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 Partition II 1 

1  Introduction 1 

This specification provides the normative description of the metadata: its physical layout (as a file format), its 2 
logical contents (as a set of tables and their relationships), and its semantics (as seen from a hypothetical 3 
assembler, ilasm).  4 



 

2 Partition II 

2 Overview 1 

This partition focuses on the semantics and the structure of metadata.  The semantics of metadata, which dictate 2 
much of the operation of the VES, are described using the syntax of ILAsm, an assembly language for CIL.  3 
The ILAsm syntax itself (contained in clauses 5 through 21) is considered a normative part of this International 4 
Standard.  (An implementation of an assembler for ILAsm is described in Partition VI.)  The structure (both 5 
logical and physical) is covered in clauses 22 through 25. 6 

[Rationale: An assembly language is really just syntax for specifying the metadata in a file, and the CIL 7 
instructions in that file.   Specifying ILAsm provides a means of interchanging programs written directly for the 8 
CLI without the use of a higher-level language; it also provides a convenient way to express examples. 9 

The semantics of the metadata can also be described independently of the actual format in which the metadata 10 
is stored.  This point is important because the storage format as specified in clauses 22 through 25 is engineered 11 
to be efficient for both storage space and access time, but this comes at the cost of the simplicity desirable for 12 
describing its semantics. end rationale] 13 



 

3  Validation and verification1 

Validation refers to the application of 2 
are self-consistent. These tests are intended to ensure that the file conforms to the 3 
this specification.  When a conforming implementation of the CLI 4 
behavior is unspecified. 5 

Verification refers to the checking6 
do not permit any access to memory outside the program’s logical address space. In conjunction with the 7 
validation tests, verification ensures that the program cannot access memory or other resources to which it is 8 
not granted access.  9 

Partition III specifies the rules for both 10 
an informative description of rules for validating the internal consistency of metadata (the rules follo11 
indirectly, from the specification in this Partition)12 
algorithm.  A mathematical proof of soundness of the underlying type system is possible, and provides the 13 
basis for the verification requirements.  Aside from these rules14 

• The time at which (if ever) such an algorithm should be performed15 

• What a conforming implementation should do in 16 

The following figure makes this relationship clearer (see next paragraph for a description):17 

18 

Figure 1: Relationship between 19 

In the above figure, the outer circle contains all code permitted by the 20 
represents all code that is correct 21 
innermost circle contains all code that is verifiable.  (The difference between type22 
is one of provability: code which passes the VES verification algorithm is, by23 
simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type24 
Note that even if a program follows the syntax described in 25 
because valid code shall adhere to restrictions presented in this 26 

The verification process is very stringent. There are many programs that will pass validation27 
verification. The VES cannot guarantee that these programs do not access memory or resources to which they 28 
are not granted access. Nonetheless, they m29 
resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs. 30 
Ordinarily, a conforming implementation of the CLI 31 
verification) to be executed, although this 32 
standard.  A conforming implementation of the CLI shall allow the execution of verifiable code, although this 33 
can be subject to additional implementation34 
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erification 
the application of a set of tests on any file to check that the file’s format, metadata, and CIL 

consistent. These tests are intended to ensure that the file conforms to the normative
conforming implementation of the CLI is presented with a non-

ing of both CIL and its related metadata to ensure that the CIL code sequences 
do not permit any access to memory outside the program’s logical address space. In conjunction with the 

dation tests, verification ensures that the program cannot access memory or other resources to which it is 

specifies the rules for both correct and verifiable use of CIL instructions.  Partition
an informative description of rules for validating the internal consistency of metadata (the rules follo
indirectly, from the specification in this Partition); it also contains a normative description of the verification 
algorithm.  A mathematical proof of soundness of the underlying type system is possible, and provides the 

on requirements.  Aside from these rules, this standard leaves as unspecified

(if ever) such an algorithm should be performed. 

hat a conforming implementation should do in the event of a verification failure

makes this relationship clearer (see next paragraph for a description):

 

Figure 1: Relationship between correct and verifiable CIL 

In the above figure, the outer circle contains all code permitted by the ILAsm syntax. The next 
 CIL. The striped inner circle represents all type-safe code.  Finally, the black 

innermost circle contains all code that is verifiable.  (The difference between type-safe code
: code which passes the VES verification algorithm is, by-definition, verifiable

simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type
a program follows the syntax described in Partition VI, the code might still not be valid, 

because valid code shall adhere to restrictions presented in this Partition and in Partition III

is very stringent. There are many programs that will pass validation
verification. The VES cannot guarantee that these programs do not access memory or resources to which they 
are not granted access. Nonetheless, they might have been correctly constructed so that they do not access these 

a matter of trust, rather than mathematical proof, whether it is safe to run these programs. 
conforming implementation of the CLI can allow unverifiable code  (valid code that does not pass 

ecuted, although this can be subject to administrative trust controls that are not part of this 
standard.  A conforming implementation of the CLI shall allow the execution of verifiable code, although this 

be subject to additional implementation-specified trust controls. 

3 

format, metadata, and CIL 
normative requirements of 

-conforming file, the 

of both CIL and its related metadata to ensure that the CIL code sequences 
do not permit any access to memory outside the program’s logical address space. In conjunction with the 

dation tests, verification ensures that the program cannot access memory or other resources to which it is 

Partition III also provides 
an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit 

a normative description of the verification 
algorithm.  A mathematical proof of soundness of the underlying type system is possible, and provides the 

leaves as unspecified: 

failure. 

makes this relationship clearer (see next paragraph for a description): 

syntax. The next inner circle 
safe code.  Finally, the black 
safe code and verifiable code 

verifiable; but that 
simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type-safe).  

still not be valid, 
III. 

is very stringent. There are many programs that will pass validation, but will fail 
verification. The VES cannot guarantee that these programs do not access memory or resources to which they 

have been correctly constructed so that they do not access these 
a matter of trust, rather than mathematical proof, whether it is safe to run these programs. 

(valid code that does not pass 
be subject to administrative trust controls that are not part of this 

standard.  A conforming implementation of the CLI shall allow the execution of verifiable code, although this 
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4 Introductory examples 1 

This clause and its subclauses contain only informative text. 2 

4.1   “Hello world!” 3 

To get the general feel of ILAsm, consider the following simple example, which prints the well known “Hello 4 
world!” salutation. The salutation is written by calling WriteLine, a static method found in the class 5 
System.Console that is part of the standard assembly mscorlib (see Partition IV). [Example: 6 

.assembly extern mscorlib {} 7 

.assembly hello {} 8 

.method static public void main() cil managed 9 

{ .entrypoint 10 
  .maxstack 1 11 
  ldstr "Hello world!" 12 
  call void [mscorlib]System.Console::WriteLine(class System.String) 13 
  ret 14 
} 15 

end example] 16 

The .assembly extern declaration references an external assembly, mscorlib, which contains the 17 
definition of System.Console. The .assembly  declaration in the second line declares the name of the 18 
assembly for this program.  (Assemblies are the deployment unit for executable content for the CLI.)  The 19 
.method  declaration defines the global method main, the body of which follows, enclosed in braces.  The first 20 
line in the body indicates that this method is the entry point for the assembly (.entrypoint ), and the second 21 
line in the body specifies that it requires at most one stack slot (.maxstack ). 22 

Method main contains only three instructions: ldstr, call, and ret. The ldstr instruction pushes the string 23 
constant "Hello world!" onto the stack and the call instruction invokes System.Console::WriteLine, passing 24 
the string as its only argument. (Note that string literals in CIL are instances of the standard class 25 
System.String.) As shown, call instructions shall include the full signature of the called method. Finally, the 26 
last instruction, ret , returns from main. 27 

4.2  Other examples  28 

This Partition contains integrated examples for most features of the CLI metadata. Many subclauses conclude 29 
with an example showing a typical use of some feature. All these examples are written using the ILAsm 30 
assembly language.  In addition, Partition VI  contains a longer example of a program written in the ILAsm 31 
assembly language.  All examples are, of course, informative only. 32 

End informative text 33 
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5  General syntax 1 

This clause describes aspects of the ILAsm syntax that are common to many parts of the grammar. 2 

5.1  General syntax notation 3 

This partition uses a modified form of the BNF syntax notation. The following is a brief summary of this 4 
notation. 5 

Terminals are written in a constant-width font (e.g., .assembly , extern , and float64 ); however, 6 
terminals consisting solely of punctuation characters are enclosed in single quotes (e.g., ‘:’ , ‘[’ , and ‘(’ ). 7 
The names of syntax categories are capitalized and italicized (e.g.  ClassDecl) and shall be replaced by actual 8 
instances of the category.  Items placed in [ ] brackets (e.g., [Filename] and [Float]), are optional, and any item 9 
followed by * (e.g., HexByte* and [‘.’ Id]*) can appear zero or more times.  The character “|” means that the 10 
items on either side of it are acceptable (e.g., true  | false ).  The options are sorted in alphabetical order (to 11 
be more specific: in ASCII order, and case-insensitive).  If a rule starts with an optional term, the optional term 12 
is not considered for sorting purposes. 13 

ILAsm is a case-sensitive language. All terminals shall be used with the same case as specified in this clause. 14 

[Example: A grammar such as 15 

Top ::= Int32  |  float  Float  |  floats   [ Float  [ ‘,’  Float ]* ]  |  else  QSTRI(G 16 

would consider all of the following to be valid: 17 

12 18 
float 3 19 
float –4.3e7 20 
floats 21 
floats 2.4 22 
floats 2.4, 3.7 23 
else "Something \t weird" 24 

but all of the following to be invalid: 25 

else 3 26 
3, 4 27 
float 4.3, 2.4 28 
float else 29 
stuff 30 

end example] 31 

5.2  Basic syntax categories 32 

These categories are used to describe syntactic constraints on the input intended to convey logical restrictions 33 
on the information encoded in the metadata. 34 

Int32 is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in 35 
32 bits. [(ote:  ILAsm has no concept of 8- or 16-bit integer constants. Instead, situations requiring such a 36 
constant (such as int8(...) and int16(...) in §16.2) accept an Int32 instead, and use only the least-significant 37 
bytes. end note] 38 

Int64 is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in 39 
64 bits. 40 

HexByte is a hexadecimal number that is a pair of characters from the set 0–9, a–f, and A–F. 41 

Real(umber is any syntactic representation for a floating-point number that is distinct from that for all other 42 
syntax categories.  In this partition, a period (.) is used to separate the integer and fractional parts, and “e” 43 
or “E” separates the mantissa from the exponent.  Either of the period or the mantissa separator (but not both) 44 
can be omitted. 45 

[(ote: A complete assembler might also provide syntax for infinities and NaNs. end note] 46 
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QSTRI(G is a string surrounded by double quote (″) marks. Within the quoted string the character “\” can be 1 
used as an escape character, with “\t” representing a tab character, “\n” representing a newline character, and 2 
“\” followed by three octal digits representing a byte with that value. The “+” operator can be used to 3 
concatenate string literals. This way, a long string can be broken across multiple lines by using “+” and a new 4 
string on each line. An alternative is to use “\” as the last character in a line, in which case, that character and 5 
the line break following it are not entered into the generated string. Any white space characters (space, line-6 
feed, carriage-return, and tab) between the “\” and the first non-white space character on the next line are 7 
ignored. [(ote: To include a double quote character in a QSTRI(G, use an octal escape sequence. end note] 8 

[Example: The following result in strings that are equivalent to "Hello World from CIL!": 9 

ldstr "Hello " + "World " + 10 
"from CIL!" 11 

and 12 

ldstr "Hello World\ 13 
 \040from CIL!" 14 

end example] 15 

[(ote: A complete assembler will need to deal with the full set of issues required to support Unicode 16 
encodings, see Partition I (especially CLS Rule 4). end note] 17 

SQSTRI(G is just like QSTRI(G except that the former uses single quote (′) marks instead of double quote. 18 
[(ote: To include a single quote character in an SQSTRI(G, use an octal escape sequence. end note] 19 

ID is a contiguous string of characters which starts with either an alphabetic character (A–Z, a–z) or one of “_”, 20 
“$”, “@”, “`” (grave accent), or “?”, and is followed by any number of alphanumeric characters  (A–Z, a–z, 0–21 
9) or the characters “_”, “$”, “@”, “`” (grave accent), and “?”. An ID is used in only two ways: 22 

• As a label of a CIL instruction (§5.4). 23 

• As an Id (§5.3). 24 

5.3  Identif iers 25 

Identifiers are used to name entities. Simple identifiers are equivalent to an ID. However, the ILAsm syntax 26 
allows the use of any identifier that can be formed using the Unicode character set (see Partition I). To achieve 27 
this, an identifier shall be placed within single quotation marks. This is summarized in the following grammar. 28 

Id ::=  

  ID 

| SQSTRI(G 

 29 
A keyword shall only be used as an identifier if that keyword appears in single quotes (see Partition VI  for a 30 
list of all keywords). 31 

Several Ids can be combined to form a larger Id, by separating adjacent pairs with a dot (. ). An Id formed in 32 
this way is called a Dotted(ame. 33 

Dotted(ame ::= Id [‘.’ Id]* 
 34 
[Rationale: Dotted(ame is provided for convenience, since “.” can be included in an Id using the SQSTRI(G 35 
syntax.  Dotted(ame is used in the grammar where “. ” is considered a common character (e.g., in fully 36 
qualified type names) end rationale] 37 
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Implementation Specific (Microsoft) 1 

Names that end with $PST followed by a hexadecimal number have a special meaning. The assembler 2 
will automatically truncate the part starting with the $PST. This is in support of compiler-controlled 3 
accessibility, see Partition I.  Also, the first release of the CLI limits the length of identifiers; see §22 4 
for details. 5 

[Example: The following are simple identifiers: 6 

A  Test   $Test   @Foo?   ?_X_   MyType`1 7 

The following are identifiers in single quotes: 8 

′Weird Identifier′   ′Odd\102Char′   ′Embedded\nReturn′ 9 

The following are dotted names: 10 

System.Console  ′My Project′.′My Component′.′My Name′   System.IComparable`1 11 

end example] 12 

5.4  Labels and l i sts of  labels 13 

Labels are provided as a programming convenience; they represent a number that is encoded in the metadata.  14 
The value represented by a label is typically an offset in bytes from the beginning of the current method, 15 
although the precise encoding differs depending on where in the logical metadata structure or CIL stream the 16 
label occurs.  For details of how labels are encoded in the metadata, see clauses 22 through 25; for their 17 
encoding in CIL instructions see Partition III. 18 

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an Id. Thus, 19 
labels can be single quoted and can contain Unicode characters. 20 

A list of labels is comma separated, and can be any combination of simple labels. 21 

LabelOrOffset ::= Id 

Labels ::= LabelOrOffset [ ‘,’  LabelOrOffset ]* 
 22 
[(ote: In a real assembler the syntax for LabelOrOffset might allow the direct specification of a number rather 23 
than requiring symbolic labels. end note] 24 

Implementation Specific (Microsoft) 25 

The following syntax is also supported, for round-tripping purposes: 26 

      LabelOrOffset ::= Int32 | Label  27 

ILAsm distinguishes between two kinds of labels: code labels and data labels. Code labels are followed by a 28 
colon (“:”) and represent the address of an instruction to be executed. Code labels appear before an instruction 29 
and they represent the address of the instruction that immediately follows the label. A particular code label 30 
name shall not be declared more than once in a method. 31 

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon 32 
character. A data label shall not be used as a code label, and a code label shall not be used as a data label. A 33 
particular data label name shall not be declared more than once in a module. 34 

CodeLabel ::= Id ‘:’  

DataLabel ::= Id 
 35 
[Example: The following defines a code label, ldstr_label, that represents the address of the ldstr 36 
instruction: 37 

ldstr_label: ldstr "A label" 38 

end example] 39 
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5.5  Lists of  hex bytes 1 

A list of bytes consists simply of one or more hexbytes. 2 

Bytes ::= HexByte [ HexByte* ] 
 3 

5.6  Floating-point numbers 4 

There are two different ways to specify a floating-point number: 5 

1. As a Real(umber. 6 

2. By using the keyword float32  or float64 , followed by an integer in parentheses, where the 7 
integer value is the binary representation of the desired floating-point number. For example, 8 
float32(1) results in the 4-byte value 1.401298E-45, while float64(1) results in the 8-byte 9 
value 4.94065645841247E-324. 10 

