

 Protecting Sensitive Information in SSIS Xml Config files 1 http://renouncedthoughts.wordpress.com

SSIS – An Effortless Two Step Approach

to Protect Sensitive Information in Xml

Configuration Files

Marudhamaran Gunasekaran

Contents
I. Introduction

II. Competitive approaches

III. Prerequisites

IV. Preparing your package for configuration

V. Step 1 – Using SSISCipherBoy.exe – Select and encrypt configuration entries

VI. Step 2 – Using SSISCipherBoy.exe – Prepare the package to decrypt

information

VII. Deploying package with encrypted configuration to server – Using

SSISCipherBoy.exe – Export/Import RSA key pair

VIII. Common errors and debugging options

IX. What now?

X. Glossary

a. Using SSISCipherBoy.exe – Processing multiple packages sharing same

config

b. Using SSISCipherBoy.exe – Dump SSISCipherUtil.dll to GAC / local

directory

c. Manually installing SSISCipherUtil.dll to GAC

d. Manually create a ScriptTask to decrypt information

e. What does the automatic Package Processor do?

f. How does the cipher algorithm work?

XI. References and further reading

 Protecting Sensitive Information in SSIS Xml Config files 2 http://renouncedthoughts.wordpress.com

Acknowledgements

Writing a tool or an article becomes best when it is a communal effort. While I conceived and developed the

library and tool, I want to acknowledge a few people who contributed in various ways.

Balabhadra Pavan Kumar, Dheeraj Dhamija, Balakrishna Allidi for constantly proving feedback, improvement

aspects, and for reviewing sections of the support guide.

Manohara Mahadevappa for putting up with me during early development cycles and suggesting a bit of user

friendly features.

Narasimha A Prakash, Sriram Seshan for being good enough to support me whenever I approached them.

 Protecting Sensitive Information in SSIS Xml Config files 3 http://renouncedthoughts.wordpress.com

I. Introduction

 One of the ways of saving configuration entries for SSIS packages is an Xml configuration file, probably

because they are simple editable text files, portable, and so on. When developing ASP.Net or Windows

applications, most of us are cautious enough to encrypt the sensitive information that is saved in their

configuration files. Reasons? May be it is thought that ASP.Net applications may reside on a web server that is

exposed to outside world and hence they might be susceptible to attacks of sorts, and when that happens, we

would not want to expose sensitive information in plain text, so we encrypt them. And the .Net framework

provides it as an out-of-the-box functionality. In the most common scenarios that we have known, SSIS

packages run as scheduled jobs inside a server that is located far inside the corporate firewall with ports

closed, just sitting there in a good hope that ‘I am not vulnerable to attacks, so I can just be here with an xml

configuration file that has connections strings, besides others things, in plain text’. As protection comes with

security applied in various layers, the kind of attitude to rely on good hope and on firewall may just not be

enough. In the wake of recent attacks in high profile organizations, if by any miracle, someone infiltrates and

steals the data, we don’t want to expose further information in plain text. Do we? The risk could even come

from a new developer that accidentally performs some unwanted activities on data (by using the information

in the xml configuration file saved as plain text) that is meant to be protected from accidental damage, both

foreign and domestic. That is the motivation to write this library and executable to help us encrypt information

in our SSIS xml configuration files and hence this article. The entire process is done in two simple steps. If you

are an experienced developer, read the prerequisites section and proceed directly to section V and VI.

II. Competitive approaches

 That said, there are best practices that you can adhere to, like protecting the configuration using

Access Control Lists that are tied to your Active Directory efforts, storing configurations in a SQL server

database somewhere. Below are two blog entries that talk about our present options.

1. SSIS: Storing passwords

2. SSIS: Encrypted Configurations

3. BI xPress Secure Configuration Manager

While there are pros and cons for approaches, they might not suit your need due to restrictions of

company’s policies. And most developers prefer to encrypt and decrypt using a custom script task. While this is

a viable option, it is a lot of effort to write a separate encryption module and unit test it, and not all developers

are expert programmers that care about strong cryptography and key management. Most of the times the

symmetric key used for encryption/decryption is hardcoded in the script task and the package itself is

protected by a password. The encryption algorithm that the proposed library (referred to as SSISCipherUtil.dll

from now on) uses state-of-the-art methods of encrypting information that hands over the cryptographic key

management to the Windows operating system itself. As a matter of fact the ASP.Net out of the box

functionality supports encrypting configuration information using DPAPI and RSA. SSISCipherUtil.dll comes

with those two options. DPAPI associates cryptographic key with the windows user accounts and RSA uses key

containers. That’s just a one liner. More at msdn - DPAPI, RSA.

