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N-Gramme sind eine Technik, die verwendet wird, um zukünftige Elemente einer Sequenz vorher-
zusagen. Sie werden am meisten im Gebiet der Linguistik verwendet, um bessere Ergebnisse in
Anwendungen wie Text-to-Speech-oder Auto-Korrektur zu liefern.
In Videospielen werden N-Gramme verwendet, um einer KI (Künstliche Intelligenz) zu ermöglichen
Spielerverhalten vorherzusagen. N-Gramme sind in der Lage zukünftige Aktionen vorherzusagen,
indem sie die vergangenen Aktionen eines Spielers oder einer Spielerin analysiert und speichert,
wie oft er oder sie sich für bestimmte Kombinationen von Aktionen entschieden hat.
N-Gramme ermöglichen es der KI, sich an den Spieler oder die Spielerin anzupassen. Auf diese
Weise kann die KI, je nach Einsatzgebiet, entweder eine herausfordernde Gegnerin oder eine un-
terstützende Verbündete sein. Der Unterhaltungswert des Spiels kann durch die Verwendung von
N-Grammen gesteigert werden, weil sie den Wiederspielwert des Spiels erhöhen und ein stärker
individualisiertes Erlebnis für den Spieler oder die Spielerin bieten können.
Es gibt zwei Werke von Millington und Laramée, die sich mit der Verwendung von N-Grammen
in Videospielen befassen. Dennoch gibt es wenig Informationen darüber, wie gut N-Gramme funk-
tionieren, wenn sie tatsächlich in einem Spiel zum Einsatz kommen. Diese Bachelorarbeit hat sich
zum Ziel gesetzt solche Informationen zu erarbeiten.
Um dieses Ziel zu erreichen wird das Spiel Blocky gescha�en und als eine Umgebung für die
N-Gramme Implementierung verwendet. Um Informationen darüber zu erlangen, wie gut diese
Implementierung arbeitet, werden mehrere Tests durchgeführt und deren Ergebnisse in dieser Ba-
chelorarbeit besprochen.

Schlagwörter: Künstliche Intelligenz, Videospiel, Vorhersage von SpielerInnenverhalten, N-Grams
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Abstract

N-Grams are a technique used to predict future elements of sequences. They are mostly know
for their usage in linguistics where they are used to provide better results in applications like
text-to-speech or auto correction.
In video games N-Grams are used to create an AI (arti�cial intelligence) which can predict player
behavior. N-Grams are able to predict future actions of a player by analyzing his past moves and
storing how often a player chose which combination of moves.
N-Grams enable the AI to adapt itself to the player. By doing this the AI can either be a chal-
lenging opponent or a supportive ally depending on the design of the AI agent. In any way the
entertainment value of the game can be increased by using N-Grams because they increase the
replayability of the game and can provide a more individualized experience for the player.
There are two works which deal with using N-Grams in video games by Millington and Laramée.
But there is little information about how well N-Grams work when actually implemented into a
game. This thesis set it's goal to provide such information.
To reach this goal the game Blocky was created and used as an environment to implement the
N-Grams. To provide information about how well the N-Grams implementation works, several
tests were conducted and their results are discussed in the thesis.

Keywords: arti�cial intelligence, N-Grams, video game, prediction, player prediction, sequence
analysis, linguistics
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1 Introduction

1.1 Motivation

The literature I studied for my thesis about player prediction suggests N-Grams are very good
at predicting future moves in beat-em-up and other �ghting games (see Millington 2006, 591).
But there is hardly any information about how often or in which speci�c games N-Grams were
implemented. It's therefore hard to comprehend how well N-Grams really work and how relevant
they are for AI (Arti�cial Intelligence) in games. N-Grams are a technique mostly used in the �eld
of linguistics. They are well established in this �eld and are used for various applications. But the
question remains of how useful and e�cient they work in a real time simulation like a video game.
In �ghting games the player will often stick to the same combination of moves. It might be because
they have proofed to be good or there is a bonus for doing moves in that order. But even subtle
things like how the moves are mapped to the gamepad can lead to the player favoring a certain
combination of moves. So there's a high chance of a player following some sort of pattern.
An AI which doesn't predict and adapt to such a pattern or player behavior in general will always
react with the same moves. This results in a boring and repetitive experience for the player because
he or she won't be challenged. N-Grams enable the AI to predict repetitive actions of a player.
By doing so they also adapt to the player and provide him or her with a more individualized AI
opponent. Such an opponent will be more challenging for the player because the player is forced
to come up with new combinations of moves to win.
N-Grams can also be used in a lot of other scenarios besides �ghting games. Basically N-Grams
can be useful in any scenario where a human player has to choose from a set of possible actions.
However they are not capable of predicting general player behavior, like the players tendency to
play aggressively or defensively.

1.2 Research Question

Millington and Laramée provide pseudo code and code snippets of a N-Gram implementation
(Millington 2006, 583) and (Laramée 2002, 597). But they don't provide a complete implementa-
tion. They also don't present any information about how successful N-Grams were in a video game
environment, although Millington provides some small tests (Millington 2006, 587). There have
been remarks in the literature about memory concerns when using N-Grams, especially when the
number of possible actions is large (see Millington 2006, 587). Also there is hardly any information
about N-Grams being used in a commercial game.
It's therefore elusive how good N-Grams really perform in a state of the art video game. This
thesis provides an implementation of a N-Grams predictor in C# in a video game based on the
Unity engine. That implementaion together with the conducted tests will deliver answers to the
following research questions:

1. How can N-Grams be implemented in a Unity game?

2. How successful are N-Grams at predicting future player actions?

3. Does the memory consumption and time complexity of the algorithm allow its usage in state
of the art computer games?

1.3 Structure of the thesis

This thesis �rst provides some theoretical background on N-Grams in section 2. In the subsection
2.1 the usage of N-Grams research �elds beyond video game AI will be discussed. This is relevant
because N-Grams have a history in the �eld of linguistics and are rather exotic in the �eld of game
AI. N-Grams in the setting of video games will be discussed afterwards in subsection 2.2.
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Section 3 is about the practical implementation done in conjunction with this thesis. The subsec-
tion 3.1 �rst provides the knowledge about Unity which is needed to understand the rest of the
implementation. Subsection 3.2 explains the game design and rules of the game Blocky. In the
next subsection the implementation of the game Blocky will be presented. This game was created
as an environment for the N-Grams implementation. It also serves as a test setting. The N-Grams
implementation itself is explained in subsection 3.4. The code for both the game Blocky and the
N-Grams implementation is displayed in the appendix. This was done because the code is several
pages long and would have disturbed the �ow of reading.
The test set-up and the expected outcome of those tests are described in section 4. This section
also explains the reasons why those tests were done in that way.
Section 5 is about the results of the conducted tests. Subsection 5.1 provides a theoretical analysis
and presents the results of some performance tests. The AI vs AI test results are revealed and
discussed in subsection 5.2 followed by the Human vs AI test results in subsection 5.3.
The �nal conclusion of this thesis can be found in section 6.

2 N-Grams

2.1 N-Grams in other �elds

N-Grams are widely used for linguistics and also have their roots in this �eld of research.
In linguistics the term N-Grams describes the result of splitting a text into fragments. The
fragments get pooled into groups of the size N. Those groups are N-Grams. The fragments can be
words, letters, phonemes or similar chunks. This means what a N-Gram contains is not consistent
across di�erent systems.
An example of a N-Gram with words as fragments is the following:

• serve as the industry 607

• serve as the info 42

• serve as the informal 102

• serve as the information 838

This example was taken from the Google N-Grams Corpus. The number behind the sentence
describes how often this sentence occurs in the corpus (Franz and Brants 2006).
The term N-Gram model describes the technique of modeling sequences by using the statistical
properties of N-Grams. With a N-Gram model it's possible to compute the probability of a se-
quence or the next next member of a sequence. Such statistical models are also called language
models (see Jurafsky and Martin 2008, 93).
A N-Gram with the size 1 is called an unigram and often written as 1-Gram. Same for 2-Grams
which are called bigrams and 3-Grams which are called trigrams and so forth. The term window
size describes how many previous fragments get taken into consideration when predicting a future
fragment. The window size is N-1 for a N-Gram.
N-Gram models are used a lot more in the �eld of linguistics than they are used for game AI. The
research of N-Grams in the �eld of linguistics started to be popular in the 1970s. But the basic
idea of N-Grams was proposed by Markov in 1913 (see Jurafsky and Martin 2008, 129). There
have been a lot of successful applications of N-Grams in various scenarios since then and N-Gram
models are a well established technique nowadays.

N-Grams are most commonly used for statistical natural language processing (NLP). The goal of
NLP is to extract information which can be processed by an AI from natural language or to create
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natural language output from such information. Example applications in this area are: part-of-
speech tagging, natural language generation, word similarity, authorship identi�cation, sentiment
extraction and predictive text input systems for cell phones (see Jurafsky and Martin 2008, 94).
In speech recognition N-Grams are used to handle the noisy input from speech. A lot of sounds
get distorted or sound too similar to other sounds to be discerned correctly. N-Grams help by
calculating what results are most probable.
There has also been successful research about using of N-Grams for handwriting recognition (see
Cavnar and Vayda 1992).
N-grams are also one of the core techniques used for machine translating. They can discern which
results are probable and which aren't (Mariòo et al. 2006).
Spelling correction can also be achieved by using N-Grams. The sentence "He wants to �ne out"
is an example of a semantic error. That error would not be detected by natural language parsing
because "�ne" is valid English word. Analyzing this sentence with a N-Grams model could pro-
vide you with the information the probability that this sentence is valid is way smaller than the
probability of the sentence "He wants to �nd out" (Kukich 1992).
Authorship attribution is another application of N-Grams. The goal of the application is to iden-
tify an author of an anonymous text, or text whose authorship is in doubt or to detect plagiarism.
To achieve this goal �rst a byte-level N-Gram author pro�le of an authors writing is created. The
pro�le is essentially a relatively small set of frequent N-Grams. Two important operations are to
choose the optimal set of N-Grams to be included in the pro�le, and to calculate the similarity
between two pro�les (see Keselj et al. 2003, 256).

