

TFSVersioning Custom
Activity

Production Ready Assembly Versioning with TFS
Build Workflow

Mark Nichols

January 22, 2013

© 2013 Microsoft Corporation
This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

 © 2013 Mark Nichols Page 2

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Contents
Summary: .. 3

First: My Versioning Process Functional Requirements: .. 3

The Solution .. 4

Version Definition Options .. 4

Assembly Version Numbers: ... 4

Build Versioning Parameters ... 5

Assembly Version and Assembly File Version Patterns .. 5

Numeric and Symbol Patterns: ... 6

Examples: .. 6

AssemblyInfo File Pattern: .. 6

Build Number Prefix: ... 7

Example: .. 7

Force Create Version: .. 8

Perform Check-In of the AssemblyInfo File(s): ... 8

Use Version Seed File: ... 8

Version Seed File Path: ... 8

Relative Path or Source File Path .. 9

Relative Path: .. 9

Source File Path: ... 10

Installation and Verification: ... 11

Simplified Installation: .. 11

Testing the installation.. 12

Harder Installation but More Instructive .. 13

 © 2013 Mark Nichols Page 3

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Summary:

Versioning is part of Visual Studio projects within the AssemblyInfo file. It’s easy to update the version

once but how many people actually and effectively manage an application’s version through this

mechanism? I would bet that most only do it sporadically and eventually give up. Manual editing of the

AssemblyVersion and AssemblyFileVersion is harder that it needs to be.

The goal of this project is to create a way to modify the automated build process of TFS 2010 so that

versioning is automatic while giving the user the flexibility that they need given the project’s process

requirements. I’ve done this in the past using the angle-bracket programming paradigm of MSBuild –

powerful but hard. This time I took advantage of the WF capabilities of TFS Build.

First: My Versioning Process Functional Requirements:

1. Must be able to define the AssemblyVersion and AssemblyFileVersion numbers separately

2. Must update the version for all of the assemblies within a solution with the same version

numbers

3. Must provide an option to define the version patterns within the build definition OR within a

version “seed file” that itself could be versioned in source control

4. Must provide the option to define the location and name of the seed file

5. If using the seed file, then the version numbers for a specific solution (.sln) must be definable by

solution name

6. The seed file must be accessible as part of the source base of a project OR even outside of a

project. This capability should allow multiple team projects to utilize a single seed file so version

management can be managed from a central location

7. The seed file must be able to maintain multiple solution-specific version patterns in a single file

8. The seed file must be able to identify a separate version pattern for each of the multiple

solutions simultaneously

9. If a solution name is not provided or is misspelled then a default version pattern should be able

to be provided as a failsafe

10. Must be able to handle modifying versions within C#, VB and C++ projects

11. Must provide the option to automatically check the changes made to the AssemblyInfo file back

in to source control during the build process (keeping all the code files in synch)

12. Must be able to define a versioning scheme appropriate to the needs of the application (i.e., use

a pattern-based approach and/or explicit numbers to define what the version should be)

13. Version pattern options must provide ability for the build to automatically increment the version

if necessary – such as with the AssemblyFileVersion so it can be directly tied back to a build,

date, etc.

 © 2013 Mark Nichols Page 4

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

14. Must provide a way (if necessary to the project) to automatically differentiate version numbers

when multiple builds use the same versioning pattern or seed file. In other words, The version

number in an assembly must be traceable back to a build, its build definition AND the associated

source code (this is an extension of requirement #12)

15. Must be a simple addition to a TFS 2010 workflow-based build process

16. Must use inherent TFS build capabilities – do not require any installation/deployment to the

build server (GAC or local file system)

The Solution

After several iterations of design and implementation, I came up with a combination of custom code

workflow activities (C#) and non-code workflow activities (XAML) that are all combined into a single

composite activity that can be added to an existing TFS 2010 build process. I tried to build in as many

tests as I could which were highly valuable for letting me know when I broke things but I also used them

during development to trigger the execution of the custom activities without having to run them

through a full build process. It made development and debugging tons easier.

Ultimately, I created seven custom activities but only one of them “VersionAssemblyInfoFiles” is

necessary to be inserted into the overall build process. That is because “VersionAssemblyInfoFiles” is a

composite of the other six XAML and code activities that do all the work.