When you have an encrypted configuration that you would like to be ported across multiple servers,

use RSA, export the key pair from one server as xml, import it another server, then destroy the key pair xml

file. If the package just sits on one server use RSA or DPAPI.

http://msdn.microsoft.com/en-us/library/zhhddkxy(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/zhhddkxy(v=VS.100).aspx
http://consultingblogs.emc.com/jamiethomson/archive/2007/04/26/SSIS_3A00_-Storing-passwords.aspx
http://consultingblogs.emc.com/jamiethomson/archive/2007/05/04/SSIS_3A00_-Encrypted-Configurations.aspx
http://pragmaticworks.com/Products/BI-xPress/Features/SecureConfigurationManager.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsa.aspx

 Protecting Sensitive Information in SSIS Xml Config files 4 http://renouncedthoughts.wordpress.com

III. Prerequisites

1. Windows XP or later workstations, Windows Server 2003 or later server operating systems.

2. SSISCipherUtil.dll requires .Net framework 2.0 or later – is the library that helps in

encryption/decryption during package setup and at package runtime.

3. SSISCipherBoy.exe requires .Net framework 3.5 or later – is the tool that helps you

encrypt/decrypt a configuration entry at design time.

4. Auto code generation functionality of SSISCipherBoy.exe of requires a computer with Business

Intelligence Development Studio (BIDS) installation.

5. Requires Administrator Privileges. Run as administrator option if UAC is switched on.

6. Supports only String encryption/decryption. No other data types are allowed.

7. Supports only Package.Variables and Package.Connections collections.

8. Supported Package ProtectionLevel values are DontSaveSensitive, EncryptAllWithPassword,

EncryptSensitiveWithPassword. EncryptAllWithUserKey, EncryptSensitiveWithUserKey are

supported only when the user account that modifies the package is used to run the package, in

the same machine.

Below is the screenshot of the main window of SSISCipherboy.exe. Let’s explore the features one by one in

later sections.

Fig. 3.1

http://windows.microsoft.com/en-US/windows-vista/What-is-User-Account-Control
http://msdn.microsoft.com/en-us/library/system.string(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.dtscontainer.variables(v=sql.100).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.dts.runtime.package.connections(v=sql.100).aspx

 Protecting Sensitive Information in SSIS Xml Config files 5 http://renouncedthoughts.wordpress.com

IV. Preparing your package for configuration

 If you here reading this article, I assume that you are an experienced developer that has configured

and managed SSIS packages before. However, for the sake of completeness below are msdn references that

explain saving SSIS configurations in xml files:

1. Package Configurations

2. Understanding Integration Services Package Configurations

Most important thing, if you don’t uncheck the Enable package configurations in SSIS Package

Configurations Organize and if there is a configuration set up for the package, then the config files passed to

the package using the /config option of dtexec.exe will not be effective. This might seem counter intuitive but

that’s how SQL Server 2008 Integration Services works.

In the following steps, we will be running an unmodified package named AdvWrksLocalLoad2.dtsx

with its original configuration AdvWrksLocalLoad2.dtsConfig, then run the modified package

AdvWrksLocalLoad2-Mod.dtsx with an encrypted configuration AdvWrksLocalLoad2.dtsConfig, and then run

the latter on a Windows 2008 R2 server (just like a production environment).

V. Step 1 – Using SSISCipherBoy.exe – Select and
encrypt configuration entries

Now, without further delay, let’s pick a package and let’s encrypt its configuration entries. All the

samples along with the tools are zipped and attached to this article. If someone’s interested in looking through

the source code of SSISCipherBoy.exe and SSISCipherUtil.dll or enhancing its functionally or aesthetically,

please contact me, I’d be pleased to share them.

Below is a list of files that we will be working with for demonstration.