Google uses N-Grams for some of the applications mentioned earlier. Through their work they
have been able to accumulate massive amounts of data from public web pages. They used this data
to produce a training corpus of one trillion words and shared that data with the public in 2006
(Franz and Brants 2006). In 2010 Google also released the Google Ngram Viewer which allows the
user to view the usage of a word or a phrase over time. This application uses a data corpus of
500 billion words from 5.2 million books which were digitalized by Google. This data was used
for research in several papers and articles like "Quantitative Analysis of Culture Using Millions of
Digitized Books" (Jon 2010).
Microsoft also made access to their Web N-gram Corpus public. This corpus can be updated as
deemed necessary by the user community and �the corpus makes available various sections of a
web document, speci�cally, the body, title, and anchor text, as separates models as text contents
in these sections are found to possess signi�cantly di�erent statistical properties and therefore are
treated as distinct languages from the language modeling point of view� (Wang et al. 2010).
In 2001 the World Wide Web Consortium (W3C) drafted the "Stochastic Language Models
(N-Gram) Speci�cation". �This document de�nes syntax for representing N-Gram (Markovian)
stochastic grammars within the W3C Speech Interface Framework� (Brown, Kellner, and Raggett
2001). It introduced the <n-gram> tag and standards of how to describe N-Grams in XML.

In biology N-Grams are used for example to analyze whole-genome protein sequences (Ganapathi-
raju et al. 2002) and for Systematic Analysis of Coding and Noncoding DNA Sequences (Mantegna
et al. 1995).

2.2 N-Grams in video games

In contrast to the terminology in the linguistics �eld, in the game AI �eld the term N-Grams
describes the whole technique of analyzing and predicting data. The term "N-Gram predictor"
describes the part of the process which is responsible for calculating the most likely future action.
N-Grams can be classi�ed as an adaptive AI technique. By recognizing, predicting and countering
player behavior they adapt to that player. Such adaptive AI techniques can provide the player
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with an individualized gaming experience, because the AI will adapt to his or her actions. Since
the actions of a human player di�er from one player to the other, the resulting AI behavior will be
uniquely tailored for that speci�c player. The N-Grams predictions could be used not only to beat
but also to support a human player. Since the variety of play styles displayed by human players
is large an AI, which is set up to �t them all, will probably not be as �tting as an adaptive AI in
many situations. The replayability of a game is also improved by integrating a N-Grams AI. A
nonadaptive AI would always do the same moves given the same input from the human player. In
a game which focuses on realism such repetitive behavior can lead to the player losing the illusion
of the game being real. Besides that use case a player could also beat an unadaptive enemy by
trial and error if he or she just tried hard enough.
But such adaptive AI techniques aren't used very often in video games. The main reason for this
is that developers and publishers shun the possibility of unpredictable AI behavior (see Millington
2006, 565-566). It's just saver if every AI behavior can be tested before shipping the game. This
usually can't be done with adaptive AI because the number of possible behaviors is too large.
However it doesn't have to be an either/or decision. Adaptive AI techniques like N-Grams can be
integrated into the game, but be equipped with certain limits. That way the AI is still adaptive,
but only to a certain degree. This would grant the AI a more stable behavior as desired by the
developers and publishers.

Compared to the research and applications in the linguistics �eld the information about N-Grams
in video games is sparse. There are two works which can be considered as main works of this
�eld. The �rst is an article titled "Using N-Gram Statistical Models to Predict Player Behavior"
by Laramée (Laramée 2002, 596-601). The second is a subchapter which Millington dedicated to
N-Grams in the book "Arti�cial Intelligence for Games" (Millington 2006, 582-591). Besides dis-
cussing N-Grams in general they both provide ideas of how they could be implemented, but not
a full implementation. The main di�erence in the two approaches is the way the data is saved
and accessed. Laramée uses a N-dimensional array (see Laramée 2002, 598), Millington uses a
hashtable (see Millington 2006, 585). Laramées approach will be more e�cient if the number of
actions and the order of the N-gram are both low. The bene�t of Millingtons approach is that it's
more �exible concerning the window size and number of actions and that it avoids wasting data
on combinations which are never seen (see Millington 2006, 585).
As mentioned earlier N-Grams are very good at analyzing sequences in a given dataset and at
predicting the most probable next member of that sequence. In video games the recorded actions
of a player is this data. For example a character in a typical RPG (Role Playing Game) could
have the abilities normal attack (N), strong attack (S) and heal self (H). If recorded the last 14
used abilities or actions could be:

NNS NNS NNH NNS NN

If a NPC (Non Player Character) would exhibit such a behavior a human player could easily
recognize the pattern and adapt to it. N-Grams enable the NPC to do the same. The �rst step
in achieving this is analyzing the players' actions with a N-Gram. If this is done with a trigram
on the example data described earlier, the resulting data would be such as seen in table 1.

Trigram sequence T imes the sequence was seen
NNS 3
NNH 1

Table 1: Example analysis of recorded player actions

The example data with the human players actions ends with the two actions "NN". Using the
data in table 1 the NPC could now predict that the probability of the human player doing the
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strong attack ability next is 75% and that the chance of him or her using the heal self ability is
only 25%. The NPC could then react according to this prediction by using a defensive ability
which nulli�es the strong attack. By going through this whole process the NPC adapted to that
speci�c players' behavior. The resulting actions of the NPC depend on the players behavior and
hence will change with it. Therefore the NPC will provide an individualized experience for every
player. The number of reactions is limited by the number of possible combinations the player can
exhibit and the number of reactions the NPC can choose from.
An use case for N-Grams as described above would be a NPC in a RPG or MMORPG (Massivly
Multiplayer Online Role Playing Game). In such games the player is often given the task to kill a
certain number of enemies of the same kind. This task is quite monotonous for the player because
he or she usually found out certain combinations of abilities work best if applied in a certain order
from former similar tasks. So the player ends up with repeating the same skills in the same order
to kill the same kind of NPC. Now if the NPC would adapt to the player as described above, the
player will probably change his or her choice of skills because they get countered. This creates
more diverse and challenging �ghts for the player, which can be more entertaining for the player
than monotonous �ghts.

N-Grams are a technique which require learning. The players' behavior needs to be learned by the
N-Grams predictor for it to be able to predict the future actions of the player. Learning techniques
can be classi�ed into online and o�ine learning techniques (see Millington 2006, 564).
Online learning is performed during the game, for example while the player is �ghting an enemy
NPC. The AI would adapt to the player during the �ght. O�ine learning is done during the
development of a game, often in the Quality Assurance phase of game development (see Ponsen
and Spronck 2004, 7-8). O�ine learning is done by processing data collected from games played
by human players and trying to calculate strategies or parameters from them (Millington 2006,
564).
The bene�t of online learning is that it enables the AI to be very adaptive to a certain player.
The disadvantage of it is that it's hard to debug for the developer because the behavior is hard
to replicate. It can also lead to unwanted results. For example, if the NPC learns that it's good
to run against the wall. Another disadvantage of online learning is that the alogrithms need to
be quite fast, because they need to be performed at runtime. This limits the range of techniques
which can be applied in the game (Millington 2006, 564).
O�ine learning is easier to debug because the behavior of a NPC doesn't change during runtime.
The results from o�ine learning can be tested more easily for the same reason. Since o�ine
learning doesn't happen during runtime, it also allows more time consuming techniques to be
utilized. O�ine learning, however, requires some sort of data corpus to learn. For games this data
corpus would be recored games of human players. Collecting such data can represent quite some
e�ort for a game developer. O�ine learning is also only able to provide an AI which is adapted
to the data provided by the developer. If a player would display an unknown behavior the AI
wouldn't be able to react to it accordingly. Since o�ine learning doesn't adapt to a certain player
during runtime, it won't be able to provide an individualized experience for the player and could
lead to the repetitive behavior, as described in the example earlier (see Millington 2006, 564).
N-Grams can be used for both online and o�ine learning. In linguistics it's common to use o�ine
learning for N-Grams because it's not necessary to adapt them to a speci�c human since the usage
of a certain language doesn't vary much from human to human. In computer games it depends on
the game and what the N-Grams are used for, if online or o�ine learning should be used. Laramée
suggests to use o�ine training with a corpus of games played by di�erent players. He provides a
rule of thumb about how big that corpus should be in the form of the formula seen in formula 1.

C = k ∗MN−1 (1)

In this formula N is the order of the N-Gram, k is a constant between 10 and 25 and M is the
number of possible actions and C is the numbers of games which need to be played. Why the
value of k should be in that range is not explained (see Laramée 2002, 599-600).
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As mentioned earlier the collection of a corpus of games can provide di�culties for a game devel-
oper. This is the case because a corpus of one game can't be used for another game since the games
are di�erent. It's the the same as in the �eld of linguistics where a corpus of one language can't
be used to learn N-Grams about another language because the languages are di�erent. Besides
that it requires some resources to acquire a corpus of games and AI often isn't a top priority in
video games. But there are smoothing algorithms, which deal with the problem of small training
data:

�One of them (smoothing algorithms) ... involves computing the probability that the
next sequence observed, if the training corpus were larger, would be one previously
unseen. This value is then divided by the number of legal sequences that do not
appear in the corpus, and the quotient is assigned to each of them. The probabilities
of sequences that appear in the training corpus are then discounted by a related factor
to bring the total probability mass back to 1.� (Laramée 2002, 600)

When the sequences which should be analyzed are rather large and N-Grams are used for online
learning it can take quite long until the N-Grams predictor is able to predict properly. This is
the case because each sequence will need to be registered several times to get enough data for the
predictor to be work accurately. This will take time and the performance of the predictor will
be poor until then. Hierarchical N-Grams are a technique suggested by Millington to solve this
problem (see Millington 2006, 588).
Depending on the game, it might be required to analyze a longer sequence of the players' actions.
In this case a larger window size would give the N-Grams predictor the potential to reach a better
performance. A smaller window size would potentially not be as good, but would reach its peak
performance faster. Hierarchical N-Grams combine several N-Grams with di�erent window sizes
to work in parallel. This way a N-Gram predictor of a smaller order can make predictions until
the larger order N-Gram predictor has collected enough data (see Millington 2006, 588).
When using hierarchical N-Grams any given sequence data is processed by all used N-Grams. This
is best explained in an example:

ASD AAD AAD SAAASD

A hierarchical 3-Gram, consisting of a 3-Gram, a 2-Gram and a 1-Gram, would register the last
sequence of this sample data of actions as follows: The 3-Gram would register "ASD", the 2-Gram
would register "SD" and the 1-Gram would register "D". This would be done for every sequence.
When the hierarchical 3-Gram is required to make a prediction about a given set of actions, it
will �rst try to use the 3-Grams to predict the most probable future action. If the 3-Gram doesn't
have enough data to make a prediction, because the given set of actions wasn't seen often enough,
the 2-Gram predictor will try to predict the most probable future action. If the 2-Grams fail as
well the 1-Grams predictor will try to predict. If even the 1-Grams fails, it's not possible to make
a prediction with the hierarchical 3-Grams. In this case the AI could make a random guess (see
Millington 2006, 588).
It's up to the game developer to decide how often a sequence should be registered until a N-Gram
of a certain order should make a prediction based on that data. For example it might be better to
let the 2-Gram make a prediction instead of the 3-Gram, if the sequence "SD" was registered �ve
times and the sequence "ASD" was only registered one time. There isn't one correct value about
how often a sequence needs to be registered. It's possible to �nd this value by trial and error.
According to Millington, 3-4 is a good value to start testing with. N-Grams outside of the �eld of
video game AI often use larger values. But considering the consequences of decisions made by a
game AI aren't as sever as those of AIs in other �elds, it's no problem to use smaller values (see
Millington 2006, 588).
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3 N-Grams implementation in the game Blocky

3.1 Unity

The game Blocky was developed with the Unity engine (Unity 2012). Since the focus of this thesis
is the N-Grams technique there would have been no bene�ts in developing the game without such
an engine. This engine was chosen as development environment because it o�ers a lot of the
features needed to implement such a game. The author's previous experience with this engine and
the fact that the Salzburg University of Applied Sciences provided the author with the opportunity
to develop with Unity were in�uencing factors as well.
Unity supports three scripting languages: JavaScript, C#, and a dialect of Python named Boo.
All three are equally fast and can interoperate. All three can make use of .NET libraries which
support databases, regular expressions, XML, networking and so on (Unity 2012). Most of the
game functionality is usually programmed with such scripts. Unity C# scripts de�ne a class
which inherits from MonoBehaviour. This enables the class to de�ne functions like update, Start
and several OnMouse functions. The update function is called before rendering a frame.
Unity provides an integrated Editor which allows the developer to build the game world in a
real time environment. With the editor the game world and the GameObjects can be created. A
GameObject is an object which can have several components, like a Renderer, which is responsible
for drawing the GameObject. The properties of every GameObject in Unity can be viewed and
edited in the Inspector, which is a window in the editor.

3.2 Game rules

In the game Blocky the player has to choose one of �ve di�erent blocks to beat his opponent. Each
block has a di�erent color, can beat two other blocks and can be beaten by two other blocks. The
game is round based and the players pick one block per round. At the end of the round the game
decides the winner based on the rules. The winner of the round will gain one score point. The
goal is to reach a certain amount of score. The player, which reaches this score �rst, wins the
game. It's possible to gain up to two points more than the score needed to win due to the bonus
scores.
The game is controlled either by picking cubes with the mouse, or by pressing the keys a, s, d, f
or g to pick a cube in accordance with the order by which they are displayed in the game.
The game supports two players and a player can be either a human or an AI. The AI can be set
up to pick by random, predict the other players choice with N-Grams and to pick a counter or
to repeat a pattern. The visualization is focused on the human vs AI scenario with the human
playing as player 1.

The game has a few basic rules about which block beats which. The rules are similar to a �ve
way Rock-paper-scissors game and are shown in �gure 1. The arrows describe which other blocks
a block can beat. For example red can beat blue and white, but gets beaten by green and black.
Besides those basic rules there are is a bonus system which creates combos. If a player can beat
his or her opponent with a combo he or she will get a bonus score. Every block has two combo
blocks, which either give one or two extra score. The rules for the bonus system can be seen in
�gure 2. In that �gure the arrows describe how much bonus score can be gained, if the block at
the point of the arrow was the previously picked block. For example, if a player wins a round with
a red block and picked a blue block in the last round, he or she will gain two bonus score.

The appearance of the game can be seen in �gure 3. The appearance was kept very simple since
the focus of this thesis is the N-Grams technique and not the visuals of the game. The �rst rows of
colored squared are the blocks of player 1, the second row are the blocks of player 2. The smaller
blocks on top of the block of player 1 are the visualization of the bonus blocks. They describe
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Figure 1: The basic rules of Blocky

Figure 2: The bonus rules of the combo system

how much bonus score can be gained by winning the current round with that block if one of the
smaller blocks was the previous block. On the right side are two small tables which display the
current score as well as the information about the score needed to win. On the very left are the
game rules which get magni�ed if the player hovers the mouse over them. The text at the very
bottom displays the result of the round and the winner at the end of the game. There are three
buttons at the bottom. The "Next Round" manually starts a new round if the player clicks on it.
The "Auto Mode" button enables the "AutoMode" which means that the player doesn't manually
have to start a new round. If the "AutoMode" is ON the new round will automatically start after
the delay speci�ed with the "Auto Mode Delay" button. The standard value for that delay is one
second. The possible values are: 0, 0.5, 1 and 1.5 seconds.

As mentioned earlier N-Grams are described as being good at predicting moves in �ghting games.
Of course the production of such a game required too much resources and therefore it wasn't
possible to produce an entire �ghting game for this thesis. The mechanics of the game Blocky and
a �ghting game aren't that di�erent however.
In a typical beat em up game there is a certain amount of moves which each have advantages and
disadvantages. A punch, for example, might have a smaller range than a kick but could be faster.
In Blocky there's also a certain amount of moves and the blocks also each have advantages and
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Figure 3: A screenshot of the game Blocky

disadvantages.
In many games there's a reason why a player will repeat his or her actions. Those reasons could
be cooldowns (the time until the ability can be used again), resources needed to complete actions
or simply bonus e�ects like an enemy taking bonus damage if it is hit by Attack2 after being hit
by Attack1. In a beat em up game, for example, the character would do a special attack if the
player managed to land two punches and three kicks. Such game mechanics strongly encourage the
player to learn and repeat the best possible combination of abilities. Blocky tries to simulate such
a mechanic with its bonus system as explained earlier and shown in �gure 2. Without the bonus
system it wouldn't have mattered for a human player what his or her previous choice was. That
might have led to the player just randomly picking blocks which is usually not the way players
play a game.
The choice of which action is chosen can also be in�uenced by how the actions are mapped to the
keyboard or gamepad. For example, if the movement of the character is controlled with the a, s, d
and f keys, the player is more likely to use an ability that is mapped to r than one that is mapped
to p. That is the case because r is nearer to the movement keys than p. To simulate such e�ects
the blocks are ordered in a certain order on the screen and have keyboard keys assigned to them
in accordance of their appearance on the screen.
The game Blocky was developed solely for the purpose of testing the N-Grams technique imple-
mented for this thesis.

3.3 Implementation of the game Blocky

The game Blocky was developed with Unity 3.5. The whole project can be found on GitHub under
following URL: https://github.com/mwebi/Blocky.

The blocks are simple cubes which are a standard object of Unity. Their functionality gets de�ned
in the Cube.cs script. This script reacts to mouse and keyboard controls for the cube and allows
the cube to be selected by the player.
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A block can be of a certain CubeType. CubeType is an Enum de�ned in the Cube.cs script as well.
Possible CubeTypes are red, blue, green, black, white and none. The script allows the developer
to set the CubeType for a particular cube in the Unity Inspector through the public �eld cubeType.

A lot of the gameplay and game logic is done in the GameLogic.cs script as seen in section C of
the appendix. This script has several properties, which are mostly references to other GameOb-
jects, which get set in the Start function or in the Unity Inspector. This script is attached to the
GameLogic GameObject, which doesn't have any visual representation.
In the update loop the script checks �rst if the round or the game has already ended. If that is not
the case the script will let the AI pick its cube provided it's the turn of the AI to pick one. After
that the script checks if both players picked a cube. If that is the case the winner is determined,
the scores are updated and the game checks if a player reached the score required to win the game.
The function determineWinner determines the winner by using the winLooseMatrix array. This
two dimensional integer array makes it possible to look up the result for any given input. The
input are the two CubeTypes, which the players picked, casted to integers. The output is an
integer with the value 0, 1 or 2 which represents the results draw, player 1 won and player 2 won.
This approach of determining the winner seemed preferable to a huge switch statement.

As mentioned earlier the game has two players which can be either human or an AI. The players
are represented with a GameObjects, called player 1 and player 2, which each have the script Play-
erScript.cs attached to them. That �le is displayed in section B of the appendix. The GameObject
are the parent of several other GameObjects, which consist mainly of the GameObjects, which
represent the GUI text. The PlayerScript itself has several properties for the same purpose as the
gamelogic script. One of those properties is ngramPredictor of the type NgramPredictor, which is
as the name suggests the N-Gram predictor.
The Start function only initializes the ngramPredictor if the player is a N-Grams AI. The function
pickCubeByAI handles by which method the AI will pick its cube depending on how the AI is set
up to act. The random AI will simply decide on a cube to pick with the Random.Range function
provided by Unity. The pattern AI will continue to pick cubes in the order red, blue, green, black
and �nally white. The N-Grams AI will use the ngramPredictor to predict the most likely pick
of the other player. That estimation is then passed on to the pickCounterCube function which
returns one of the two cubes which will beat the given cube. If the ngramPredictor returns Cu-
beType none it means that there couldn't be any estimation made and so the N-Grams AI will
randomly choose a CubeType to pick.
The PlayerScript.cs also takes care of storing and sorting the last actions of the player. Those
actions are stored in the previousCubePicks array of the type CubeType. If a player picks, for
example, the red block, this action is stored by setting the last member of the Array to CubeType
red. This data is used for registering the players action with the N-Grams predictor. It is only
used if the enemy is actually using a N-Grams predictor.