Version Definition Options

As stated in the requirements list, you have the option of defining the version in the build definition or

in a “seed file”. You may be thinking why would I need anything more than being able to define the

version in the build definition? After all, the build definition performs the build, right? This is true

BUT…the build definition only performs one rendition of the build. What if you need to create multiple

build definitions to build the same set of code? I almost always create multiple builds. So, the seed file

allows you to define a single versioning pattern and use it across any number of build definitions.

Now some background…

Assembly Version Numbers:

 AssemblyVersion: This is also the product version. During development, it is the version number

that you are working towards. For example, version 2.3.4.5

 AssemblyFileVersion: This number can be similar to the AssemblyVersion but should indicate a

specific build. For example, 2.3.11070.5 indicates that the major/minor is the same as the

 © 2013 Mark Nichols Page 5

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

AssemblyVersion but the build/revision uses a julian date and build number so that it is unique

no matter what day or how many builds occur. Well, mostly unique – to make it completely

unique review “Build Number Prefix” below.

Build Versioning Parameters

The Build Versioning parameters will appear when you select the build process template that contains

the updated build workflow (more on that below). They will appear with defaults similar to below

assuming that the build workflow is modified as described below.

Assembly Version and Assembly File Version Patterns

You have two choices for how you want to specify where the build will get the “pattern” for replacing

the assembly version numbers.

 The first is the easiest; you just enter the patterns in the build definition (“Assembly File Version

Pattern” and “Assembly Version Pattern” parameters). Those values will then be passed through

to the build workflow.

 The second is a slightly harder but much more flexible. An XML “seed file” is used to hold and

specify the patterns. The benefits of this approach include:

o The same version file can be used across any number of build definitions

o A single file can contain patterns for multiple solutions and will even work if multiple

solutions are specified in a single build – each solution receives their own version

patterns

o Since it is a file, it is versioned along with the source code and therefore history is

maintained

 © 2013 Mark Nichols Page 6

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Numeric and Symbol Patterns:

A version (AssemblyVersion or AssemblyFileVersion) can be 1 to 4 numbers

(Major[.Minor][.Build][.Revision]) where the maximum numeric value for each is 65535 (a U16 number)

 If a number is used in any position in the version pattern then that number is passed through

unchanged

 Use a symbol pattern and that value will be replaced in the AssemblyInfo file. The symbols are:

o YYYY: Replaced with the current 4-digit year

o YY: Replaced with the current 2-digit year

o M or MM: Replaced with the number for the current month (MM does not give you a

leading 0)

o D or DD: Replaced with the number for the current day (DD does not give you a leading

0)

o J: Replace with the current date in “Julian” 5-digit format (YYDDD where YY is the year

and DDD is the number of the day within the year e.g., 11075 is March 16, 2011 – there

are leading 0’s for the day)

o B: Replace with the current build number for the day. Note, using this pattern requires

that the “Build Number Format” ends in “$(Rev:.r)”. TFS does create the build number

format with this “macro” at the end as the default so unless you change it there won’t

be a problem.

Examples:

“yyyy.mm.dd.b” - If you queued up the 2nd build of the day on April 26, 2011 the version would be:

“2011.4.26.2”

“1.0.J.B” – Again, if you queued up the 2nd build of the day on April 26, 2011 the version would be:

“1.0.11116.2” (This is the default for the assembly file version)

AssemblyInfo File Pattern:

This parameter is included if you want to specify a different name or different pattern for finding the file

that should contain the AssemblyVersion and AssemblyFileVersion entries. Normally, you will not need

to change this parameter but it is included for completeness and flexibility.

 © 2013 Mark Nichols Page 7

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Build Number Prefix:

The ability to use a seed file to version assemblies across multiple build definitions definitely can ease

the management of version numbers and lessen the maintenance within the definitions themselves.

However, it creates another problem: different build definitions can generate the exact same version

numbers. (See the example below)

The Build Number Prefix provides you with the ability to use the same version pattern across multiple

build definitions and still be able to look at the version and trace it back to the build definition that built

it and even the source code that was used. So, in other words, you can have your CI build, a daily build

and even multiple manual builds and always be able to determine what built the code and what source

was used. You can also look at a version number and determine if someone decided to insert an

assembly into production that was from the wrong build.

