STEELBREEZE STATE MACHINE

C# Reference

Steelbreeze.Behaviour Namespace

The Steelbreeze.Behaviour namespace provides the classes and interfaces that support UML style
hierarchical finite state machines.

The Steelbreeze.Behaviour namespace is in the Steelbreeze.Behaviour assembly (in
Steelbreeze.Behaviour.dll).

Both the StateMachine and Region classes can be used as the top-level of a state machine.

This IState interface provides an interface for the state of the state machine (what states are currently
active, etc); by providing an interface only it is up to the developer to implement their desired
transaction, serialisation and thread management.

Classes

CompositeState
Element
FinalState
OrthogonalState
PseudoState
Region
SimpleState
StateMachine
Transition<T>

Transition

Transition.Else

A state that contains child states and pseudo states.

Any state, pseudo state or region within a state machine hierarchy.
A state that cannot be transitioned out of.

A state than contains child regions.

A transient state with behaviour defined by its ‘kind’.

A container of states and pseudo states.

A leaf-level state within a state machine hierarchy.

The root element of a state machine hierarchy

A typed transition from a state to another state or pseudo state.

An untyped transition from a state or pseudo state to another state or
pseudo state tested for upon entry to the source state or pseudo state.

A catch-all completion transition from junction or completion pseudo states
used where no other transitions guards evaluate true.

C# Reference |1

Interfaces

Interface Description

[State An interface from which to implement a container for the state of the state
machine hierarchy

Enumerations

Euneration Description

PseudoStateKind Defines the behaviour of an individual PseudoState.

CompositeState Class

A state that contains child states and pseudo states.

Inheritance Hierarchy

System.Object

Steelbreeze.Behaviour.Element
Steelbreeze.Behaviour.SimpleState
Steelbreeze.Behaviour.CompositeState

Syntax

public class CompositeState : SimpleState

The CompositeState type exposes the following members:

Constructors

Name Description

CompositeState(Stri Initialises a new instance of the CompositeState class with the given name
ng, Region) and owning Region.

CompositeState(Stri Initialises a new instance of the CompositeState class with the given name

ng, and owning CompositeState.
CompositeState)
Properties
Name The name of the CompositeState. From Element.
Owner The owning Element of the CompositeState. From Element.
QualifiedName The fully qualified name of the CompositeState. From Element.

C# Reference |2

Methods

Name Description

OnEnter Protected method allowing sub-classes to override entry behaviour. From
SimpleState.
OnExit Protected method allowing sub-classes to override exit behaviour. From
SimpleState.
Events
Entry Occurs when a CompositeState is entered.
Exit Occurs when a CompositeState is exited.
Remarks

A CompositeState is the most straightforward way to add hierarchy to a state machine. It fulfils all the
semantics of the base SimpleState and augments it with child states and pseudo states.

The implementation of an IState interface will remember the last known child state for a composite
state.

Element Class

Any state, pseudo state or region within a state machine hierarchy.

Inheritance Hierarchy
System.Object

Steelbreeze.Behaviour.Element

Syntax

public abstract class Element

The Element type exposes the following members:

C# Reference |3

Properties

Name Description

Name The name of the Element.

Owner The owning Element of the Element.
QualifiedName The fully qualified name of the Element.
Remarks

An Element is an abstraction over members of the state machine hierarchy.

FinalState Class

A state that cannot be transitioned out of.

Inheritance Hierarchy

System.Object

Steelbreeze.Behaviour.Element
Steelbreeze.Behaviour.SimpleState
Steelbreeze.Behaviour.FinalState

Syntax

public sealed class FinalState : SimpleState

The FinalState type exposes the following members:

Constructors
FinalState(String, Initialises a new instance of the FinalState class with the given name and
Region) owning Region.
FinalState(String, Initialises a new instance of the FinalState class with the given name and
CompositeState) owning CompositeState.

Properties
Name The name of the CompositeState. From Element.
Owner The owning Element of the CompositeState. From Element.
QualifiedName The fully qualified name of the CompositeState. From Element.

C# Reference |4

Remarks

A FinalState marks is owning Region or CompositeState as being ‘complete’ and as such, are a
critical mechanism for determining if the lifecycle of the entire object under state management is
complete.

Completion transitions from CompositeStates will only be evaluated if the CompositeStates current
active child is a FinalState.

Completion transitions from OrthogonalStates will only be evaluated if the current active child state of
all the OrthogonalStates child Regions are FinalStates.

OrthogonalState Class

A state that contains child Regions.