3.4 Details of the N-Grams implementation

The N-Grams implementation done in Blocky is based on the pseudo code provided by Millington
(see Millington 2006, 583). It can handle any window size greater than 1. It uses online learning,
which means that the N-Gram predictor adapts to the current player. No data is stored perma-
nently, the N-Gram predictor starts every game without any data about the current or former
opponent.
The N-Grams implementation is done in the NGram.cs �le and can be seen in the appendix in
listing 1. This �le de�nes the KeyDataRecord struct and the NGramPredictor class.
The two most important functions in the NGramPredictor class are registerSequence and getMost-
Likely. The main data object is the hashtable data. It stores a KeyDataRecord for every sequence
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of actions which gets registered.
The KeyDataRecord struct stores the total times a sequence was registered. It also counts how
often which action was taken by the player after that sequence. This is stored in the counts
hashtable, which takes the CubeTypes as key and has ints as value. Figure 4 shows the contents
of the data hashtable during the game.

Figure 4: The contents of the data hashtable during the game

The registerSequence function has one parameter called "actions", which is a CubeType array.
This array contains the last N, where N is the window size + 1, actions of the player which get an-
alyzed. This array is split up into the current action and a smaller array with the previous actions.
The array with the previous actions serves as key for the data hashtable. The hashtable stores a
KeyDataRecord for each key. This KeyDataRecord in turn has a hashtable counts. The current
action of the player is used as the key for the counts hashtable. For registering the sequence the
value of this key and the total counter of the KeyDataRecord are simply incremented.
A closer look on the registerSequence function reveals that it was necessary to use a string as the
key of the data hashtable instead of the array itself. This string is created by the names of the
actions. For example the string for the actions blue and red would be "bluered". It was necessary
to use such strings as keys instead of the arrays themselves, because the hashtable would register
arrays with the same content as di�erent keys. So two arrays which both contain red and blue
as actions in the same order would get registered as two di�erent keys because they are seen as
a di�erent object by the hashtable. This could have been prevented by allocating an array for
every possible combination of actions before registering anything. But this approach doesn't scale
well in situations where most actions never occur. Besides that it's generally presumed to be bad
practice to use strings for such use in video games, so this detail would better be reworked for an
implementation in a commercial game.
The getMostLikely function has also one parameter called "actions", which is also an a CubeType
array. This array however is exactly as large as the window size. It contains the actions of the
player to which the most likely succeeding action should be found. This is done by �rst creating a
string out of the actions array again. This string is used to access the data hashtable to retrieve the
KeyDataRecord for this sequence. The counts hashtable of that KeyDataRecord is then looped
through to �nd the action with the highest value. The value represents how often that action was
performed by the player. The highest value is therefore the most likely action, which the player
will perform. In the end that action is returned to the PlayerScript which called the getMostLikely
function.
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4 Test set-up and expectations

The performed tests can be classi�ed into two categories, "AI vs AI" and "AI vs human". The
AI vs AI category in turn is divided in several tests. The N-Grams based AI will be set up to
play against a random AI, a pattern based AI and another N-Grams based AI. Those tests will be
mainly performed to determine if the implementation works correctly. They also serve to assess
the performance of the N-Grams algorithm and how long it takes to make a prediction. The
N-Grams AI is set up to use trigrams in all cases. The AIs will play 100 games to a score of 250
for every scenario.
In the N-Grams vs random AI scenario the two AIs should roughly perform equally good. The
random AI should choose actions by random and the N-Grams AI shouldn't be able to perform
better than the random AI, because there is no pattern which the N-Grams AI could predict.
Same applies to the N-Grams vs N-Grams scenario. The AIs should start by making random
decisions because they have no data for the opponents last moves. Those �rst random decisions
of each AI would be the basis of the predictions the other AI would make. Since the data which
the predictions are based on is random, the predicted action would be random as well. This cycle
would continue until the end of the game. It should be random which one of the N-Grams AIs
wins the game.
The pattern AI vs N-Grams AI should proof that the N-Grams implementation is actually able
to successfully predict player behavior. The pattern AI presents the best case scenario for the
N-Grams AI. It's a player which behavior follows a pattern for every action. In the worst case the
N-Grams AI should be able to win every turn after the pattern was completed for the �rst time.
In the best case the N-Grams AI would win every round, if it's able to win the rounds until the
pattern is repeated by choosing random.

Provided that the N-Grams implementation succeeds in the previously described tests, the AI
vs human tests should reveal if and why a N-Grams AI is considered a better opponent than a
random AI by human players. It will also reveal how successful the N-Grams AI is against human
players.
Several participants will be set up to play one game up to a score of 250 against a random AI
and a N-Grams AI. The rules of the game and the controls and the interface will be explained to
them. They will not know which kind of AI they are playing against. Half of the participants will
play against the random AI �rst and the N-Grams AI second, the other half against the N-Grams
AI �rst and the random AI second. The participants will also not be told that one of those AIs
is trying to predict their behavior. The participants will be observed during the game and an
observer will �ll out the form seen in �gure 5 for every participant.
The observer will ask the participants the two questions written at the bottom of the form. The
�rst question is worded that way because the goal of the question is to �nd out which AI the
participants prefer. A question like "Which AI predicted your actions better" would only yield
information about what AI the participant thinks predicted better, but it wouldn't actually give
information about the participants preference. Valid answers for the �rst questions are: random,
N-Grams or draw. The second question tries to get further information about the participants
preference. This information might reveal if the participants actually enjoy playing against a N-
Grams AI.
The bonus system of Blocky should lead to people preferring certain combinations of blocks. This
strategy will provide them with an advantage over the random AI since it doesn't focus on bonus
score. But the participants might abandon this strategy if the N-Grams AI is able to detect and
counter it.
If the participants switch to random choices, the N-Grams AI should still be able to �nd some
patterns in their behavior. Literature suggests that humans tend to prefer certain sequences to
others when tasked to produce random sequences (Gri�ths and Tenenbaum 2001).
The key alignment and the order of the blocks might also in�uence the participants. This might
also lead to patterns in their behavior which the N-Grams AI can predict.
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Figure 5: Test form �lled out for every participant by the observer

If a human participant is bored by the game and / or decides to play on automode with 0 seconds
delay, that might lead to the participant just pressing keys on random. But for the reasons stated
earlier this behavior should be countered by the N-Grams AI.

5 Discussion of the N-Grams implementation and the test

results

The data analyzed in this section can be found in the appendix in section D.

5.1 Performance

As discussed earlier there are several hashtables used in the implementation. As long as those
hashtables aren't full, retrieving and assigning hashes are constant time processes (Millington
2006, 585). With only accessing the hashtables the time complexity of the function would be O(1).
But it's necessary to split the actions sequence into a key and a value for the hashtable. This
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is done by looping through the actions array and copying the members. This leave us with a
time complexity of O(n) for the registerActions function, where n is the window size used for the
N-Grams predictor.
In the getMostLikely function we have to loop through all possible actions to �nd the best one.
Besides that procedure there's nothing done which is relevant for the time complexity. The get-
MostLikely function is therefore O(m) in time where m is the number of possible actions.
It would be possible to swap the time complexities of those two functions by sorting the counts
hashtable by value. But since in most use cases the registerActions function is called more often
than the registerActions, this isn't necessary (Millington 2006, 585).
The memory complexity of the N-Grams predictor is O(mn), where n is the nValue and m is the
number of actions. The nValue is the window size of the N-Grams predictor plus one (Millington
2006, 585).

Some tests were performed to measure the performance of the N-Grams predictor in practice. The
average time was measured by taking the time of how long the registerActions and the getMost-
Likely take to �nish from the �rst to the last line. In all tests the N-Grams AI played against
the pattern AI. That way it was possible to get results for the getMostLikely function with higher
windows sizes. Using a random AI would have yielded no results because the chance of meeting
a sequence, which can be predicted, is very slim when using larger window sizes. The hardware
speci�cations, on which those tests were preformed, are as follows. CPU: AMD Phenom II X6
1090T, Memory: DDR3-RAM KIT 8 GB 1333 MHz CL7, GPU AMD Radeon HD6950. The
results can be seen in table 5.
With window size of 2 the average time to register a sequence of actions and to predict one was
both roughly 0.02 milliseconds. A frame rate of 60 FPS (Frames Per Second) is considered to be
good for a video game. With that frame rate a video game has 16.67 milliseconds to update and
draw the game per frame. Considering this, the 0.02 milliseconds the N-Grams predictor needs for
its operations are very good. Therefore it can be concluded that the implementation as discussed
earlier could be used in a state of the art video game.
The average times increased to around 0.1 milliseconds with a window size of 20. This is still
suitable for state of the art video games, but it limits the use cases. For example, it wouldn't be
possible to equip a larger number of NPCs with such a N-Gram predictor, but it would still be
possible for a small number of special NPCs.
With a window size of 200 the average times went up to roughly 1.1 milliseconds. Since the N-
Grams predictor would only be a small part of a whole game this value might be too large to be
used in a state of the art video game. On the other hand it's questionable in which scenario an
AI would need to predict an action based on the previous 200 actions.
The built in pro�ler tool of Unity was used to con�rm the results of the test scenario with window
size 2. The screenshots of the pro�ler can been seen in �gure 7 and 6 in the appendix. The pro�ler
suggests the functions take more time to complete on the �rst glance. It suggests a time of 0.07
milliseconds for both functions. But if studied in detail it's evident that 0.05 respectively 0.06
milliseconds are taken up by the parsing of the actions array to a string format. That procedure
also produces some memory allocations. This means that the N-Grams predictor on its own per-
forms well, but that the parsing should not be done if this implementation were to be used in a
state of the art game. Both, the wasted time and the allocations, are considerably large. The
memory allocations are undesirable in a video game, because they are done during the runtime
of the game. This would trigger the garbage collection at some point, which in turn will cause a
small stutter in the game.