Float32 ::= 

  Real(umber 

| float32 ‘(’ Int32 ‘)’  

Float64 ::= 

  Real(umber 

| float64 ‘(’ Int64 ‘)’  

 11 
[Example:  12 

5.5 13 
1.1e10 14 
float64(128) // note: this results in an 8-byte value whose bits are the same 15 
  // as those for the integer value 128. 16 

end example] 17 

5.7  Source l ine information 18 

The metadata does not encode information about the lexical scope of variables or the mapping from source line 19 
numbers to CIL instructions.  Nonetheless, it is useful to specify an assembler syntax for providing this 20 
information for use in creating alternate encodings of the information. 21 

Implementation Specific (Microsoft) 22 

Source line information is stored in the PDB (Portable Debug) file associated with each module.  23 

.line  takes a line number, optionally followed by a column number (preceded by a colon), optionally 24 
followed by a single-quoted string that specifies the name of the file to which the line number is referring: 25 

ExternSourceDecl ::= .line Int32 [ ‘:’ Int32 ] [ SQSTRI(G ] 
 26 

Implementation Specific (Microsoft) 27 

For compatibility reasons, ilasm allows the following: 28 

      ExternSourceDecl ::= … | #line  Int32 QSTRI(G 29 

Note that this requires the file name, and that that name be double-quoted, not single quoted as with 30 
.line . 31 
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5.8  File names 1 

Some grammar elements require that a file name be supplied. A file name is like any other name where “.” is 2 
considered a normal constituent character. The specific syntax for file names follows the specifications of the 3 
underlying operating system. 4 

Filename ::= Clause 

  Dotted(ame 5.3 
 5 

5.9  Attributes and metadata 6 

Attributes of types and their members attach descriptive information to their definition. The most common 7 
attributes are predefined and have a specific encoding in the metadata associated with them (§23).  In addition, 8 
the metadata provides a way of attaching user-defined attributes to metadata, using several different encodings. 9 

From a syntactic point of view, there are several ways for specifying attributes in ILAsm: 10 

• Using special syntax built into ILAsm. For example, the keyword private  in a ClassAttr 11 
specifies that the visibility attribute on a type shall be set to allow access only within the defining 12 
assembly. 13 

• Using a general-purpose syntax in ILAsm.  The non-terminal CustomDecl describes this grammar 14 
(§21). For some attributes, called pseudo-custom attributes, this grammar actually results in setting 15 
special encodings within the metadata (§21.2.1). 16 

• Security attributes are treated specially.  There is special syntax in ILAsm that allows the XML 17 
representing security attributes to be described directly (§20).  While all other attributes defined 18 
either in the standard library or by user-provided extension are encoded in the metadata using one 19 
common mechanism described in §22.10, security attributes (distinguished by the fact that they 20 
inherit, directly or indirectly from System.Security.Permissions.SecurityAttribute, see 21 
Partition IV) shall be encoded as described in §22.11. 22 

5.10  i lasm  source f i les 23 

An input to ilasm is a sequence of top-level declarations, defined as follows: 24 

ILFile ::= Reference 

 Decl* 5.10 
 25 
The complete grammar for a top-level declaration is shown below. The reference subclauses contain details of 26 
the corresponding productions of this grammar. These productions begin with a name having a ‘.’ prefix. Such 27 
a name is referred to as a directive. 28 

Decl ::= Reference 

  .assembly  Dotted(ame ‘{’ AsmDecl* ‘}’  6.2 

| .assembly extern  Dotted(ame ‘{’ AsmRefDecl* ‘}’  6.3 

| .class  ClassHeader ‘{’ ClassMember* ‘}’  10 

| .class extern  ExportAttr Dotted(ame ‘{’ ExternClassDecl* ‘}’  6.7 

| .corflags  Int32 6.2 

| .custom  CustomDecl 21 

| .data  DataDecl 16.3.1 

| .field  FieldDecl 16 

| .file  [ nometadata  ] Filename .hash  ‘=’ ‘(’ Bytes ‘)’ [ .entrypoint  ]  6.2.3 
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Decl ::= Reference 

| .method  MethodHeader ‘{’ MethodBodyItem* ‘}’  15 

| .module  [ Filename ] 6.4 

| .module extern  Filename 6.5 

| .mresource  [ public   | private  ] Dotted(ame ‘{’ ManResDecl* ‘}’  6.2.2 

| .subsystem  Int32 6.2 

| .vtfixup  VTFixupDecl 15.5.1 

| ExternSourceDecl 5.7 

| SecurityDecl 20 

 1 
Implementation Specific (Microsoft) 2 

The grammar for declarations also includes the following.  These are described in a separate product 3 
specification. 4 

Implementation Specific (Microsoft) 

Decl ::= Reference 

.file  alignment  Int32  

| .imagebase  Int64  

| .language  LanguageDecl  

| .namespace  Id  

| …  

 5 
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6  Assemblies,  manifests and modules 1 

Assemblies and modules are grouping constructs, each playing a different role in the CLI. 2 

An assembly is a set of one or more files deployed as a unit.  An assembly always contains a manifest that 3 
specifies (§6.1): 4 

• Version, name, culture, and security requirements for the assembly. 5 

• Which other files, if any, belong to the assembly, along with a cryptographic hash of each file.  The 6 
manifest itself resides in the metadata part of a file, and that file is always part of the assembly. 7 

• The types defined in other files of the assembly that are to be exported from the assembly.  Types 8 
defined in the same file as the manifest are exported based on attributes of the type itself. 9 

• Optionally, a digital signature for the manifest itself, and the public key used to compute it. 10 

A module is a single file containing executable content in the format specified here.  If the module contains a 11 
manifest then it also specifies the modules (including itself) that constitute the assembly.  An assembly shall 12 
contain only one manifest amongst all its constituent files. For an assembly that is to be executed (rather than 13 
simply being dynamically loaded) the manifest shall reside in the module that contains the entry point. 14 

While some programming languages introduce the concept of a namespace, the only support in the CLI for this 15 
concept is as a metadata encoding technique.  Type names are always specified by their full name relative to 16 
the assembly in which they are defined. 17 

6.1  Overview of  modules,  assemblies,  and f i les  18 

This subclause contains informative text only. 19 

Consider the following figure: 20 

 21 

Figure 2: References to Modules and Files 22 

Eight files are shown, each with its name written below it. The six files that each declare a module have an 23 
additional border around them, and their names begin with M. The other two files have a name beginning 24 
with F. These files can be resource files (such as bitmaps) or other files that do not contain CIL code.  25 

Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B, 26 
respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines. For 27 
example, assembly A references M2 and M3, and assembly B references M3 and M5. Thus, both assemblies 28 
reference M3.  29 

Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When 30 
assembly A is loaded at runtime, an instance of M3 will be loaded for it. When assembly B is loaded into the 31 
same application domain, possibly simultaneously with assembly A, M3 will be shared for both assemblies. 32 
Both assemblies also reference F2, for which similar rules apply.  33 

The module M2 references F1, shown by dotted lines. As a consequence, F1 will be loaded as part of 34 
assembly A, when A is executed. Thus, the file reference shall also appear with the assembly declaration. 35 
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Similarly, M5 references another module, M6, which becomes part of B when B is executed. It follows that 1 
assembly B shall also have a module reference to M6. 2 

End informative text 3 

6.2  Defining an assembly 4 

An assembly is specified as a module that contains a manifest in the metadata; see §22.2.  The information for 5 
the manifest is created from the following portions of the grammar:   6 

Decl ::= Clause 

  .assembly  Dotted(ame ‘{’ AsmDecl* ‘}’  6.2 

| .assembly extern  Dotted(ame ‘{’ AsmRefDecl* ‘}’  6.3 

| .corflags  Int32 6.2 

| .file  [ nometadata  ] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [ .entrypoint  ] 6.2.3 

| .module extern  Filename 6.5 

| .mresource  [ public  | private  ] Dotted(ame ‘{’ ManResDecl* ‘}’  6.2.2 

| .subsystem  Int32 6.2 

| …  
 7 
The .assembly  directive declares the manifest and specifies to which assembly the current module belongs. 8 
A module shall contain at most one .assembly  directive. The Dotted(ame specifies the name of the 9 
assembly. [(ote: The standard library assemblies are described in Partition IV. end note]) 10 

[(ote: Since some platforms treat names in a case-insensitive manner, two assemblies that have names that 11 
differ only in case should not be declared. end note] 12 

The .corflags  directive sets a field in the CLI header of the output PE file (see §25.3.3.1).  A conforming 13 
implementation of the CLI shall expect this field’s value to be 1.  For backwards compatibility, the three least-14 
significant bits are reserved.  Future versions of this standard might provide definitions for values between 8 15 
and 65,535. Experimental and non-standard uses should thus use values greater than 65,535. 16 

The .subsystem  directive is used only when the assembly is executed directly (as opposed to its being used 17 
as a library for another program).  This directive specifies the kind of application environment required for the 18 
program, by storing the specified value in the PE file header (see §25.2.2).  While any 32-bit integer value can 19 
be supplied, a conforming implementation of the CLI need only respect the following two values: 20 

• If the value is 2, the program should be run using whatever conventions are appropriate for an application 21 
that has a graphical user interface. 22 

• If the value is 3, the program should be run using whatever conventions are appropriate for an application 23 
that has a direct console attached. 24 

Implementation Specific (Microsoft) 25 

Decl ::= … | .file  alignment  Int32 | .imagebase  Int64 26 

The .file  alignment  directive sets the file alignment  field in the PE header of the output file.  27 
Valid values are multiples of 512.  (Different sections of the PE file are aligned, on disk, at the 28 
specified value [in bytes].) 29 

The .imagebase  directive sets the imagebase  field in the PE header of the output file.  This value 30 
specifies the virtual address at which this PE file will be loaded into the process. 31 

See §25.2.3.2 32 

 33 
[Example: 34 
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.assembly CountDown 1 
{ .hash algorithm 32772 2 
  .ver 1:0:0:0 3 
} 4 
.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7  5 
02 BE E7 52 3A CB 17 AF) 6 

end example] 7 

6.2.1  Information about the assembly  (AsmDecl)  8 

The following grammar shows the information that can be specified about an assembly: 9 

AsmDecl ::= Description Claus
e 

  .custom  CustomDecl Custom attributes 21 

| .hash  algorithm  Int32 Hash algorithm used in the .file  directive 6.2.1.1 

| .culture  QSTRI(G Culture for which this assembly is built 6.2.1.2 

| .publickey ‘=’ ‘(’ Bytes ‘)’  The originator's public key. 6.2.1.3 

| .ver  Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 Major version, minor version, build, and 
revision 

6.2.1.4 

| SecurityDecl Permissions needed, desired, or prohibited 20 

 10 

6.2.1 .1  Hash algorithm 11 

AsmDecl ::= .hash algorithm Int32 | … 
 12 
When an assembly consists of more than one file (see §6.2.3), the manifest for the assembly specifies both the 13 
name and cryptographic hash of the contents of each file other than its own.  The algorithm used to compute the 14 
hash can be specified, and shall be the same for all files included in the assembly.  All values are reserved for 15 
future use, and conforming implementations of the CLI shall use the SHA-1 (see FIPS 180-1 in Partition I, 3) 16 
hash function and shall specify this algorithm by using a value of 32772 (0x8004). 17 

[Rationale: SHA-1 was chosen as the best widely available technology at the time of standardization (see 18 
Partition I).   A single algorithm was chosen since all conforming implementations of the CLI would be 19 
required to implement all algorithms to ensure portability of executable images.end rationale] 20 

6.2.1 .2  Culture  21 

AsmDecl ::= .culture  QSTRI(G | … 
 22 
When present, this indicates that the assembly has been customized for a specific culture.  The strings that shall 23 
be used here are those specified in Partition IV as acceptable with the class 24 
System.Globalization.CultureInfo. When used for comparison between an assembly reference and an 25 
assembly definition these strings shall be compared in a case-insensitive manner. (See §23.1.3.) 26 

Implementation Specific (Microsoft) 27 

The product version of ilasm and ildasm use .locale  rather than .culture . 28 

[(ote: The culture names follow the IETF RFC1766 names. The format is “<language>-<country/region>”, 29 
where <language> is a lowercase two-letter code in ISO 639-1. <country/region> is an uppercase two-letter 30 
code in ISO 3166. end note] 31 

6.2.1 .3  Originator’s  publ ic key 32 

AsmDecl ::= .publickey ‘=’ ‘(’ Bytes ‘)’ | … 
 33 
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The CLI metadata allows the producer of an assembly to compute a cryptographic hash of that assembly (using 1 
the SHA-1 hash function) and then to encrypt it using the RSA algorithm (see Partition I) and a public/private 2 
key pair of the producer’s choosing.  The results of this (an “SHA-1/RSA digital signature”) can then be stored 3 
in the metadata (§25.3.3) along with the public part of the key pair required by the RSA algorithm.  The 4 
.publickey  directive is used to specify the public key that was used to compute the signature.  To calculate 5 
the hash, the signature is zeroed, the hash calculated, and then the result is stored into the signature. 6 

All of the assemblies in the Standard Library (see Partition IV) use the public key 00 00 00 00 00 00 00 00 04 7 
00 00 00 00 00 00 00. This key is known as the Standard Public Key in this standard. 8 

A reference to an assembly (§6.3) captures some of this information at compile time.  At runtime, the 9 
information contained in the assembly reference can be combined with the information from the manifest of the 10 
assembly located at runtime to ensure that the same private key was used to create both the assembly seen when 11 
the reference was created (compile time) and when it is resolved (runtime). 12 

The Strong Name (SN) signing process uses standard hash and cipher algorithms for Strong name signing. An 13 
SHA-1 hash over most of the PE file is generated. That hash value is RSA-signed with the SN private key. For 14 
verification purposes the public key is stored into the PE file as well as the signed hash value.  15 

Except for the following, all portions of the PE File are hashed: 16 

• The Authenticode Signature entry: PE files can be authenticode signed. The authenticode signature 17 
is contained in the 8-byte entry at offset 128 of the PE Header Data Directory (“Certificate Table” 18 
in §25.2.3.3) and the contents of the PE File in the range specified by this directory entry.  [(ote: 19 
In a conforming PE File, this entry shall be zero. end note] 20 

• The Strong (ame Blob: The 8-byte entry at offset 32 of the CLI Header (“StrongNameSignature” in 21 
§25.3.3) and the contents of the hash data contained at this RVA in the PE File. If the 8-byte entry 22 
is 0, there is no associated strong name signature. 23 

• The PE Header Checksum: The 4-byte entry at offset 64 of the PE Header Windows NT-Specific 24 
Fields (“File Checksum” in §25.2.3.2). [(ote: In a conforming PE File, this entry shall be zero. end 25 
note] 26 

6.2.1 .4  Version numbers 27 

AsmDecl ::= .ver  Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 | … 
 28 
The version number of an assembly is specified as four 32-bit integers.  This version number shall be captured 29 
at compile time and used as part of all references to the assembly within the compiled module. 30 

All standardized assemblies shall have the last two 32-bit integers set to 0.  This standard places no other 31 
requirement on the use of the version numbers, although individual implementers are urged to avoid setting 32 
both of the last two 32-bit integers to 0 to avoid a possible collision with future versions of this standard. 33 

Future versions of this standard shall change one or both of the first two 32-bit integers specified for a 34 
standardized assembly if any additional functionality is added or any additional features of the VES are 35 
required to implement it.  Furthermore, future versions of this standard shall change one or both of the first two 36 
32-bit integers specified for the mscorlib assembly so that its version number can be used (if desired) to 37 
distinguish between different versions of the Execution Engine required to run programs. 38 

[(ote: A conforming implementation can ignore version numbers entirely, or it can require that they match 39 
precisely when binding a reference, or it can exhibit any other behavior deemed appropriate.  By convention: 40 

1. The first of these 32-bit integers is considered to be the major version number, and assemblies with the 41 
same name, but different major versions, are not interchangeable.  This would be appropriate, for example, 42 
for a major rewrite of a product where backwards compatibility cannot be assumed. 43 

2. The second of these 32-bit integers is considered to be the minor version number, and assemblies with the 44 
same name and major version, but different minor versions, indicate significant enhancements, but with the 45 
intention of being backwards compatible.  This would be appropriate, for example, on a “point release” of 46 
a product or a fully backward compatible new version of a product. 47 
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3. The third of these 32-bit integers is considered to be the build number, and assemblies that differ only by 1 
build number are intended to represent a recompilation from the same source.  This would be appropriate, 2 
for example, because of processor, platform, or compiler changes. 3 

4. The fourth of these 32-bit integers is considered to be the revision number, and assemblies with the same 4 
name, major and minor version number, but different revisions, are intended to be fully interchangeable. 5 
This would be appropriate, for example, to fix a security hole in a previously released assembly. 6 

end note] 7 

6.2.2  Manifest  resources 8 

A manifest resource is simply a named item of data associated with an assembly. A manifest resource is 9 
introduced using the .mresource  directive, which adds the manifest resource to the assembly manifest 10 
begun by a preceding .assembly  declaration. 11 

Decl ::= Clause 

  .mresource  [ public  | private  ] Dotted(ame ‘{’ ManResDecl* ‘}’   

| … 5.10 
 12 
If the manifest resource is declared public , it is exported from the assembly. If it is declared private , it is 13 
not exported, in which case, it is only available from within the assembly. The Dotted(ame is the name of the 14 
resource.  15 

ManResDecl ::= Description Clause 

  .assembly extern  Dotted(ame Manifest resource is in external 
assembly with name Dotted(ame. 

