width */

 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Get & print the write format of variable AGE */
 error = spssGetVarWriteFormat(fH, "AGE", &type, &dec, &wid);
 if (error == SPSS_OK)
 {
 printf("Variable AGE, format code %d, width.dec %d.%d\n",
 type, wid, dec);
 }
}

96

© Copyright IBM Corporation 1989, 2011

spssHostSysmisVal

void spssHostSysmisVal(double *missVal)

Description

This function accesses the same information as spssSysmisVal but returns the
information via a parameter rather than on the stack as the function result. The problem
being addressed is that not all languages return doubles from functions in the same
fashion.

Parameter Description

missval Returned as the system missing value

Returns

The function always succeeds, and there is no return code.

See also spssSysmisVal.

spssIsCompatibleEncoding

int spssIsCompatibleEncoding(
 const int hFile,
 int* bCompatible)

Description

This function determines whether the file’s encoding is compatible with the current
interface encoding. The result value of *bCompatible will be false when reading a code
page file in UTF-8 mode, when reading a UTF-8 file in code page mode when reading
a code page file encoded in other than the current locale’s code page, or when reading
a file with numbers represented in reverse bit order. If the encoding is incompatible,
data stored in the file by other applications, particularly Data Entry for Windows, may
be unreliable.

Parameter Description

97

© Copyright IBM Corporation 1989, 2011

hFile Handle to the file

bCompatible 0 for false; 1 for true

Returns

The function returns SPSS_OK or an error value:
Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is invalid

spssLowHighVal

void spssLowHighVal (double *lowest, double *highest)

Description

This function returns the “lowest” and “highest” values used for numeric missing value
ranges on the host system. It may be called at any time.

Parameter Description

lowest Pointer to “lowest” value

highest Pointer to “highest” value

Returns

None

98

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{
 int fH; /* file handle */
 int error; /* error code */
 double lowest, highest;
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create numeric variable SALARY and set range "lowest"
 ** through 0 as missing
 */
 error = spssSetVarName(fH, "SALARY", SPSS_NUMERIC);
 if (error == SPSS_OK)
 {
 spssLowHighVal(&lowest, &highest);
 /* Last arg. is a placeholder since we are defining a range
 ** only
 */
 error = spssSetVarNMissingValues(fH, "SALARY",
 SPSS_MISS_RANGE,lowest, 0.0, 0.0);
 ...
 }
}

spssOpenAppend

int spssOpenAppend (const char *fileName, int *handle)

Description

This function opens IBM SPSS Statistics data files for appending cases and returns a
handle that should be used for subsequent operations on the file. (Note: this function
will not work correctly on compressed data files created by versions prior to release
14.0.)

 There are some precautions involving encoding. If you are in UTF-8 mode, you
can’t open a data file in code page. If you are in code page mode, you can’t open a
system file in UTF-8. You also can’t open a file in reversed bit order. If the file violates
any of these rules, spssOpenAppend returns SPSS_INCOMPATIBLE_APPEND. While in
code page mode, you can open a file in a different code page, but the results are not
predictable. For more information about encoding, see “Interface and File Encoding”
on page 2.

Parameter Description

fileName Name of the file

99

© Copyright IBM Corporation 1989, 2011

handle Pointer to handle to be returned

Note: If you are working in code page mode but need to specify the filename in
UTF-8 then use the spssOpenAppendU8 function. It is identical to the spssOpenAp-
pend function but takes a UTF-8 encoding of the filename and converts it to the cur-
rent code page. The spssOpenAppend and spssOpenAppendU8 functions are
completely identical when working in UTF-8 mode.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open data files)

SPSS_FILE_OERROR Error opening file

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading file

SPSS_INVALID_FILE File is not a valid IBM SPSS Statistics data file

SPSS_NO_TYPE2 File is not a valid IBM SPSS Statistics data file (no
type 2 record)

SPSS_NO_TYPE999 File is not a valid IBM SPSS Statistics data file
(missing type 999 record)

SPSS_INCOMPAT_APPEND File created on an incompatible system.

100

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenAppend("bank.sav", &fH);
 if (error == 0)
 {
 /* fH is a valid handle; process and */
 ...
 /* close file */
 error = spssCloseAppend(fH);
 ...
 }
 else
 {
 /* Handle error*/
 ...
 }
}

See also spssCloseAppend.

101

© Copyright IBM Corporation 1989, 2011

spssOpenRead

int spssOpenRead (const char *fileName, int *handle)

Description

This function opens IBM SPSS Statistics data files for reading and returns a handle that
should be used for subsequent operations on the file.

Parameter Description

fileName Name of the file

handle Pointer to handle to be returned

Note: If you are working in code page mode but need to specify the filename in UTF-
8 then use the spssOpenReadU8 function. It is identical to the spssOpenRead function
but takes a UTF-8 encoding of the filename and converts it to the current code page.
The spssOpenRead and spssOpenReadU8 functions are completely identical when
working in UTF-8 mode.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open data files)

SPSS_FILE_OERROR Error opening file

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading file

SPSS_INVALID_FILE File is not a valid IBM SPSS Statistics data file

SPSS_NO_TYPE2 File is not a valid IBM SPSS Statistics data file (no
type 2 record)

SPSS_NO_TYPE999 File is not a valid IBM SPSS Statistics data file
(missing type 999 record)

102

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenRead("bank.sav", &fH);
 if (error == 0)
 {
 /* fH is a valid handle; process and */
 ...
 /* close file */
 error = spssCloseRead(fH);
 ...
 }
 else
 {
 /* Handle error*/
 ...
 }
}

See also spssCloseRead.

spssOpenWrite

int spssOpenWrite (const char *filename, int *handle)

Description

This function opens a file in preparation for creating a new IBM SPSS Statistics data
file and returns a handle that should be used for subsequent operations on the file.

Parameter Description

filename Name of the data file

handle Pointer to handle to be returned

Note: If you are working in code page mode but need to specify the filename in
UTF-8 then use the spssOpenWriteU8 function. It is identical to the spssOpenWrite
function but takes a UTF-8 encoding of the filename and converts it to the current
code page. The spssOpenWrite and spssOpenWriteU8 functions are completely
identical when working in UTF-8 mode.