The approach is simple. By entering a value in the “Build Number Prefix” parameter, that value will be

added to the Build Number in the version (this assumes that the “B” flag is used in the version pattern –

typically in the AssemblyFileVersion). So, if the build number is 1 and the Build Number Prefix is 100

then the version will indicate 101.

Example:

Let’s say you have a situation like we already described: 2 build definitions (a CI and a daily build) and

both definitions use the following pattern for the AssemblyFileVersion: “1.2.J.B”. Now, queue up an

instance of both definitions (assuming they are the 1st builds of the day). When the build process is

done, you will have assemblies in 2 different drop folders with the exact same AssemblyFileVersion (e.g.:

“1.2.11155.1”). So, to solve that problem, enter the value 100 in the Build Number Prefix parameter for

the CI build and a value of 200 in the Build Number Prefix for the daily build. Now, queue them both up

again. The resulting version numbers will be different (CI will be “1.2.11155.102” and the daily build will

be “1.2.11155.202”). Now they are different and will continue to be different. I can even trace all the

way back to the source code that built it via the build definition and the label attached to the source.

You can make this tracing even easier if you add the number you use for the prefix to the Build

Definition Name. Then, the version, the build definition and the label will all be aligned to the same

naming/versioning pattern and easy to search for and find.

Note: The prefix number must always be larger than the build number or you will get number clashes.

The example above assumes that you would never build more than 99 times in a day. If that is a

possibility then just change the prefix to 1000. If you do more than 999 builds in a day then please

contact me because you’re probably melting the build servers and I would love to hear about it. In any

event, you could put 10000 in the prefix to handle it. No matter what, prefix + build number can’t go

over the UInt16 value of 65535.

 © 2013 Mark Nichols Page 8

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Force Create Version:

A “True” value here indicates to the process that even if an AssemblyVersion or AssemblyFileVersion

entry does not already exist within the AssemblyInfo files, they should be created. A “False” value will

key off their existence in the AssemblyInfo file and will only update a version if it is indicated. Maybe you

want the AssemblyVersion but you don’t want to update the AssemblyFileVersion – just set this value to

“False” and leave the AssemblyFileVersion entry out of the AssemblyInfo file and no

AssemblyFileVersion will be created.

Perform Check-In of the AssemblyInfo File(s):

This parameter is a boolean that lets you say that you want the AssemblyInfo files checked back into

source control after they are modified with the correct version numbers and before the source is

labeled. This will keep the history current within source control. It defaults to “False” so therefore will

not perform a check-in but change to true if you want them checked in.

Use Version Seed File:

This property is an indicator that defaults to “False” which tells the build to use the version patterns in

the build definition. Change this to a value of “True” to tell the build to use the version “seed file”. See

the descriptions below to find out more about the benefits of using the seed file to manage the version

patterns across multiple builds.

Version Seed File Path:

The version seed file is an alternative to using the version patterns included in the build definition. By

using the seed file, you can instruct any number of build definitions to use the same version number

patterns across all of the builds. So, if you have a CI build and daily build, they both can use the same

data file to define the version parameters. Another benefit of the seed file is that you can manage

versioning multiple solutions with the same seed file. The solutions can be built separately or (if you

wish) you can build multiple solutions in the same build definition and each solution is versioned with its

own version patterns.

The example below shows the XML structure for the seed file. There is an overall “VersionSeed” group

that contains the “Solutions”. Each solution element corresponds to a Visual Studio solution by name.

So, the versioning activity will read the seed file and look for an element name that matches the name

 © 2013 Mark Nichols Page 9

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

of the solution. If it finds one, it will then extract the patterns to be used for the versioning

replacement.

<VersionSeed>
 <Solution name="BuildVersioning">
 <AssemblyVersionPattern>1.0.3.0</AssemblyVersionPattern>
 <AssemblyFileVersionPattern>1.0.j.b</AssemblyFileVersionPattern>
 </Solution>
 <Solution name="Default">
 <AssemblyVersionPattern>1.0.2.0</AssemblyVersionPattern>
 <AssemblyFileVersionPattern>1.0.j.b</AssemblyFileVersionPattern>
 </Solution>
</VersionSeed>

To continue with the example, I have a TFS Project that contains a solution file called

“BuildVersioning.sln”. With this seed file, the “BuildVersioning” solution assemblies will all receive an

AssemblyVersion of 1.0.3.0. All assemblies will also receive an AssemblyFileVersion of “1.0.11106.5” (for

example - see the pattern translation below for Julian date and buildnumber). The “Default” value is

used if there the solution being built does not have a corresponding Solution Name in the seed file. It is

a safety catch but could also be used to version multiple solutions with the same version numbers (I

don’t have a good reason why you would want to do that but then everyone has different needs).