6.3 

| .custom  CustomDecl Custom attribute. 21 

| .file  Dotted(ame at Int32 Manifest resource is in file Dotted(ame 
at byte offset Int32. 

 

 16 
For a resource stored in a file that is not a module (for example, an attached text file), the file shall be declared 17 
in the manifest using a separate (top-level) .file  declaration (see §6.2.3) and the byte offset shall be zero.  A 18 
resource that is defined in another assembly is referenced using .assembly extern , which requires that 19 
the assembly has been defined in a separate (top-level) .assembly extern  directive (§6.3). 20 

6.2.3  Assoc iat ing f i les  with an assembly  21 

Assemblies can be associated with other files (such as documentation and other files that are used during 22 
execution). The declaration .file  is used to add a reference to such a file to the manifest of the assembly:  23 
(See §22.19) 24 

Decl ::= Clause 

  .file  [ nometadata  ] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [ .entrypoint  ]   

| … 5.10 
 25 

Implementation Specific (Microsoft) 26 

The .hash  component is optional. If it is omitted, the assembler computes it automatically. 27 

The attribute nometadata  is specified if the file is not a module according to this specification.  Files that are 28 
marked as nometadata  can have any format; they are considered pure data files. 29 

The Bytes after the .hash  specify a hash value computed for the file. The VES shall recompute this hash value 30 
prior to accessing this file and if the two do not match, the behavior is unspecified. The algorithm used to 31 
calculate this hash value is specified with .hash  algorithm  (§6.2.1.1). 32 
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If specified, the .entrypoint  directive indicates that the entrypoint of a multi-module assembly is contained 1 
in this file. 2 

Implementation Specific (Microsoft) 3 

If the hash value is not specified, it will be computed automatically by the assembly linker (al) when an 4 
assembly file is created using that tool. Even though the hash value is optional in the grammar for 5 
ILAsm, it is required at runtime. 6 

6.3  Referencing assemblies 7 

Decl ::= Clause 

  .assembly extern Dotted(ame [ as Dotted(ame ] ‘{’ AsmRefDecl* ‘}’   

| … 5.10 
 8 
An assembly mediates all accesses to other assemblies from the files that it contains.  This is done through the 9 
metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly 10 
referenced by the executing code.  A top-level .assembly extern declaration is used for this purpose.  11 
The optional as clause provides an alias, which allows ILAsm to address external assemblies that have the 12 
same name, but differing in version, culture, etc. 13 

The dotted name used in .assembly extern shall exactly match the name of the assembly as declared 14 
with an .assembly  directive, in a case-sensitive manner.  (So, even though an assembly might be stored 15 
within a file, within a file system that is case-insensitive, the names stored internally within metadata are case-16 
sensitive, and shall match exactly.) 17 

Implementation Specific (Microsoft) 18 

The assembly mscorlib contains many of the types and methods in the Base Class Library.  For 19 
convenience, ilasm automatically inserts a .assembly extern  mscorlib declaration if one is 20 
required. 21 

AsmRefDecl ::= Description Clause 

  .hash ‘=’ ‘(’ Bytes ‘)’  Hash of referenced assembly  6.2.3 

| .custom  CustomDecl Custom attributes 21 

| .culture  QSTRI(G Culture of the referenced assembly 6.2.1.2 

| .publickeytoken ‘=’ ‘(’ Bytes ‘)’  The low 8 bytes of the SHA-1 hash of the 
originator's public key. 

6.3 

| .publickey ‘=’ ‘(’ Bytes ‘)’  The originator’s full public key 6.2.1.3 

| .ver  Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 Major version, minor version, build, and 
revision 

6.2.1.4 

 22 
These declarations are the same as those for .assembly  declarations (§6.2.1), except for the addition of 23 
.publickeytoken .  This declaration is used to store the low 8 bytes of the SHA-1 hash of the originator’s 24 
public key in the assembly reference, rather than the full public key.  25 

An assembly reference can store either a full public key or an 8-byte “public key token.” Either can be used to 26 
validate that the same private key used to sign the assembly at compile time also signed the assembly used at 27 
runtime.  Neither is required to be present, and while both can be stored, this is not useful.  28 

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it 29 
can refuse to load an assembly for which the validation fails.  A conforming implementation of the CLI can 30 
also refuse to permit access to an assembly unless the assembly reference contains either the public key or the 31 
public key token.  A conforming implementation of the CLI shall make the same access decision independent 32 
of whether a public key or a token is used. 33 
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[Rationale: The public key or public key token stored in an assembly reference is used to ensure that the 1 
assembly being referenced and the assembly actually used at runtime were produced by an entity in possession 2 
of the same private key, and can therefore be assumed to have been intended for the same purpose. While the 3 
full public key is cryptographically safer, it requires more storage in the reference. The use of the public key 4 
token reduces the space required to store the reference while only weakening the validation process slightly. 5 
end rationale] 6 

[(ote: To validate that an assembly’s contents have not been tampered with since it was created, the full public 7 
key in the assembly’s own identity is used, not the public key or public key token stored in a reference to the 8 
assembly. end note] 9 

[Example:  10 

.assembly extern MyComponents 11 
{ .publickeytoken = (BB AA BB EE 11 22 33 00) 12 
  .hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24) 13 
  .ver 2:10:2002:0 14 
} 15 

end example] 16 

6.4  Declaring modules 17 

All CIL files are modules and are referenced by a logical name carried in the metadata rather than by their file 18 
name.  See §22.30. 19 

Decl ::= Clause 

| .module  Filename  

| … 5.10 
 20 
[Example:  21 

.module CountDown.exe 22 

end example] 23 

Implementation Specific (Microsoft) 24 

If the .module  directive is missing, ilasm will automatically add a .module  directive and set the 25 
module name to be the file name, including its extension in capital letters. e.g., if the file is called foo 26 
and compiled into an exe, the module name will become “Foo.EXE”. 27 

Note that ilasm also generates a required GUID to uniquely identify this instance of the module, and 28 
emits that into the Mvid metadata field: see §22.29. 29 

6.5  Referencing modules 30 

When an item is in the current assembly, but is part of a module other than the one containing the manifest, the 31 
defining module shall be declared in the manifest of the assembly using the .module extern  directive.  32 
The name used in the .module extern  directive of the referencing assembly shall exactly match the name 33 
used in the .module  directive (§6.4) of the defining module.  See §22.31.   34 

Decl ::= Clause 

| .module extern Filename  

| … 5.10 
 35 
[Example:  36 

.module extern Counter.dll 37 

end example] 38 
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6.6  Declarations inside a module or assembly 1 

Declarations inside a module or assembly are specified by the following grammar. More information on each 2 
option can be found in the corresponding clause or subclause. 3 

Decl ::= Clause 

| .class  ClassHeader ‘{’ ClassMember* ‘}’  10 

| .custom  CustomDecl 21 

| .data  DataDecl 16.3.1 

| .field  FieldDecl 16 

| .method  MethodHeader ‘{’ MethodBodyItem* ‘}’  15 

| ExternSourceDecl 5.7 

| SecurityDecl 20 

| …  
 4 

6.7  Exported type definitions 5 

The manifest module, of which there can only be one per assembly, includes the .assembly  directive.  To 6 
export a type defined in any other module of an assembly requires an entry in the assembly’s manifest.  The 7 
following grammar is used to construct such an entry in the manifest: 8 

Decl ::= Clause 

  .class extern  ExportAttr Dotted(ame ‘{’ ExternClassDecl* ‘}’   

| …  

 9 

ExternClassDecl ::= Clause 

.file  Dotted(ame  

| .class extern  Dotted(ame  

| .custom  CustomDecl 21 

 10 
The ExportAttr value shall be either public  or nested public  and shall match the visibility of the type. 11 

For example, suppose an assembly consists of two modules, A.EXE and B.DLL.  A.EXE contains the manifest.  12 
A public class Foo is defined in B.DLL.  In order to export it—that is, to make it visible by, and usable from, 13 
other assemblies—a .class extern  directive shall be included in A.EXE. Conversely, a public class Bar 14 
defined in A.EXE does not need any .class extern  directive. 15 

[Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete 16 
set of types defined by the assembly.  Therefore, information from other modules within the assembly is 17 
replicated in the manifest module.  By convention, the manifest module is also known as the assembly. end 18 
rationale] 19 

6.8  Type forwarders 20 

A type forwarder indicates that a type originally in this assembly is now located in a different assembly, the 21 
VES shall resolve references for the type to the other assembly. The type forwarding information is stored in 22 
the ExportedType table (§22.14). The following grammar is used to construct the entry in the ExportedType 23 
table: 24 

Decl ::= Clause 
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Decl ::= Clause 

  .class extern forwarder  Dotted(ame  
                                ‘{’.assembly extern  Dotted(ame ‘}’ 

 

| …  

 1 

[Rationale: Type forwarders allow assemblies which reference the original assembly for the type to function 2 
correctly without recompilation if the type is moved to another assembly.  end rationale] 3 
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7 Types and signatures 1 

The metadata provides mechanisms to both define and reference types. §10 describes the metadata associated 2 
with a type definition, regardless of whether the type is an interface, class, or value type. The mechanism used 3 
to reference types is divided into two parts: 4 

• A logical description of user-defined types that are referenced, but (typically) not defined in the current 5 
module.  This is stored in a table in the metadata (§22.38). 6 

• A signature that encodes one or more type references, along with a variety of modifiers.  The grammar 7 
non-terminal Type describes an individual entry in a signature.  The encoding of a signature is specified 8 
in §23.1.16. 9 

7.1  Types 10 

The following grammar completely specifies all built-in types (including pointer types) of the CLI system. It 11 
also shows the syntax for user defined types that can be defined in the CLI system: 12 

Type ::= Description Clause 

  ‘!’  Int32 Generic parameter in a type definition, 
accessed by index from 0 

9.1 

| ‘!!’  Int32 Generic parameter in a method 
definition, accessed by index from 0 

9.2 

| bool  Boolean 7.2 

| char  16-bit Unicode code point 7.2 

| class  TypeReference User defined reference type 7.3 

| float32  32-bit floating-point number 7.2 

| float64  64-bit floating-point number 7.2 

| int8  Signed 8-bit integer 7.2 

| int16  Signed 16-bit integer 7.2 

| int32  Signed 32-bit integer 7.2 

| int64  Signed 64-bit integer 7.2 

| method  CallConv Type ‘*’  

      ‘(’ Parameters ‘)’  

Method pointer 14.5 

| native int  32- or 64-bit signed integer whose size 
is platform-specific 

7.2 

| native unsigned int  32- or 64-bit unsigned integer whose 
size is platform-specific 

7.2 

| object  See System.Object in Partition IV  

| string  See System.String in Partition IV  

| Type ‘&’  Managed pointer to Type. Type shall 
not be a managed pointer type or 
typedref  

14.4 

| Type ‘*’  Unmanaged pointer to Type 14.4 

| Type ‘<’ GenArgs  ‘>’  Instantiation of generic type 9.4 
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Type ::= Description Clause 

| Type ‘[’  [ Bound [ ‘,’ Bound ]*] ‘]’  Array of Type with optional rank 
(number of dimensions) and bounds. 

14.1and 14.2 

| Type modopt ‘(’  TypeReference ‘)’  Custom modifier that can be ignored 
by the caller. 

7.1.1 

| Type modreq ‘(’  TypeReference ‘)’  Custom modifier that the caller shall 
understand. 

7.1.1 

| Type pinned  For local variables only. The garbage 
collector shall not move the referenced 
value. 

7.1.2 

| typedref  Typed reference (i.e., a value of type 
System.TypedReference), created by 
mkrefany  and used by 
refanytype  or refanyval . 

7.2 

| valuetype  TypeReference (Unboxed) user defined value type 13 

| unsigned int8  Unsigned 8-bit integer 7.2 

| unsigned int16  Unsigned 16-bit integer 7.2 

| unsigned int32  Unsigned 32-bit integer 7.2 

| unsigned int64  Unsigned 64-bit integer 7.2 

| void  No type.  Only allowed as a return 
type or as part of void *  

7.2 

 1 
In several situations the grammar permits the use of a slightly simpler representation for specifying types; e.g., 2 
“System.GC” can be used instead of  “class System.GC”.  Such representations are called type specifications: 3 

TypeSpec ::= Clause 

  ‘[’ [ .module  ] Dotted(ame ‘]’  7.3 

| TypeReference 7.2 

| Type 7.1 

 4 

7.1.1  modreq and modopt  5 

Custom modifiers, defined using modreq  (“required modifier”) and modopt  (“optional modifier”),  are 6 
similar to custom attributes (§21) except that modifiers are part of a signature rather than being attached to a 7 
declaration.  Each modifer associates a type reference with an item in the signature. 8 

The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only 9 
by the addition of a custom modifier (required or optional) shall not be considered to match.  Custom modifiers 10 
have no other effect on the operation of the VES. 11 

[Rationale: The distinction between required and optional modifiers is important to tools other than the CLI 12 
that deal with the metadata, typically compilers and program analysers.  A required modifier indicates that 13 
there is a special semantics to the modified item that should not be ignored, while an optional modifier can 14 
simply be ignored.   15 

For example, the const qualifier in the C programming language can be modelled with an optional modifier 16 
since the caller of a method that has a const-qualified parameter need not treat it in any special way.  On the 17 
other hand, a parameter that shall be copy-constructed in C++ shall be marked with a required custom attribute 18 
since it is the caller who makes the copy. end rationale] 19 
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7.1.2  pinned 1 

The signature encoding for pinned  shall appear only in signatures that describe local variables (§15.4.1.3).  2 
While a method with a pinned local variable is executing, the VES shall not relocate the object to which the 3 
local refers.  That is, if the implementation of the CLI uses a garbage collector that moves objects, the collector 4 
shall not move objects that are referenced by an active pinned local variable. 5 

[Rationale: If unmanaged pointers are used to dereference managed objects, these objects shall be pinned.  This 6 
happens, for example, when a managed object is passed to a method designed to operate with unmanaged data. 7 
end rationale] 8 

7.2  Built-in types  9 

The CLI built-in types have corresponding value types defined in the Base Class Library. They shall be 10 
referenced in signatures only using their special encodings (i.e., not using the general purpose valuetype  11 
TypeReference syntax).  Partition I specifies the built-in types. 12 

7.3  References to user-def ined types (TypeReference)  13 

User-defined types are referenced either using their full name and a resolution scope or, if one is available in 14 
the same module, a type definition (§10). 15 

A TypeReference is used to capture the full name and resolution scope:   16 

TypeReference ::= 

  [ ResolutionScope ] Dotted(ame [ ‘/’ Dotted(ame ]* 
 17 
ResolutionScope ::= 

‘[’ .module  Filename ‘]’  

| ‘[’ AssemblyRef(ame ‘]’  

 18 
AssemblyRef(ame ::= Clause 

  Dotted(ame 5.1 
 19 
The following resolution scopes are specified for un-nested types: 20 

• Current module (and, hence, assembly).  This is the most common case and is the default if no 21 
resolution scope is specified.  The type shall be resolved to a definition only if the definition occurs 22 
in the same module as the reference.   23 

[(ote: A type reference that refers to a type in the same module and assembly is better represented using a type 24 
definition.  Where this is not possible (e.g., when referencing a nested type that has compilercontrolled  25 
accessibility) or convenient (e.g., in some one-pass compilers) a type reference is equivalent and can be used. 26 
end note] 27 