103

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

104

© Copyright IBM Corporation 1989, 2011

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open data files)

SPSS_FILE_OERROR Error opening file

SPSS_NO_MEMORY Insufficient memory

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("dat.sav", &fH);
 if (error == 0)
 {
 /* fH is a valid handle; process and */
 ...
 /* close file */
 error = spssCloseWrite(fH);
 ...
 }
 else
 {
 /* Handle error*/
 ...
 }
}

See also spssCloseWrite.

spssOpenWriteCopy

int spssOpenWriteCopy (const char *fileName, const char *dictFileName, int *handle)

Description

This function opens a file in preparation for creating a new IBM SPSS Statistics data
file and initializes its dictionary from that of an existing IBM SPSS Statistics data file.
It is useful when you want to modify the dictionary or data of an existing file or replace
all of its data. The typical sequence of operations is to call spssOpenWriteCopy
(newFileName, oldFileName, ...) to open a new file initialized with a copy of the old

105

© Copyright IBM Corporation 1989, 2011

file’s dictionary, then spssOpenRead (oldFileName, ...) to open the old file to access its
data.

Parameter Description

fileName Name of the new file

dictFileName Name of existing file

handle Pointer to handle to be returned

Note: If you are working in code page mode but need to specify the filename in
UTF-8 then use the spssOpenWriteCopyU8 function. It is identical to the spssOpen-
WriteCopy function but takes a UTF-8 encoding of the filename and converts it to
the current code page. The spssOpenWriteCopy and spssOpenWriteCopyU8 func-
tions are completely identical when working in UTF-8 mode.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FITAB_FULL File table full (too many open IBM SPSS Statistics
data files)

SPSS_FILE_OERROR Error opening new file for output

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading existing file

SPSS_INVALID_FILE File is not a valid IBM SPSS Statistics data file

SPSS_NO_TYPE2 File is not a valid IBM SPSS Statistics data file (no
type 2 record)

SPSS_NO_TYPE999 File is not a valid IBM SPSS Statistics data file
(missing type 999 record)

spssQueryType7

int spssQueryType7(const int handle, const int subType, int *bFound)

106

© Copyright IBM Corporation 1989, 2011

Description

This function can be used to determine whether a file opened for reading or append
contains a specific “type 7” record. The following type 7 subtypes might be of interest:

Subtype 3. Release information

Subtype 4. Floating point constants including the system missing value

Subtype 5. Variable set definitions

Subtype 6. Date variable information

Subtype 7. Multiple response set definitions

Subtype 8. Data Entry for Windows (DEW) information

Subtype 10. TextSmart information

Subtype 11. Measurement level, column width, and alignment for each variable

Parameter Description

handle Handle to the data file

subtype Specific subtype record

bFound Returned set if the specified subtype was encountered

Returns

The result of the query is returned in parameter bfound—TRUE if the record subtype
was encountered when reading the file’s dictionary; FALSE otherwise.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE The file was opened for writing

SPSS_INVALID_7SUBTYPE Parameter subtype not between 1 and
MAX7SUBTYPE

107

© Copyright IBM Corporation 1989, 2011

spssReadCaseRecord

int spssReadCaseRecord (int handle)

Description

This function reads the next case from a data file into internal buffers. Values of
individual variables for the case may then be obtained by calling the
spssGetValueNumeric and spssGetValueChar procedures.

Parameter Description

handle Handle to the data file

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FILE_END End of the file reached; no more cases (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

SPSS_FILE_RERROR Error reading file

Example

See spssGetValueChar.

spssSeekNextCase

int spssSeekNextCase(const int handle, const long caseNumber)

108

© Copyright IBM Corporation 1989, 2011

Description

This function sets the file pointer of an input file so that the next data case read will be
the one specified via the caseNumber parameter. A zero-origin scheme is used. That
is, the first case is number 0. The next case can be read by calling either
spssWholeCaseIn or spssReadCaseRecord. If the specified case is greater than or equal
to the number of cases in the file, the call to the input function will return
SPSS_FILE_END.

Parameter Description

handle Handle to the data file

caseNumber Zero-origin case number

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE The file is open for writing, not reading

SPSS_NO_MEMORY Insufficient memory

SPSS_FILE_RERROR Error reading the file

SPSS_INVALID_FILE The file is not a valid IBM SPSS Statistics data file

See also spssWholeCaseIn, spssReadCaseRecord.

spssSetCaseWeightVar

int spssSetCaseWeightVar (int handle, const char *varName)

109

© Copyright IBM Corporation 1989, 2011

Description

This function defines variable varName as the case weight variable for the data file
specified by the handle.

Parameter Description

handle Handle to the data file

varName The name of the case weight variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

110

© Copyright IBM Corporation 1989, 2011

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

SPSS_NO_MEMORY Insufficient memory

Example

#include "spssdio.h"
void func()
{
 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Define variables */
 error = spssSetVarName(fH, "NUMCHILD", SPSS_NUMERIC);
 if (error == SPSS_OK)
 error = spssSetVarName(fH, "TOYPREF", SPSS_NUMERIC);
 ...
 /* Set NUMCHILD as case weight */
 error = spssSetCaseWeightVar(fH, "NUMCHILD");
 if (error != SPSS_OK)
 {
 /* Handle error */
 }
}

spssSetCompression

int spssSetCompression (int handle, int compSwitch)

111

© Copyright IBM Corporation 1989, 2011

Description

This function sets the compression attribute of a data file. Compression is set on if
compSwitch is one and off if it is zero. If this function is not called, the output file will
be uncompressed by default.

Parameter Description

handle Handle to the data file

compSwitch Compression switch

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_COMPSW Invalid compression switch (other than 0 or 1)

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Set data compression on */
 error = spssSetCompression(fH, 1);
 ...
}

112

© Copyright IBM Corporation 1989, 2011

spssSetDateVariables

int spssSetDateVariables (int handle, int numofElements, const long *dateInfo)

Description

This function sets the Trends date variable information. The array at dateInfo is
assumed to have numofElements elements that correspond to the data array portion of
record 7, subtype 3. Its first six elements comprise the “fixed” information, followed
by a sequence of one or more three-element groups. Since very little validity checking
is done on the input array, this function should be used with caution and is
recommended only for copying Trends information from one file to another.