Relative Path or Source File Path

Relative Path:

The default value included in the build definition properties is “TfsVersion\VersionSeed.xml”. This

assumes that you will create a folder named “TfsVersion” within the solution and in that folder is a file

named “VersionSeed.xml”. This is using the relative path approach.

 © 2013 Mark Nichols Page 10

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Building multiple solutions in the same build definition is easy within TFS 2010. If you want to do this,

you can move the folder containing the seed file up a level or two (e.g.:

“..\..\TfsVersion\VersionSeed.xml”). Then, the build will look at where the current solution being built is

located and then traverse upward to the folder containing the seed file. Note: If you do this, the folder

containing the seed file must be included in the Source Control Folder when you identify the Workspace

in the build definition. Obviously, this is necessary so the file exists locally when the build server gets

the source code.

Source File Path:

You have a second option to identify the seed file. Instead of a relative path, you can use a complete

source file path to specify where, in source control, the seed file exists. This approach solves a number

of issues. Going this route, you can manage version numbers across multiple TFS Team Projects rather

than just multiple solutions within a single TFS project. You also don’t have to worry about making sure

the seed file exists in the workspace identified in the build definition or if the seed file is the same

distance away from each of the solution files.

The only difference is in how you identify the file. Rather than using relative path notation, you use

source control notation (e.g.: “$/Project/folder/file.ext”). For example, below you can see that the

solution is in the BuildActivities Team Project but the seed file is in the “Shared Source Projects” Team

Project. I did this just to show the possibilities of the feature – the file does not need to be in a different

Team Project. Also note that the “Use Version Seed File” property is set to “True”. “False” means that

the version patterns will be taken right from the build definition.

The easiest way to grab the path is to just right-click on the file in Team Explorer and go to properties.

You can then just highlight and copy the file location (where ever you decide to put it).

 © 2013 Mark Nichols Page 11

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Installation and Verification:

Simplified Installation:

This method of installation assumes that you will use the modified workflow (XAML file) that is included

with the source. The name of the workflow is “VersioningBuildTemplate.xaml”.

1. Create or identify a Team Project to hold the activity assembly and the updated versioning build

workflow (XAML) file. Personally, I created a Team Project called BuildActivities to hold the

source for this workflow addon. In that same project I hold the updated build process template

as well as the custom activity assembly that does all of the versioning work.

2. Create or identify a folder to hold the custom versioning activity assembly. The TFS build

controller keeps track of a folder in source control where all the custom activity assemblies can

be stored and used in build workflows. Below you can see the one I created “Custom Activity

Storage”

3. Add the VersioningBuildTemplate.xaml file to your BuildProcessTemplates folder and add the

TfsBuild.Versioning.Activities.dll file to your custom activity storage folder

4. Check in the additions to source control

5. Start up the Team Foundation Server Administration Console. You need to tell the TFS Build

Controller where it should look to find any custom build activity assemblies

 © 2013 Mark Nichols Page 12

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

6. Go to “Build Configuration” and select the build controller properties. The window should look

something like the one below:

7. Click the ellipsis for the “Version control path to custom assemblies” and navigate to the folder

where you added the TfsBuild.Versioning.Activities.dll file. After you identify the folder in

source control, click OK

That’s it for installation. You can close down the administration console for TFS.

Testing the installation

1. Either create or go to a Team Project where you can test the build versioning process.

2. Create a new build definition (you could modify an existing one if you want)

3. Fill in the Name, Trigger, Workspace and Build Defaults as you normally would

4. When you get to “Process”, click on “Show details” in the “Build process template” section

5. Open up the “Build process file” drop-down and look for the “VersioningBuildTemplate.xaml”

file and select it. If it is not there, click on the “New” button, click on the “Select an existing

XAML file” radio button and browse to the folder location where you checked in the XAML file

and then click “OK”

6. Within the “Build process parameters”, a new “Build Versioning” section should appear that

contains all of the properties described previously

This is all you have to do to get the build updated with versioning. The defaults should work just fine to

create assemblies with an assembly version number of “1.0.0.0” (which isn’t too amazing since that’s

the default that comes in the assemblyInfo file) BUT the assembly file version should be recognizable

 © 2013 Mark Nichols Page 13

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

that it has been changed. It should be “1.0.#####.1”. The “#####” number depends on the day you run

the build but if it were April 22, 2011 then the number would be 11112. In any event it will be a 5 digit

number with the 1st two digits being the year.