• Different module, current assembly.  The resolution scope shall be a module reference 28 
syntactically represented using the notation [.module Filename] . The type shall be resolved to a 29 
definition only if the referenced module (§6.4) and type (§6.7) have been declared by the current 30 
assembly and hence have entries in the assembly’s manifest.  Note that in this case the manifest is 31 
not physically stored with the referencing module. 32 

• Different assembly.  The resolution scope shall be an assembly reference syntactically represented 33 
using the notation [ AssemblyRef(ame] . The referenced assembly shall be declared in the manifest 34 
for the current assembly (§6.3), the type shall be declared in the referenced assembly’s manifest, 35 
and the type shall be marked as exported from that assembly (§6.7 and §10.1.1). 36 

• For nested types, the resolution scope is always the enclosing type.  (See §10.6).  This is indicated 37 
syntactically by using a slash (“/”) to separate the enclosing type name from the nested type’s 38 
name. 39 
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[Example: The type System.Console defined in the base class library (found in the assembly named mscorlib): 1 

.assembly extern mscorlib { } 2 

.class [mscorlib]System.Console 3 

A reference to the type named C.D in the module named x in the current assembly: 4 

.module extern x 5 

.class [.module x]C.D 6 

A reference to the type named C nested inside of the type named Foo.Bar in another assembly, named 7 
MyAssembly: 8 

.assembly extern MyAssembly { } 9 

.class [MyAssembly]Foo.Bar/C 10 

end example] 11 

7.4  Aative data types 12 

Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that 13 
specify data types required to perform certain functions.  The metadata allows interaction with these native data 14 
types by specifying how the built-in and user-defined types of the CLI are to be marshalled to and from native 15 
data types.  This marshalling information can be specified (using the keyword marshal ) for 16 

• the return type of a method, indicating that a native data type is actually returned and shall be 17 
marshalled back into the specified CLI data type 18 

• a parameter to a method, indicating that the CLI data type provided by the caller shall be 19 
marshalled into the specified native data type. (If the parameter is passed by reference, the updated 20 
value shall be marshalled back from the native data type into the CLI data type when the call is 21 
completed.) 22 

• a field of a user-defined type, indicating that any attempt to pass the object in which it occurs, to 23 
platform methods shall make a copy of the object, replacing the field by the specified native data 24 
type. (If the object is passed by reference, then the updated value shall be marshalled back when 25 
the call is completed.) 26 

The following table lists all native types supported by the CLI, and provides a description for each of them. (A 27 
more complete description can be found in Partition IV in the definition of the enum 28 
System.Runtime.Interopservices.UnmanagedType, which provides the actual values used to encode these 29 
types.)  All encoding values in the range 0–63, inclusive, are reserved for backward compatibility with existing 30 
implementations of the CLI.  Values in the range 64–127 are reserved for future use in this and related 31 
Standards. 32 

(ativeType ::= Description Aame in the class 
library enum type 
UnmanagedType 

‘[’ ‘]’  Native array. Type and size are determined at 
runtime from the actual marshaled array. 

LPArray 

| bool  Boolean. 4-byte integer value where any non-
zero value represents TRUE, and 0 represents 
FALSE. 

Bool 

| float32  32-bit floating-point number. R4 

| float64  64-bit floating-point number. R8 

| [ unsigned  ] int  Signed or unsigned integer, sized to hold a 
pointer on the platform 

SysUInt or SysInt 

| [ unsigned  ] int8  Signed or unsigned 8-bit integer U1 or I1 

| [ unsigned  ] int16  Signed or unsigned 16-bit integer U2 or I2 
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(ativeType ::= Description Aame in the class 
library enum type 
UnmanagedType 

| [ unsigned  ] int32  Signed or unsigned 32-bit integer U4 or I4 

| [ unsigned  ] int64  Signed or unsigned 64-bit integer U8 or I8 

| lpstr  A pointer to a null-terminated array of ANSI 
characters.  The code page is implementation-
specific. 

LPStr 

| lpwstr  A pointer to a null-terminated array of Unicode 
characters.  The character encoding is 
implementation-specific. 

LPWStr 

| method  A function pointer. FunctionPtr 

| (ativeType ‘[’ ‘]’  Array of (ativeType. The length is determined 
at runtime by the size of the actual marshaled 
array. 

LPArray 

| (ativeType ‘[’ Int32 ‘]’  Array of (ativeType of length Int32. LPArray 

| (ativeType  
‘[’ ‘+’ Int32 ‘]’  

Array of (ativeType with runtime supplied 
element size. The Int32 specifies a parameter to 
the current method (counting from parameter 
number 0) that, at runtime, will contain the size 
of an element of the array in bytes.  Can only be 
applied to methods, not fields. 

Implementation-specific (Microsoft) 

In the case of the Int32, counting is 
done from parameter number 1 if the 
signature has the PreserveSig bit set. 

LPArray 

| (ativeType  
‘[’ Int32 ‘+’ Int32 ‘]’  

Array of (ativeType with runtime supplied 
element size. The first Int32 specifies the 
number of elements in the array.  The second 
Int32 specifies which parameter to the current 
method (counting from parameter number 0) 
will specify the additional number of elements 
in the array.   Can only be applied to methods, 
not fields  

Implementation-specific (Microsoft) 

In the case of the second Int32, 
counting is done from parameter 
number 1 if the signature has the 
PreserveSig bit set. 

LPArray 

 1 
Implementation-specific (Microsoft) 2 

The Microsoft implementation supports a richer set of types to describe marshalling between Windows 3 
native types and COM.  These additional options are listed in the following table:  4 

Implementation-specific (Microsoft) 

(ativeType ::= Description Aame in the class 
library enum type 
UnmanagedType 
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Implementation-specific (Microsoft) 

| as any  Determines the type of an object at runtime and 
marshals the Object as that type. 

AsAny 

| byvalstr  A string in a fixed length buffer. VBByRefStr 

| custom ‘(’  QSTRI(G, 
  QSTRI(G  ‘)’  

Custom marshaler.  The 1st string is the name of 
the marshalling class, using the string 
conventions of Reflection.Emit to specify the 
assembly and/or module.  The 2nd is an arbitrary 
string passed to the marshaller at runtime to 
identify the form of marshalling required. 

CustomMarshaler 

| fixed array  [  Int32  ] A fixed size array of length Int32 bytes ByValArray 

| fixed sysstring   
[  Int32  ] 

A fixed size system string of length Int32.  This 
can only be applied to fields, and a separate 
attribute specifies the encoding of the string. 

ByValTStr 

| lpstruct  A pointer to a C-style structure. Used to marshal 
managed formatted types. 

LPStruct 

| lptstr  A pointer to a null-terminated array of platform 
characters (ANSI or Unicode).  The code page 
and character encoding are implementation-
specific. 

LPTStr 

| struct  A C-style structure, used to marshal managed 
formatted types. 

Struct 

 1 
[Example:  2 

.method int32 M1( int32 marshal(int32), bool [] marshal(bool [5]) ) 3 

Method M1 takes two arguments: an int32 , and an array of 5 bool s. 4 

.method int32 M2( int32 marshal(int32), bool[] marshal(bool[+1]) ) 5 

Method M2 takes two arguments: an int32 , and an array of bool s: the number of elements in that array is 6 
given by the value of the first parameter. 7 

.method int32 M3( int32 marshal(int32), bool[] marshal(bool[7+1]) ) 8 

Method M3 takes two arguments: an int32 , and an array of bool s: the number of elements in that array is 9 
given as 7 plus the value of the first parameter. end example] 10 
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8 Visibili ty,  accessibil ity and hiding 1 

Partition I specifies visibility and accessibility.  In addition to these attributes, the metadata stores information 2 
about method name hiding. Hiding controls which method names inherited from a base type are available for 3 
compile-time name binding.  4 

8.1  Visibil ity of  top-level types and accessibil i ty of  nested types 5 

Visibility is attached only to top-level types, and there are only two possibilities: visible to types within the 6 
same assembly, or visible to types regardless of assembly. For nested types (i.e., types that are members of 7 
another type) the nested type has an accessibility that further refines the set of methods that can reference the 8 
type. A nested type can have any of the seven accessibility modes (see Partition I), but has no direct visibility 9 
attribute of its own, using the visibility of its enclosing type instead. 10 

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type 11 
cannot be more visible than the type in which it is nested. That is, if the enclosing type is visible only within an 12 
assembly then a nested type with public  accessibility is still only available within that assembly. By contrast, 13 
a nested type that has assembly  accessibility is restricted to use within the assembly even if the enclosing 14 
type is visible outside the assembly. 15 

To make the encoding of all types consistent and compact, the visibility of a top-level type and the accessibility 16 
of a nested type are encoded using the same mechanism in the logical model of §23.1.15. 17 

8.2  Accessibil ity 18 

Accessibility is encoded directly in the metadata (see §22.26 for an example). 19 

8.3  Hiding 20 

Hiding is a compile-time concept that applies to individual methods of a type. The CTS specifies two 21 
mechanisms for hiding, specified by a single bit: 22 

• hide-by-name, meaning that the introduction of a name in a given type hides all inherited members 23 
of the same kind with the same name. 24 

• hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited 25 
member of the same kind, but with precisely the same type (in the case of nested types and fields) 26 
or signature (in the case of methods, properties, and events). 27 

There is no runtime support for hiding.  A conforming implementation of the CLI treats all references as though 28 
the names were marked hide-by-name-and-sig.  Compilers that desire the effect of hide-by-name can do so by 29 
marking method definitions with the newslot  attribute (§15.4.2.3) and correctly choosing the type used to 30 
resolve a method reference (§15.1.3). 31 
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9  Generics 1 

As mentioned in Partition I, generics allows a whole family of types and methods to be defined using a pattern, 2 
which includes placeholders called generic parameters.  These generic parameters are replaced, as required, by 3 
specific types, to instantiate whichever member of the family is actually required.  For example, class 4 
List<T>{}, represents a whole family of possible Lists; List<string>, List<int> and List<Button> are three 5 
possible instantiations; however, as we’ll see below, the CLS-compliant names of these types are really class 6 
List`1<T>{}, List`1<string>, List`1<int>, and List`1<Button>. 7 

A generic type consists of a name followed by a <…>-delimited list of generic parameters, as in C<T>. Two or 8 
more generic types shall not be defined with the same name, but different numbers of generic parameters, in the 9 
same scope. However, to allow such overloading on generic arity at the source language level, CLS Rule 43 is 10 
defined to map generic type names to unique CIL names. That Rule states that the CLS-compliant name of a 11 
type C having one or more generic parameters, shall have a suffix of the form `n, where n is a decimal integer 12 
constant (without leading zeros) representing the number of generic parameters that C has. For example: the 13 
types C, C<T>, and C<K,V> have CLS-compliant names of C, C`1<T>, and C`2<K,V>, respectively. [(ote: The 14 
names of all standard library types are CLS-compliant; e.g., 15 
System.Collections.Generic.IEnumerable`1<T>. end note] 16 

Before generics is discussed in detail, here are the definitions of some new terms: 17 

• public class List`1<T> {} is a generic type definition.  18 

• <T> is a generic parameter list, and T is a generic parameter.  19 

• List`1<T> is a generic type; it is sometimes termed a generic type, or open generic type because it 20 
has at least one generic parameter.  This partition will use the term open type. 21 

• List`1<int> is a closed generic type because it has no unbound generic parameters.  (It is 22 
sometimes called an instantiated generic type or a generic type instantiation).  This partition will 23 
use the term closed type. 24 

• Note that generics includes generic types which are neither strictly open nor strictly closed; e.g., 25 
the base class B, in: .public class D`1<V> extends B`2<!0,int32> {}, given .public class 26 
B`2<T,U> {}.  27 

• If a distinction need be made between generic types and ordinary types, the latter are referred to as 28 
non-generic types.  29 

• <int> is a generic argument list, and int is a generic argument.  30 

• This standard maintains the distinction between generic parameters and generic arguments. If at all 31 
possible, use the phrase “int is the type used for generic parameter T” when speaking of 32 
List`1<int>. (In Reflection, this is sometimes referred to as “T is bound to int”)  33 

• “(C1, …, Cn) T” is a generic parameter constraint on the generic parameter T. 34 

[(ote: Conside the following definition: 35 

class C`2<(I1,I2) S, (Base,I3) T> { … } 36 

This denotes a class called C, with two generic parameters, S and T.  S is constrained to implement two 37 
interfaces, I1 and I2.  T is constrained to derive from the class Base, and also to implement the interface I3. 38 
end note] 39 

Within a generic type definition, its generic parameters are referred to by their index.  Generic parameter zero 40 
is referred to as !0, generic parameter one as !1, and so on.  Similarly, within the body of a generic method 41 
definition, its generic parameters are referred to by their index; generic parameter zero is referred to as !!0, 42 
generic parameter one as !!1, and so on.  43 

9.1  Generic type definitions 44 

A generic type definition is one that includes generic parameters.  Each such generic parameter can have a 45 
name and an optional set of constraints—types with which generic arguments shall be assignment-compatible. 46 



 

28 Partition II 

Optional variance notation is also permitted (§10.1.7). (For an explanation of the ! and !! notation used below, 1 
see §9.4. ) The generic parameter is in scope in the declarations of:  2 

• its constraints (e.g., .class … C`1<(class IComparable`1<!0>) T>) 3 

• any base class from which the type-under-definition derives (e.g., .class … MultiSet`1<T> 4 
extends class Set`1<!0[]>) 5 

• any interfaces that the type-under-definition implements (e.g., .class … Hashtable`2<K,D> 6 
implements class IDictionary`2<!0,!1>) 7 

• all members (instance and static fields, methods, constructors, properties and events) except nested 8 
classes.  [(ote: C# allows generic parameters from an enclosing class to be used in a nested class, 9 
but adds any required extra generic parameters to the nested class definition in metadata. end note] 10 

A generic type definition can include static, instance, and virtual methods. 11 

Generic type definitions are subject to the following restrictions: 12 

• A generic parameter, on its own, cannot be used to specify the base class, or any implemented 13 
interfaces.  So, for example, .class … G`1<T> extends !0 is invalid.  However, it is valid for the 14 
base class, or interfaces, to use that generic parameter when nested within another generic type.  15 
For example, .class … G`1<T> extends class H`1<!0> and .class … G`1<T> extends class 16 
B`2<!0,int32> are valid.   17 

[Rationale: This permits checking that generic types are valid at definition time rather than at 18 
instantiation time. e.g., in .class … G`1<T> extends !0, we do not know what methods would override 19 
what others because no information is available about the base class; indeed, we do not even know 20 
whether T is a class: it might be an array or an interface.  Similarly, for .class … C`2<(!1)T,U> where 21 
we are in the same situation of knowing nothing about the base class/interface definition. end rationale] 22 

• Varargs methods cannot be members of generic types 23 

[Rationale: Implementing this feature would take considerable effort.  Since varargs has very limited use 24 
among languages targetting the CLI, it was decided to exclude varargs methods from generic types. end 25 
rationale] 26 

• When generic parameters are ignored, there shall be no cycles in the inheritance/interface 27 
hierarchy.  To be precise, define a graph whose nodes are possibly-generic (but open) classes and 28 
interfaces, and whose edges are the following: 29 

o If a (possibly-generic) class or interface D extends or implements a class or interface B, 30 
then add an edge from D to B. 31 

o If a (possibly-generic) class or interface D extends or implements an instantiated class or 32 
interface B<type-1, …, type-n>, then add an edge from D to B. 33 

o The graph is valid if it contains no cycles. 34 

[(ote: This algorithm is a natural generalization of the rules for non-generic types.  See Partition I, §8.9.9 35 
end note] 36 

9.2  Generics and recursive inheritance graphs 37 

[Rationale: Although inheritance graphs cannot be directly cyclic, instantiations given in parent classes or 38 
interfaces may introduce either direct or indirect cyclic dependencies, some of which are allowed (e.g., 39 
C : IComparable<C>), and some of which are disallowed (e.g., class A<T> : B<A<A<T>>> given class B<U>).  40 
end rationale] 41 
Each type definition shall generate a finite instantiation closure. An instantiation closure is defined as follows: 42 