Inheritance Hierarchy

System.Object

Steelbreeze.Behaviour.Element
Steelbreeze.Behaviour.SimpleState
Steelbreeze.Behaviour.OrthogonalState

Syntax

public class OrthogonalState : SimpleState

The OrthogonalState type exposes the following members:

Constructors

Name Description

OrthogonalState(Str Initialises a new instance of the OrthogonalState class with the given name
ing, Region) and owning Region.

CompositeState(Stri Initialises a new instance of the OrthogonalState class with the given name
ng, and owning CompositeState.
CompositeState)

C# Reference |5

Properties

Name The name of the OrthogonalState. From Element.
Owner The owning Element of the OrthogonalState. From Element.
QualifiedName The fully qualified name of the OrthogonalState. From Element.
Methods
OnEnter Protected method allowing sub-classes to override entry behaviour. From
SimpleState.
OnExit Protected method allowing sub-classes to override exit behaviour. From
SimpleState.
Events
Entry Occurs when an OrthogonalState is entered.
Exit Occurs when a OrthogonalState is exited.
Remarks

An OrthogonalState add hierarchy to a state machine through multiple child Regions. It fulfils all the
semantics of the base SimpleState and augments it with child states and pseudo states.

The child Regions of an OrthogonalState are meant to be independent of each other; any messages
and actions delegated to an OrthogonalState are further delegated to all child Regions as required.

Therefore, when OrthogonalStates are used, the current state of a state machine can actually have
multiple values as each child Region maintains its own current state.

PseudoState Class

A transient state with behaviour defined by its ‘kind’.

Inheritance Hierarchy

System.Object
Steelbreeze.Behaviour.Element
Steelbreeze.Behaviour.PseudoState

Syntax

public class PseudoState : Element

C# Reference |6

The PseudoState type exposes the following members:

Constructors

Name Description

PseudoState(String, Initialises a new instance of the PseudoState class with the given name,
PseudoStateKind, kind and owning Region.
Region)

PseudoState(String, Initialises a new instance of the PseudoState class with the given name,
PseudoStateKind, kind and owning CompositeState.

CompositeState)
Properties

Name Description

Kind The kind of the PseudoState.

Name The name of the PseudoState. From Element.

Owner The owning Element of the PseudoState. From Element.

QualifiedName The fully qualified name of the PseudoState. From Element.
Remarks

A PseudoState is a transient state in a state machine without entry or exit behaviour; upon entry,
completion transitions will be evaluated to determine the next state of the state machine.

Each Region or CompositeState must have a single initial PseudoState who's kind is Initial,
DeepHistory or ShallowHistory; this is used to control the initial starting position when entering the
Region or CompositeState.

Other kinds of PseudoStates are used as branching mechanisms to provide composite transitions
enabling complex logic and behaviour between states.

Region Class

A container of states and pseudo states..

Inheritance Hierarchy
System.Object
Steelbreeze.Behaviour.Element

Steelbreeze.Behaviour.Region

Syntax

public class Region : Element

C# Reference |7

The Region type exposes the following members:

Constructors

Name Description

CompositeState(Stri Initialises a new instance of the CompositeState class with the given name
ng, StateMachine) and owning StateMachine.

CompositeState(Stri Initialises a new instance of the CompositeState class with the given name

ng, and optional owning Region.
OrthogonalState)
Properties
Name The name of the Region. From Element.
Owner The owning Element of the Region. From Element.
QualifiedName The fully qualified name of the Region. From Element.
Methods
Initialise(IState) Initialises a Region to its initial state when used as a top-level state
machine.

IsComplete(IState) Determines if a Region is complete by testing if the current active child is a

FinalState.
Process(IState, Attempts to process a message. This will delegate the message to the
Object) currently active child state.

Remarks
A Region is a container of states and pseudo states, usually as a child of an OrthogonalState.

A Region is recommended as the top-level of a state machine in most circumstances (only where the
top level required orthogonal regions would an OrthogonalState be a better choice).

SimpleState Class

A leaf-level state within a state machine hierarchy.

Inheritance Hierarchy

System.Object
Steelbreeze.Behaviour.Element
Steelbreeze.Behaviour.SimpleState

Syntax

public class SimpleState : Element

C# Reference |8

The CompositeState type exposes the following members:

Constructors

Name Description

SimpleState(String, Initialises a new instance of the SimpleState class with the given name and
Region) owning Region.

SimpleState(String, Initialises a new instance of the SimpleState class with the given name and
CompositeState) owning CompositeState.

