
STEELBREEZE STATE MACHINE

C# Reference

Steelbreeze.Behaviour Namespace!
The Steelbreeze.Behaviour namespace provides the classes and interfaces that support UML style
hierarchical finite state machines.
The Steelbreeze.Behaviour namespace is in the Steelbreeze.Behaviour assembly (in
Steelbreeze.Behaviour.dll).
Both the StateMachine and Region classes can be used as the top-level of a state machine.
This IState interface provides an interface for the state of the state machine (what states are currently
active, etc); by providing an interface only it is up to the developer to implement their desired
transaction, serialisation and thread management.

Classes!
Class Description

CompositeState A state that contains child states and pseudo states.

Element Any state, pseudo state or region within a state machine hierarchy.

FinalState A state that cannot be transitioned out of.

OrthogonalState A state than contains child regions.

PseudoState A transient state with behaviour defined by its ‘kind’.

Region A container of states and pseudo states.

SimpleState A leaf-level state within a state machine hierarchy.

StateMachine The root element of a state machine hierarchy

Transition<T> A typed transition from a state to another state or pseudo state.

Transition An untyped transition from a state or pseudo state to another state or
pseudo state tested for upon entry to the source state or pseudo state.

Transition.Else A catch-all completion transition from junction or completion pseudo states
used where no other transitions guards evaluate true.

 C# Reference | ! 1

Interfaces!

Enumerations!

CompositeState Class!
A state that contains child states and pseudo states.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Element
 Steelbreeze.Behaviour.SimpleState
 Steelbreeze.Behaviour.CompositeState

Syntax!
public class CompositeState : SimpleState

!
The CompositeState type exposes the following members:

Constructors!

Properties!

Interface Description

IState An interface from which to implement a container for the state of the state
machine hierarchy

Euneration Description

PseudoStateKind Defines the behaviour of an individual PseudoState.

Name! Description

CompositeState(Stri
ng, Region)

Initialises a new instance of the CompositeState class with the given name
and owning Region.

CompositeState(Stri
ng,
CompositeState)

Initialises a new instance of the CompositeState class with the given name
and owning CompositeState.

Name! Description

Name The name of the CompositeState. From Element.

Owner The owning Element of the CompositeState. From Element.

QualifiedName The fully qualified name of the CompositeState. From Element.

 C# Reference | ! 2

Methods!

Events!

Remarks!
A CompositeState is the most straightforward way to add hierarchy to a state machine. It fulfils all the
semantics of the base SimpleState and augments it with child states and pseudo states.
The implementation of an IState interface will remember the last known child state for a composite
state.

Element Class!
Any state, pseudo state or region within a state machine hierarchy.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Element

Syntax!
public abstract class Element

!
The Element type exposes the following members:

!

Name! Description

OnEnter Protected method allowing sub-classes to override entry behaviour. From
SimpleState.

OnExit Protected method allowing sub-classes to override exit behaviour. From
SimpleState.

Name! Description

Entry Occurs when a CompositeState is entered.

Exit Occurs when a CompositeState is exited.

 C# Reference | ! 3

Properties!

Remarks!
An Element is an abstraction over members of the state machine hierarchy.

FinalState Class!
A state that cannot be transitioned out of.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Element
 Steelbreeze.Behaviour.SimpleState
 Steelbreeze.Behaviour.FinalState

Syntax!
public sealed class FinalState : SimpleState

!
The FinalState type exposes the following members:

Constructors!

Properties!

Name! Description

Name The name of the Element.

Owner The owning Element of the Element.

QualifiedName The fully qualified name of the Element.

Name! Description

FinalState(String,
Region)

Initialises a new instance of the FinalState class with the given name and
owning Region.

FinalState(String,
CompositeState)

Initialises a new instance of the FinalState class with the given name and
owning CompositeState.

Name! Description

Name The name of the CompositeState. From Element.

Owner The owning Element of the CompositeState. From Element.

QualifiedName The fully qualified name of the CompositeState. From Element.

 C# Reference | ! 4

Remarks!
A FinalState marks is owning Region or CompositeState as being ‘complete’ and as such, are a
critical mechanism for determining if the lifecycle of the entire object under state management is
complete.
Completion transitions from CompositeStates will only be evaluated if the CompositeStates current
active child is a FinalState.
Completion transitions from OrthogonalStates will only be evaluated if the current active child state of
all the OrthogonalStates child Regions are FinalStates.

OrthogonalState Class!
A state that contains child Regions.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Element
 Steelbreeze.Behaviour.SimpleState
 Steelbreeze.Behaviour.OrthogonalState

Syntax!
public class OrthogonalState : SimpleState

!
The OrthogonalState type exposes the following members:

Constructors!