Parameter Description

handle Handle to the data file

numofElements Size of the array dateInfo

dateInfo Array containing date variables information

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_DATEINFO The date variable information is invalid

SPSS_NO_MEMORY Insufficient memory

113

© Copyright IBM Corporation 1989, 2011

Example
#include <stdlib.h>
#include "spssdio.h"
void func()
{

 int fHIn, fHOut; /* input & output file handles */
 int error; /* error code */
 long *dateInfo; /* pointer to date variable info. */
 int nElements; /* number of elements in date info. array */
 ...
 /* Open one file for reading and one for writing. */
 error = spssOpenRead("bank.sav", &fHIn);
 ...
 error = spssOpenWrite("bankcopy.sav", &fHOut);
 ...
 /* Get the list of variables in input file;
 ** define variables in output file
 */
 ...
 /* Get date variable information from input file and copy
 ** it to output file
 */
 error = spssGetDateVariables(fHIn, &nElements, &dateInfo);
 if (error == SPSS_OK)
 {
 error = spssSetDateVariables(fHOut, nElements, dateInfo);
 ...
 free(dateInfo);
 }
 ...
}

See also spssGetDateVariables.

spssSetDEWFirst

int spssSetDEWFirst (const int handle, const void *pData, const long nBytes)

Description

DEW information (file information which is private to the Data Entry product) can be
delivered to the I/O Module in whatever segments are convenient for the client. The
spssSetDEWFirst function is called to deliver the first such segment, and subsequent
segments are delivered by calling spssSetDEWNext as many times as necessary.

Parameter Description

handle Handle to the data file

pData Pointer to the data to be written

nBytes Number of bytes to write

114

© Copyright IBM Corporation 1989, 2011

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EMPTY_DEW Zero bytes to be written (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_READ_MODE The file is not open for writing

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory for control blocks

SPSS_FILE_BADTEMP Cannot open or write to temporary file

See also spssSetDEWNext.

spssSetDEWGUID

int spssSetDEWGUID (const int handle, const char* asciiGUID)

Description

This function stores the Data Entry for Windows uniqueness indicator on the data file.
It should only be used by the DEW product.

Parameter Description

handle Handle to the data file

asciiGUID The GUID (as a null-terminated string) to be stored on the file

Returns
Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

115

© Copyright IBM Corporation 1989, 2011

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory to store the GUID

spssSetDEWNext

int spssSetDEWNext (const int handle, const void *pData, const long nBytes)

Description

The DEW information (file information that is private to the Data Entry product) can
be delivered to the I/O Module in whatever segments are convenient for the client. The
spssSetDEWFirst function is called to deliver the first such segment, and subsequent
segments are delivered by calling spssSetDEWNext as many times as necessary.

Parameter Description

handle Handle to the data file

pData Pointer to the data to be written

nBytes Number of bytes to write

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_DEW_NOFIRST spssSetDEWFirst was never called

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_READ_MODE The file is not open for writing

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory for control blocks

SPSS_FILE_BADTEMP Cannot open or write to temporary file

See also spssSetDEWFirst.

116

© Copyright IBM Corporation 1989, 2011

spssSetFileAttributes

int spssSetFileAttributes(
 const int hFile,
 const char** attribNames,
 const char** attribText,
 const int nAttributes)

Description

This function replaces all the datafile attributes. It is the converse of
spssGetFileAttributes, and the names of subscripted attributes must contain the unit
origin subscripts in square brackets as in Prerequisite[11]. If the number of attributes is
zero, the vector pointers can be NULL, and all attributes will be discarded.

Parameter Description

hFile Handle to the data file

attribNames Pointer to a vector of attribute names

attribText Pointer to a vector of attribute values

nAttributes The number of element in each vector

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is read-only

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_ATTRDEF Missing name, missing text, or invalid subscript

SPSS_INVALID_ATTRNAME Lexically invalid attribute name

117

© Copyright IBM Corporation 1989, 2011

spssSetIdString

int spssSetIdString (int handle, const char *id)

Description

This function sets the file label of the output data file associated with handle to the
given string id.

Parameter Description

handle Handle to the data file.

id File label. The length of the string should not exceed 64 characters.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EXC_LEN64 Label length exceeds 64; truncated and used
(warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

118

© Copyright IBM Corporation 1989, 2011

Example
include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 char id[] = "This is a file label.";
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 error = spssSetIdString(fH, id);
 if (error == SPSS_OK)
 {
 /* The label of the data file is now the string
 ** "This is a file label."
 */
 ...
 }
}

spssSetInterfaceEncoding

int spssInterfaceEncoding(
 const int iEncoding)

Description

Use this function to change the interface encoding. If the call is successful, all text
communicated to or from the I/O Module in subsequent calls will be in the specified
mode. Also, all text in files written will be in the specified mode. There can be no
open files when this call is made.

Parameter Description

iEncoding An encoding mode, SPSS_ENCODING_CODEPAGE (the default)
or SPSS_ENCODING_UTF8.

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_ENCODING The specified encoding is not valid

119

© Copyright IBM Corporation 1989, 2011

SPSS_FILES_OPEN IBM SPSS Statistics files are open

spssSetLocale

char* spssSetLocale(
 const int iCategory,
 const char* pszLocale)

Description

The I/O Module's locale is separate from that of the client application. When the I/O
Module is first loaded, its locale is set to the system default. The spssSetLocale
function gives the client application control over the I/O Module's locale. The
parameters and return value are identical to those for the C run-time function setlocale.

Parameter Description

iCategory A locale category, for example LC_ALL or LC_CTYPE. These are
defined in the header file locale.h.

pszLocale A locale, for example "Japanese.932".

Returns

The function returns the resulting locale, for example "French_Canada.1252"

spssSetMultRespDefs

int spssSetMultRespDefs(const int handle, const char *mrespDefs)

Parameter Description

handle Handle to the data file

mrespDefs Code page or UTF-8 string containing definitions

Description

This function is used to write multiple response definitions to the file. The definitions
are stored as a null-terminated code page or UTF-8 string based on whether the

120

© Copyright IBM Corporation 1989, 2011

spssGetInterfaceEncoding() type is SPSS_ENCODING_CODEPAGE or
SPSS_ENCODING_UTF8.

For multiple category sets the string contains the following:
$setname=C {label length} {label} {variable list}

For multiple dichotomy sets, the string contains the following:
$setname=D{value length} {counted value} {label length} [label] {variable list}

All multiple multiple category and multiple dichotomy sets in the data file are
returned as single string, with a newline character (\n) between each set.
All multiple response set names begin with a dollar sign and follow variable
naming rules.
For mulitple dichotomy sets, there is no space between the “D” and the integer that
represents the length of the counted value.
If there is no label for the set, the label length is 0, and there is a single blank space
for the label. (So there are two blank spaces between the label length value of 0 and
the first variable name.)