Fig. 5.1

AdvWrksLocalLoad2.dtsx in Business Intelligence Development Studio is a package that does a few

things, and the task the package performs is irrelevant here because we are concentrating on encrypting its

configuration values in the xml configuration file. AdvWrksLocalLoad2.dtsx is protected with the password

test [ProtectionLevel=EncryptAllWithPassword and PackagePassword=test].

http://msdn.microsoft.com/en-us/library/ms141682(v=sql.100).aspx
http://msdn.microsoft.com/en-us/library/cc895212.aspx
http://dougbert.com/blog/post/understand-how-ssis-package-configurations-are-applied.aspx

 Protecting Sensitive Information in SSIS Xml Config files 6 http://renouncedthoughts.wordpress.com

Fig. 5.2

AdvWrksLocalLoad2.dtsConfig is the configuration file for AdvWrksLocalLoad2.dtsx that appears like

below in Internet Explorer. As you could see the connection strings are mere plain text.

Fig. 5.3

Let’s encrypt them. Run SSISCipherBoy.exe as administrator. This program requires administrator

privileges. On Windows systems with User Access Control (UAC) switched on, running as administrator is a

mandatory requirement. Otherwise the program will not load properly; you will have to go to Task Manager

to end it.

 Protecting Sensitive Information in SSIS Xml Config files 7 http://renouncedthoughts.wordpress.com

Fig. 5.4

When you run this program on a computer for the first time, it will install SSISCipherUtil.dll to the

computer’s Global Assembly Cache (GAC).

Fig 5.5

Hit, OK to that warning, and proceed with the success message. Once the program is opened, let’s

drag and drop the configuration file named AdvWrksLocalLoad2.dtsConfig. Use the Browse button to locate a

configuration file if drag and drop does not work. The configuration file will be loaded in a tree view.

Fig. 5.6

 Protecting Sensitive Information in SSIS Xml Config files 8 http://renouncedthoughts.wordpress.com

Encrypting the values is as simple as selecting them and hitting the Encrypt button. However, if you

pay attention to the third item, there is a User ID=EncrDemoUser, however, there is no Password provided for

it in the configuration file. When you are exporting connections strings that contain a password, then SSIS

Package Configurations Organizer does not export the Password property in the configuration file. It knows

that a Password is sensitive information and it does not export the Password for ConnectionString. However,

you could add it at your own risk – Just what we have been doing all along.

Before we do anything to this configuration file, lets test run it once.

dtexec.exe /file "C:\Maran\Project

stuff\SSISCipherUtil\SSISCipher1.2.0.0\Demo\AdvWrksLocalLoad2.dtsx" /config

"C:\Maran\Project

stuff\SSISCipherUtil\SSISCipher1.2.0.0\Demo\AdvWrksLocalLoad2.dtsConfig" /DE test

Fig 5.7

The package runs just fine. Let’s get back to SSISCipherBoy.exe, right click on the item missing the

Password property and click Edit Value to add a Password and hit the Save button.

Fig. 5.8

 Protecting Sensitive Information in SSIS Xml Config files 9 http://renouncedthoughts.wordpress.com

Note: Nothing is saved to the original .dtsConfig file until you press the Commit changes to the config file

button. Commit changes button gets enabled after the Encrypt/Decrypt buttons are clicked.

Once done, we have got two choices of encryption algorithm. To keep things simple: entries

encrypted with DPAPI can only be decrypted on the computer on which it is encrypted on, however entries

encrypted with RSA can be decrypted on any computer running windows if we export and import the key

container used for encryption. So, if we encrypt a configuration entry on our development machine, in order to

use the same configuration file across other environments, you will have to export and import the RSA key pair

on the target machines using this tool SSISCipherUtil.exe. More about the algorithms are discussed in the

Glossary section X-f.

Lets pick the entries that are sensitive, click the Lock/Unlock Selection button, provide a Key

Container Name as myrsakey1 (you are free to provide any relevant name for the key container) and hit the

Encrypt button. Wait for the success message, and now all the selected entries will be encrypted for you.

Fig. 5.9

Hit Commit changes to the config file button to save the encrypted data back to the file system.

Fig. 5.10

 Protecting Sensitive Information in SSIS Xml Config files 10 http://renouncedthoughts.wordpress.com

You may, try clicking the Lock/Unlock Selection button and try Encrypt/Decrypt/Edit Value and other

operations; however until the time you click Commit changes to the config file, the changes that appear in the

tree view will not be saved to the file system.