!

Name! Description

OrthogonalState(Str
ing, Region)

Initialises a new instance of the OrthogonalState class with the given name
and owning Region.

CompositeState(Stri
ng,
CompositeState)

Initialises a new instance of the OrthogonalState class with the given name
and owning CompositeState.

 C# Reference | ! 5

Properties!

Methods!

Events!

Remarks!
An OrthogonalState add hierarchy to a state machine through multiple child Regions. It fulfils all the
semantics of the base SimpleState and augments it with child states and pseudo states.
The child Regions of an OrthogonalState are meant to be independent of each other; any messages
and actions delegated to an OrthogonalState are further delegated to all child Regions as required.
Therefore, when OrthogonalStates are used, the current state of a state machine can actually have
multiple values as each child Region maintains its own current state.

PseudoState Class!
A transient state with behaviour defined by its ‘kind’.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Element
 Steelbreeze.Behaviour.PseudoState

Syntax!
public class PseudoState : Element

!!

Name! Description

Name The name of the OrthogonalState. From Element.

Owner The owning Element of the OrthogonalState. From Element.

QualifiedName The fully qualified name of the OrthogonalState. From Element.

Name! Description

OnEnter Protected method allowing sub-classes to override entry behaviour. From
SimpleState.

OnExit Protected method allowing sub-classes to override exit behaviour. From
SimpleState.

Name! Description

Entry Occurs when an OrthogonalState is entered.

Exit Occurs when a OrthogonalState is exited.

 C# Reference | ! 6

The PseudoState type exposes the following members:

Constructors!

Properties!

Remarks!
A PseudoState is a transient state in a state machine without entry or exit behaviour; upon entry,
completion transitions will be evaluated to determine the next state of the state machine.
Each Region or CompositeState must have a single initial PseudoState who’s kind is Initial,
DeepHistory or ShallowHistory; this is used to control the initial starting position when entering the
Region or CompositeState.
Other kinds of PseudoStates are used as branching mechanisms to provide composite transitions
enabling complex logic and behaviour between states.

Region Class!
A container of states and pseudo states..

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Element
 Steelbreeze.Behaviour.Region

Syntax!
public class Region : Element

!!

Name! Description

PseudoState(String,
PseudoStateKind,
Region)

Initialises a new instance of the PseudoState class with the given name,
kind and owning Region.

PseudoState(String,
PseudoStateKind,
CompositeState)

Initialises a new instance of the PseudoState class with the given name,
kind and owning CompositeState.

Name! Description

Kind The kind of the PseudoState.

Name The name of the PseudoState. From Element.

Owner The owning Element of the PseudoState. From Element.

QualifiedName The fully qualified name of the PseudoState. From Element.

 C# Reference | ! 7

The Region type exposes the following members:

Constructors!

Properties!

Methods!

Remarks!
A Region is a container of states and pseudo states, usually as a child of an OrthogonalState.
A Region is recommended as the top-level of a state machine in most circumstances (only where the
top level required orthogonal regions would an OrthogonalState be a better choice).

SimpleState Class!
A leaf-level state within a state machine hierarchy.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Element
 Steelbreeze.Behaviour.SimpleState

Syntax!
public class SimpleState : Element

Name! Description

CompositeState(Stri
ng, StateMachine)

Initialises a new instance of the CompositeState class with the given name
and owning StateMachine.

CompositeState(Stri
ng,
OrthogonalState)

Initialises a new instance of the CompositeState class with the given name
and optional owning Region.

Name! Description

Name The name of the Region. From Element.

Owner The owning Element of the Region. From Element.

QualifiedName The fully qualified name of the Region. From Element.

Name! Description

Initialise(IState) Initialises a Region to its initial state when used as a top-level state
machine.

IsComplete(IState) Determines if a Region is complete by testing if the current active child is a
FinalState.

Process(IState,
Object)

Attempts to process a message. This will delegate the message to the
currently active child state.

 C# Reference | ! 8

!
The CompositeState type exposes the following members:

Constructors!

Properties!

Methods!

Events!

Remarks!
A SimpleState is the most straightforward state in a state machine. It defines a condition during the
life of an object under state management. Upon entering the state, the Entry event is called and
completion transitions are tested for; upon exiting the state the Exit event is called.

StateMachine Class!
The root element of a state machine hierarchy.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Element
 Steelbreeze.Behaviour.StateMachine

Name! Description

SimpleState(String,
Region)

Initialises a new instance of the SimpleState class with the given name and
owning Region.