Properties
Name The name of the SimpleState. From Element.
Owner The owning Element of the SimpleState. From Element.
QualifiedName The fully qualified name of the SimpleState. From Element.
Methods
OnEnter Protected method allowing sub-classes to override entry behaviour.
OnExit Protected method allowing sub-classes to override exit behaviour.
Events
Entry Occurs when a SimpleState is entered.
Exit Occurs when a SimpleState is exited.
Remarks

A SimpleState is the most straightforward state in a state machine. It defines a condition during the
life of an object under state management. Upon entering the state, the Entry event is called and
completion transitions are tested for; upon exiting the state the Exit event is called.

StateMachine Class

The root element of a state machine hierarchy.

Inheritance Hierarchy

System.Object
Steelbreeze.Behaviour.Element
Steelbreeze.Behaviour.StateMachine

C# Reference |9

Syntax

public class StateMachine : Element

The StateMachine type exposes the following members:

Constructors

Name Description

StateMachine(Strin Initialises a new instance of the StateMachine class with the given name.
9)

Properties
Name The name of the StateMachine. From Element.
Owner The owning Element of the StateMachine. From Element. Always null for a

StateMachine.

QualifiedName The fully qualified name of the MachineState. From Element.

Methods

Name Description

Initialise(IState) Initialises a StateMachine to its initial state.

IsComplete(IState) Determines if a StateMachine is complete by testing if all the child Regions
are complete.

Process(IState, Attempts to process a message. This will delegate the message to the child
Object) Regions for evaluation; returns true if any Region processes the message.
Remarks

A StateMachine forms the root element of a state machine hierarchy. If performance critical, and no
orthogonal regions are required at the top level, using a Region instead of a StateMachine is
preferred.

Transition<T> Class

A typed transition from a state to another state or pseudo state.

Inheritance Hierarchy
System.Object
Steelbreeze.Behaviour. Transition<T>

Syntax

public class Transition<T> where T : class

C# Reference | 10

The Transition type exposes the following members:

Constructors

Name Description

Transition(SimpleSt Initialises a new instance of the Transition class from a SimpleState to a
ate, PseudoState, PseudoState with an optional guard condition.
Func<T,Boolean>)

Transition(SimpleSt Initialises a new instance of the Transition class from a SimpleState to a
ate, SimpleState, SimpleState with an optional guard condition.
Func<T,Boolean>)

Transition(SimpleSt Initialises a new instance of the Transition class creating an internal
ate, transition for a SimpleState with a guard condition.
Func<T,Boolean>)

Methods

Name Description

OnEffect Protected method allowing sub-classes to override transition behaviour.
Events

Name Description

Effect Occurs when a Transition<T> is traversed.
Remarks

A Transition<T> is a typed transition from a SimpleState (or any class derived from SimpleState) to
another SimpleState or PseudoState.

When a message is passed to a state for evaluation, firstly, its type is checked against the types of
the transitions from that state, then for those of matching type the guard condition is evaluated. If a
single matching transition is found it is traversed and a state transition occurs. If multiple are found,
an exception is thrown as the machine is deemed to be malformed.

When exiting a state, any child structure is first exited (if the state is a CompositeState or
OrthogonalState), then its Exit event is called.

When entering a state, its Entry event is called then any child structure is entered (if the state is a
CompositeState or OrthogonalState).

If the target of the transition is a PseudoState (or another SimpleState or derivative that is
‘completed’), its completion transitions are evaluated and so a composite transition occurs.

A transition without a target specified is known as an internal transition, when this is traversed the
state is not exited or entered and only the traversal effect is performed.

A self-transition can be created by specifying the source and target as the same state, in which case
the state is exited, transition effect is performed and then the state is re-entered.

Transitions are not limited to SimpleStates and PseudoStates in the same containing Region or
CompositeState; external transitions are allowed that jump across the state machine hierarchy. In
these cases, the Exit operation cascades to up to, but not including the least common ancestor in the
state machine hierarchy followed by a cascade of the Entry operation to the target state or pseudo
state.

C# Reference | 11

Transition Class

An untyped transition from a state or pseudo state to another state or pseudo state tested for upon
entry to the source state or pseudo state.