Cue up the build and see what happens.

Harder Installation but More Instructive

This version of the installation assumes that you want to be able to modify your own workflow and

insert the custom versioning activity. In this option, the versioning assembly must be added to the GAC

and therefore signed. The reason it needs to be added to the GAC is so the workflow editor in Visual

Studio will see the assembly and allow it to be added to the workflow. The assembly included in the

download is signed (albeit not very securely since the key file doesn’t use a password). You can use this

assembly or compile your own with your own key.

1. Use the GACUtil utility to install the assembly to the Global Assembly Cache

a. Go to “All Programs\ Microsoft Visual Studio 2010\ Visual Studio Tools\ Visual Studio

Command Prompt” and start a command window with elevated privileges (“As

Administrator”)

b. Install the assembly into the GAC with a command like this:

2. Open Visual Studio and the build workflow file (xaml) that you wish to modify

3. You need to tell the Visual Studio toolbox that you want to use the custom activity

a. If you want, add a tab in the toolbox to contain the custom versioning activity. This is

not at all necessary but it does organize the activities.

b. Add the custom activity to the toolbox by right-clicking on the tab where you want the

custom activity to reside. The tab should highlight to tell you where it will be placed.

c. Select “Choose Items…” from the popup menu. This will bring up an aptly-named

“Choose Toolbox Items” window

d. The “System.Activities Components” tab will probably be highlighted. Click “Browse…”

and go find the activity assembly. You just need to browse to the file not the GAC.

 © 2013 Mark Nichols Page 14

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

e. All of the activities in the assembly you just added will be checked by default. You can

make things a little easier for later if you uncheck those activities and only check the

“VersionAssemblyInfoFiles” activity. The others are used by “VersionAssemblyInfoFiles”

to make up the composite activity.

f. Click “OK” and the toolbox will be updated

4. Create the “Arguments” in the workflow so that you can pass information to the activity during

the build definition and the build itself. Note that all of the arguments use “In” as the direction

and below I am giving you the Name, Argument type and Default value:

Argument Name Type Default Value

VersionSeedFilePath String “TfsVersion\VersionSeed.xml”

ForceCreateVersion Boolean True

DoCheckinAssemblyInfoFiles Boolean False

AssemblyVersionPattern String "1.0.0.0"

AssemblyFileVersionPattern String "1.0.J.B"

 © 2013 Mark Nichols Page 15

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

AssemblyInfoFilePattern String "AssemblyInfo.*"

UseVersionSeedFile Boolean False

BuildNumberPrefix Int32 0

5. Insert the activity and tie the arguments to it:

a. Search for the right position to place the activity by looking in the “Run On Agent”

sequence. This can get confusing since the workflow will expand when you try to view

areas that it hasn’t shown before. So, collapse the activities as you scan downward. For

example, right inside of “Run On Agent” is “Initialize Variables” and if you click on the up

arrows on the right side of the activity it will collapse down. The next sequence below

“Initialize Variables” should be “Initialize Workspace” and that’s where the activity

should go – right below “Get Workspace” (after the source is retrieved and before

anything is labeled)

b. Drag “VersionAssemblyInfoFiles” from the toolbox and place it right below “Get

Workspace”. It will tell you that there is an error since there are required values that

have to be filled in.

c. Add the arguments to the properties. All of the arguments that were created above

need to be added to the activity properties but you will see that there are more

properties than the number of arguments that we created. This is because the activity

uses some of the arguments and variables that already exist in the workflow.