5.2 AI vs AI

The N-Grams AI vs pattern AI tests generated results as expected. The data can be viewed
in table 2 in the appendix. The N-Grams AI won every game and detected the pattern of its
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opponent every time. As expected the N-Grams AI never lost more than 6 rounds in one game.
In some games it won without loosing a single round. Those results proof that the N-Grams
implementation, provided in this thesis, is in fact able to predict player behavior.
The N-Grams vs N-Grams scenario also turned out as expected. The two N-Grams AIs performed
roughly equally good. As displayed in table 4 the N-Grams AI 1 won 44 games where as N-Grams
AI 2 won 56 games. This result might seem a bit unbalanced but should be viewed in combination
with the scores. The average scores of the two AIs are very similar. The di�erence would decrease
even further if more games were played.
Finally the N-Grams vs random AI tests didn't turn out as expected. As shown in table 3 the ran-
dom AI won with 71 against 29 games. The rounds of the N-Grams and the random AI are nearly
identical. The reason why the random AI won more games is that it was able to achieve roughly
20 more bonus score on average per game than the N-Grams AI. The N-Grams prediction worked
nevertheless, it just didn't have any pattern it could predict. Apparently some part of the logic of
the AI, implemented in the playerScript.cs �le, causes this result. It could be the part in the pick-
CounterCube function, where the N-Grams AI randoms, which of the two countering cubes to pick.

5.3 Human vs AI

The data analyzed in this subsection can be found in the appendix in section E. 16 people were
willing to participate in the "Human vs AI" test. All of them were students of the University
of Applied Sciences Salzburg. Some of the participants were at �rst a bit overwhelmed with the
rules of Blocky. It usually took them some time to �gure out which block beats which and the
rules about the bonus system. Some where trying hard to analyze the opponent AI because they
assumed that their opponent will go for some kind of strategy. That often led to those players
being especially frustrated with the random AI since it didn't display any pattern which could
have been detected. A few participants also became bored of the game at some point. This can
be attributed to the rather not exciting visualization of the game and the size of the score which
needed to be reached to win the game. Some participants, like participant #15, seemed to haven't
given the rules, especially the bonus system, much thought. That particular participant claimed
the chance of winning in the game is 50%, which is not the case because of the bonus system
mechanics.
Millington claims that a N-Grams AI can provide an unbeatable opponent in combat games (see
Millington 2006, 583). The tests conducted with human players underpin this statement. Out of
the 16 participants no one was able to beat the N-Grams AI. The random AI was beaten by 12
participants. 8 of the participants played against the random AI �rst and the N-Grams AI second.
The results show that there is no di�erence in which order the participants encountered the AIs.
The average time the players took to �nish their match against the random AI is 8 minutes and 4
seconds. The average time of the matches against the N-Grams AI was 12 minutes and 1 second.
The longer average time against the N-Grams AI can be attributed mainly to participant #2, who
played over 53 minutes against the N-Grams AI.
The N-Grams AI not only won every game, but it also achieved an average score of 250,63, which
is higher than the average score of 206,31, achieved by the random AI. The N-Grams AI was also
able to reach a higher bonus score than the random AI. When playing against the N-Grams AI
the participants average scores were noticeable lower than when they played against the random
AI.
Without the bonus system of Blocky the random AI would probably have won around half of the
games. In the 4 games which were won by the random AI the participants had a low bonus score
amount. Since the random AI doesn't utilize bonus combos, it lost against players who �gured
the bonus system out and used the bonus combinations.
Best example for this is participant #3. In that case the random AI actually won more rounds
than the participant, but because the participant utilized the bonus system he won nevertheless.
In the debrie�ng that participant stated that he tried to use the same tactic against the N-Grams
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AI but failed.
As written earlier participant #2 played over 53 minutes against the N-Grams AI. According to
him, he tried his very best to predict his opponent and to outmaneuver him. His scores are below
average which suggests that this strategy did not work. This indicates that even if a human player
puts a lot of e�ort into it, it's hard to beat the N-Grams AI.
Participant #13 achieved the lowest scores of all participants against the N-Grams AI. This par-
ticular participant played against the random AI �rst and was frustrated because he couldn't
�gure out the system by which the AI chose its blocks. He became frustrated by this experience
and ended the game against the random AI by pressing random keys. That way he lowered the
chances of winning against the random AI because he didn't use the bonus system and in the end
lost with 226 against 250 overall score. In his second game he continued to press buttons without
any strategy. He repeated them in the same order. The N-Grams AI recognized this pattern and
countered it very successfully.
The closest to beating the N-Grams AI was participant #18 with an overall score of 225 points.
He played quite slowly and tried to play by random. He picked the blocks by pushing keys on the
keyboard, but used only his right hand for the �rst half of the game. That lead to certain patterns
the N-Grams AI was able to detect and counter. After reaching around 150 overall score however
he switched to pressing keys with two hands. This changed the combinations of blocks he chose
signi�cantly. The N-Grams AI didn't performed well until the counts for the new patterns were
higher than the counts for the old patterns.
Considering this data one could conclude that the N-Grams AI in the game Blocky is in fact
unbeatable. However this is not the case. Due to the bonus system a human player can beat
the N-Grams AI. Theoretically he or she could play half of the rounds in a way which would let
the N-Grams AI win every round without gaining any bonus score. He or she could then switch
his pattern so that the N-Grams AI would predict his behavior in the wrong way because it has
been fed with data from earlier. That would lead to the N-Grams loosing for approximately the
amount of round which have been played. If that second pattern applied by the human player
grants him bonus points he or she should be able to win the game because the N-Grams AI didn't
obtain those bonus points. However, if the goal of the developer was to create an unbeatable AI,
this strategy could be countered. The AI could simply be enabled to detect long streaks of round
losses and react by changing its decisions.
To the question "Which AI did you feel was better?", 9 participants answered that the N-Grams
AI was better, only 3 answered that they felt the random AI was better and the other 4 thought
the AIs were equal.
In the follow-up question the participants were asked why they considered that AI better. They
delivered a variety of answers.
Out of the 4 participants who answered that they consider the AIs equally good, 2 reasoned that
both didn't follow any recognizable pattern. Participant #9 argued that both AIs were able to
recognize his strategy and countered it. Participant #14 reasoned that the N-Grams AI was able
to recognize and counter his patterns, but that he enjoyed playing against the random AI more.
Participant #15 reckoned that the random AI was more predicable than the N-Grams AI and that
the chance of winning in the game is 50% anyway.
Participants #4, #12 and #15 both deemed the random AI better. Participants #4 reasoned
that the random AI followed a pattern, which was e�ective against his pattern. Participants #12
doesn't like to loose and therefore preferred that random AI because he was able to win against
it.
Out of the 10 participants which opted the N-Grams as the better AI, the participants #3, #5,
#6, #7, #8, #10, #11 and #18 all thought that the N-Grams AI recognized and countered their
strategy. They valued this feature of the AI. Participant #5 stated that he tried his best to not
play by any system, which could be detected but felt like the AI knew what he would pick nev-
ertheless. Participant #10 and #13 valued the simple fact that the AI won as factor why they
consider it to be better.
Considering the results as described above, it can be concluded that the majority of the partici-
pants appreciate a N-Grams AI, because it was able to predict and counter their strategies. Some
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players, however, prefer to win and not be challenged that hard. So an unbeatable AI might not be
the most fun opponent to play against. In a commercial game, which usually has the goal to enter-
tain the player, it might be best to balance the AI to be challenging but not overwhelmingly strong.

6 Conclusion

N-Grams have been used a lot in the �eld of linguistics, but aren't employed often in video
games. Game developers often prefer techniques like decision trees and �nite state machines, when
developing an AI for a video game. Such techniques give the AI a variety of behaviors, without
the danger of the player experiencing any unforeseen AI behaviors, because the AI doesn't adapt
to the current player. But adaptive AI techniques, like N-Grams, can provide additional depth to
the AI, challenge the player harder and give him or her an unique experience.
The answers to the research questions from subsection 1.2 can be summarized as follows.

• How can N-Grams be implemented in a Unity game?

This question was answered by providing the code of the N-Grams predictor implementation in
the appendix in listing 1 and by discussing that code in subsection 3.4. Furthermore some of the
core parts of the game code are listed in the appendix in sections B and C. The whole Unity
project is available on GitHub: https://github.com/mwebi/Blocky. Regarding this information
it can be said that N-Grams predictor was successfully implemented and then integrated into the
Unity game Blocky.
One improvement, which could be made to the implementation, would be the usage of the bonus
system by the AI. This could be done by checking which of the two cubes, that counter the pre-
dicted cube, grant a bonus score. Another improvement would be to not use strings as keys for
the data hashtable.

• How successful are N-Grams at predicting future player actions?

The tests conducted in both subsection 5.2 and 5.3 proofed that N-Grams are very successful at
predicting future player actions in a video game. The N-Grams vs pattern AI tests proofed that
the N-Grams implementation provided actually works in the game. The N-Grams AI was able to
recognize, predict and counter the repeating pattern provided by its opponent. The tests where
human players played against the N-Grams AI yielded the clear result that the N-Grams AI is
also able to recognize, predict and counter human behavior. The N-Grams AI won against all 16
participants.
This raises the question if such an AI is really desirable. Some test participants were frustrated
because they lost, some even preferred playing a random AI solely because they could win against
it. On the other hand many participants appreciated that the N-Grams AI outmaneuvered them
and that this behavior gave the AI a certain edge.
It might be better to enable the AI to predict the behavior but not use that knowledge to counter
the human player without leaving him or her a chance to win. For example, in the game Blocky
it would be possible to reward the player for coming up with a strategy or for guessing what the
opponent will pick. In such cases the AI could just let the human player win. The AI could also
be adjusted to only beat the human player when she or he is ahead with the score.

• Does the memory consumption and time complexity of the algorithm allow its usage in state
of the art computer games?
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Subsection 5.1 presented the results of the performance tests. The tests were conducted in a state
of the art environment, a game in the Unity engine, on a modern end user hardware. The results
of the performance tests and the �eld tests with human players proofed that N-Grams can be used
in a state of the art computer game.
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A NGram.cs

Listing 1: NGram.cs

0 using UnityEngine;

1 using System.Collections;

2

3 public struct KeyDataRecord{

4 // Holds the counts for each successor action counts

5 public Hashtable counts;

6

7 // Holds the total number of times the window has been seen

8 public int total;// = 0;

9 }

10

11 public class NGramPredictor{

12

13 // Holds the frequency data

14 Hashtable data;

15

16 // nValue is the size of the window + 1

17 public int nValue = 3;

18

19 public string playerThisNgramPredictorBelongsTo = "";

20 public bool doDebugLogs;

21

22 public void Start (){

23 data = new Hashtable ();

24 }

25

26 private string returnStringName(CubeType [] actionsArray ){

27 string name = "";

28 for (int i = 0; i < actionsArray.Length; i++)

29 name += actionsArray[i]. ToString ();

30 return name;

31 }

32

33 // Registers a set of actions with predictor , updating

34 // its data. We assume actions has exactly nValue

35 // elements in it.