For example:
$mcset=C 21 Multiple Category Set mcvar1 mcvar2 mcvar3 mcvar4 \n
$mdset1=D1 1 22 Multiple Dichotomy Set mdvar1 mdvar2 mdvar3 mdvar4 \n
$mdset2=D3 Yes 0 mdvar5 mdvar6 mdvar7

Note: You cannot write “extended” multiple dichotomy sets. “Extended” multiple
dichotomy sets are sets that use counted values as category labels
(CATEGORYLABELS=COUNTEDVALUES in SPSS Statistics command syntax) or the
variable label of the first set variable as the set label (LABELSOURCE=VARLABEL in
SPSS Statistics command syntax). You can get values of extended multiple dichotomy
sets with spssGetMultRespSetsDefEx, but you cannot write extended multiple
dichotomy sets.

Returns

Returns one of the following codes. Success is indicated by zero (SPSS_OK), errors by
positive values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

121

© Copyright IBM Corporation 1989, 2011

SPSS_EMPTY_MULTRESP The string contains no definitions (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory to store the definitions

spssSetTempDir

int spssSetTempDir (const char* dirName)

Description

The I/O Module spills some large object to temporary files. Normally these files reside
in the directory supplied by the Windows GetTempPath function. The spssSetTempDir
function permits the I/O Module client to specify a different directory.

Parameter Description

dirName Fully-qualified directory name as a null-terminated string

Returns
Error Code Description

SPSS_OK No error

SPSS_NO_MEMORY Insufficient memory to store the path

spssSetTextInfo

int spssSetTextInfo (int handle, const char *textInfo)

Description

This function sets the text data from the null-terminated string in textInfo. If the string
is longer than 255 characters, only the first 255 are (quietly) used. If textInfo contains
the empty string, existing text data, if any, are deleted.

122

© Copyright IBM Corporation 1989, 2011

Parameter Description

handle Handle to the data file

textInfo Text data

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_NO_MEMORY Insufficient memory

spssSetValueChar

int spssSetValueChar (int handle, double varHandle, const char *value)

Description

This function sets the value of a string variable for the current case. The current case
is not written out to the data file until spssCommitCaseRecord is called.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Value of the variable as a null-terminated string. The length of the
string (ignoring trailing blanks, if any) should be less than or equal
to the length of the variable.

123

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten with spssCommitHeader

SPSS_STR_EXP Variable associated with the handle is numeric

SPSS_EXC_STRVALUE The value is longer than the length of the variable

Example

See spssSetValueNumeric.

See also spssCommitCaseRecord.

spssSetValueNumeric

int spssSetValueNumeric (int handle, double varHandle, double value)

Description

This function sets the value of a numeric variable for the current case. The current case
is not written out to the data file until spssCommitCaseRecord is called.

Parameter Description

handle Handle to the data file

varHandle Handle to the variable

value Value of the variable

124

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten with spssCommitHeader

SPSS_NUME_EXP Variable associated with the handle is not numeric

125

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 double ageH, titleH; /* variable handles */
 double age; /* value of AGE */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create numeric variable AGE and long string variable
 ** TITLE
 */
 error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
 ...
 error = spssSetVarName(fH, TITLE, SPSS_STRING(20));
 ...
 /* Done with dictionary definition; commit dictionary */
 error = spssCommitHeader(fH);
 ...
 /* Get variable handles */
 error = spssGetVarHandle(fH, "AGE", &ageH);
 ...
 error = spssGet VarHandle(fH, "TITLE", &titleH);
 ...
 /* Construct & write cases, with AGE set to 20, 21, ... 46
 ** and TITLE set to "Super salesman"
 */
 for (age = 20.0; age <= 46.0; ++age)
 {
 error = spssSetValueNumeric(fH, ageH, age);
 ...
 error = spssSetValueChar(fH, titleH, "Super salesman")
 ...
 error = spssCommitCaseRecord(fH);
 ...
 }
 error = spssCloseWrite(fH);
 ...
}

See also spssConvertDate, spssConvertTime, spssCommitCaseRecord.

spssSetVarAlignment

int spssSetVarAlignment (int handle, const char *varName, int alignment)

Description

This function sets the value of the alignment attribute of a variable.

126

© Copyright IBM Corporation 1989, 2011

Parameter Description

handle Handle to the data file.

varName Variable name.

alignment Alignment. Must be one of SPSS_ALIGN_LEFT,
SPSS_ALIGN_RIGHT, or SPSS_ALIGN_CENTER. If not a legal
value, alignment is set to a type-appropriate default.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssSetVarAttributes

int spssSetVarAttributes(
 const int hFile,
 const char* varName,
 const char** attribNames,
 const char** attribText,
 const int nAttributes)

Description

This function is analogous to spssSetFileAttributes. It replaces all the attributes for one
variable.

Parameter Description

hFile Handle to the data file

127

© Copyright IBM Corporation 1989, 2011

varName Name of the variable

attribNames Pointer to a vector of attribute names

attribText Pointer to a vector of attribute values

nAttributes The number of element in each vector

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_VAR_NOTFOUND Named variable is not in the file

SPSS_OPEN_RDMODE The file is read-only

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_ATTRDEF Missing name, missing text, or invalid subscript

SPSS_INVALID_ATTRNAME Lexically invalid attribute name

spssSetVarCMissingValues

int spssSetVarCMissingValues
(int handle, const char *varName, int missingFormat,
const char *missingVal1, const char *missingVal2, const char *missingVal3)

Description

This function sets missing values for a short string variable. The argument
missingFormat must be set to a value in the range 0–3 to indicate the number of missing
values supplied. When fewer than three missing values are to be defined, the redundant
arguments must still be present, although their values are not inspected. For example,
if missingFormat is 2, missingVal3 is unused. The supplied missing values must be null-
terminated and not longer than the length of the variable unless the excess length is

128

© Copyright IBM Corporation 1989, 2011

made up of blanks, which are ignored. If the missing value is shorter than the length of
the variable, trailing blanks are assumed.

Parameter Description

handle The handle to the data file

varName Variable name

missingFormat Missing format code

missingVal1 First missing value

missingVal2 Second missing value

missingVal3 Third missing value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_STR_EXP The variable is numeric

SPSS_SHORTSTR_EXP The variable is a long string (length > 8)

SPSS_INVALID_MISSFOR Invalid missing values specification (missingFormat
is not in the range 0–3)

SPSS_EXC_STRVALUE A missing value is longer than the length of the
variable

SPSS_NO_MEMORY Insufficient memory

129

© Copyright IBM Corporation 1989, 2011

Example

#include <stddef.h>
 #include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create short string variable TITLE and define values
 ** consisting of blanks or periods only as missing
 */
 error = spssSetVarName(fH, "TITLE", SPSS_STRING(6));
 if (error == SPSS_OK)
 {
 /* Last arg. is a placeholder since we are defining only two
 ** missing values
 */
 error = spssSetVarCMissingValues(fH, "TITLE", 2,
 "......", " ", NULL);
 ...
 }
}

spssSetVarColumnWidth

int spssSetVarColumnWidth (int handle, const char *varName, int columnWidth)

Description

This function sets the value of the column width attribute of a variable. A value of zero
is special and means that the IBM SPSS Statistics Data Editor, which is the primary
user of this attribute, is to set an appropriate width using its own algorithm.