That’s it! You sensitive values are now encrypted. Next step is to prepare your package to decrypt the package

at runtime. Don’t close the tool already; we will have to use it to generate decryption code.

Fig. 5.11

VI. Step 2 – Using SSISCipherBoy.exe – Prepare the

package to ready to decrypt information

 In our example, the package AdvWrksLocalLoad2.dtsx uses the configuration file

AdvWrksLocalLoad2.dtsConfig. That is the configuration file that we encrypted in the preceding step. The dts

runtime in no way knows that the configuration file is encrypted; neither there is a way we could tell it in a

command line option. If you have DelayValidation=false (which is the default) in the package, then as soon as

it encounters an invalid connection string (a connection string that does not have a name value pair like Initial

Catalog, Server, User ID..), it throws exception saying that the validation failed and quits the execution of the

job. Let’s see how to make a package ready to decrypt information during runtime.

 As the AdvWrksLocalLoad2.dtsConfig is open in SSISCipherBoy.exe, check all the encrypted nodes, hit

Lock/Unlock Selection and hit Generate decryption code button. This action displays a tip, hitting OK; brings

you to the DecryptorCode window.

 Protecting Sensitive Information in SSIS Xml Config files 11 http://renouncedthoughts.wordpress.com

Fig. 6.1

Fig. 6.2

You are left with two options here.

#1. Manually create a ScriptTask to decrypt information

You can copy the decryption code from the right pane, create a ScriptTask before all other tasks in

the target package and replace the scriptmain.cs code with the decryptor code and set the

DelayValidation=true. If DelayValidation=false, then an error will be thrown because of invalid connection

strings even before any of the tasks are executed. More about manually adding ScriptTask, at Glossary X-d.

 Protecting Sensitive Information in SSIS Xml Config files 12 http://renouncedthoughts.wordpress.com

#2. Make the package ready for decryption automatically

Drag and Drop a package in to the Package processor, click the Start Processing Below Packages

button, and let the tool do the rest of the job for you. If Drag and Drop does not work double click on the

package processor area to browse and pick a package. More about how it works, at Glossary X-e.

 I am going to demonstrate option #2 here and if you are interested in option #1, refer to Glossary X-d.

 With the Decryptorcode window open, add AdvWrksLocalLoad2.dtsx to the package processor and

hit Start Processing Below Packages button. Hit OK to the big warning message. If the package is password

protected, you will be prompted to enter a password. Enter the password as test and hit Done.

Note: To process multiple package sharing same configuration file that was encrypted, refer to Glossary X-a.

Fig. 6.3

Fig. 6.4

 Protecting Sensitive Information in SSIS Xml Config files 13 http://renouncedthoughts.wordpress.com

Fig. 6.5

Accept the success message and close the tool. Let’s run the modified package with the encrypted

configuration file. The modified package will be saved with a –Mod suffix.

dtexec.exe /file "C:\Maran\Project

stuff\SSISCipherUtil\SSISCipher1.2.0.0\Demo\AdvWrksLocalLoad2-Mod.dtsx" /config

"C:\Maran\Project

stuff\SSISCipherUtil\SSISCipher1.2.0.0\Demo\AdvWrksLocalLoad2.dtsConfig" /DE test

The package runs as expected. It prints some base64 encoded strings to the command window, which

can be neglected.

Fig. 6.6

 That’s about it. Now lets try deploying the modfied package AdvWrksLocalLoad2-Mod.dtsx and the

config file AdvWrksLocalLoad2.dtsConfig to a Windows 2008 R2 server and test run it.

 Protecting Sensitive Information in SSIS Xml Config files 14 http://renouncedthoughts.wordpress.com

VII. Deploying package with encrypted configuration to
server – Using SSISCipherBoy.exe – Export/Import
RSA key pair

 As mentioned before, we can use the same encrypted configuration file on any other Windows

workstations or servers.