1. Create a set containing a single generic type definition. 43 

2. Form the closure of this set by adding all generic types referenced in the type signatures of 44 
base classes and implemented interfaces of all types in the set. Include nested instantiations in 45 
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this set, so a referenced type Stack<List<T>> actually counts as both List<T> and 1 
Stack<List<T>>.  2 

3. Construct a graph: 3 

• Whose nodes are the formal type parameters of types in the set. Use alpha-renaming as 4 
needed to avoid name clashes. 5 

• If T appears as the actual type argument to be substituted for U in some referenced 6 
type D<…, U, …> add a non-expanding (->) edge from T to U.  7 

• If T appears somewhere inside (but not as) the actual type argument to be substituted 8 
for U in referenced type D<…, U, …> add an expanding (=>) edge from T to U.  9 

An expanding-cycle is a cycle in the instantiation closure that contains at least one expanding-edge 10 
(=>). The instantiation-closure of the system is finite if and only if the graph as constructed above 11 
contains no expanding-cycles.  12 

[Example: 13 

class B<U> 14 
class A<T> : B<A<A<T>>>  15 

generates the edges (using => for expanding-edges and -> for non-expanding-edges) 16 

T  ->   T   (generated by referenced type A<T>) 17 
T  =>  T   (generated by referenced type A<A<T>>) 18 
T  =>  U   (generated by referenced type B<A<A<T>>>) 19 

This graph does contain an expanding-cycle, so the instantiation closure is infinite. end example] 20 

[Example: 21 

class B<U> 22 
class A<T> : B<A<T>> 23 

generates the edges 24 

T -> T (generated by referenced type A<T>) 25 
T => U (generated by referenced type B<A<T>>) 26 

This graph does not contain an expanding-cycle, so the instantiation closure is finite. end example] 27 

[Example: 28 

class P<T> 29 
class C<U,V> : P<D<V,U>> 30 
class D<W,X> : P<C<W,X>> 31 

generates the edges 32 

U -> X    V -> W   U => T   V => T   (generated by referenced type D<V,U> and P<D<V,U>>) 33 
W -> U   X -> V   W => T   X => T  (generated by referenced type C<W,X> and P<C<W,X>>) 34 

This graph contains non-expanding-cycles (e.g. U -> X -> V -> W -> U), but no expanding-cycle, so 35 
the instantiation closure is finite. end example] 36 

9.3  Generic method def init ions 37 

A generic method definition is one that includes a generic parameter list.  A generic method can be defined 38 
within a non-generic type; or within a generic type, in which case the method’s generic parameter(s) shall be 39 
additional to the generic parameter(s) of the owner.  As with generic type definitions, each generic parameter 40 
on a generic method definition has a name and an optional set of constraints.  41 

Generic methods can be static, instance, or virtual.  Class or instance constructors (.cctor, or .ctor, 42 
respectively) shall not be generic. 43 

The method generic parameters are in scope in the signature and body of the method, and in the generic 44 
parameter constraints.  [(ote: The signature includes the method return type.  So, in the example:  45 

.method … !!0 M`1<T>() { … } 46 
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the !!0 is in scope—it’s the generic parameter of M`1<T> even though it preceeds that parameter in the 1 
declaration..  end note] 2 

Generic instance (virtual and non-virtual) methods can be defined as members of generic types, in which case 3 
the generic parameters of both the generic type and the generic method are in scope in the method signature and 4 
body, and in constraints on method generic parameters. 5 

9.4  Instantiating generic types 6 

GenArgs is used to represent a generic argument list:   7 

GenArgs ::= 

  Type   [‘,’  Type ]* 

 8 

We say that a type is closed if it contains no generic parameters; otherwise, it is open.   9 

A given generic type definition can be instantiated with generic arguments to produce an instantiated type.   10 

[Example: Given suitable definitions for the generic class MyList and value type Pair, we could instantiate 11 
them as follows: 12 

newobj instance void class MyList`1<int32>::.ctor() 13 
initobj valuetype Pair`2<int32, valuetype Pair<string,int32>> 14 

end example]  15 

[Example:  16 

ldtoken !0   // !0 = generic parameter 0 in generic type definition 17 
castclass class List`1<!1> // !1 = generic parameter 1 in generic type definition 18 
box !!1    // !!1 = generic parameter 1 in generic method definition 19 

end example]  20 

The number of generic arguments in an instantiation shall match the number of generic parameters specified in 21 
the type or method definition. 22 

The CLI does not support partial instantiation of generic types.  And generic types shall not appear 23 
uninstantiated anywhere in metadata signature blobs. 24 

The following kinds of type cannot be used as arguments in instantiations (of generic types or methods): 25 

• Byref types (e.g., System.Generic.Collection.List`1<string&> is invalid) 26 

• Byref-like types, i.e. value types that contain fields that can point into the CIL evaluation stack 27 
(e.g.,  List<System.RuntimeArgumentHandle> is invalid) 28 

• Typed references (e.g. List<System.TypedReference> is invalid) 29 

• Unmanaged pointers (e.g. List<int32*> is invalid) 30 

• void (e.g., List<System.Void> is invalid) 31 

[Rationale: Byrefs types cannot be used as generic arguments because some, indeed most, instantiations would 32 
be invalid.  For example, since byrefs are not allowed as field types or as method return types, in the definition 33 
of List`1<string&>, one could not declare a field of type !0, nor a method that returned a type of !0. end 34 
rationale] 35 

[Rationale: Unmanaged pointers are disallowed because as currently specified unmanaged pointers are not 36 
technically subclasses of System.Object.  This restriction can be lifted, but currently the runtime enforces this 37 
restriction and this spec reflects that. ] 38 

Objects of instantiated types shall carry sufficient information to recover at runtime their exact type (including 39 
the types and number of their generic arguments).  [Rationale: This is required to correctly implement casting 40 
and instance-of testing, as well as in reflection capabilities (System.Object::GetType). end rationale] 41 
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9.5  Generics variance 1 

The CLI supports covariance and contravariance of generic parameters, but only in the signatures of interfaces 2 
and delegate classes.  3 

The symbol “+” is used in the syntax of §10.1.7 to denote a covariant generic parameter, while “-” is used to 4 
denote a contravariant generic parameter 5 

This block contains only informative text  6 

Suppose we have a generic interface, which is covariant in its one generic parameter; e.g., IA`1<+T>. Then all 7 
instantiations satisfy IA`1<GenArgB> := IA`1<GenArgA>, so long as GenArgB := GenArgA using the notion from 8 
assignment compatibility.  So, for example, an instance of type IA`1<string> can be assigned to a local of type 9 
type IA`1<object>. 10 

Generic contravariance operates in the opposite sense: supposing that we have a contravariant interface IB`1<-11 
T>, then IB`1<GenArgB> := IB`1<GenArgA>, so long as GenArgA := GenArgB. 12 

[Example:  (The syntax used is illustrative of a high-level language.) 13 

// Covariant parameters can be used as result types 14 
interface IEnumerator<+T> { 15 
 T Current { get; } 16 
 bool MoveNext(); 17 
} 18 

// Covariant parameters can be used in covariant result types 19 
interface IEnumerable<+T> { 20 
 IEnumerator<T> GetEnumerator(); 21 
} 22 

// Contravariant parameters can be used as argument types 23 
interface IComparer<-T> {  24 
 bool Compare(T x, T y); 25 
} 26 

// Contravariant parameters can be used in contravariant interface types 27 
interface IKeyComparer<-T> : IComparer<T> { 28 
 bool Equals(T x, T y); 29 
 int GetHashCode(T obj); 30 
} 31 

// A contravariant delegate type 32 
delegate void EventHandler<-T>(T arg); 33 

// No annotation indicates non-variance.  Non-variant parameters can be used anywhere. 34 
// The following type shall be non-variant because T appears in as a method argument as 35 
// well as in a covariant interface type 36 
interface ICollection<T> : IEnumerable<T> { 37 
 void CopyTo(T[] array, int index);  38 
 int Count { get; } 39 
} 40 

end example] 41 

End informative text 42 

9.6  Assignment compatibil ity of  instantiated types 43 

• Assignment compatibility is defined in Partition I.8.7.  44 

[Example: 45 

Assuming Employee := Manager, 46 

IEnumerable<Manager> eManager = ... 47 
IEnumerable<Employee> eEmployee = eManager;   // Covariance  48 
IComparer<object> objComp = ... 49 
IComparer<string> strComp = objComp;    // Contravariance  50 
EventHandler<Employee> employeeHandler = ... 51 
EventHandler<Manager> managerHandler = employeeHandler; // Contravariance 52 
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end example] 1 

 [Example: Given the following: 2 

interface IConverter<-T,+U> { 3 
  U Convert(T x); 4 
} 5 

IConverter<string, object> := IConverter<object, string> 6 

Given the following: 7 

delegate U Function<-T,+U>(T arg); 8 

Function<string, object> := Function<object, string>. end example] 9 

[Example:  10 

IComparer<object> objComp = ... 11 
// Contravariance and interface inheritance 12 
IKeyComparer<string> strKeyComp = objComp; 13 

IEnumerable<string[]> strArrEnum = … 14 
// Covariance on IEnumerable and covariance on arrays 15 
IEnumerable<object[]> objArrEnum = strArrEnum; 16 

IEnumerable<string>[] strEnumArr = ... 17 
// Covariance on IEnumerable and covariance on arrays 18 
IEnumerable<object>[] objEnumArr = strEnumArr; 19 

IComparer<object[]> objArrComp = ... 20 
// Contravariance on IComparer and covariance on arrays 21 
IComparer<string[]> strArrComp = objArrComp; 22 

IComparer<object>[] objCompArr = ... 23 
// Contravariance on IComparer and covariance on arrays 24 
IComparer<string>[] strCompArr = objCompArr; 25 

end example] 26 

9.7  Validity of  member signatures 27 
To achieve type safety, it is necessary to impose additional requirements on the well-formedness of signatures 28 
of members of covariant and contravariant generic types. 29 

This block contains only informative text  30 

• Covariant parameters can only appear in “producer,” “reader,” or “getter” positions in the type 31 
definition; i.e., in 32 

o result types of methods 33 

o inherited interfaces 34 

• Contravariant parameters can only appear in “consumer,” “writer,” or “setter” positions in the type 35 
definition; i.e., in 36 

o argument types of methods 37 

• NonVariant parameters can appear anywhere. 38 

End informative text 39 

We now define formally what it means for a co/contravariant generic type definition to be valid. 40 

Generic type definition: A generic type definition G<var_1 T_1, …, var_n T_n> is valid if G is an interface or 41 
delegate type, and each of the following holds, given S = <var_1 T_1, …, var_n T_n>, where var_n is +, -, or 42 
nothing: 43 

• Every instance method and virtual method declaration is valid with respect to S (see below) 44 

• Every inherited interface declaration is valid with respect to S 45 
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• There are no restrictions on static members, instance constructors, or on the type’s own generic 1 
parameter constraints. 2 

Given the annotated generic parameters S = <var_1 T_1, …, var_n T_n>, we define what it means for various 3 
components of the type definition to be valid with respect to S. We define a negation operation on annotations, 4 
written ¬S, to mean “flip negatives to positives, and positives to negatives”. 5 

Think of  6 

• “valid with respect to S” as “behaves covariantly” 7 

• “valid with respect to ¬S” as “behaves contravariantly” 8 

• “valid with respect to S and to ¬S” as “behaves non-variantly”.  9 

Note that the last of these has the effect of prohibiting covariant and contravariant parameters from a type; i.e., 10 
all generic parameters appearing shall be non-variant. 11 

Methods. A method signature t meth(t_1,…,t_n) is valid with respect to S if 12 

• its result type signature t is valid with respect to S; and 13 

• each argument type signature t_i is valid with respect to ¬S. 14 

• each method generic parameter constraint type t_j is valid with respect to ¬S. 15 

[(ote: In other words, the result behaves covariantly and the arguments behave contravariantly. Constraints on 16 
generic parameters also behave contravariantly. end note] 17 

Type signatures. A type signature t is valid with respect to S if it is 18 

• a non-generic type (e.g., an ordinary class or value type) 19 

• a generic parameter T_i for which var_i is + or none (i.e., it is a generic parameter that is marked 20 
covariant or non-variant) 21 

• an array type u[] and u is valid with respect to S; i.e., array types behave covariantly 22 

• a closed generic type G<t_1,…,t_n> for which each  23 

o t_i is valid with respect to S, if the i’th parameter of G is declared covariant 24 

o t_i is valid with respect to ¬S, if the i’th parameter of G is declared contravariant 25 

o t_i is valid with respect to S and with respect to ¬S, if the i’th parameter of G is declared 26 
non-variant. 27 

9.8  Signatures and binding 28 

Members (fields and methods) of a generic type are referenced in CIL instructions using a metadata token, 29 
which specifies an entry in the MemberRef table (§22.25). Abstractly, the reference consists of two parts: 30 

1. The type in which the member is declared, in this case, an instantiation of the generic type 31 
definition.  For example: IComparer`1<String>. 32 

2. The name and generic (uninstantiated) signature of the member.  For example: int32 33 
Compare(!0,!0). 34 

It is possible for distinct members to have identical types when instantiated, but which can be distinguished by 35 
MemberRef. 36 

[Example: 37 

.class public C`2<S,T> { 38 
  .field string f 39 
  .field !0 f 40 
  .method instance void m(!0 x) {...} 41 
  .method instance void m(!1 x) {...} 42 
  .method instance void m(string x) {...} 43 
}  44 
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The closed type C`2<string,string> is valid: it has three methods called m, all with the same parameter type; 1 
and two fields called f with the same type.  They are all distinguished through the MemberRef encoding 2 
described above: 3 

string C`2<string, string>::f 4 
!0  C<string, string>::f 5 
void C`2<string, string>::m(!0) 6 
void C`2<string, string>::m(!1) 7 
void C`2<string, string>::m(string) 8 

The way in which a source language might resolve this kind of overloading is left to each individual language.  9 
For example, many might disallow such overloads. 10 

end example] 11 

9.9  Inheritance and overriding 12 

Member inheritance is defined in Partition I, in  “Member Inheritance”. (Overriding and hiding are also defined 13 
in that partition, in “Hiding, overriding, and layout”.) This definition is extended, in an obvious manner, in the 14 
presence of generics.  Specifically, in order to determine whether a member hides (for static or instance 15 
members) or overrides (for virtual methods) a member from a base class or interface, simply substitute each 16 
generic parameter with its generic argument, and compare the resulting member signatures.  [Example: The 17 
following illustrates this point: 18 

Suppose the following definitions of a base class B, and a derived class D. 19 

.class B  20 
{ .method public virtual void V(int32 i) { … } } 21 

.class D extends B 22 
{ .method public virtual void V(int32 i) { … } } 23 

In class D, D.V overrides the inherited method B.V, because their names and signatures match.   24 

How does this simple example extend in the presence of generics, where class D derives from a generic 25 
instantiation?  Consider this example: 26 

.class B`1<T> 27 
{ .method public virtual void V(!0) { … } } 28 

.class D extends B`1<int32> 29 
{ .method public virtual void V(int32) { … } } 30 

.class E extends B`1<string> 31 
{ .method public virtual void V(int32) { … } } 32 

Class D derives from B<int32>.  And class B<int32> defines the method: 33 

   public virtual void V(int32 t) { … } 34 

where we have simply substituted B’s generic parameter T, with the specific generic argument int32.  This 35 
matches the method D.V (same name and signature).  Thus, for the same reasons as in the non-generic example 36 
above, it’s clear that D.V overrides the inherited method B.V.   37 

Contrast this with class E, which derives from B<string>.  In this case, substituting B’s T with string, we see 38 
that B.V has this signature: 39 

   public virtual void V(string t) { … } 40 

This signature differs from method E.V, which therefore does not override the base class’s B.V method.    41 

end example] 42 

Type definitions are invalid if, after substituting base class generic arguments, two methods result in the same 43 
name and signature (including return type).  The following illustrates this point: 44 

[Example: 45 

.class B`1<T> 46 
{ .method public virtual void V(!0 t)     { … } 47 
  .method public virtual void V(string x) { … } 48 
} 49 
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.class D extends B`1<string> { } // Invalid 1 

Class D is invalid, because it will inherit from B<string> two methods with identical signatures: 2 

void V(string) 3 

However, the following version of D is valid: 4 

.class D extends B`1<string> 5 
{ .method public virtual void  V(string t)  { … } 6 
  .method public virtual void  W(string t) 7 
  { … 8 
    .override  method instance void class B`1<string>::V(!0) 9 
    … 10 
  } 11 
} 12 

end example] 13 

When overriding generic methods (that is, methods with their own generic parameters) the number of generic 14 
parameters shall match exactly those of the overridden method.   If an overridden generic method has one or 15 
more constraints on its generic arguments then: 16 