SimpleState(String,
CompositeState)

Initialises a new instance of the SimpleState class with the given name and
owning CompositeState.

Name! Description

Name The name of the SimpleState. From Element.

Owner The owning Element of the SimpleState. From Element.

QualifiedName The fully qualified name of the SimpleState. From Element.

Name! Description

OnEnter Protected method allowing sub-classes to override entry behaviour.

OnExit Protected method allowing sub-classes to override exit behaviour.

Name! Description

Entry Occurs when a SimpleState is entered.

Exit Occurs when a SimpleState is exited.

 C# Reference | ! 9

Syntax!
public class StateMachine : Element

!
The StateMachine type exposes the following members:

Constructors!

Properties!

Methods!

Remarks!
A StateMachine forms the root element of a state machine hierarchy. If performance critical, and no
orthogonal regions are required at the top level, using a Region instead of a StateMachine is
preferred.

Transition<T> Class!
A typed transition from a state to another state or pseudo state.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Transition<T>

Syntax!
public class Transition<T> where T : class

!

Name! Description

StateMachine(Strin
g)

Initialises a new instance of the StateMachine class with the given name.

Name! Description

Name The name of the StateMachine. From Element.

Owner The owning Element of the StateMachine. From Element. Always null for a
StateMachine.

QualifiedName The fully qualified name of the MachineState. From Element.

Name! Description

Initialise(IState) Initialises a StateMachine to its initial state.

IsComplete(IState) Determines if a StateMachine is complete by testing if all the child Regions
are complete.

Process(IState,
Object)

Attempts to process a message. This will delegate the message to the child
Regions for evaluation; returns true if any Region processes the message.

 C# Reference | ! 10

The Transition type exposes the following members:

Constructors!

Methods!

Events!

Remarks!
A Transition<T> is a typed transition from a SimpleState (or any class derived from SimpleState) to
another SimpleState or PseudoState.
When a message is passed to a state for evaluation, firstly, its type is checked against the types of
the transitions from that state, then for those of matching type the guard condition is evaluated. If a
single matching transition is found it is traversed and a state transition occurs. If multiple are found,
an exception is thrown as the machine is deemed to be malformed.
When exiting a state, any child structure is first exited (if the state is a CompositeState or
OrthogonalState), then its Exit event is called.
When entering a state, its Entry event is called then any child structure is entered (if the state is a
CompositeState or OrthogonalState).
If the target of the transition is a PseudoState (or another SimpleState or derivative that is
‘completed’), its completion transitions are evaluated and so a composite transition occurs.
A transition without a target specified is known as an internal transition, when this is traversed the
state is not exited or entered and only the traversal effect is performed.
A self-transition can be created by specifying the source and target as the same state, in which case
the state is exited, transition effect is performed and then the state is re-entered.
Transitions are not limited to SimpleStates and PseudoStates in the same containing Region or
CompositeState; external transitions are allowed that jump across the state machine hierarchy. In
these cases, the Exit operation cascades to up to, but not including the least common ancestor in the
state machine hierarchy followed by a cascade of the Entry operation to the target state or pseudo
state.

Name! Description

Transition(SimpleSt
ate, PseudoState,
Func<T,Boolean>)

Initialises a new instance of the Transition class from a SimpleState to a
PseudoState with an optional guard condition.

Transition(SimpleSt
ate, SimpleState,
Func<T,Boolean>)

Initialises a new instance of the Transition class from a SimpleState to a
SimpleState with an optional guard condition.

Transition(SimpleSt
ate,
Func<T,Boolean>)

Initialises a new instance of the Transition class creating an internal
transition for a SimpleState with a guard condition.

Name! Description

OnEffect Protected method allowing sub-classes to override transition behaviour.

Name! Description

Effect Occurs when a Transition<T> is traversed.

 C# Reference | ! 11

Transition Class!
An untyped transition from a state or pseudo state to another state or pseudo state tested for upon
entry to the source state or pseudo state.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Transition

Syntax!
public class Transition

!
The Transition type exposes the following members:

Constructors!

Methods!

Events!

Remarks!
A Transition behaves in a similar manner to a Transition<T> however its trigger is the entry to a state
or pseudo state rather than a message. Hence, it has no type associated with it.
Upon entry to a PseudoState or SimpleState (or derivative) that is ‘completed’, the guard conditions
of all completion transitions are evaluated and if a single one found, it is traversed. If multiple are
found, the machine is considered malformed and an exception is thrown.

Name! Description

Transition(PseudoSt
ate, PseudoState,
Func<Boolean>)

Initialises a new instance of the Transition class from a PseudoState to a
PseudoState with an optional guard condition.