36 public void registerSequence(CubeType [] actions)

37 {

38 if(actions.Length != nValue ){

39 Debug.Log("actions.Length != nValue");

40 Debug.Break ();

41 }

42

43 // Split the sequence into a key and value for the Hashtable

44 CubeType [] previousActions = new CubeType[nValue -1];

45 for (int i = 0; i < nValue -1; i++)

46 {

47 previousActions[i] = actions[i];

48 }

49
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50 CubeType currentAction = actions[nValue -1];

51

52 string keyStringOfArray = returnStringName(previousActions );

53 if(doDebugLogs)

54 Debug.Log(playerThisNgramPredictorBelongsTo +

55 "registered sequence: " + keyStringOfArray +

56 " + " + currentAction );

57

58 if (!data.ContainsKey(keyStringOfArray ))

59 {

60 data[keyStringOfArray] = new KeyDataRecord ();

61 }

62

63 // Get the correct data structure

64 KeyDataRecord keyData = (KeyDataRecord)data[keyStringOfArray ];

65

66 if (keyData.counts == null)

67 keyData.counts = new Hashtable ();

68

69 // Make sure we have a record for the follow on value

70 if(! keyData.counts.ContainsKey(currentAction ))

71 keyData.counts[currentAction] = 0;

72

73 // Add to the total , and to the count for the value

74 keyData.counts[currentAction] = (int)keyData.counts[currentAction] + 1;

75 keyData.total += 1;

76

77 data[keyStringOfArray] = keyData;

78 }

79

80 // Gets the next action most likely from the given one.

81 // We assume actions has nValue - 1 elements in it (i.e.

82 // the size of the window ).

83 public CubeType getMostLikely(CubeType [] actions)

84 {

85 if(actions.Length != nValue -1){

86 Debug.Log("actions.Length != nValue");

87 Debug.Break ();

88 }

89

90 string keyStringOfArray = returnStringName(actions );

91

92 //if we don't have data for the actions , we cant predict

93 if (data[keyStringOfArray] == null){

94 if(doDebugLogs)

95 Debug.Log(playerThisNgramPredictorBelongsTo +

96 ": Prediction fail: no data for this sequence: " +

97 keyStringOfArray );

98 return CubeType.none;

99 }

100 if(doDebugLogs)

101 Debug.Log(playerThisNgramPredictorBelongsTo +

102 " predicting sequence: " + keyStringOfArray );

103
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104 // Get the key data

105 KeyDataRecord keyData = (KeyDataRecord)data[keyStringOfArray ];

106

107 // Find the highest probability

108 int highestValue = 0;

109 CubeType bestAction = CubeType.none;

110

111 // Get the list of actions in the store

112 ICollection possibleActions = keyData.counts.Keys;

113

114 // Go through each

115 foreach(CubeType action in possibleActions ){

116 // Check for the highest value

117 if ((int)keyData.counts[action] > highestValue)

118 {

119 // Store the action

120 highestValue = (int)keyData.counts[action ];

121 bestAction = action;

122 }

123 }

124

125 return bestAction;

126 }

127

128 }

B PlayerScript.cs

Listing 2: PlayerScript.cs

0 using UnityEngine;

1 using System.Collections;

2

3 public class PlayerScript : MonoBehaviour {

4

5 public CubeType pickedCube;

6 public CubeType previousCube = CubeType.none;

7 public bool hasPickedACube = false;

8 public bool isAI = false;

9 public bool isAINgram = false;

10 public bool isAIPattern = false;

11 public bool isAIRandom = false;

12 public bool doDebugLogs = false;

13

14 public int NgramWindowSize = 2;

15

16 gamelogic gameLogicScript;

17

18 public int roundsWon = 0;

19 public int OverallScore = 0;

20 public int BonusScore = 0;

21

22 public GameObject RoundsWonTextNumber;

23 public GameObject ScoreTextNumber;
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24 public GameObject BonusScoreTextNumber;

25

26 GameObject CurrentPrevCube;

27 public GameObject PrevCubeRed;

28 public GameObject PrevCubeBlue;

29 public GameObject PrevCubeGreen;

30 public GameObject PrevCubeBlack;

31 public GameObject PrevCubeWhite;

32

33 public CubeType [] previousCubePicks; //[0] is oldest , [ARRAYSIZE -1] newest

34

35 public NGramPredictor ngramPredictor;

36 private PlayerScript otherPlayerScript;

37 // Use this for initialization

38 void Start () {

39 previousCube = CubeType.none;

40 gameLogicScript = GameObject.Find("GameLogic")

41 .GetComponent <gamelogic >();

42

43

44 if(isAINgram ){

45 ngramPredictor = new NGramPredictor ();

46 ngramPredictor.Start ();

47 ngramPredictor.nValue = NgramWindowSize + 1;

48 ngramPredictor.doDebugLogs = doDebugLogs;

49 ngramPredictor.playerThisNgramPredictorBelongsTo

50 = this.gameObject.ToString ();

51 }

52

53 otherPlayerScript = gameLogicScript.returnOtherPlayer(this);

54 // track previous actions if other player uses ngrams

55 if(otherPlayerScript.isAINgram ){

56 previousCubePicks = new CubeType[

57 otherPlayerScript.NgramWindowSize + 1];

58

59 for (int i = 0; i < previousCubePicks.Length; i++)

60 previousCubePicks[i] = CubeType.none;

61 }

62 }

63

64 public void updateScoreText (){

65 RoundsWonTextNumber.GetComponent <TextMesh >(). text

66 = roundsWon.ToString ();

67 ScoreTextNumber.GetComponent <TextMesh >(). text

68 = OverallScore.ToString ();

69 BonusScoreTextNumber.GetComponent <TextMesh >(). text

70 = BonusScore.ToString ();

71 }

72

73 public void Reset (){

74 updatePreviousCubePicks ();

75 hasPickedACube = false;

76

77 previousCube = pickedCube;
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78 instantiatePrevCube ();

79 pickedCube = CubeType.none;

80 }

81

82 void instantiatePrevCube (){

83 Destroy(CurrentPrevCube );

84 switch(pickedCube) {

85 case CubeType.red:

86 CurrentPrevCube = Instantiate(PrevCubeRed) as GameObject;

87 break;

88

89 case CubeType.blue:

90 CurrentPrevCube = Instantiate(PrevCubeBlue) as GameObject;

91 break;

92

93 case CubeType.green:

94 CurrentPrevCube = Instantiate(PrevCubeGreen) as GameObject;

95 break;

96

97 case CubeType.black:

98 CurrentPrevCube = Instantiate(PrevCubeBlack) as GameObject;

99 break;

100

101 case CubeType.white:

102 CurrentPrevCube = Instantiate(PrevCubeWhite) as GameObject;

103 break;

104

105 default:

106 Debug.Log("default called , something went wrong");

107 Debug.Break ();

108 break;

109 }

110 }

111 public void pickCubeByAI () {

112 if(isAINgram)

113 pickCubeByNGramAI ();

114 else if(isAIPattern)

115 pickCubeByPattern ();

116 else if(isAIRandom)

117 pickCubeByRandom ();

118 }

119

120 private void pickCubeByRandom () {

121

122 pickedCube = (CubeType)Random.Range(0, 5);

123 if(doDebugLogs)

124 Debug.Log(transform.gameObject.ToString () +

125 " picked Cube By Random: " + pickedCube );

126

127 // updatePreviousCubePicks(pickedCube );

128 hasPickedACube = true;

129 }

130

131 private void pickCubeByPattern () {
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132

133 switch(previousCube) {

134 case CubeType.red:

135 pickedCube = CubeType.blue;

136 break;

137 case CubeType.blue:

138 pickedCube = CubeType.green;

139 break;

140 case CubeType.green:

141 pickedCube = CubeType.black;

142 break;

143 case CubeType.black:

144 pickedCube = CubeType.white;

145 break;

146 case CubeType.white:

147 pickedCube = CubeType.red;

148 break;

149 case CubeType.none:

150 pickedCube = CubeType.red;

151 break;

152 default:

153 Debug.Log("default called , something went wrong");

154 Debug.Break ();

155 pickedCube = CubeType.red;

156 break;

157 }

158 Debug.Log(transform.gameObject.ToString ()

159 + " picked Cube By Pattern: " + pickedCube );

160

161 // updatePreviousCubePicks(pickedCube );

162 hasPickedACube = true;

163 }

164

165 CubeType [] getOtherPlayersLastActions ()

166 {

167 // lastactions are the previous actions without the current one

168 CubeType [] lastActions = new CubeType[ngramPredictor.nValue - 1];

169

170 for (int i = 0; i < ngramPredictor.nValue - 1; i++)

171 lastActions[i] = otherPlayerScript.previousCubePicks[i+1];

172

173 return lastActions;

174 }

175

176 private void pickCubeByNGramAI () {

177 CubeType predictedOtherPlayerPick = ngramPredictor

178 .getMostLikely(getOtherPlayersLastActions ());

179 if(doDebugLogs)

180 Debug.Log(transform.gameObject.ToString () + " predicted: "

181 + predictedOtherPlayerPick );

182

183 //if no prediction was made , make a random guess

184 if(predictedOtherPlayerPick == CubeType.none){

185 pickedCube = (CubeType)Random.Range(0, 5);
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186 if(doDebugLogs)

187 Debug.Log(transform.gameObject.ToString ()

188 + " picked Cube by Ngram , fallback to random: " + pickedCube );

189 }

190 else{

191 pickedCube = pickCounterCube(predictedOtherPlayerPick );

192 if(doDebugLogs)

193 Debug.Log(transform.gameObject.ToString ()

194 + " picked Cube by Ngram , counter picked: " + pickedCube );