• The overriding method can have constraints only on the same generic arguments; 17 

• Any such constraint on a generic argument specified by the overriding method shall be no more 18 
restrictive than the constraint specified by the overridden method for the same generic argument; 19 

 [(ote: Within the body of an overriding method, only constraints directly specified in its signature apply. 20 
When a method is invoked, it’s the constraints associated with the metadata token in the call or callvirt 21 
instruction that are enforced. end note] 22 

9.10  Explicit  method overrides 23 

A type, be it generic or non-generic, can implement particular virtual methods (whether the method was 24 
introduced in an interface or base class) using an explicit override. (See §10.3.2 and §15.1.4.) 25 

The rules governing overrides are extended, in the presence of generics, as follows: 26 

• If the implementing method is part of a non-generic type or a closed generic type, then the 27 
declaring method shall be part of a base class of that type or an interface implemented by that type. 28 
[Example: 29 

.class interface I`1<T> 30 
{ .method public abstract virtual void M(!0) {} 31 
} 32 

.class C implements class I`1<string> 33 
{ .override method instance void class I`1<string>::M(!0) with  34 
  method instance void class C::MInC(string) 35 
  .method virtual void MInC(string s) 36 
  { ldstr "I.M" 37 
    call void [mscorlib]System.Console::WriteLine(string) 38 
    ret 39 
  } 40 
} 41 

end example] 42 

• If the implementing method is generic, then the declared method shall also be generic and shall 43 
have the same number of method generic parameters.  44 

Neither the implementing method nor the declared method shall be an instantiated generic method.  This 45 
means that an instantiated generic method cannot be used to implement an interface method, and that it is 46 
not possible to provide a special method for instantiating a generic method with specific generic 47 
parameters. 48 
[Example: Given the following 49 
  .class interface I 50 
{ .method public abstract virtual void M<T>(!!0) {} 51 
  .method public abstract virtual void N() {} 52 
} 53 
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neither of the following .override statements is allowed 1 

.class C implements class I`1<string> 2 
{ .override class I::M<string> with instance void class C::MInC(string) 3 
  .override class I::N with instance void class C::MyFn<string> 4 
  .method virtual void MInC(string s) { … } 5 
  .method virtual void MyFn<T>() { … } 6 
} 7 
end example] 8 

9.11  Constraints on generic parameters  9 

A generic parameter declared on a generic class or generic method can be constrained by one or more types  10 
(for encoding, see GenericParamConstraint table in §22.21) and by one or more special constraints (§10.1.7).  11 
Generic parameters can be instantiated only with generic arguments that are assignment compatible (when 12 
boxed) with each of the declared constraints and that satisfy all specified special constraints. 13 

Generic parameter constraints shall have at least the same visibility as the generic type definition or generic 14 
method definition itself.  15 

[(ote: There are no other restrictions on generic parameter constraints.  In particular, the following uses are 16 
valid: Constraints on generic parameters of generic classes can make recursive reference to the generic 17 
parameters, and even to the class itself.  18 
 19 

.class public Set`1<(class IComparable<!0>) T> { … } 20 

// can only be instantiated by a derived class! 21 
.class public C`1<(class C<!0>) T> {} 22 

.class public D extends C`1<class D> { … } 23 
 24 

Constraints on generic parameters of generic methods can make recursive reference to the generic parameters 25 
of both the generic method and its enclosing class (if generic). The constraints can also reference the enclosing 26 
class itself.  27 

.class public A`1<T> { 28 
  .method public void M<(class IDictionary<!0,!!0>) U>() {} 29 
} 30 
 31 

Generic parameter constraints can be generic parameters or non-generic types such as arrays.  32 

.class public List`1<T> { 33 
  // The constraint on U is T itself 34 
  .method public void AddRange<(!0) U>(class IEnumerable`1<!!0> items) { … } 35 
} 36 

 end note] 37 

Generic parameters can have multiple constraints: to inherit from at most one base class (if none is specified, 38 
the CLI defaults to inheriting from System.Object); and to implement zero or more interfaces. (The syntax for 39 
using constraints with a class or method is defined in §10.1.7.) [Example:   40 

The following declaration shows a generic class OrderedSet<T>, in which the generic parameter T is 41 
constrained to inherit both from the class Employee, and to implement the interface IComparable<T>: 42 

.class OrderedSet`1<(Employee, class [mscorlib]System.IComparable`1<!0>) T> { … } 43 
 44 

end example] 45 

[(ote: Constraints on a generic parameter only restrict the types that the generic parameter may be instantiated 46 
with. Verification (see Partition III) requires that a field, property or method that a generic parameter is known 47 
to provide through meeting a constraint, cannot be directly accessed/called via the generic parameter unless it is 48 
first boxed (see Partition III) or the callvirt instruction is prefixed with the constrained. prefix instruction (see 49 
Partition III). end note] 50 

This block contains only informative text  51 
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9.12  References to members of  generic types 1 

CIL instructions that reference type members are generalized to permit reference to members of instantiated 2 
types. 3 

• The number of generic arguments specified in the reference shall match the number specified in the 4 
definition of the type. 5 

CIL instructions that reference methods are generalized to permit reference to instantiated generic methods. 6 

End informative text 7 
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10  Defining types 1 

Types (i.e., classes, value types, and interfaces) can be defined at the top-level of a module: 2 

Decl ::= 

  .class  ClassHeader ‘{’ ClassMember* ‘}’  

| … 
 3 
The logical metadata table created by this declaration is specified in §22.37. 4 

[Rationale: For historical reasons, many of the syntactic categories used for defining types incorrectly use 5 
“class” instead of “type” in their name.  All classes are types, but “types” is a broader term encompassing value 6 
types, and interfaces as well. end rationale] 7 

10.1  Type header (ClassHeader)  8 

A type header consists of 9 

• any number of type attributes, 10 

• optional generic parameters 11 

• a name (an Id), 12 

• a base type (or base class type), which defaults to [mscorlib]System.Object, and 13 

• an optional list of interfaces whose contract this type and all its descendent types shall satisfy. 14 

ClassHeader ::= 

  ClassAttr* Id [‘<’  GenPars ‘>’  ] [ extends  TypeSpec  [ implements  TypeSpec ] [ ‘,’  

TypeSpec ]* ] 
 15 
The optional generic parameters are used when defining a generic type (§10.1.7). 16 

The extends  keyword specifies the base type of a type. A type shall extend from exactly one other type. If no 17 
type is specified, ilasm will add an extends  clause to make the type inherit from System.Object. 18 

The implements  keyword specifies the interfaces of a type.  By listing an interface here, a type declares that 19 
all of its concrete implementations will support the contract of that interface, including providing 20 
implementations of any virtual methods the interface declares.  See also §11 and §12. 21 

[Example: This code declares the class CounterTextBox, which extends the class 22 
System.Windows.Forms.TextBox in the assembly System.Windows.Forms, and implements the interface 23 
CountDisplay in the module Counter of the current assembly. The attributes private , auto  and autochar  24 
are described in the following subclauses. 25 

.class private auto autochar CounterTextBox 26 
   extends [System.Windows.Forms]System.Windows.Forms.TextBox 27 
   implements [.module Counter]CountDisplay 28 
{ // body of the class 29 
} 30 

end example] 31 

A type can have any number of custom attributes attached.  Custom attributes are attached as described in §21. 32 
The other (predefined) attributes of a type can be grouped into attributes that specify visibility, type layout 33 
information, type semantics information, inheritance rules, interoperation information, and information on 34 
special handling. The following subclauses provide additional information on each group of predefined 35 
attributes. 36 

ClassAttr ::= Description Clause 

  abstract  Type is abstract. 10.1.4 
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ClassAttr ::= Description Clause 

| ansi  Marshal strings to platform as ANSI. 10.1.5 

| auto  Layout of fields is provided automatically. 10.1.2 

| autochar  Marshal strings to platform as ANSI or Unicode 
(platform-specific). 

10.1.5 

| beforefieldinit  Need not initialize the type before a static method is 
called. 

10.1.6 

| explicit  Layout of fields is provided explicitly. 10.1.2 

| interface  Declares an interface. 10.1.3 

| nested assembly  Assembly accessibility for nested type. 10.1.1 

| nested famandassem  Family and assembly accessibility for nested type. 10.1.1 

| nested family  Family accessibility for nested type. 10.1.1 

| nested famorassem  Family or assembly accessibility for nested type. 10.1.1 

| nested private  Private accessibility for nested type. 10.1.1 

| nested public  Public accessibility for nested type. 10.1.1 

| private  Private visibility of top-level type. 10.1.1 

| public  Public visibility of top-level type. 10.1.1 

| rtspecialname  Special treatment by runtime. 10.1.6 

| sealed  The type cannot be derived from. 10.1.4 

| sequential  Layout of fields is sequential. 10.1.2 

| serializable  Reserved (to indicate this type can be serialized). 10.1.6 

| specialname  Might get special treatment by tools. 10.1.6 

| unicode  Marshal strings to platform as Unicode. 10.1.5 
 1 

Implementation-specific (Microsoft) 2 

The above grammar also includes 3 

      ClassAttr ::= import  4 

to indicate that the type is imported from a COM type library. 5 

10.1.1  Visibi l ity  and accessibi l ity  attributes 6 

ClassAttr ::= … 

| nested assembly  

| nested famandassem  

| nested family  

| nested famorassem  

| nested private  

| nested public  

| private  
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| public  

 1 
See Partition I.  A type that is not nested inside another type shall have exactly one visibility (private  or 2 
public ) and shall not have an accessiblity.  Nested types shall have no visibility, but instead shall have 3 
exactly one of the accessibility attributes nested assembly , nested famandassem , nested 4 
family , nested famorassem , nested private , or nested public . The default visibility for top-5 
level types is private . The default accessibility for nested types is nested private . 6 

10.1.2  Type layout  attr ibutes  7 

ClassAttr ::= … 

| auto  

| explicit  

| sequential  

 8 
The type layout specifies how the fields of an instance of a type are arranged. A given type shall have only one 9 
layout attribute specified.  By convention, ilasm supplies auto  if no layout attribute is specified. The layout 10 
attributes are: 11 

auto : The layout shall be done by the CLI, with no user-supplied constraints. 12 

explicit : The layout of the fields is explicitly provided (§10.7). However, a generic type shall not have 13 
explicit layout. 14 

sequential : The CLI shall lay out the fields in sequential order, based on the order of the fields in the 15 
logical metadata table (§22.15). 16 

[Rationale: The default auto  layout should provide the best layout for the platform on which the code is 17 
executing.  sequential  layout is intended to instruct the CLI to match layout rules commonly followed by 18 
languages like C and C++ on an individual platform, where this is possible while still guaranteeing verifiable 19 
layout.  explicit  layout allows the CIL generator to specify the precise layout semantics. end rationale] 20 

10.1.3  Type semantics attr ibutes  21 

ClassAttr ::= … 

| interface  

 22 
The type semantic attributes specify whether an interface, class, or value type shall be defined.  The 23 
interface  attribute specifies an interface.  If this attribute is not present and the definition extends (directly 24 
or indirectly) System.ValueType, and the definition is not for System.Enum, a value type shall be defined (§13).   25 
Otherwise, a class shall be defined (§11). 26 

[Example:  27 

.class interface public abstract auto ansi ’System.IComparable’ { … } 28 

System.IComparable is an interface because the interface attribute is present. 29 

.class public sequential ansi serializable sealed beforefieldinit 30 
    ’System.Double’ extends System.ValueType implements System.IComparable, 31 
     … { … } 32 

System.Double directly extends System.ValueType; System.Double is not the type System.Enum; so 33 
System.Double is a value type. 34 

.class public abstract auto ansi serializable beforefieldinit ’System.Enum’ 35 
    extends System.ValueType implements System.IComparable, … { … } 36 

Although System.Enum directly extends System.ValueType, System.Enum is not a value type, so it is a class. 37 

.class public auto ansi serializable beforefieldinit ’System.Random’ 38 
    extends System.Object { … } 39 
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System.Random is a class because it is not an interface or a value type. 1 

end example] 2 

Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes) 3 

Implementation-specific (Microsoft) 4 

The current implementation allows 0x3F0000 bytes, but might be reduced in future. 5 

10.1.4  Inheritance attr ibutes  6 

ClassAttr ::= … 

| abstract  

| sealed  

 7 
Attributes that specify special semantics are abstract  and sealed . These attributes can be used together. 8 

abstract specifies that this type shall not be instantiated.  If a type contains abstract methods, that type 9 
shall be declared as an abstract type. 10 

sealed  specifies that a type shall not have derived classes.  All value types shall be sealed. 11 

[Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden. 12 
Framework authors should use sealed classes sparingly since they do not provide a convenient building block 13 
for user extensibility.  Sealed classes can be necessary when the implementation of a set of virtual methods for 14 
a single class (typically multiple interfaces) becomes interdependent or depends critically on implementation 15 
details not visible to potential derived classes.  16 

A type that is both abstract  and sealed  should have only static members, and serves as what some 17 
languages call a “namespace” or “static class”. end rationale] 18 

10.1.5  Interoperat ion attr ibutes 19 

ClassAttr ::= … 

| ansi  

| autochar  

| unicode  

 20 
These attributes are for interoperation with unmanaged code.  They specify the default behavior to be used 21 
when calling a method (static, instance, or virtual) on the class, that has an argument or return type of 22 
System.String and does not itself specify marshalling behavior.  Only one value shall be specified for any 23 
type, and the default value is ansi . The interoperation attributes are: 24 

ansi  specifies that marshalling shall be to and from ANSI strings. 25 

autochar  specifies marshalling behavior (either ANSI or Unicode), depending on the platform on which the 26 
CLI is running. 27 

unicode  specifies that marshalling shall be to and from Unicode strings. 28 

In addition to these three attributes, §23.1.15 specifies an additional set of bit patterns (CustomFormatClass and 29 
CustomStringFormatMask), which have no standardized meaning. If these bits are set, but an implementation 30 
has no support for them, a System.NotSupportedException is thrown. 31 

10.1.6  Special  handling attributes 32 

ClassAttr ::= … 

| beforefieldinit  

| rtspecialname  
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| serializable  

| specialname  

 1 
These attributes can be combined in any way. 2 

beforefieldinit  instructs the CLI that it need not initialize the type before a static method is called.  See 3 
§10.5.3. 4 

rtspecialname  indicates that the name of this item has special significance to the CLI.  There are no 5 
currently defined special type names; this is for future use.  Any item marked rtspecialname  shall also be 6 
marked specialname . 7 

serializable  Reserved for future use, to indicate that the fields of the type are to be serialized into a data 8 
stream (should such support be provided by the implementation). 9 

Implementation-specific (Microsoft) 10 

Microsoft’s implementation supports serialization. See Partition IV. 11 

specialname  indicates that the name of this item can have special significance to tools other than the CLI.  12 
See, for example, Partition I . 13 

[Rationale: If an item is treated specially by the CLI, then tools should also be made aware of that.  The 14 
converse is not true. end rationale] 15 

10.1.7  Generic parameters  (GenPars)  16 

Generic parameters are included when defining a generic type.   17 

GenPars ::= 

  GenPar [ ‘,’ GenPars ] 

The GenPar non-terminal has the following production: 18 

GenPar::= 

 [  GenParAttribs ]* [ ‘(’ [ GenConstraints ] ‘)’  ]  Id  

 19 

GenParAttribs::= 

  ‘+’   

| ‘-’   

| class   

| valuetype   

| .ctor   

 20 

+ denotes a covariant generic parameter (§9.5). 21 

-  denotes a contravariant generic parameter (§9.5). 22 

class  is a special-purpose constraint that constrains Id to being a reference type. [(ote: This includes type 23 
parameters which are themselves constrained to be reference types through a class or base type constraint. end 24 
note] 25 

valuetype  is a special-purpose constraint that constrains Id to being a value type, except that that type shall 26 
not be System.Nullable<T> or any concrete closed type of System.Nullable<T>. [(ote: This includes type 27 
parameters which are themselves constrained to be value types. end note] 28 
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.ctor  is a special-purpose constraint that constrains Id to being a concrete reference type (i.e., not abstract) 1 
that has a public constructor taking no arguments (the default constructor), or to being a value type. [(ote: This 2 
includes type parameters which are, themselves, constrained either to be concrete reference types, or to being a 3 
value type. end note] 4 

class  and valuetype  shall not both be specified for the same Id. 5 

[Example:  6 

.class C< + class .ctor (class System.IComparable<!0>) T > { … } 7 
 8 
This declares a generic class C<T>, which has a covariant generic parameter named T. T is constrained such that 9 
it must implement System.IComparable<T>, and must be a concrete class with a public default constructor. end 10 
example] 11 