(“BuildSettings” is an existing argument, “Workspace” and “BuildDirectory” are existing

variables). The graphic below shows you what to change and when you’re done the

error icon should go away:

 © 2013 Mark Nichols Page 16

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

6. Almost there. Now you need to add the metadata to the workflow so that the build definition

will know to ask you the right questions as you create the build. In the “Arguments” for the

workflow, look for “Metadata” and click on the ellipsis.

a. In the “Process Parameter Metadata Editor” you need to add an entry for each

argument that will get passed from the build definition to the build workflow. Use the

table below to copy/paste the entries in to the editor.

b. The “Category” value for each of the parameters should be identical so the properties

are all grouped together. I named the category “Build Versioning”.

c. Leave the “Required” box unchecked for all of the entries

d. You can modify the “View this parameter when:” however you would like or you can

leave the values at the default of “Only while editing a definition”

Parameter Name Display Name Description

AssemblyFileVersionPattern Assembly File Version
Pattern

This is the pattern used to replace
the AssemblyFileVersion value.

AssemblyVersionPattern Assembly Version
Pattern

This is the pattern used to replace
the AssemblyVersion value.

AssemblyInfoFilePattern AssemblyInfo File
Pattern

This is the pattern used to find the
AssemblyInfo files. Generally, you
shouldn't need to change this
value.

DoCheckinAssemblyInfoFiles Perform Check-in of
the AssemblyInfo Files

Indicated whether the
AssemblyInfo files should be
checked back into source control
after they are modified.

ForceCreateVersion Force Create Version If true, the versioning process will
create AssemblyVersion or
AssemblyFileVersion values even if
they do not already exist.

UseVersionSeedFile Use Version Seed File Indicate which values to use as the
versioning patterns. If set to True,

 © 2013 Mark Nichols Page 17

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

the "seedfile.xml" file must exist in
the location described by the
"Version Seed File Path" setting.
Otherwise, the "Assembly Version
Pattern" and "Assembly File
Version Pattern" values will be
used.

VersionSeedFilePath Version Seed File Path Relative path location for the seed
(xml) file containing the Assembly
Version and Assembly File Version
values.

BuildNumberPrefix Build Number Prefix Number added to the version
component that uses the "B"
symbol pattern (Build Number).
This helps create a unique version
for a build definition.

7. Last step. This step is a verification step. Sometimes, depending on how the workflow is edited

an entry may be left out.

a. Edit the build workflow in text mode so you can see the XML/XAML code

b. Search for “TfsBuild.Versioning.Activities”. The entry should be something like this:

 xmlns:tva="clr-
namespace:TfsBuild.Versioning.Activities;assembly=TfsBuild.Versioning.Activit
ies"

c. If the “;assembly=TfsBuild.Versioning.Activities” statement is not there

then definitely complete the entry and put it in manually otherwise the build will most

likely fail when it is run.

That’s it for editing you can now test the build versioning. If you want more instruction on how to do

this, just go back up to “Testing the Installation” but you should be ready to create a new build

definition (or modify an old one) using the workflow you just created and version your assemblies.

 © 2013 Mark Nichols Page 18

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

How to Implement or Create Your Own

Here are the steps required to install/implement this solution. This may look like a lot of things to do just

to get versioning going BUT what I am showing is how to do everything from source code to creating the

build. If I could provide you with the updated build template and the custom activity assembly then you

would only have to create a folder and tell the controller where to look for the assembly. After that, it

would just be a matter of creating build definitions for your projects. That’s it. So, what we have below is

a learning experience. You’ll be able to use the descriptions and lessons learned to help you create your

own custom activities and build workflows.

1. Create a Team Project in TFS. This is to hold the source code of the custom activities, the

updated build process template and a folder to hold the custom assembly(s) for all workflows.

Note: the build controller maintains a single path (within version control) to store custom

assemblies used within any build process. Since they are in version control, the build process will

always know where to look – there is no need to install anything on any of the build machines.

In a momentary lack of creativity, I named the Team Project “BuildActivities”. I now use the

BuildProcessTemplates folder in this Team Project as the base storage location for all other

projects that use the versioning build process.