Parameter Description

handle Handle to the data file.

varName Variable name.

columnWidth Column width. If negative, a value of zero is (quietly) used instead.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

130

© Copyright IBM Corporation 1989, 2011

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

spssSetVarCValueLabel

int spssSetVarCValueLabel
(int handle, const char *varName, const char *value, const char *label)

Description

This function changes or adds a value label for the specified value of a short string
variable. The label should be a null-terminated string not exceeding 60 characters in
length.

Parameter Description

handle Handle to the data file

varName Variable name

value Value to be labeled

label Label

131

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_INVALID_VARNAME Variable name is invalid.

SPSS_VAR_NOTFOUND A variable with the given name does not exist.

SPSS_STR_EXP The variable is numeric.

SPSS_SHORTSTR_EXP The variable is a long string (length > 8).

SPSS_EXC_STRVALUE The value (*value) is longer than the length of the
variable.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the I/O Module are in-
valid. This signals an error in the I/O Module.

Example
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create short string variable TITLE and label the value
 ** consisting of all blanks as "Did not want title"
 */
 error = spssSetVarName(fH, "TITLE", SPSS_STRING(6));
 if (error == SPSS_OK)
 {
 error = spssSetVarCValueLabel(fH, "TITLE", " ",
 "Did not want title");
 }
}

See also spssSetVarCValueLabels.

132

© Copyright IBM Corporation 1989, 2011

spssSetVarCValueLabels

int spssSetVarCValueLabels
(int handle, const char **varNames, int numVars,
const char **values, const char **labels, int numLabels)

Description

This function defines a set of value labels for one or more short string variables. Value
labels already defined for any of the given variable(s), if any, are discarded (if the
labels are shared with other variables, they remain associated).

Parameter Description

handle Handle to the data file

varNames Array of pointers to variable names

numVars Number of variables

values Array of pointers to values

labels Array of pointers to labels

numLabels Number of labels or values)

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_NO_VARIABLES Number of variables (numVars) is zero or negative.

SPSS_NO_LABELS Number of labels (numLabels) is zero or negative.

SPSS_INVALID_VARNAME At least one variable name is invalid.

133

© Copyright IBM Corporation 1989, 2011

SPSS_VAR_NOTFOUND At least one of the variables does not exist.

SPSS_STR_EXP At least one of the variables is numeric.

SPSS_SHORTSTR_EXP At least one of the variables is a long string
(length < 8).

SPSS_EXC_STRVALUE At least one value is longer than the length of the
variable.

SPSS_DUP_VALUE The list of values contains duplicates.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the I/O Module are in-
valid. This signals an error in the I/O Module.

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 static char *vNames[2]= /* variable names */
 { "TITLE", "OLDTITLE" };
 static char *vValues[3] = /* values to be labeled */
 { " ", "techst", "consul" };
 static char *vLabels[3] = /* corresponding labels */
 { "Unknown", "Member of tech. staff", "Outside consultant" };
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Define two short string variables TITLE & OLDTITLE and a
 ** set of shared value labels
 */
 error = spssSetVarName(fH, vNames[0], SPSS_STRING(6));
 if (error == SPSS_OK)
 error = spssSetVarName(fH, vNames[1], SPSS_STRING(6));
 if (error == SPSS_OK)
 {
 error =
 spssSetVarCValueLabels(fH, vNames, 2, vValues, vLabels, 3);
 ...
 }
}

See also spssSetVarCValueLabel.

spssSetVarLabel

int spssSetVarLabel (int handle, const char *varName, const char *varLabel)

134

© Copyright IBM Corporation 1989, 2011

Description

This function sets the label of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

varLabel Variable label. The length of the string should not exceed 120 char-
acters. If varLabel is the empty string, the existing label, if any, is
deleted.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EXC_LEN120 Variable label’s length exceeds 120; truncated and
used (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NO_MEMORY Insufficient memory

135

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{
 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 /* Do the file operations here */
 ...
 /* Define string variable NAME of length 8 */
 error = spssSetVarName(fH, "NAME", SPSS_STRING(8));
 ...
 /* Label the variable */
 error =
 spssSetVarLabel(fH, "NAME", "Name of respondent");
 ...
}

spssSetVarMeasureLevel

int spssSetVarMeasureLevel (int handle, const char *varName, int measureLevel)

Description

This function sets the value of the measurement level attribute of a variable.

Parameter Description

handle Handle to the data file.

varName Variable name.

measureLevel Measurement level. Must be one of SPSS_MLVL_NOM,
SPSS_MLVL_ORD, SPSS_MLVL_RAT, or SPSS_MLVL_UNK for
nominal, ordinal, scale (ratio), and unknown, respectively. If
SPSS_MLVL_UNK, measurement level is set to a type-appropriate
default.

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

136

© Copyright IBM Corporation 1989, 2011

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE The file is open for input or append

SPSS_DICT_COMMIT spssCommitHeader has already been called

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_MEASURELEVEL measureLevel is not in the legal range, or it is
SPSS_MLVL_RAT and the variable is a string
variable

spssSetVarNMissingValues

int spssSetVarNMissingValues
(int handle, const char *varName, int missingFormat,
double missingVal1, double missingVal2, double missingVal3)

Description

This function sets missing values for a numeric variable. The interpretation of the
arguments missingVal1, missingVal2, and missingVal3 depends on the value of
missingFormat. If missingFormat is set to SPSS_MISS_RANGE, missingVal1 and
missingVal2 are taken as the upper and lower limits, respectively, of the range, and
missingVal3 is ignored. If missingFormat is SPSS_MISS_RANGEANDVAL, missingval1
and missingVal2 are taken as limits of the range and missingVal3 is taken as the discrete
missing value. If missingFormat is neither of the above, it must be in the range 0–3,
indicating the number of discrete missing values present. For example, if
missingFormat is 2, missingVal1 and missingVal2 are taken as two discrete missing
values and missingVal3 is ignored. (The macros SPSS_NO_MISSVAL,
SPSS_ONE_MISSVAL, SPSS_TWO_MISSVAL, and SPSS_THREE_MISSVAL may be
used as synonyms for 0–3.)