Finally, the GenConstraints non-terminal has the following production: 12 

GenConstraints ::= 

  Type [ ‘,’  GenConstraints ] 

 13 

There shall be no duplicates of Id in the GenPars production.  14 

[Example: Given appropriate definitions for interfaces I1 and I2, and for class Base, the following code defines 15 
a class Dict that has two generic parameters, K and V, where K is constrained to implement both interfaces I1 16 
and I2, and V is constrained to derive from class Base: 17 

.class Dict`2<(I1,I2)K, (Base)V> { … } 18 

end example] 19 

The following table shows the valid combinations of type and special constraints for a representative set of 20 
types. The first set of rows (Type Constraint System.Object) applies either when no base class constraint is 21 
specified or when the base class constraint is System.Object. The symbol � means “set”, the symbol � means 22 
“not set”, and the symbol * means “either set or not set” or “don’t care”. 23 

 24 

Type Constraint Special Constraint Meaning 

class valuetype .ctor 

(System.Object) � � � Any type 

� � � Any reference type 

� � � Any reference type having a default 
constructor 

� � * Any value type except 
System.Nullable<T> 

� � � Any type with a public default 
constructor 

� � * Invalid 

System.ValueType � � � Any value type including 
System.Nullable<T> 

� � * Any value type except 
System.Nullable<T> 

� � � Any value type and System.ValueType, 
and System.Enum 
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� � � System.ValueType and System.Enum 
only 

� � � Not meaningful: Cannot be 
instantiated (no instantiable reference 
type can be derived from 
System.ValueType) 

� � * Invalid 

System.Enum � � � Any enum type 

� � * 

� � � Any enum type and System.Enum 

� � � System.Enum only 

� � � Not meaningful: Cannot be 
instantiated (no instantiable reference 
type can be derived from System.Enum) 

� � * Invalid 

System.INullableValue � � � Any System.Nullable<T> or other type 
implementing interface 

� � � Any System.Nullable<T> or other type 
implementing interface with default 
constructor 

� � � Any reference type implementing 
System.INullableValue (note: this 
excludes System.Nullable<T>) 

� � � Any reference type implementing 
System.INullableValue with a default 
constructor (note: this excludes 
System.Nullable<T>) 

� � * Any valuetype implementing 
System.INullableValue (note: this 
includes System.Nullable<T>) 

� � * Invalid 

System.Exception (an 
example of any non-special 

reference Type) 

� � � System.Exception, or any class derived 
from System.Exception 

� � � Any System.Exception with a public 
default constructor 

� � � System.Exception, or any class derived 
from System.Exception. This is exactly 
the same result as if the class 
constraint was not specified 

� � � Any Exception with a public default 
constructor. 

� � * Not meaningful: Cannot be 
instantiated (a value type cannot be 
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derived from a reference type) 

� � * Invalid 

System.Delegate � � � System.Delegate, or any class derived 
from System.Delegate 

� � � Not meaningful: Cannot be 
instantiated (there is no default 
constructor) 

� � � System.Delegate, or any class derived 
from System.Delegate 

� � � Any Delegate with a public .ctor. 
Invalid for known delegates 
(System.Delegate) 

� � * Not meaningful: Cannot be 
instantiated (a value type cannot be 
derived from a reference type) 

� � * Invalid 

System.Array � � � Any array 

* � � Not meaningful: Cannot be 
instantiated (no default constructor) 

� � � Any array 

� � * Not meaningful: Cannot be 
instantiated (a value type cannot be 
derived from a reference type) 

� � * Invalid 

 1 

[Example: The following instantiations are allowed or disallowed, based on the constraint. In all of these 2 
instances, the declaration itself is allowed. Items marked Invalid indicate where the attempt to instantiate the 3 
specified type fails verification, while those marked Valid do not. 4 

.class public auto ansi beforefieldinit Bar`1<valuetype T> 5 

Valid ldtoken  class Bar`1<int32> 6 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 7 

Invalid ldtoken  class Bar`1<Nullable`1<int32>> 8 

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 9 

.class public auto ansi beforefieldinit 'Bar`1'<class T> 10 

Invalid ldtoken  class Bar`1<int32> 11 

Valid ldtoken  class Bar`1<class [mscorlib]System.Exception> 12 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 13 

Valid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 14 

.class public auto ansi beforefieldinit Bar`1<(class 15 
 [mscorlib]System.ValueType) T> 16 

Valid ldtoken  class Bar`1<int32> 17 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 18 
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Valid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 1 

Valid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 2 

.class public auto ansi beforefieldinit Bar`1<class (int32)> T> 3 

Invalid ldtoken  class Bar`1<int32> 4 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 5 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 6 

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 7 

Note: This type cannot be instantiated as no reference type can extend int32 8 

.class public auto ansi beforefieldinit Bar`1<valuetype 9 
  (class [mscorlib]System.Exception)> T> 10 

Invalid ldtoken  class Bar`1<int32> 11 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 12 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>  13 

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType>  14 

Note: This type cannot be instantiated as no value type can extend System.Exception 15 

.class public auto ansi beforefieldinit Bar`1<.ctor (class Foo) T> 16 

where Foo has no public .ctor, but FooBar, which derives from Foo, has a public .ctor: 17 

Invalid ldtoken  class Bar`1<class Foo> 18 

Valid ldtoken  class Bar`1<class FooBar> 19 

end example] 20 

10.2  Body of a type definition 21 

A type can contain any number of further declarations. The directives .event , .field , .method , and 22 
.property  are used to declare members of a type. The directive .class  inside a type declaration is used to 23 
create a nested type, which is discussed in further detail in §10.6. 24 

ClassMember ::= Description Clause 

  .class  ClassHeader ‘{’ ClassMember* ‘}’  Defines a nested type. 10.6 

| .custom  CustomDecl Custom attribute. 21 

| .data  DataDecl Defines static data 
associated with the type. 

16.3 

| .event  EventHeader ‘{’ EventMember* ‘}’  Declares an event. 18 

| .field  FieldDecl Declares a field belonging 
to the type. 

16 

| .method  MethodHeader ‘{’ MethodBodyItem* ‘}’  Declares a method of the 
type. 

15 

| .override  TypeSpec ‘::’ Method(ame with 
CallConv Type TypeSpec ‘::’ Method(ame ‘(’ 
Parameters ‘)’  

Specifies that the first 
method is overridden by 
the definition of the 
second method. 

10.3.2 

| .pack  Int32 Used for explicit layout of 
fields. 

10.7 
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ClassMember ::= Description Clause 

| .param type ‘[’  Int32 ‘]’  Specifies a type parameter 
for a generic type; for use 
in associating a custom 
attribute with that type 
parameter. 

15.4.1.5 

| .property  PropHeader ‘{’ PropMember* ‘}’  Declares a property of the 
type. 

17 

| .size  Int32 Used for explicit layout of 
fields. 

10.7 

| ExternSourceDecl Source line information. 5.7 

| SecurityDecl Declarative security 
permissions. 

20 

 1 

10.3  Introducing and overriding virtual methods 2 

A virtual method of a base type is overridden by providing a direct implementation of the method (using a 3 
method definition, see §15.4) and not specifying it to be newslot  (§15.4.2.3).  An existing method body can 4 
also be used to implement a given virtual declaration using the .override  directive (§10.3.2). 5 

10.3.1  Introducing a virtual  method 6 

A virtual method is introduced in the inheritance hierarchy by defining a virtual method (§15.4).  The definition 7 
can be marked newslot  to always create a new virtual method for the defining class and any classes derived 8 
from it: 9 

• If the definition is marked newslot , the definition always creates a new virtual method, even if a 10 
base class provides a matching virtual method.  A reference to the virtual method via the class 11 
containing the method definition, or via a class derived from that class, refers to the new definition 12 
(unless hidden by a newslot  definition in a derived class).  Any reference to the virtual method 13 
not via the class containing the method definition, nor via its derived classes, refers to the original 14 
definition. 15 

• If the definition is not marked newslot , the definition creates a new virtual method only if there 16 
is not virtual method of the same name and signature inherited from a base class. 17 

It follows that when a virtual method is marked newslot , its introduction will not affect any existing 18 
references to matching virtual methods in its base classes. 19 

10.3.2  The .override direct ive  20 

The .override  directive specifies that a virtual method shall be implemented (overridden), in this type, by a 21 
virtual method with a different name, but with the same signature.  This directive can be used to provide an 22 
implementation for a virtual method inherited from a base class, or a virtual method specified in an interface 23 
implemented by this type.  The .override  directive specifies a Method Implementation (MethodImpl) in the 24 
metadata (§15.1.4). 25 

ClassMember ::= Clause 

  .override  TypeSpec ‘::’  Method(ame with CallConv Type TypeSpec ‘::’ 
Method(ame ‘(’ Parameters ‘)’  

 

  .override method CallConv Type TypeSpec ‘::’ Method(ame GenArity ‘(’ 
Parameters ‘)’  with  method CallConv Type TypeSpec ‘::’ Method(ame GenArity 
‘(’ Parameters ‘)’  

 

| … 10.2 
 26 
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 1 

GenArity ::= [ ‘<’ ‘[’ Int32 ‘]’ ‘>’ ] 

 2 

Int32 is the number of generic parameters. 3 

The first TypeSpec:: Method(ame pair specifies the virtual method that is being overridden, and shall be either 4 
an inherited virtual method or a virtual method on an interface that the current type implements.  The remaining 5 
information specifies the virtual method that provides the implementation.   6 

While the syntax specified here (as well as the actual metadata format (§22.27 )) allows any virtual method to 7 
be used to provide an implementation, a conforming program shall provide a virtual method actually 8 
implemented directly on the type containing the .override  directive. 9 

[Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the 10 
VES. end rationale] 11 

[Example: The following shows a typical use of the .override  directive. A method implementation is 12 
provided for a method declared in an interface (see §12). 13 

.class interface I 14 
{ .method public virtual abstract void M() cil managed {} 15 
} 16 

.class C implements I 17 
{ .method virtual public void M2() 18 
  { // body of M2 19 
  } 20 
  .override I::M with instance void C::M2() 21 
} 22 

The .override  directive specifies that the C::M2 body shall provide the implementation of be used to 23 
implement I::M on objects of class C. 24 

end example] 25 

10.3.3  Accessib il ity  and overrid ing 26 

If the strict flag (§23.1.10) is specified then only accessible virtual methods can be overridden.  27 

If a type overrides an inherited method through means other than a MethodImpl, it can widen, but it shall not 28 
narrow, the accessibility of that method.  As a principle, if a client of a type is allowed to access a method of 29 
that type, then it should also be able to access that method (identified by name and signature) in any derived 30 
type.  Table 7.1 specifies narrow and widen in this context—a “Yes” denotes that the derived class can apply 31 
that accessibility, a “No” denotes it is invalid. 32 

If a type overrides an inherited method via a MethodImpl, it can widen or narrow the accessibility of that 33 
method. 34 

Table 7.1: Valid Widening of Access to a Virtual Method 35 

Derived 
class\Base type 
Accessibility 

Compiler-
controlled 

private family assembly famandassem famorassem  public 

Compiler-
controlled 

See note 3 No No No No No No 

private See note 3 Yes No No No No No 

family See note 3 Yes Yes No Yes See note 1 No 

assembly See note 3 Yes No See note 2 See note 2 No No 

famandassem See note 3 Yes No No See note 2 No No 
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Derived 
class\Base type 
Accessibility 

Compiler-
controlled 

private family assembly famandassem famorassem  public 

famorassem See note 3 Yes Yes See note 2 Yes Yes No 

public See note 3 Yes Yes Yes Yes Yes Yes 
 1 
1 Yes, provided both are in different assemblies; otherwise, No. 2 
2 Yes, provided both are in the same assembly; otherwise, No. 3 

Implementation-specific (Microsoft) 4 
2 Yes, provided both are in the same assembly or friend assembly. 5 
3 Yes, provided both are in the same module; otherwise, No. 6 

[(ote: A method can be overridden even if it might not be accessed by the derived class.  7 

If a method has assembly  accessibility, then it shall have public  accessibility if it is being overridden by a 8 
method in a different assembly. A similar rule applies to famandassem , where also famorassem  is allowed 9 
outside the assembly. In both cases assembly  or famandassem , respectively, can be used inside the same 10 
assembly. end note] 11 

A special rule applies to famorassem , as shown in the table. This is the only case where the accessibility is 12 
apparently narrowed by the derived class. A famorassem  method can be overridden with family  13 
accessibility by a type in another assembly.  14 

[Rationale: Because there is no way to specify “family or specific other assembly” it is not possible to specify 15 
that the accessibility should be unchanged.  To avoid narrowing access, it would be necessary to specify an 16 
accessibility of public, which would force widening of access even when it is not desired.  As a compromise, 17 
the minor narrowing of “family” alone is permitted. end rationale] 18 

10.3.4  Impact  of  overrides on der ived c lasses  19 

When a method is overridden in a parent type, the override shall apply to the derived class according to the 20 
following: 21 

• If the derived class provides an implementation of a virtual method, then that method is not affected 22 
by any overrides of that method in the parent type 23 

• Otherwise, if the method is overridden in the parent type, the override is inherited, subject to any 24 
overrides in the derived class.  [(ote: This means that if the parent type overrides method A with 25 
method B, and the derived class does not provide an implementation or override of method A, but 26 
provides an overriding implementation of method B, then it is the derived class’ implementation of B 27 
that will override method A in the derived class.  It may be useful to think of this as virtual slot 28 
overriding. end (ote.] 29 

[Example: Consider the following (excerpted for clarity; all methods are declared public hidebysig virtual 30 
instance): 31 

.class interface I 32 
{ 33 
  .method newslot abstract void foo() {...} 34 
} 35 
.class A implements I 36 
{ 37 
  .method newslot void foo() {...} 38 
} 39 
.class B extends A 40 
{ 41 
  .method newslot void foo1() {.override I::foo ...  } 42 
} 43 
.class C extends B 44 
{ 45 
  .method void foo1() {...} 46 
  .method void foo2() {.override A::foo ... } 47 
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} 1 
.class D extends C 2 
{ 3 
  .method newslot void foo() {...} 4 
  .method void foo1(){...} 5 
  .method void foo2(){...} 6 
} 7 
 8 
For this example, a sampling of the behavior of calls on objects of various types is presented in the following 9 
table: 10 

Type of 
object 

Method 
invocation 
(callvirt) 

Method 
called 

Aotes 

B I::foo() B::foo1 Explicit override 
C I::foo() C::foo1 Override of I::foo to virtual function foo1 is inherited from B 
C A::foo() C::foo2 Explicit override 
C B::foo1() C::foo1 Virtual override 
D I::foo() D::foo1 Override of I::foo to virtual function foo1 is inherited 
D A::foo() D::foo2 Explicit override of A::foo with virtual C::foo2 (D::foo 

doesn’t override this because it is “newslot” 
D B::foo1() D::foo1 Virtual override 
D C::foo1() D::foo1 Virtual override 
 11 
.end example] 12 

10.4  Method implementation requirements 13 

A type (concrete or abstract) can provide  14 

• implementations for instance, static, and virtual methods that it introduces 15 

• implementations for methods declared in interfaces that it has specified it will implement, or that 16 
its base type has specified it will implement 17 

• alternative implementations for virtual methods inherited from its base class 18 

• implementations for virtual methods inherited from an abstract base type that did not provide an 19 
implementation 20 

A concrete (i.e., non-abstract) type shall provide, either directly or by inheritance, an implementation for 21 

• all methods declared by the type itself 22 

• all virtual methods of interfaces implemented by the type 23 

• all virtual methods that the type inherits from its base type  24 

10.5  Special  members 25 

There are three special members, all of which are methods that can be defined as part of a type: instance 26 
constructors, instance finalizers, and type initializers.  27 