195 }

196

197 // updatePreviousCubePicks(pickedCube );

198 hasPickedACube = true;

199 }

200 public CubeType pickCounterCube (CubeType pickToCounter ){

201 switch(pickToCounter) {

202 case CubeType.red:

203 if(Random.Range(0, 1) == 0)

204 return CubeType.black;

205 else

206 return CubeType.green;

207 case CubeType.blue:

208 if(Random.Range(0, 1) == 0)

209 return CubeType.red;

210 else

211 return CubeType.white;

212 case CubeType.green:

213 if(Random.Range(0, 1) == 0)

214 return CubeType.blue;

215 else

216 return CubeType.black;

217 case CubeType.black:

218 if(Random.Range(0, 1) == 0)

219 return CubeType.blue;

220 else

221 return CubeType.white;

222 case CubeType.white:

223 if(Random.Range(0, 1) == 0)

224 return CubeType.green;

225 else

226 return CubeType.red;

227 default:

228 Debug.Log("default called , something went wrong");

229 Debug.Break ();

230 return CubeType.none;

231 }

232 }

233 public void pickedACube(CubeType pickedType)

234 {

235 pickedCube = pickedType;

236 // updatePreviousCubePicks(pickedCube );

237 hasPickedACube = true;

238 }

239
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240 public void updatePreviousCubePicks ()

241 {

242 //dont do anything if other player doesnt use ngrams

243 if(! otherPlayerScript.isAINgram)

244 return;

245

246 // resort array

247 for (int i = 0; i < previousCubePicks.Length - 1; i++)

248 previousCubePicks[i] = previousCubePicks[i + 1];

249

250 // previousCubePicks [0] = previousCubePicks [1];

251 // previousCubePicks [1] = previousCubePicks [2];

252

253 //save current pick

254 previousCubePicks[previousCubePicks.Length - 1] = pickedCube;

255 }

256 }

C GameLogic.cs

Listing 3: GameLogic.cs

0 using UnityEngine;

1 using System.Collections;

2

3 public enum RoundResult

4 {

5 player1Won ,

6 player2Won ,

7 draw

8 }

9

10 public class gamelogic : MonoBehaviour {

11

12 GameObject player1;

13 PlayerScript player1Script;

14 public GameObject [] player1Blocks = new GameObject [5];

15

16 GameObject player2;

17 PlayerScript player2Script;

18 public GameObject [] player2Blocks = new GameObject [5];

19

20 public GameObject activePlayer;

21

22 GameObject resultText;

23 TextMesh comboText;

24

25 int[,] winLooseMatrix = new int[5, 5] {

26 // Red , Blue , Green , Black , White

27 /*Red*/{ 0, 2, 1, 1, 2 },

28 /*Blue*/{ 1, 0, 2, 2, 1 },

29 /* Green*/{ 2, 1, 0, 1, 2 },

30 /* Black*/{ 2, 1, 2, 0, 1 },

31 /* White*/{ 1, 2, 1, 2, 0 }
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32 };

33

34 public bool roundActive = true;

35 public bool gameEnded = false;

36 public RoundResult currentRoundResult;

37

38 public bool AutoMode = true;

39 public float AutoModeDelay = 0.5f;

40

41 public int MaxScore = 10;

42

43 // Use this for initialization

44 void Start () {

45

46 player1 = GameObject.Find("player1");

47 player1Script = player1.GetComponent <PlayerScript >();

48

49 player2 = GameObject.Find("player2");

50 player2Script = player2.GetComponent <PlayerScript >();

51

52 activePlayer = player1;

53

54 comboText = GameObject.Find("ComboText"). GetComponent <TextMesh >();

55 resultText = GameObject.Find("ResultText");

56

57 foreach (GameObject cube in player1Blocks) {

58 cube.GetComponent <Cube >(). playerThisCubeBelongsTo = player1;

59 }

60 foreach (GameObject cube in player2Blocks) {

61 cube.GetComponent <Cube >(). playerThisCubeBelongsTo = player2;

62 }

63

64 GameObject.Find("ScoreNeeded"). GetComponent <TextMesh >(). text =

65 "Score needed to win: " + MaxScore;

66

67 if(AutoMode ){

68 GameObject.Find("ResetButton"). SetActiveRecursively(false);

69 }

70 gameEnded = false;

71 }

72

73

74 void Update () {

75 if(! roundActive || gameEnded)

76 return;

77

78 //let AI pick

79 if(activePlayer.GetComponent <PlayerScript >(). isAI){

80 if(activePlayer == player1 ){

81 player1Script.pickCubeByAI ();

82

83 player1Blocks [(int)activePlayer.GetComponent <PlayerScript >()

84 .pickedCube ]. GetComponent <Cube >(). gotPicked ();

85 activePlayer = player2;
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86 }else if(activePlayer == player2 ){

87 player2Script.pickCubeByAI ();

88

89 player2Blocks [(int)activePlayer.GetComponent <PlayerScript >()

90 .pickedCube ]. GetComponent <Cube >(). gotPicked ();

91 activePlayer = player1;

92 }

93 }

94

95 // check if everyone has picked , if so end the round ,

96 // determine winner and reset

97 if(player1Script.hasPickedACube == true

98 && player2Script.hasPickedACube == true){

99 // determineWinner1 ();

100 determineWinner ();

101 updatePlayerScoreTexts ();

102 roundActive= false;

103 if(AutoMode ){

104 if(AutoModeDelay > 0.001)

105 StartCoroutine( ResetAfterDelay(AutoModeDelay) );

106 else

107 Reset ();

108 }

109 }

110

111 }

112 IEnumerator ResetAfterDelay(float delay ){

113 yield return new WaitForSeconds(delay);

114 Reset ();

115 }

116

117 void checkEndOfGame (){

118 if(player1Script.OverallScore >= MaxScore ){

119 resultText.GetComponent <TextMesh >(). text =

120 "Result: Player 1 won the game";

121 gameEnded = true;

122 }

123 else if(player2Script.OverallScore >= MaxScore ){

124 gameEnded = true;

125 resultText.GetComponent <TextMesh >(). text =

126 "Result: Player 2 won the game";

127 }

128

129 }

130

131 private void registerSequencesOfPlayers (){

132 // register the last actions of the other player

133 if(player1Script.isAINgram)

134 player1Script.ngramPredictor.registerSequence(player2Script

135 .previousCubePicks );

136 if(player2Script.isAINgram)

137 player2Script.ngramPredictor.registerSequence(player1Script

138 .previousCubePicks );

139 }
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140 public PlayerScript returnOtherPlayer(PlayerScript callingPlayer ){

141

142 if(callingPlayer == player1Script)

143 return player2Script;

144 if(callingPlayer == player2Script)

145 return player1Script;

146

147 Debug.Log("Couldn 't return other player script");

148 Debug.Break ();

149 return player1Script;

150 }

151

152 public void cubePicked(CubeType pickedType ){

153

154 if(activePlayer == player1 && !activePlayer

155 .GetComponent <PlayerScript >(). isAI){

156 Debug.Log("human player 1 picked: " + pickedType );

157 activePlayer = player2;

158 player1Script.pickedACube(pickedType );

159

160 }else if(activePlayer == player2 && !activePlayer

161 .GetComponent <PlayerScript >(). isAI){

162 Debug.Log("human player 2 picked: " + pickedType );

163 activePlayer = player1;

164 player2Script.pickedACube(pickedType );

165 }

166 }

167

168 void determineBonusScore(PlayerScript givenPlayer ){

169 if(player1Script.previousCube == CubeType.none

170 || player2Script.previousCube == CubeType.none){

171 // Debug.Log("no previous cube ");

172 return;

173 }

174 //no bonus if round was draw

175 if(currentRoundResult == RoundResult.draw){

176 return;

177 }

178

179 switch(givenPlayer.pickedCube) {

180 case CubeType.red:

181 switch(givenPlayer.previousCube) {

182 case CubeType.blue:

183 giveBonusScore (2, givenPlayer );

184 break;

185 case CubeType.white:

186 giveBonusScore (1, givenPlayer );

187 break;

188 }

189 break;

190

191 case CubeType.blue:

192 switch(givenPlayer.previousCube) {

193 case CubeType.green:
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194 giveBonusScore (2, givenPlayer );

195 break;

196 case CubeType.red:

197 giveBonusScore (1, givenPlayer );

198 break;

199 }

200 break;

201

202 case CubeType.green:

203 switch(givenPlayer.previousCube) {

204 case CubeType.black:

205 giveBonusScore (2, givenPlayer );

206 break;

207 case CubeType.blue:

208 giveBonusScore (1, givenPlayer );

209 break;

210 }

211 break;

212

213 case CubeType.black:

214 switch(givenPlayer.previousCube) {

215 case CubeType.white:

216 giveBonusScore (2, givenPlayer );

217 break;

218 case CubeType.green:

219 giveBonusScore (1, givenPlayer );

220 break;

221 }

222 break;

223

224 case CubeType.white:

225 switch(givenPlayer.previousCube) {

226 case CubeType.red:

227 giveBonusScore (2, givenPlayer );

228 break;

229 case CubeType.black:

230 giveBonusScore (1, givenPlayer );

231 break;

232 }

233 break;

234

235 default:

236 Debug.Log("default called , something went wrong");

237 Debug.Break ();

238 break;

239 }

240 }

241

242 void giveBonusScore(int bonusScoreToGive , PlayerScript toThisPlayer ){

243 toThisPlayer.OverallScore += bonusScoreToGive;

244 toThisPlayer.BonusScore += bonusScoreToGive;

245

246 if(bonusScoreToGive ==1){

247 comboText.text = "Combo! +1 extra Score";
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248 }else if(bonusScoreToGive ==2){

249 comboText.text = "MEGA Combo! +2 extra Score";

250 }

251 }

252

253 void determineWinner (){

254 if(player1Script.pickedCube == CubeType.none

255 || player2Script.pickedCube == CubeType.none){

256 Debug.Log("player picked no cube");

257 Debug.Break ();

258 }

259

260 // adapt players choise to be entered to matrix

261 int player1Choice = (int)player1Script.pickedCube;

262 int player2Choice = (int)player2Script.pickedCube;