Inheritance Hierarchy
System.Object
Steelbreeze.Behaviour.Transition

Syntax

public class Transition

The Transition type exposes the following members:

Constructors

Name Description

Transition(PseudoSt Initialises a new instance of the Transition class from a PseudoState to a
ate, PseudoState, PseudoState with an optional guard condition.
Func<Boolean>)

Transition(PseudoSt Initialises a new instance of the Transition class from a PseudoState to a
ate, SimpleState, SimpleState with an optional guard condition.
Func<Boolean>)

Transition(SimpleSt Initialises a new instance of the Transition class from a SimpleState to a
ate, PseudoState, PseudoState with an optional guard condition.
Func<Boolean>)

Transition(SimpleSt Initialises a new instance of the Transition class from a SimpleState to a
ate, SimpleState, SimpleState with an optional guard condition.
Func<Boolean>)

Methods

OnEffect Protected method allowing sub-classes to override transition behaviour.
Events

Effect Occurs when a Transition is traversed.
Remarks

A Transition behaves in a similar manner to a Transition<T> however its trigger is the entry to a state
or pseudo state rather than a message. Hence, it has no type associated with it.

Upon entry to a PseudoState or SimpleState (or derivative) that is ‘completed’, the guard conditions
of all completion transitions are evaluated and if a single one found, it is traversed. If multiple are
found, the machine is considered malformed and an exception is thrown.

C# Reference | 12

If the source is a PseudoState and no completion transitions are found the machine is considered
malformed and an exception is thrown.

Transition.Else Class

A catch-all completion transition from junction or completion pseudo states used where no other
transitions guards evaluate true.

Inheritance Hierarchy
System.Object
Steelbreeze.Behaviour. Transition
Steelbreeze.Behaviour. Transition.Else

Syntax

public class Transition { public sealed class Else : Transition }

The Transition.Else type exposes the following members:

Constructors

Name Description

Transition(PseudoSt Initialises a new instance of the Transition.Else class from a PseudoState to
ate, PseudoState) a PseudoState.

Transition(PseudoSt Initialises a new instance of the Transition.Else class from a PseudoState to
ate, SimpleState) a SimpleState.

Events
Effect Occurs when a Transition.Else is traversed.
Remarks

A Transition.Else is a special type of completion transition available as a catch-all for circumstances
where the guard conditions of regular completion transition may not cater for every eventuality.

It is highly recommended to use Transition.Else completion transitions where you cannot guarantee
100% coverage of guard conditions.

C# Reference | 13

|State Interface

An interface from which to implement a container for the state of the state machine hierarchy.

Syntax

public interface IState

The IState type exposes the following members:

Methods

Name Description

SetActive(Element, Updates the active state of an element within a state machine hierarchy.
Boolean)

GetActive(Element) Returns the active state of an element within a state machine hierarchy.

SetCurrent(Element Updates the child state of a Region or CompositeState within a state
,SimpleState) machine hierarchy.

GetCurrent(Element Returns the child state of a Region or CompositeState within a state
) machine hierarchy.

Properties
Name Description
IsTerminated Boolean indicating that a state machine has been terminated (reached a
Terminate PseudoState during execution).
Remarks

The implementation of state.cs has separated a state machine into its model its state. It is side-effect
free with the exception of updates to implementations of the IState interface (the state). Therefore,
control of transactions, serialisation, threading etc. is entirely up to the developer of the particular
state machine.

C# Reference | 14

PseudoStateKind Enumeration

Defines the behaviour of an individual PseudoState.

Syntax

public enum PseudoStateKind

Membes
Choice Enables a dynamic conditional branches; within a compound transition.
DeepHistory A type of initial pseudo state; forms the initial starting point when entering a
region or composite state for the first time.
Initial A type of initial pseudo state; forms the initial starting point when entering a
region or composite state.
Junction Enables a static conditional branches; within a compound transition.
ShallowHistory A type of initial pseudo state; forms the initial starting point when entering a
region or composite state for the first time.
Terminate Entering a terminate PseudoState implies that the execution of this state
machine by means of its context object is terminated.
Remarks

The kind of a PseudoState defines its behaviour.

Initial, ShallowHistory and DeepHistory are all ‘initial” kinds, meaning they define the behaviour when
entering a Region or CompositeState. Upon the first entry to the owning Region or CompositeState
the initial PseudoState will be entered and its single completion transition traversed. Subsequent
entry to the owning Region or Composite state will have the following behaviour:

e Initial: as per the first entry, the Initial Pseudo state will be entered.
o ShallowHistory: the last known child state of the owing Region or CompositeState will be entered.

e DeepHistory: as per ShallowHistory, but all child Regions or CompositeStates will have history
semantics applied as well.

Choice and Junction PseudoStates are used to break up transitions to enable complex logic and
behaviour; they differ where multiple outbound guard conditions evaluate true:

e Choice will select one of the matching transitions at random.
¢ Junction will consider the state machine to be malformed and throw an exception.
The use of Choice PseudoStates is ill-advised where repeatable behaviour is required.

C# Reference | 15