 You would need SSISCipherUtil.dll installed to the Global Assembly Cache (GAC) on the server. GAC is

located at C:\Windows\assembly. You can drag and drop the SSISCipherUtil.dll to that folder. Or let

the tool do that for you. If you could remember, when the SSISCipherBoy.exe runs for the first time

on a computer, it aumatically installs SSISCipherUtil.dll to the GAC. Easiest option, let’s to that. Refer

to the glossary X-b and X-c on how to install an assembly (dll) to GAC.

 Importing the RSA key pair (that was used to encrypt the configuration) to the the server.

Note: You can even use this tool to encryt and modify packages directly on an staging or production server, if

you have done necessary testing in the development environments. The point is, if you want to use the same

encrypted configuration file across all machines, then you would need to export/import the key container on

all other machines.

 I have logged on to a Windows server and copied the modified package - AdvWrksLocalLoad2-

Mod.dtsx - and its config file - AdvWrksLocalLoad2.dtsConfig - to a location, SSISCipherBoy.exe on to my

desktop. (You can place it anywhere though) (DTPOutput1.txt and Query.txt are files used by the package)

Fig. 7.1

1. Right click SSISCipherBoy.exe and select Run as administrator. Accept the User Access Control prompts, if

any. SSISCipherUtil.dll will be automatically installed to the GAC, and the program loads fine.

Fig. 7.2

 Protecting Sensitive Information in SSIS Xml Config files 15 http://renouncedthoughts.wordpress.com

2. From our workstation, or from the development machine where we encrypted the configuration, let’s

export the RSA key container named myrsakey1 and import it to the server. Open SSIScipherBoy.exe on

your workstation or development machine (make sure to Run as administrator), provide the key

container name that we used for encryption myrsakey1 and hit Export Rsa key pair. Save the file as

myrsakey1.xml. And copy it to the server.

Fig. 7.3

Copy the myrsakey1.xml file to the server and use the Import Rsa key pair to import it. You should

provide the same name myrsakey1 in the Key Container Name text box.

Fig. 7.4

After, successful import of RSA key pair, Destroy the file myrsakey1.xml and SSISCipherUtil.exe

from the server.

That’s it! I am going to test run the package using the below command and you will see it working like

it did in the development machine.

 Protecting Sensitive Information in SSIS Xml Config files 16 http://renouncedthoughts.wordpress.com

dtexec.exe /file

"G:\Apps\SCOUT\Executables\ExpressNotice\AdvWrksLocalLostTest\AdvWrksLocalLoad2-

Mod.dtsx" /config

"G:\Apps\SCOUT\Executables\ExpressNotice\AdvWrksLocalLostTest\AdvWrksLocalLoad2.dt

sConfig" /DE test

Fig. 7.5

VIII. Common errors and debugging options

 If you get any CryptographicException during decryption, it is possible that

1. You are using DPAPI and trying to decrypt information on some other computer.

2. You are using RSA but you have not exported and imported the key pair (that was used to

encrypt) yet.

3. The encrypted string is modified in some way or other and hence decryption failed.

 If you get Connection Manager validations/runtime errors, it is possible that

1. Decryption failed

2. ConnectionString does not contain Password property

3. DelayValidation is set to false and you are getting an error because the ConnectionString property

is encrypted. Since it is encrypted, it won’t contain strings like User ID, Password, Initial Catalog,

Server etc., hence the validation error.

4. EnableConfiguration is set to true (i.e., Enable package configurations check box is checked in the

Package Configuration Organizer wizard. And the design time associated configuration file is

either missing or not encrypted).

 Protecting Sensitive Information in SSIS Xml Config files 17 http://renouncedthoughts.wordpress.com

 To debug, the easiest way is to add a script task at the top of the package, and try accessing the

Connection Manager’s ConnectionString property to see if values are getting decrypted properly. For

instance, try logging them, or try a MessageBox.Show(). AdvWrksLocalLoad2.dtsx has a ScriptTask in

the beginning that just alerts the ConnectionString values for a few connections.

Fig. 8.1

Or even better, add the package to a an Integration Services Project, set a break point on the

ScriptTask and look if the values are getting set correctly.

 If the Package Processor of DecryptorCode window throws any errors, close all Visual Studio

instances, and try Start Processing Below Packages button again.

 Rule of thumb, when running SSISCipherBoy.exe always Run as administrator.