263

264 if(winLooseMatrix[player2Choice ,player1Choice] == 0)

265 nooneWonRound ();

266 else if(winLooseMatrix[player2Choice ,player1Choice] == 1)

267 player1WonRound ();

268 else if(winLooseMatrix[player2Choice ,player1Choice] == 2)

269 player2WonRound ();

270 }

271

272 void updatePlayerScoreTexts (){

273 player1Script.updateScoreText ();

274 player2Script.updateScoreText ();

275 }

276

277 void player1WonRound (){

278 // Debug.Log(" Player 1 won");

279 currentRoundResult = RoundResult.player1Won;

280 player1Script.roundsWon ++;

281 player1Script.OverallScore ++;

282 determineBonusScore(player1Script );

283

284 resultText.GetComponent <TextMesh >(). text

285 = "Result: Player 1 won. +1 Score";

286 }

287

288 void player2WonRound (){

289 // Debug.Log(" Player 2 won");

290 currentRoundResult = RoundResult.player2Won;

291 player2Script.roundsWon ++;

292 player2Script.OverallScore ++;

293 determineBonusScore(player2Script );

294

295 resultText.GetComponent <TextMesh >(). text

296 = "Result: Player 2 won. +1 Score";

297 }

298

299 void nooneWonRound (){

300 // Debug.Log(" Round is draw ");

301 currentRoundResult = RoundResult.draw;
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302 resultText.GetComponent <TextMesh >(). text = "Result: Round is draw";

303 }

304

305 public void Reset (){

306 if(! roundActive ){

307 resultText.GetComponent <TextMesh >(). text = "Result:";

308

309 comboText.text = "";

310

311 // first update cubepicks , then register them

312 player1Script.Reset ();

313 player2Script.Reset ();

314 registerSequencesOfPlayers ();

315

316 foreach (GameObject cube in player1Blocks) {

317 cube.GetComponent <Cube >(). Reset ();

318 }

319 foreach (GameObject cube in player2Blocks) {

320 cube.GetComponent <Cube >(). Reset ();

321 }

322 if(player1Script.doDebugLogs || player2Script.doDebugLogs)

323 Debug.Log("--------------- NEW ROUND ---------------");

324 roundActive = true;

325 checkEndOfGame ();

326 }

327 }

328

329 }
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D AI vs AI test results

Table 2: N-Grams vs pattern AI

N-Grams vs pattern AI

Games played: 100
Round score to be reached: 250

N-Grams games won 100
N-Grams sum of Rounds won 15655 N-Grams average Rounds won 156,55
N-Grams sum of Bonus Score 9380 N-Grams average Bonus Score 93,8
N-Grams sum of Overall Score 25035 N-Grams average Overall Score 250,35

Pattern AI games won 0
Pattern AI sum of Rounds won 292 Pattern AI average Rounds won 2,92
Pattern AI sum of Bonus Score 253 Pattern AI average Bonus Score 2,53
Pattern AI sum of Overall Score 545 Pattern AI average Overall Score 5,45

Table 3: N-Grams vs N-Grams AI

N-Grams vs N-Grams AI

Games played: 100
Round score to be reached: 250

N-Grams 1 games won 44
N-Grams 1 sum of Rounds won 17116 N-Grams 1 average Rounds won 171,16
N-Grams 1 sum of Bonus Score 6170 N-Grams 1 average Bonus Score 61,7
N-Grams 1 sum of Overall Score 23286 N-Grams 1 average Overall Score 232,86

N-Grams 2 games won 56
N-Grams 2 sum of Rounds won 17420 N-Grams 2 average Rounds won 174,2
N-Grams 2 sum of Bonus Score 6159 N-Grams 2 average Bonus Score 61,59
N-Grams 2 sum of Overall Score 23579 N-Grams 2 average Overall Score 235,79
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Table 4: N-Grams vs random AI

N-Grams vs random AI

Games played: 100
Round score to be reached: 250

N-Grams games won 29
N-Grams sum of Rounds won 15459 N-Grams average Rounds won 154,59
N-Grams sum of Bonus Score 7227 N-Grams average Bonus Score 72,27
N-Grams sum of Overall Score 22686 N-Grams average Overall Score 226,86

Random AI games won 71
Random AI sum of Rounds won 15353 Random AI average Rounds won 153,53
Random AI sum of Bonus Score 9096 Random AI average Bonus Score 90,96
Random AI sum of Overall Score 24449 Random AI average Overall Score 244,49

Table 5: N-Grams Performance

N-Grams vs pattern AI performance test

Window Size 2
Games played: 100
Round score to be reached: 250
Average time to register a sequence 0.02109122 ms
Average time to make a prediction 0.02344708 ms

Window Size 20
Games played: 1
Round score to be reached: 10000
Average time to register a sequence 0.0967881 ms
Average time to make a prediction 0.1035979 ms

Window Size 200
Games played: 1
Round score to be reached: 10000
Average time to register a sequence 1.077298 ms
Average time to make a prediction 1.128417 ms
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E Human vs AI test results

Table 6: Results of participants 1 to 6

Participant # 1 2 3 4 6
Game vs Random �rst yes no no no yes

Game vs Random AI
Time taken until Score was reached: 10:10:00 10:57:00 02:59:00 04:01:00 05:30:00
AutoMode used: Yes, 0,5 sec Yes, 0,5 sec Yes, 0 sec Yes, 0 sec no

Player 1 rounds won: 105 121 101 63 106
Player 1 bonus score: 145 78 149 51 145
Player 1 overall score: 250 199 250 114 251

Player 2 rounds won: 115 153 117 132 94
Player 2 bonus score: 65 97 77 118 49
Player 2 overall score: 180 250 194 250 143

Game vs N-Grams AI
Time until Score was reached: 08:45:00 53:20:00 11:53:00 10:21:00 15:40:00
AutoMode used: Yes, 0,5 sec Yes, 0,5 sec Yes, 0,5 sec Yes, 0,5 sec no

Player 1 rounds won: 66 72 62 136 128
Player 1 bonus score: 46 60 64 69 70
Player 1 overall score: 112 132 126 205 198

Player 2 rounds won: 159 141 135 165 160
Player 2 bonus score: 91 110 116 87 91
Player 2 overall score: 250 251 251 252 251

Which AI did was better? Draw Draw N-Grams Random N-Grams
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Table 7: Results of participants 7 to 11

Participant # 7 8 9 10 11
Game vs Random �rst yes yes no yes no

Game vs Random AI
Time until Score was reached: 11:25:00 11:40:00 04:30:00 09:45:00 04:00:00
AutoMode used: Yes, 0 Yes, 0,5 sec Yes, 0 Yes, 0,5 sec Yes, 0,5 sec

Player 1 rounds won: 133 95 151 144 160
Player 1 bonus score: 117 156 77 108 92
Player 1 overall score: 250 251 228 252 252

Player 2 rounds won: 134 93 155 123 141
Player 2 bonus score: 70 68 97 79 91
Player 2 overall score: 204 161 252 202 232

Game vs N-Grams AI
Time until Score was reached: 02:38:00 13:30:00 06:58:00 06:09:00 14:10:00
AutoMode used: Yes, 0 Yes, 0,5 sec Yes, 0 Yes, 0,5 sec Yes,1,5 & 0,5

Player 1 rounds won: 126 103 112 116 98
Player 1 bonus score: 85 81 55 84 61
Player 1 overall score: 211 184 167 200 159

Player 2 rounds won: 173 150 163 145 153
Player 2 bonus score: 77 100 89 105 97
Player 2 overall score: 250 250 252 250 250

Which AI did was better? N-Grams N-Grams Draw N-Grams N-Grams
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Table 8: Results of participants 12 to 18

Participant # 12 13 14 15 17 18
Game vs Random �rst no yes yes no no yes

Game vs Random AI
Time until Score was reached: 08:46:00 10:57:00 13:30:00 12:15:00 01:20:00 07:20:00
AutoMode used: Yes, 0,5 sec Yes, 0 Yes, 0,5 sec Yes, 0 Yes, 0 Yes, 0

Player 1 rounds won: 97 191 127 147 144 141
Player 1 bonus score: 155 35 124 104 106 110
Player 1 overall score: 252 226 251 251 250 251

Player 2 rounds won: 83 158 105 156 147 139
Player 2 bonus score: 43 92 51 92 89 78
Player 2 overall score: 126 250 156 248 236 217

Game vs N-Grams AI
Time until Score was reached: 19:58:00 01:11:00 07:10:00 06:30:00 06:35:00 07:30:00
AutoMode used: Yes,0 & 1,5 Yes, 0 Yes, 0,5 sec Yes,0 & 0,5 Yes, 0 Yes,0 & 0,5

Player 1 rounds won: 68 21 95 100 91 124
Player 1 bonus score: 81 18 48 55 78 101
Player 1 overall score: 119 39 143 155 169 225

Player 2 rounds won: 172 161 146 180 154 165
Player 2 bonus score: 78 89 105 70 98 85
Player 2 overall score: 250 250 251 250 252 250

Which AI did was better? Random N-Grams Draw N-Grams N-Grams N-Grams
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Table 9: Average results of all participants

Average of all Participants

Game vs Random AI
Average time until Score was reached: 08:04:03,75

Player 1 rounds won: 126,63
Player 1 bonus score: 109,5
Player 1 overall score: 236,13

Player 2 rounds won: 127,81
Player 2 bonus score: 78,5
Player 2 overall score: 206,31

Game vs N-Grams AI
Average time until Score was reached: 12:01:07,50

Player 1 rounds won: 94,88
Player 1 bonus score: 66
Player 1 overall score: 159

Player 2 rounds won: 157,63
Player 2 bonus score: 93
Player 2 overall score: 250,63

Table 10: Miscellaneous results from the Human vs AI tests

Game vs Random �rst
Yes 8
No 8

Participants 16
Wins vs Random 12
Loss vs Random 4

Wins vs N-Grams 0
Loss vs N-Grams 16

Which AI was better?
Draw 4
Random 2
N-Grams 10
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Figure 6: Unity Pro�ler of a frame where the getMostLikely function was called
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Figure 7: Unity Pro�ler of a frame where the registerActions function was called
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