Parameter Description

handle Handle to the data file

varName Variable name

missingFormat Missing values format code

missingVal1 First missing value

137

© Copyright IBM Corporation 1989, 2011

missingVal2 Second missing value

missingVal3 Third missing value

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_NUME_EXP The variable is not numeric

SPSS_INVALID_MISSFOR Invalid missing values specification (missingFormat
is invalid or the lower limit of range is greater than the
upper limit)

SPSS_NO_MEMORY Insufficient memory

138

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{
 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create numeric variable BUYCODE and set range 1-9 as
 ** missing
 */
 error = spssSetVarName(fH, "BUYCODE", SPSS_NUMERIC);
 if (error == SPSS_OK)
 {
 /* Last arg. is a placeholder since we are defining a range
 ** only
 */
 error =
 spssSetVarNMissingValues(fH, "BUYCODE", SPSS_MISS_RANGE,
 1.0, 9.0, 0.0);
 ...
 }
}

See also spssSetVarCMissingValues.

spssSetVarNValueLabel

int spssSetVarNValueLabel
(int handle, const char *varName, double value, const char *label)

Description

This function changes or adds a value label for the specified value of a numeric
variable. The label should be a null-terminated string not exceeding 60 characters in
length.

Parameter Description

handle Handle to the data file

varName Variable name

value Value to be labeled

label Label

139

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE File handle not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_INVALID_VARNAME Variable name is invalid.

SPSS_VAR_NOTFOUND A variable with the given name does not exist.

SPSS_NUME_EXP The variable is not numeric.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the I/O Module are in-
valid. This signals an error in the I/O Module.

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create numeric variable BUYCODE and label value 0.0 as
 ** "Unknown"
 */
 error = spssSetVarName(fH, "BUYCODE", SPSS_NUMERIC);
 if (error == SPSS_OK)
 {
 error =
 spssSetVarNValueLabel(fH, "BUYCODE", 0.0, "Unknown");
 ...
 }
}

See also spssSetVarNValueLabels.

140

© Copyright IBM Corporation 1989, 2011

spssSetVarNValueLabels

int spssSetVarNValueLabels
(int handle, const char **varNames, int numVars,
const double *values, const char **labels, int numLabels)

Description

This function defines a set of value labels for one or more numeric variables. Value
labels already defined for any of the given variable(s), if any, are discarded (if the
labels are shared with other variables, they remain associated with those variables).

Parameter Description

handle Handle to the data file

varNames Array of pointers to variable names

numVars Number of variables

values Array of values

labels Array of pointers to labels

numLabels Number of labels or values

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error.

SPSS_INVALID_HANDLE The file handle is not valid.

SPSS_OPEN_RDMODE File is open for reading, not writing.

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader.

SPSS_NO_VARIABLES Number of variables (numVars) is zero or negative.

SPSS_NO_LABELS Number of labels (numLabels) is zero or negative.

SPSS_INVALID_VARNAME At least one variable name is invalid.

141

© Copyright IBM Corporation 1989, 2011

SPSS_VAR_NOTFOUND At least one of the variables does not exist.

SPSS_NUME_EXP At least one of the variables is not numeric.

SPSS_DUP_VALUE The list of values contains duplicates.

SPSS_NO_MEMORY Insufficient memory.

SPSS_INTERNAL_VLABS Internal data structures of the I/O Module are in-
valid. This signals an error in the I/O Module.

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 static char *vNames[2]= /* variable names */
 { "AGE", "AGECHILD" };
 static double vValues[3] = /* values to be labeled */
 { -2.0, -1.0, 0.0 };
 static char *vLabels[3] = /* corresponding labels */
 { "Unknown", "Not applicable", "Under 1" };
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Define two numeric variables AGE & AGECHILD and a set of
 ** shared value labels
 */
 error = spssSetVarName(fH, vNames[0], SPSS_NUMERIC);
 if (error == SPSS_OK)
 error = spssSetVarName(fH, vNames[1], SPSS_NUMERIC);
 if (error == SPSS_OK)
 {
 error =
 spssSetVarNValueLabels(fH, vNames, 2, vValues, vLabels, 3);
 ...
 }
}

See also spssSetVarNValueLabel.

spssSetVarName

int spssSetVarName (int handle, const char *varName, int varLength)

142

© Copyright IBM Corporation 1989, 2011

Description

This function creates a new variable named varName, which will be either numeric or
string based on varLength. If the latter is zero, a numeric variable with a default format
of F8.2 will be created; if it is greater than 0 and less than or equal to 32767, a string
variable with length varLength will be created; any other value will be rejected as
invalid. For better readability, the macros SPSS_NUMERIC and SPSS_STRING(length)
may be used as values for varLength.

Parameter Description

handle Handle to the data file

varName Variable name

varLength Type and size of the variable

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARTYPE Invalid length code (varLength is negative or
exceeds 32767)

SPSS_INVALID_VARNAME Variable name is invalid

SPSS_DUP_VAR There is already a variable with the same name

SPSS_NO_MEMORY Insufficient memory

143

© Copyright IBM Corporation 1989, 2011

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Create numeric variable AGE and string variable NAME */

 error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
 if (error == SPSS_OK)
 error = spssSetVarName(fH, "NAME", SPSS_STRING(20));
 ...
}

spssSetVarPrintFormat

int spssSetVarPrintFormat
(int handle, const char *varName, int printType, int printDec, int printWid)

Description

This function sets the print format of a variable.

Parameter Description

handle Handle to the data file

varName Variable name

printType Print format type code (file spssdio.h defines macros of the form
SPSS_FMT_... for all valid format type codes)

printDec Number of digits after the decimal

printWid Print format width

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

144

© Copyright IBM Corporation 1989, 2011

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_PRFOR The print format specification is invalid or is
incompatible with the variable type

SPSS_NO_MEMORY Insufficient memory

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 /* Define numeric variable TIMESTMP */
 error = spssSetVarName(fH, "TIMESTMP", SPSS_NUMERIC);
 ...
 /* Set the print format of TIMESTMP to DATETIME28.4 */
 error = spssSetVarPrintFormat(fH, "TIMESTMP",
 SPSS_FMT_DATE_TIME, 4, 28);
 ...
}

See also spssSetVarWriteFormat.

spssSetVarRole

int spssSetVarRole
(const int hFile, const char *varName, const int varRole)

Description

This function sets the role of a variable.