IX. What now?

 Hence you protect sensitive information in your SSIS Xml Config files. While the aforementioned

methods describe an automated way of achieving encryption decryption, if any of the tasks fail, you could

always try the manual lengthy process, or if you are interested in more information, the glossary section

should suffice. Report any bugs, enhancement requests, set up assistance at

http://renouncedthoughts.wordpress.com.

http://renouncedthoughts.wordpress.com/

 Protecting Sensitive Information in SSIS Xml Config files 18 http://renouncedthoughts.wordpress.com

X. Glossary

a. Using SSISCipherBoy.exe – Processing multiple
packages sharing same config

Under the heading “Step 2 – Using SSISCipherBoy.exe – Make the package ready to decrypt

information” we saw how to process a package and make it ready for decryption. In that demonstration we

added a package named AdvWrksLocalLoad2.dtsx that used a configuration named

AdvWrksLocalLoad2.dtsConfig, which is a very common scenario. Another, common scenario is that we have

one configuration file that will be shared by many packages. To make the job easier in these situations, the

DecryptCode functionality allows you to add multiple packages to the Package Processor and process them all

at one shot.

Let’s imagine that the configuration file named AdvWrksLocalLoad2.dtsConfig is used by multiple

packages listed in the figure below.

Fig. a.1

In order to process them, Drag and drop all the packages or double click and select all the packages

to the Package Processor of DecryptCode window; hit the Start Processing Below Packages button. Supply

password if required, hit OK on the success message that appears after processing each package. If Drag and

drop does not work double click and add multiple packages.

Fig. a.2

 Protecting Sensitive Information in SSIS Xml Config files 19 http://renouncedthoughts.wordpress.com

After processing, the processed packages are stored with a -Mod suffix on the same folder which

looks like below.

Fig. a.3

b. Using SSISCipherBoy.exe – Dump SSISCipherUtil.dll to

GAC / local directory

 The encryption and decryption functionality is provided by the SSISCipherUtil.dll. The SSIS package in

our example above that was modified to decrypt information at runtime, uses this dll. And the tool

SSISCipherBoy.exe uses the same dll for all its primary operations. However, if you wanted to locate the

SSISCipherUtil.dll in the file system, the only location you would find it is in the GAC. In case the assembly

installation fails when the SSISCipherBoy.exe loads, you would be required to manually install the

SSISCipherUtil.dll to GAC. Or when the package processor fails for some reason, you would want to create a

Decryptor ScriptTask yourself manually. And when you create that Decryptor ScriptTask, you would need to

Add a reference to the SSISCipherUtil.dll in Visual Studio in order to decrypt values at runtime. In order to

accomplish any of these aforementioned tasks, you would need SSISCipherUtil.dll on some known file system

location.

 Run SSISCipherBoy.exe as administrator. Click the Assembly Administration … link at the top right

corner.

Fig. b.1

 Protecting Sensitive Information in SSIS Xml Config files 20 http://renouncedthoughts.wordpress.com

Fig b.2

Use the buttons to perform the required operations.

c. Manually installing SSISCipherUtil.dll to GAC

 Many might have observed that when adding a reference to a third party dll in a ScriptTask, we are

bound to get AssemblyLoadException or FileNotFoundException if the referenced dll is not installed to the GAC.

SSISCipherBoy.exe tries to install SSISCipherUtil.dll to the GAC at startup. If that does not work you can try

installing it to the GAC using the Assembly Administration window. Remember that you need Administrator

privileges to perform this task. So you run SSISCipherBoy.exe with administrator privileges at all times. If none

of them works, the last resort is to emit the SSIScipherUtil.dll to a specific location and then manually install it

to the GAC.

Installing to the GAC is simple.

 1 Emit the SSISCipherUtil.dll to some file location (like explained in Glossary X-b)

2 Navigate to C:\Windows\assembly and Drag and Drop the SSISCipherUtil.dll to that folder

C:\Windows\assembly. That’s it. You may also try to use the GacUtil.exe which is a program specifically meant

for this purpose.

http://msdn.microsoft.com/en-us/library/ex0ss12c(v=vs.80).aspx

 Protecting Sensitive Information in SSIS Xml Config files 21 http://renouncedthoughts.wordpress.com

Fig. c.1

Fig. c.2

d. Manually create a ScriptTask to decrypt information

 The package processor creates a ScriptTask inside a sequence container in the OnPreExecute

EventHandler to decrypt information. If the Package Processor fails for some unknown reasons, you can try

processing the package again or create a ScriptTask manually to decrypt information.