2. Place the source code provided below in a folder within TFS so you can edit and save your

changes to version control. As you can see above, I called that folder “SolutionBuildVersioning”

3. Prep for the modification of the build process. I created a copy of the “DefaultTemplate.xaml”

within the BuildProcessTemplates folder and called it “VersioningBuildTemplate.xaml”. Then I

branched the BuildProcessTemplates folder into the Main branch of my source code (“Branch

A”). I did this so I could make modifications and test the updates to the template without

messing with the files in what I am now using for production. Finally, I branched again (“Branch

B”) within my custom activities solution folders AND added the XAML file to my solution. This

allows me to edit the XAML workflow within Visual Studio and the workflow will recognize my

file:///C:/Users/marknic.NORTHAMERICA/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles1B72228/image41.png

 © 2013 Mark Nichols Page 19

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

custom activities in the designer toolbox so I could just drag my versioning activity into the

workflow. Note: although the XAML template was part of my solution, it was not compiled or

included in the assembly. After I made the necessary changes to the XAML file, I merged the

changes up a level.

file:///C:/Users/marknic.NORTHAMERICA/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles1B72228/image45.png

 © 2013 Mark Nichols Page 20

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Lesson learned: I tried to test the updated XAML build workflow template by running a build on

the BuildVersioning solution and you can’t do that. This is because the build template needs to

be outside of the workspace that you specify for the solution that you are building. In other

words, you can’t cross the streams. However, all I needed to do was merge the changes in the

build template XAML file up a single level (to the folder pointed to by “Branch A” above) and all

was good. You will know this is the problem if you try to create a build definition and get this

error:

Another General Lesson: Branching and merging saves time! All I needed to do to get the build

template where I could test it was to right-click, merge and check-in. Getting it to the production

file:///C:/Users/marknic.NORTHAMERICA/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles1B72228/image24.png
file:///C:/Users/marknic.NORTHAMERICA/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles1B72228/image28.png

 © 2013 Mark Nichols Page 21

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

location was just one more merge. Learn it, live it, love it.

4. Compile the solution and then edit the “VersioningBuildTemplate.xaml”. The custom activities

will (hopefully) automatically display in the activity toolbox. Sometimes they don’t. If not, right-

click on the “General” tab and select “Choose Items…”. Scroll to the bottom of the

“System.Activities Components” tab and look for “VersionAssemblyInfoFiles”. Check the box

next to it and click OK and the activity will appear in the toolbox.

5. In the build workflow, look for the “Get Workspace” activity. It is in the “Run On Agent”

sequence activity. You want to insert the “VersionAssemblyInfoFiles” activity right after “Get

Workspace”. This location is right after the source is retrieved and right before the source is

labeled. It is a perfect location for making modifications to files so the changes get compiled and

even checking those changes back in to source control as the changes will then be labeled along

with the rest of the source code. Drag the “VersionAssemblyInfoFiles” activity onto the

workflow as below:

6. Change the activity’s a “Display Name” property to something that you will want to see in the

build window and log. I named mine “Versioning Assemblies”. I know, very creative.

file:///C:/Users/marknic.NORTHAMERICA/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles1B72228/image36.png

 © 2013 Mark Nichols Page 22

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

7. Create the 7 arguments in the workflow so that you can pass values to the activity during the

build. A little background here: Arguments in a workflow are name/value pairs global to that

workflow. They are used to pass data into and/or out of a workflow and it doesn’t matter where

you are in the workflow, they are always accessible. Variables, on the other hand, are local to

the area in the workflow where they are defined. For example, let’s say you have two sequence

activities in a workflow (a sequence is a container that holds one or more child activities that are

executed in the order that they appear in their parent sequence container). Now, let’s say

sequence A contains sequence B. If we click on sequence B, then click on “Variables” at the

bottom of the workflow editor and then click on “Create Variable” and give it a name, type and

value (e.g., SourceFilePath, String, “$\ProjName\folder\filename.ext”, that variable will be

visible to any activity inside of sequence B. However, “SourceFilePath” is invisible to all of the

other activities in sequence A.

Ok, Create the following Arguments (They are all “In” arguments)

Argument Name Type Default Value

AssemblyFileVersionPattern String "1.0.J.B"

AssemblyVersionPattern String "1.0.0.0"

AssemblyInfoFilePattern String "AssemblyInfo.*"

VersionSeedFilePath String "TfsVersion\VersionSeed.xml"

DoCheckinAssemblyInfoFiles Boolean False

ForceCreateVersion Boolean True

UseVersionSeedFile Boolean False

8.

9. Add the arguments to the workflows’s metadata so you can modify the values in the Build

Definition. Just look for “Metadata” in the build workflow’s arguments and click on the ellipsis.