Parameter Description

hFile Handle to the data file

145

© Copyright IBM Corporation 1989, 2011

varName Variable name

varRole Variable role. Must be one of the following values:
SPSS_ROLE_INPUT, SPSS_ROLE_TARGET,
SPSS_ROLE_BOTH, SPSS_ROLE_NONE,
SPSS_ROLE_PARTITION, or SPSS_ROLE_SPLIT.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_ROLE Invalid role value

spssSetVarWriteFormat

int spssSetVarWriteFormat
(int handle, const char *varName, int writeType, int writeDec, int writeWid)

Description

This function sets the write format of a variable.

Parameter Description

handle Handle to the data file

varName Variable name

writeType Write format type code (file spssdio.h defines macros of the form
SPSS_FMT_... for all valid format type codes)

writeDec Number of digits after the decimal

writeWid Write format width

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

146

© Copyright IBM Corporation 1989, 2011

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_INVALID_VARNAME The variable name is not valid

SPSS_VAR_NOTFOUND A variable with the given name does not exist

SPSS_INVALID_WRFOR The write format specification is invalid or is
incompatible with the variable type

SPSS_NO_MEMORY Insufficient memory

Example

#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 ...
 error = spssOpenWrite("data.sav", &fH);
 /* Define string variable ODDCHARS of length 7 */
 error = spssSetVarName(fH, "ODDCHARS", SPSS_STRING(7));
 ...
 /* Set the write format of ODDCHARS to AHEX14 */
 error =
 spssSetVarWriteFormat(fH, "ODDCHARS", SPSS_FMT_AHEX, 0, 14);
 ...
}

spssSetVariableSets

int spssSetVariableSets (int handle, const char *varSets)

Description

This function sets the variable sets information in the data file. The information must
be provided in the form of a null-terminated string. No validity checks are performed
on the supplied string beyond ensuring that its length is not 0. Any existing variable
sets information is discarded.

147

© Copyright IBM Corporation 1989, 2011

Parameter Description

handle Handle to the data file

varSets Variable sets information

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_EMPTY_VARSETS The variable sets information is empty (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_COMMIT Dictionary has already been written with
spssCommitHeader

SPSS_NO_MEMORY Insufficient memory

148

© Copyright IBM Corporation 1989, 2011

Example

#include <stdlib.h>
#include "spssdio.h"
void func()
{

 int fHIn, fHOut; /* input & output file handles */
 int error; /* error code */
 char *vSets; /* ptr to variable sets info. */
 ...
 /* Open one file for reading and one for writing. */
 error = spssOpenRead("bank.sav", &fHIn);
 ...
 error = spssOpenWrite("bankcopy.sav", &fHOut);
 ...
 /* Copy variable sets information from input file to output
 ** file
 */
 error = spssGetVariableSets(fHIn, &vSets);
 if (error == SPSS_OK)
 {
 error = spssSetVariableSets(fHOut, vSets);
 /* Handle errors and remember to free variable set string */
 ...
 free(vSets);
 }
 else if (error != SPSS_EMPTY_VARSETS)
 {
 /* Error getting variable sets information from input file */
 ...
 }
 ...
}

spssSysmisVal

double spssSysmisVal (void)

Description

This function returns the IBM SPSS Statistics system-missing value for the host
system. It may be called at any time.

Parameter Description

None

Returns

The IBM SPSS Statistics system-missing value for the host system.

149

© Copyright IBM Corporation 1989, 2011

Example

#include <stdio.h>
#include "spssdio.h"
void func()
{

 double sysmis; /* system missing value */
 ...
 /* Get and print the system missing value */
 sysmis = spssSysmisVal();
 printf("System missing value: %e\n");
 ...
}

spssValidateVarname

int spssValidateVarname (const char* varName)

Description

This function allows the client to validate a potential variable name. The name is
checked for lexical validity only; there is no check for whether it is a duplicate name.
Note that the error code SPSS_NAME_BADFIRST indicates that the name is entirely
composed of valid characters but that the first character is not valid in that position, for
example the name begins with a period or digit. Note also that names ending with a
period are technically valid but are to be discouraged because they cause difficulty if
they appear at the end of a line of syntax.

Parameter Description

varName null-terminated variable name

Returns
Error Code Description

SPSS_NAME_OK The name is valid

SPSS_NAME_SCRATCH The name is invalid because it begins with "#"

SPSS_NAME_SYSTEM The name is invalid because it begins with "$"

SPSS_NAME_BADLTH The name is too long

SPSS_NAME_BADCHAR The name contains an invalid character

SPSS_NAME_RESERVED The name is a reserved word

150

© Copyright IBM Corporation 1989, 2011

SPSS_NAME_BADFIRST The name begins with an invalid character

spssWholeCaseIn

int spssWholeCaseIn (int handle, char *caseRec)

Description

This function reads a case from a data file into a case buffer provided by the user. The
required size of the buffer may be obtained by calling spssGetCaseSize. This is a fairly
low-level function whose use should not be mixed with calls to spssReadCaseRecord
using the same file handle because both procedures read a new case from the data file.

Parameter Description

handle Handle to the data file

caseRec Buffer to contain the case

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_FILE_END End of the file reached; no more cases (warning)

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_WRMODE File is open for writing, not reading

SPSS_FILE_RERROR Error reading file

151

© Copyright IBM Corporation 1989, 2011

Example

#include <stdlib.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int caseSize; /* size of a case */
 char *cRec; /* pointer to case record */
 ...
 error = spssOpenRead("bank.sav", &fH);
 ...
 /* Find out the size of the case and allocate memory for the
 ** case record.
 */
 error = spssGetCaseSize(fH, &caseSize);
 ...
 cRec = (char *) malloc(caseSize);
 ...
 error = spssWholeCaseIn(fH, cRec);
 ...
 /* Buffer cRec now contains the first case in the data file.
 ** It is up to us to make sense out of it.
 */
 ...
}

See also spssGetCaseSize, spssWholeCaseOut.

spssWholeCaseOut

int spssWholeCaseOut
(int handle, const char *caseRec)

Description

This function writes a case assembled by the caller to a data file. The case is assumed
to have been constructed correctly in the buffer caseRec, and its validity is not
checked. This is a fairly low-level function whose use should not be mixed with calls
to spssCommitCaseRecord using the same file handle because both procedures write a
new case to the data file.