 1 Create a ScriptTask on top of all other tasks in the Control Flow Tab of the Package Designer.

Provide a relevant name.

 2 Double click to open, hit the Edit Script button. Wait for the Visual Studio to load the project.

 Protecting Sensitive Information in SSIS Xml Config files 22 http://renouncedthoughts.wordpress.com

Fig. d.1

 3 Add reference to the SSISCipherUtil.dll. (If you don’t have SSISCipherUtil.dll at you file system

yet, use the Assembly Administration … link in SSISCipherBoy.exe and write the dll to some comfortable

location – as in Glossary X-b)

Fig. d.2

 4 Once the reference is added, replace the entire ScriptMain.cs code with the code from the

DecryptorCode window of SSISCipherUtil.exe. Refer to the steps in Step 2 – Using SSISCipherBoy.exe – Make

the package ready to decrypt information to copy the decryptor code.

 5 Build the project; close the ScriptTask after successful build. Hit OK on the Script Task Editor.

Save the dtsx package.

 That completes everything, and now your package is modified to decrypt information at runtime. Let

the ScriptTask and the SSISCipherUtil.dll do rest of the work for you.

e. What does the automatic Package Processor do?

 When you add an SSIS package to the Package Processor of the DecryptorCode window, it does the

following things:

 Protecting Sensitive Information in SSIS Xml Config files 23 http://renouncedthoughts.wordpress.com

1. Tries to load the package at the specified location.

2. If the package is protected with a password using EncryptAllWithPassword or

EncryptSensitiveWithPassword, it prompts to enter the Password.

3. On successful load of the package, it checks to see if there is an OnPreExecute EventHandler attached

to this package.

4. If an OnPreExecute EventHandler is attached to the package, it gets all the Tasks inside the

OnPreExecute EventHandler and adds the DecryptionSequence on top of all those tasks.

5. If an OnPreExecute EventHandler is not created for the package, it simply creates an OnPreExecute

EventHandler and adds the DecryptionSequence to it.

6. Inside the DecryptionSequence, there are two script tasks.

7. First is a dummy ScriptTask that leads to the second ScriptTask that does the decryption.

8. The decryption ScriptTask and the dummy ScriptTask are connected by a PrecedenceConstraint that

allows the decryption ScriptTask to run only once during the execution of the package.

i.e., The decryption ScriptTask runs only during the OnPreExecute event of the package, when other

tasks in the package fires an OnPreExecute event, the decryption ScriptTask is not called. This is done

with the below Expression and Constraint check

@[System::SourceID]== @[System::PackageID]

9. Sets DelayValidate=true for the package.

10. Sets EnableConfiguration=false for the package. (the equivalent of un-checking Enable Package

Configurations in Configuration wizard)

Fig. e.1

 Protecting Sensitive Information in SSIS Xml Config files 24 http://renouncedthoughts.wordpress.com

f. How does the cipher algorithm work?

 SSISCipherUtil.dll supports DPAPI and RSA as we saw earlier. If you have a basic understanding of

cryptography, please read forward, otherwise you may want to review the basics of Symmetric key

cryptography, asymmetric key cryptography, and hashing. The following paragraphs are meant to give an

overview of how DPAPI and RSA are implemented in SSISCipherUtil.dll. They might not depict the exact flow of

how DPAPI and RSA work in SSISCipherUtil.dll. The source code is the only way to identify the exact

implementation.

DPAPI

DPAPI – known as the Windows Data Protection API associates the cryptographic key used for

encryption and decryption with the Windows User account and uses a machine wide key store. An application

level entropy value is passed to the DPAPI method, so that only SSISCipherUtil.dll knows how to decrypt values

that were encrypted by SSISCipherUtil.dll. The entropy value is an output of the Rfc2898DeriveBytes method

that takes SHA-256 hash of some application wide constant values as input and salt.