Transition(PseudoSt
ate, SimpleState,
Func<Boolean>)

Initialises a new instance of the Transition class from a PseudoState to a
SimpleState with an optional guard condition.

Transition(SimpleSt
ate, PseudoState,
Func<Boolean>)

Initialises a new instance of the Transition class from a SimpleState to a
PseudoState with an optional guard condition.

Transition(SimpleSt
ate, SimpleState,
Func<Boolean>)

Initialises a new instance of the Transition class from a SimpleState to a
SimpleState with an optional guard condition.

Name! Description

OnEffect Protected method allowing sub-classes to override transition behaviour.

Name! Description

Effect Occurs when a Transition is traversed.

 C# Reference | ! 12

If the source is a PseudoState and no completion transitions are found the machine is considered
malformed and an exception is thrown.

Transition.Else Class!
A catch-all completion transition from junction or completion pseudo states used where no other
transitions guards evaluate true.

Inheritance Hierarchy!
System.Object
 Steelbreeze.Behaviour.Transition
 Steelbreeze.Behaviour.Transition.Else

Syntax!
public class Transition { public sealed class Else : Transition }

!
The Transition.Else type exposes the following members:

Constructors!

Events!

Remarks!
A Transition.Else is a special type of completion transition available as a catch-all for circumstances
where the guard conditions of regular completion transition may not cater for every eventuality.
It is highly recommended to use Transition.Else completion transitions where you cannot guarantee
100% coverage of guard conditions.

!

Name! Description

Transition(PseudoSt
ate, PseudoState)

Initialises a new instance of the Transition.Else class from a PseudoState to
a PseudoState.

Transition(PseudoSt
ate, SimpleState)

Initialises a new instance of the Transition.Else class from a PseudoState to
a SimpleState.

Name! Description

Effect Occurs when a Transition.Else is traversed.

 C# Reference | ! 13

IState Interface!
An interface from which to implement a container for the state of the state machine hierarchy.

Syntax!
public interface IState

!
The IState type exposes the following members:

Methods!

Properties!

Remarks!
The implementation of state.cs has separated a state machine into its model its state. It is side-effect
free with the exception of updates to implementations of the IState interface (the state). Therefore,
control of transactions, serialisation, threading etc. is entirely up to the developer of the particular
state machine.

!

Name! Description

SetActive(Element,
Boolean)

Updates the active state of an element within a state machine hierarchy.

GetActive(Element) Returns the active state of an element within a state machine hierarchy.

SetCurrent(Element
,SimpleState)

Updates the child state of a Region or CompositeState within a state
machine hierarchy.

GetCurrent(Element
)

Returns the child state of a Region or CompositeState within a state
machine hierarchy.

Name! Description

IsTerminated Boolean indicating that a state machine has been terminated (reached a
Terminate PseudoState during execution).

 C# Reference | ! 14

PseudoStateKind Enumeration!
Defines the behaviour of an individual PseudoState.

Syntax!
public enum PseudoStateKind

!
Membes!

Remarks!
The kind of a PseudoState defines its behaviour.
Initial, ShallowHistory and DeepHistory are all ‘initial’ kinds, meaning they define the behaviour when
entering a Region or CompositeState. Upon the first entry to the owning Region or CompositeState
the initial PseudoState will be entered and its single completion transition traversed. Subsequent
entry to the owning Region or Composite state will have the following behaviour:
• Initial: as per the first entry, the Initial Pseudo state will be entered.
• ShallowHistory: the last known child state of the owing Region or CompositeState will be entered.
• DeepHistory: as per ShallowHistory, but all child Regions or CompositeStates will have history

semantics applied as well.
Choice and Junction PseudoStates are used to break up transitions to enable complex logic and
behaviour; they differ where multiple outbound guard conditions evaluate true:
• Choice will select one of the matching transitions at random.
• Junction will consider the state machine to be malformed and throw an exception.
The use of Choice PseudoStates is ill-advised where repeatable behaviour is required.

Member Name! Description

Choice Enables a dynamic conditional branches; within a compound transition.

DeepHistory A type of initial pseudo state; forms the initial starting point when entering a
region or composite state for the first time.

Initial A type of initial pseudo state; forms the initial starting point when entering a
region or composite state.

Junction Enables a static conditional branches; within a compound transition.

ShallowHistory A type of initial pseudo state; forms the initial starting point when entering a
region or composite state for the first time.

Terminate Entering a terminate PseudoState implies that the execution of this state
machine by means of its context object is terminated.

 C# Reference | ! 15