Parameter Description

handle Handle to the data file

caseRec Case record to be written to the data file

152

© Copyright IBM Corporation 1989, 2011

Returns

One of the following codes. Success is indicated by zero (SPSS_OK), errors by positive
values, and warnings, if any, by negative values.

Error Code Description

SPSS_OK No error

SPSS_INVALID_HANDLE The file handle is not valid

SPSS_OPEN_RDMODE File is open for reading, not writing

SPSS_DICT_NOTCOMMIT Dictionary of the output file has not yet been writ-
ten with spssCommitHeader

SPSS_FILE_WERROR File write error

153

© Copyright IBM Corporation 1989, 2011

Example

#include <string.h>
#include "spssdio.h"
void func()
{

 int fH; /* file handle */
 int error; /* error code */
 int caseSize; /* size of a case */
 char caseRec[16]; /* case record */
 double age; /* value of AGE */
 ...
 error = spssOpenWrite("data.sav", &fH);
 ...
 /* Define two variables */
 error = spssSetVarName(fH, "NAME", SPSS_STRING(7));
 ...
 error = spssSetVarName(fH, "AGE", SPSS_NUMERIC);
 ...
 /* Done with dictionary definition; commit dictionary */
 error = spssCommitHeader(fH);
 ...
 /* Please note that code beyond this requires knowledge of
 ** IBM SPSS Statistics data file formats, and it very easy to produce
 ** garbage.
 */
 /* Find out the size of the case and make sure it is 16 as
 ** we assume it to be
 */
 error = spssGetCaseSize(fH, &caseSize);
 ...
 /* Construct one case with NAME "KNIEVEL" and AGE 50.
 ** Write out the case and close file.
 */
 memcpy(caseRec, "KNIEVEL ", 8); /* Padding to 8 */
 age = 50.0;
 memcpy(caseRec+8, &age, 8); /* Assuming sizeof double is 8 */
 error = spssWholeCaseOut(fH, caseRec);
 ...
 error = spssCloseWrite(fH);
 ...
}

See also spssGetCaseSize, spssWholeCaseIn.

148

Append ix

A
Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service may
be used. Any functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's responsibility
to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

149

Notices

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at those
Web sites are not part of the materials for this IBM product and use of those Web sites is at
your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Software Group
Attention: Licensing
233 S. Wacker Drive
Chicago, IL 60606
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

150

Appendix A

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

	IBM SPSS Statistics Input/Output Module
	Input/Output Module
	New I/O Module for Version 14.0
	Using the I/O Module
	Interface and File Encoding
	Writing IBM SPSS Statistics Data Files
	Copying a Dictionary
	Appending Cases to an Existing IBM SPSS Statistics Data File
	Reading IBM SPSS Statistics Data Files
	Direct Access Input

	Working with IBM SPSS Statistics Data Files
	Variable Names and String Values
	Accessing Variable and Value Labels
	System-Missing Value
	Measurement Level, Column Width, and Alignment
	Support for Documents

	Coding Your Program
	Visual Basic Clients
	Borland C++

	I/O Module Procedure Reference
	spssAddFileAttribute
	spssAddMultRespDefC
	spssAddMultRespDefExt
	spssAddMultRespDefN
	spssAddVarAttribute
	spssCloseAppend
	spssCloseRead
	spssCloseWrite
	spssCommitCaseRecord
	spssCommitHeader
	spssConvertDate
	spssConvertSPSSDate
	spssConvertSPSSTime
	spssConvertTime
	spssCopyDocuments
	spssFreeAttributes
	spssFreeDateVariables
	spssFreeMultRespDefs
	spssFreeMultRespDefStruct
	spssFreeVarCValueLabels
	spssFreeVariableSets
	spssFreeVarNValueLabels
	spssFreeVarNames
	spssGetCaseSize
	spssGetCaseWeightVar
	spssGetCompression
	spssGetDateVariables
	spssGetDEWFirst
	spssGetDEWGUID
	spssGetDEWInfo
	spssGetDEWNext
	spssGetEstimatedNofCases
	spssGetFileAttributes
	spssGetFileCodePage
	spssGetFileEncoding
	spssGetIdString
	spssGetInterfaceEncoding
	spssGetMultRespCount
	spssGetMultRespDefByIndex
	spssGetMultRespDefs
	spssGetMultRespDefsEx
	spssGetNumberofCases
	spssGetNumberofVariables
	spssGetReleaseInfo
	spssGetSystemString
	spssGetTextInfo
	spssGetTimeStamp
	spssGetValueChar
	spssGetValueNumeric
	spssGetVarAttributes
	spssGetVarAlignment
	spssGetVarCMissingValues
	spssGetVarColumnWidth
	spssGetVarCompatName
	spssGetVarCValueLabel
	spssGetVarCValueLabelLong
	spssGetVarCValueLabels
	spssGetVarHandle
	spssGetVariableSets
	spssGetVarInfo
	spssGetVarLabel
	spssGetVarLabelLong
	spssGetVarMeasureLevel
	spssGetVarNMissingValues
	spssGetVarNValueLabel
	spssGetVarNValueLabelLong
	spssGetVarNValueLabels
	spssGetVarNames
	spssGetVarPrintFormat
	spssGetVarRole
	spssGetVarWriteFormat
	spssHostSysmisVal
	spssIsCompatibleEncoding
	spssLowHighVal
	spssOpenAppend
	spssOpenRead
	spssOpenWrite
	spssOpenWriteCopy
	spssQueryType7
	spssReadCaseRecord
	spssSeekNextCase
	spssSetCaseWeightVar
	spssSetCompression
	spssSetDateVariables
	spssSetDEWFirst
	spssSetDEWGUID
	spssSetDEWNext
	spssSetFileAttributes
	spssSetIdString
	spssSetInterfaceEncoding
	spssSetLocale
	spssSetMultRespDefs
	spssSetTempDir
	spssSetTextInfo
	spssSetValueChar
	spssSetValueNumeric
	spssSetVarAlignment
	spssSetVarAttributes
	spssSetVarCMissingValues
	spssSetVarColumnWidth
	spssSetVarCValueLabel
	spssSetVarCValueLabels
	spssSetVarLabel
	spssSetVarMeasureLevel
	spssSetVarNMissingValues
	spssSetVarNValueLabel
	spssSetVarNValueLabels
	spssSetVarName
	spssSetVarPrintFormat
	spssSetVarRole
	spssSetVarWriteFormat
	spssSetVariableSets
	spssSysmisVal
	spssValidateVarname
	spssWholeCaseIn
	spssWholeCaseOut

	A Notices
	Trademarks