RSA

RSA – an asymmetric cipher algorithm that in the .Net framework, not meant to encrypt inputs that

are larger than the key size specified. In SSISCipherUtil.dll, the RSA algorithm is used to generate an

exportable/importable public-private key pair stored at the RSA machine level key store. Later the public key

components of the key pair are used to derive an entropy value, and the private key components are used to

derive an input. The input and the entropy are later hashed with SHA-256 and sent to Rfc2898DeriveBytes. The

output of Rfc2898DeriveBytes is used as a master key for RijndaelManaged algorithm which is a symmetric

algorithm that works under the covers to encrypt and decrypt when using RSA.

C:\Users\All Users\Microsoft\Crypto\RSA\MachineKeys is the location in which the RSA key pairs are

stored by Windows. That means, when you export/import an RSA key pair, the key pair with the specified key

container name is accessed from this location.

References and Further Reading

1. SSIS: Storing Passwords -

http://consultingblogs.emc.com/jamiethomson/archive/2007/04/26/SSIS_3A00_-Storing-

passwords.aspx

2. SSIS: Encrypted Configurations -

http://consultingblogs.emc.com/jamiethomson/archive/2007/05/04/SSIS_3A00_-Encrypted-

Configurations.aspx

3. BI xPress Secure Configuration Manager - http://pragmaticworks.com/Products/BI-

xPress/Features/SecureConfigurationManager.aspx

4. Understanding how SSIS configurations are applied - http://dougbert.com/blog/post/understand-

how-ssis-package-configurations-are-applied.aspx

http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.sha256.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsa.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.sha256.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rfc2898derivebytes(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged.aspx
http://consultingblogs.emc.com/jamiethomson/archive/2007/04/26/SSIS_3A00_-Storing-passwords.aspx
http://consultingblogs.emc.com/jamiethomson/archive/2007/04/26/SSIS_3A00_-Storing-passwords.aspx
http://consultingblogs.emc.com/jamiethomson/archive/2007/05/04/SSIS_3A00_-Encrypted-Configurations.aspx
http://consultingblogs.emc.com/jamiethomson/archive/2007/05/04/SSIS_3A00_-Encrypted-Configurations.aspx
http://pragmaticworks.com/Products/BI-xPress/Features/SecureConfigurationManager.aspx
http://pragmaticworks.com/Products/BI-xPress/Features/SecureConfigurationManager.aspx
http://dougbert.com/blog/post/understand-how-ssis-package-configurations-are-applied.aspx
http://dougbert.com/blog/post/understand-how-ssis-package-configurations-are-applied.aspx

 Protecting Sensitive Information in SSIS Xml Config files 25 http://renouncedthoughts.wordpress.com

5. Integration Services Error and Message Reference - http://msdn.microsoft.com/en-

us/library/ms345164.aspx

6. Dynamic Package Generation Samples -

http://sqlsrvintegrationsrv.codeplex.com/releases/view/17647

7. Samples for creating SSIS packages programmatically -

http://blogs.msdn.com/b/mattm/archive/2008/12/30/samples-for-creating-ssis-packages-

programmatically.aspx

8. Programmatically recompiling a ScriptTask -

http://social.msdn.microsoft.com/Forums/en/sqlintegrationservices/thread/27535ce7-c72c-4ea5-

a27a-b34c12c73312

9. RSA class - http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsa.aspx

10. Windows Data Protection - http://msdn.microsoft.com/en-us/library/ms995355.aspx

11. CspKeyContainerInfo class - http://msdn.microsoft.com/en-

us/library/system.security.cryptography.cspkeycontainerinfo.aspx

http://msdn.microsoft.com/en-us/library/ms345164.aspx
http://msdn.microsoft.com/en-us/library/ms345164.aspx
http://sqlsrvintegrationsrv.codeplex.com/releases/view/17647
http://blogs.msdn.com/b/mattm/archive/2008/12/30/samples-for-creating-ssis-packages-programmatically.aspx
http://blogs.msdn.com/b/mattm/archive/2008/12/30/samples-for-creating-ssis-packages-programmatically.aspx
http://social.msdn.microsoft.com/Forums/en/sqlintegrationservices/thread/27535ce7-c72c-4ea5-a27a-b34c12c73312
http://social.msdn.microsoft.com/Forums/en/sqlintegrationservices/thread/27535ce7-c72c-4ea5-a27a-b34c12c73312
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsa.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.cspkeycontainerinfo.aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.cspkeycontainerinfo.aspx