 © 2013 Mark Nichols Page 23

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

Enter the data for each of the 7 arguments. The “Parameter Name” is the argument that will

end up with the value provided in the build definition. “Display Name” is what is displayed in the

build definition. “Category” is where these arguments/parameters will be grouped within the

build definition and “Description” appears at the bottom of the build definition if you click on

the parameter (“help text”). The “View this parameter when” drop-down lets you say when you

will see the parameter (Never, always, only in the build definition or only in the

Lesson Learned: The “Required” checkbox is only helpful if you need the user to change the

value in the build definition. If you provide default values in the arguments (as we did) then do

not check this box. If so, it will require the user to change the default value to something else.

So, it’s not all that helpful: yes we require a value but we also want to be able to use the default.

file:///C:/Users/marknic.NORTHAMERICA/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles1B72228/image51.png
file:///C:/Users/marknic.NORTHAMERICA/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles1B72228/image63.png

 © 2013 Mark Nichols Page 24

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

What I would rather have is for “Required” to mean non-blank.

10. Create a source folder to hold the custom build assembly(s) and tell your build controller

where it is. If you look at the picture in step 1, you can see that I created a folder called “Custom

Activity Storage”. This is where I put the assembly that I created that contains all of the custom

activities used in this project. If/when I create additional build activity assemblies, that is also

where I will put them. The only other thing you have to do to make that folder official is tell the

TFS build controller. Start up the Team Foundation Server Administration Console and go to the

Build Controller Properties - as you can see below, you just browse to the folder that will contain

the assembly(s):

11. Place the source code provided below in a folder within TFS so you can edit and save your

changes to version control. Here is how I did it. I created a folder within BuildActivities that

maintains my source.

To do your own editing: There are a few steps required to introduce any custom activity into the existing

build process so here are some suggested steps including what I did:

1. You can either: use the solution provided below (and do your editing of the build template) or

you can try creating your own solution or you can try to edit the template directly. No matter

what, the visual editor in VS2010 will need to be able to find the assembly containing the

activities that you want in the process. You could deploy the assembly to the GAC but that’s

file:///C:/Users/marknic.NORTHAMERICA/AppData/Local/Temp/WindowsLiveWriter1286139640/supfiles1B72228/image7.png

 © 2013 Mark Nichols Page 25

 This document is part of the TfsVersioning project (CodePlex) and is subject to the Ms-PL Open Source License

wouldn’t satisfy requirement #13 and you will have to sign the assembly, and honestly, isn’t

necessary.

2. I created a TFS Project to contain my custom activities and modified build templates. Of course

you want to store your source in TFS but I also have two folders in that project that all my other

projects have access to. One folder holds the build templates and the other holds the custom

activity assemblies. I notified the build controller where that folder is within source control so

the assembly is available for all builds that need it.

3. Make a copy of the default build process template and include it within your solution

somewhere. It’s always a good idea to work on a backup rather than the real thing but

additionally, by including the file within your solution, you will see the custom activities in the

Toolbox. Then you drag the activity out on the workflow design canvass. Set the Build Action

property to None and Do Not Copy to the output directory. In my environment, I branched the

“DefaultTemplate.xaml” to a new file called “VersioningBuildTemplate.xaml” (you could just

make a copy) and then I branched the new template into a folder within my solution. This way I

can make changes within the context of my solution (so the editor can find assembly references)

and then I can merge the changes all the way back where I will actually use the template.

Tips and Tricks

 When you add a custom activity assembly to a build template all will look fine until you try to

use it within Team Build. There’s a good chance you will get a error saying that the build process

cannot create an unknown type – and then it will display they type of the activity that you just

created. To get around this, open the build template XAML file in text mode. Then, at the top,

look for a reference to your custom activity. The one I have included here will look like this:

xmlns:local="clr-namespace:TfsBuild.Versioning.Activities". Change that text to include the

assembly: xmlns:local="clr-

namespace:TfsBuild.Versioning.Activities;assembly=TfsBuild.Versioning.Activities" and all should

be good.

Result

 A simple modification to an existing build template

 Provides the necessary versioning for assemblies within a solution and across builds

 Resulting assemblies can easily be tied back to a labeled set of source code

 The effort required to maintain the version numbers is minimized to some initial setup of the

build and a single file (only if you use the seed file approach)