10.5.1  Instance constructor  28 

An instance constructor initializes an instance of a type, and is called when an instance of a type is created by 29 
the newobj instruction (see Partition III).  An instance constructor shall be an instance (not static or virtual) 30 
method, it shall be named .ctor , and marked instance , rtspecialname , and specialname  31 
(§15.4.2.6). An instance constructor can have parameters, but shall not return a value. An instance constructor 32 
cannot take generic type parameters. An instance constructor can be overloaded (i.e., a type can have several 33 
instance constructors). Each instance constructor for a type shall have a unique signature. Unlike other 34 
methods, instance constructors can write into fields of the type that are marked with the initonly  attribute 35 
(§16.1.2). 36 

[Example: The following shows the definition of an instance constructor that does not take any parameters: 37 
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.class X { 1 
  .method public rtspecialname specialname instance void .ctor() cil managed 2 
    { .maxstack 1 3 
    // call super constructor 4 
    ldarg.0  // load this pointer 5 
    call instance void [mscorlib]System.Object::.ctor() 6 
    // do other initialization work 7 
    ret 8 
  } 9 
} 10 

end example] 11 

10.5.2  Instance f inalizer  12 

The behavior of finalizers is specified in Partition I.  The finalize method for a particular type is specified by 13 
overriding the virtual method Finalize in System.Object. 14 

10.5.3  Type in it ia l izer  15 

A type (class, interface, or value type) can contain a special method called a type initializer, which is used to 16 
initialize the type itself. This method shall be static, take no parameters, return no value, be marked with 17 
rtspecialname  and specialname  (§15.4.2.6), and be named .cctor .  18 

Like instance constructors, type initializers can write into static fields of their type that are marked with the 19 
initonly  attribute (§16.1.2). 20 

[Example: The following shows the definition of a type initializer: 21 

.class public EngineeringData extends [mscorlib]System.Object 22 
{ 23 
.field private static initonly float64[] coefficient 24 
.method private specialname rtspecialname static void .cctor() cil managed 25 
  { 26 
  .maxstack 1 27 

  // allocate array of 4 Double 28 
  ldc.i4.4 29 
  newarr     [mscorlib]System.Double 30 
  // point initonly field to new array 31 
  stsfld     float64[] EngineeringData::coefficient 32 
  // code to initialize array elements goes here 33 
  ret 34 
  } 35 
} 36 

end example] 37 

[(ote: Type initializers are often simple methods that initialize the type’s static fields from stored constants or 38 
via simple computations. There are, however, no limitations on what code is permitted in a type initializer. end 39 
note] 40 

10.5.3 .1  Type init ia l i zat ion guarantees 41 

The CLI shall provide the following guarantees regarding type initialization (but see also §10.5.3.2 and 42 
§10.5.3.3): 43 

1. As to when type initializers are executed is specified in Partition I. 44 

2. A type initializer shall be executed exactly once for any given type, unless explicitly called by 45 
user code. 46 

3. No methods other than those called directly or indirectly from the type initializer are able to 47 
access members of a type before its initializer completes execution. 48 
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10.5.3 .2  Relaxed guarantees  1 

A type can be marked with the attribute beforefieldinit  (§10.1.6) to indicate that the guarantees 2 
specified in §10.5.3.1 are not necessarily required.  In particular, the final requirement above need not be 3 
provided: the type initializer need not be executed before a static method is called or referenced. 4 

[Rationale: When code can be executed in multiple application domains it becomes particularly expensive to 5 
ensure this final guarantee.  At the same time, examination of large bodies of managed code have shown that 6 
this final guarantee is rarely required, since type initializers are almost always simple methods for initializing 7 
static fields.  Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether 8 
this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees. 9 
end rationale] 10 

10.5.3 .3  Races and deadlocks 11 

In addition to the type initialization guarantees specified in §10.5.3.1, the CLI shall ensure two further 12 
guarantees for code that is called from a type initializer: 13 

1. Static variables of a type are in a known state prior to any access whatsoever. 14 

2. Type initialization alone shall not create a deadlock unless some code called from a type 15 
initializer (directly or indirectly) explicitly invokes blocking operations. 16 

[Rationale: Consider the following two class definitions: 17 

.class public A extends [mscorlib]System.Object 18 
{ .field  static public class A a 19 
  .field  static public class B b 20 
  .method public static rtspecialname specialname void .cctor () 21 
  { ldnull   // b=null 22 
    stsfld class B A::b 23 
    ldsfld class A B::a // a=B.a 24 
    stsfld class A A::a 25 
    ret 26 
  } 27 
} 28 

.class public B extends [mscorlib]System.Object 29 
{ .field static public class A a 30 
  .field static public class B b 31 
  .method public static rtspecialname specialname void .cctor () 32 
  { ldnull   // a=null 33 
    stsfld class A B::a 34 
    ldsfld class B A::b // b=A.b 35 
    stsfld class B B::b 36 
    ret 37 
  } 38 
} 39 

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type 40 
initializer for each of A and B requires that the type initializer of the other be invoked first. Requiring that no 41 
access to a type be permitted until its initializer has completed would create a deadlock situation. Instead, the 42 
CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But 43 
this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to 44 
guarantee repeatable results. 45 

There are similar, but more complex, problems when type initialization takes place in a multi-threaded system. 46 
In these cases, for example, two separate threads might start attempting to access static variables of separate 47 
types (A and B) and then each would have to wait for the other to complete initialization. 48 

A rough outline of an algorithm to ensure points 1 and 2 above is as follows: 49 

1. At class load-time (hence prior to initialization time) store zero or null into all static fields of the type. 50 

2. If the type is initialized, you are done. 51 

2.1. If the type is not yet initialized, try to take an initialization lock.   52 
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2.2. If successful, record this thread as responsible for initializing the type and proceed to step 2.3. 1 

2.2.1. If not successful, see whether this thread or any thread waiting for this thread to complete already holds 2 
the lock. 3 

2.2.2. If so, return since blocking would create a deadlock.  This thread will now see an incompletely initialized 4 
state for the type, but no deadlock will arise. 5 

2.2.3 If not, block until the type is initialized then return. 6 

2.3 Initialize the base class type and then all interfaces implemented by this type. 7 

2.4 Execute the type initialization code for this type. 8 

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be 9 
initialized, and return. 10 

end rationale] 11 

10.6  Aested types 12 

Nested types are specified in Partition I. For information about the logical tables associated with nested types, 13 
see §22.32. 14 

[(ote: A nested type is not associated with an instance of its enclosing type. The nested type has its own base 15 
type, and can be instantiated independently of its enclosing type. This means that the instance members of the 16 
enclosing type are not accessible using the this  pointer of the nested type. 17 

A nested type can access any members of its enclosing type, including private members, as long as those 18 
members are static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested 19 
types, a type can give access to its private members to another type. 20 

On the other hand, the enclosing type cannot access any private or family members of the nested type. Only 21 
members with assembly , famorassem , or public  accessibility can be accessed by the enclosing type. 22 
end note] 23 

[Example: The following shows a class declared inside another class. Each class declares a field. The nested 24 
class can access both fields, while the enclosing class does not have access to the enclosed class’s field b. 25 

.class public auto ansi X 26 
{ .field static private int32 a 27 
  .class auto ansi nested public Y  28 
  { .field static private int32 b 29 
    // ... 30 
  } 31 
} 32 

end example] 33 

10.7  Controll ing instance layout  34 

The CLI supports both sequential and explicit layout control, see § 10.1.2.  For explicit layout it is also 35 
necessary to specify the precise layout of an instance; see also §22.18 and §22.16. 36 

FieldDecl ::= 

  [ ‘[’ Int32 ‘]’ ] FieldAttr* Type Id  
 37 
The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the 38 
beginning of the instance of the type. (For a given type t, this beginning refers to the start of the set of members 39 
explicitly defined in type t, excluding all members defined in any types from which type t directly or indirectly 40 
inherits.) This form of explicit layout control shall not be used with global fields specified using the at 41 
notation §16.3.2). 42 

Offset values shall be non-negative. It is possible to overlap fields in this way, though offsets occupied by an 43 
object reference shall not overlap with offsets occupied by a built-in value type or a part of another object 44 
reference. While one object reference can completely overlap another, this is unverifiable. 45 
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Fields can be accessed using pointer arithmetic and ldind to load the field indirectly or stind to store the field 1 
indirectly (see Partition III). See §22.16 and §22.18 for encoding of this information. For explicit layout, every 2 
field shall be assigned an offset. 3 

The .pack   directive specifies that fields should be placed within the runtime object at byte addresses which 4 
are a multiple of the specified number, or at natural alignment for that field type, whichever is smaller.  For 5 
example, .pack 2 would allow 32-bit-wide fields to be started on even addresses, whereas without any 6 
.pack  directive, they would be naturally aligned; that is, placed on addresses that are a multiple of 4.  The 7 
integer following .pack  shall be one of the following: 0, 1, 2, 4, 8, 16, 32, 64, or 128.  (A value of zero 8 
indicates that the pack size used should match the default for the current platform.)  The .pack  directive shall 9 
not be supplied for any type with explicit layout control. 10 

The .size  directive indicates a minimum size, and is intended to allow for padding. Therefore, the amount of 11 
memory allocated is the maximum of the size calculated from the layout and the .size  directive. Note that if 12 
this directive applies to a value type, then the size shall be less than 1 MByte. 13 

[(ote: Metadata that controls instance layout is not a “hint,” it is an integral part of the VES that shall be 14 
supported by all conforming implementations of the CLI. end note] 15 

[Example: The following class uses sequential layout of its fields: 16 

.class sequential public SequentialClass 17 
{ .field public int32 a  // store at offset 0 bytes 18 
  .field public int32 b  // store at offset 4 bytes 19 
} 20 

The following class uses explicit layout of its fields: 21 

.class explicit public ExplicitClass 22 
{ .field [0] public int32 a // store at offset 0 bytes 23 
  .field [6] public int32 b // store at offset 6 bytes 24 
} 25 

The following value type uses .pack  to pack its fields together: 26 

.class value sealed public MyClass extends [mscorlib]System.ValueType 27 
{ .pack 2 28 
  .field  public int8  a  // store at offset 0 bytes 29 
  .field  public int32 b // store at offset 2 bytes (not 4) 30 
} 31 

The following class specifies a contiguous block of 16 bytes: 32 

.class public BlobClass 33 
{ .size 16 34 
} 35 

end example] 36 

10.8  Global f ields and methods 37 

In addition to types with static members, many languages have the notion of data and methods that are not part 38 
of a type at all. These are referred to as global fields and methods. 39 

The simplest way to understand global fields and methods in the CLI is to imagine that they are simply 40 
members of an invisible abstract  public class. In fact, the CLI defines such a special class, named 41 
<Module>, that does not have a base type and does not implement any interfaces. (This class is a top-level class; 42 
i.e., it is not nested.)The only noticeable difference is in how definitions of this special class are treated when 43 
multiple modules are combined together, as is done by a class loader.  This process is known as metadata 44 
merging. 45 

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition 46 
on the assumption they are equivalent, and that any anomaly will be discovered when the type is used.  For the 47 
special class that holds global members, however, members are unioned across all modules at merge time. If 48 
the same name appears to be defined for cross-module use in multiple modules then there is an error.  In detail: 49 
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• If no member of the same kind (field or method), name, and signature exists, then add this member 1 
to the output class. 2 

• If there are duplicates and no more than one has an accessibility other than 3 
compilercontrolled , then add them all to the output class. 4 

• If there are duplicates and two or more have an accessibility other than compilercontrolled , 5 
an error has occurred. 6 

[(ote: Strictly speaking, the CLI does not support global statics, even though global fields and methods might 7 
be thought of as such. All global fields and methods in a module are owned by the manufactured class 8 
"<Module>".  However, each module has its own "<Module>" class. There's no way to even refer, early-bound, 9 
to such a global field or method in another module. (You can, however, "reach" them, late-bound, via 10 
Reflection.)  end note] 11 
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11  Semantics of classes 1 

Classes, as specified in Partition I, define types in an inheritance hierarchy.  A class (except for the built-in 2 
class System.Object and the special class <Module>) shall declare exactly one base class.  A class shall declare 3 
zero or more interfaces that it implements (§12).  A concrete class can be instantiated to create an object, but an 4 
abstract  class (§10.1.4) shall not be instantiated.   A class can define fields (static or instance), methods 5 
(static, instance, or virtual), events, properties, and nested types (classes, value types, or interfaces). 6 

Instances of a class (i.e., objects) are created only by explicitly using the newobj instruction (see Partition III).  7 
When a variable or field that has a class as its type is created (for example, by calling a method that has a local 8 
variable of a class type), the value shall initially be null, a special value that := with all class types even though 9 
it is not an instance of any particular class. 10 
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12  Semantics of interfaces 1 

Interfaces, as specified in Partition I, each define a contract that other types can implement. Interfaces can have 2 
static fields and methods, but they shall not have instance fields or methods.  Interfaces can define virtual 3 
methods, but only if those methods are abstract  (see Partition I and §15.4.2.4). 4 

[Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple 5 
inheritance of base types: in the presence of dynamic loading of data types there is no known implementation 6 
technique that is both efficient when used and has no cost when not used.  By contrast, providing static fields 7 
and methods need not affect the layout of instances and therefore does not raise these issues. end rationale] 8 

Interfaces can be nested inside any type (interface, class, or value type). 9 

12.1  Implementing interfaces 10 

Classes and value types shall implement zero or more interfaces.  Implementing an interface implies that all 11 
concrete instances of the class or value type shall provide an implementation for each abstract  virtual 12 
method declared in the interface.   In order to implement an interface, a class or value type shall either 13 
explicitly declare that it does so (using the implements  attribute in its type definition, see §10.1) or shall be 14 
derived from a base class that implements the interface. 15 

[(ote: An abstract  class (since it cannot be instantiated) need not provide implementations of the virtual 16 
methods of interfaces it implements, but any concrete class derived from it shall provide the implementation. 17 

Merely providing implementations for all of the abstract  methods of an interface is not sufficient to have a 18 
type implement that interface.  Conceptually, this represents the fact that an interface represents a contract that 19 
can have more requirements than are captured in the set of abstract  methods.  From an implementation 20 
point of view, this allows the layout of types to be constrained only by those interfaces that are explicitly 21 
declared. end note] 22 

Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface, 23 
A, declares that it requires the implementation of another interface, B, then A implicitly declares that it requires 24 
the implementation of all interfaces required by B. If a class or value type declares that it implements A, then 25 
all concrete instances shall provide implementations of the virtual methods declared in A and all of the 26 
interfaces A requires. [(ote:  The class need not explicitly declare that it implements the interfaces required 27 
by A. end note] 28 

[Example: The following class implements the interface IStartStopEventSource defined in the module 29 
Counter. 30 

.class private auto autochar StartStopButton  31 
       extends [System.Windows.Forms]System.Windows.Forms.Button 32 
       implements [.module Counter]IstartStopEventSource 33 
{ // body of class 34 
} 35 

end example] 36 

12.2  Implementing virtual methods on interfaces 37 

Classes that implement an interface (§12.1) are required to provide implementations for the abstract  virtual 38 
methods defined by that interface.  There are three mechanisms for providing this implementation: 39 

• Directly specifying an implementation, using the same name and signature as appears in the 40 
interface. 41 

• Inheritance of an existing implementation from the base type. 42 

• Use of an explicit MethodImpl (§15.1.4). 43 

The VES shall use the following algorithm to determine the appropriate implementation of an interface's virtual 44 
abstract methods: 45 

• If the base class implements the interface, start with the same virtual methods that it provides; 46 
otherwise, create an interface that has empty slots for all virtual functions. 47 
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• If this class explicitly specifies that it implements the interface  (i.e., the interfaces that appear in 1 
this class’s InterfaceImpl table, §22.23) 2 

o If the class defines any public virtual newslot  methods whose name and signature 3 
match a virtual method on the interface, then use these new virtual methods to implement 4 
the corresponding interface method. 5 

• If there are any virtual methods in the interface that still have empty slots, see if there are any 6 
public virtual  methods, but not public virtual newslot  methods, available on this 7 
class (directly or inherited) having the same name and signature, then use these to implement the 8 
corresponding methods on the interface. 9 

• Apply all MethodImpls that are specified for this class, thereby placing explicitly specified virtual 10 
methods into the interface in preference to those inherited or chosen by name matching.  11 

• If the current class is not abstract  and there are any interface methods that still have empty 12 
slots, then the program is invalid. 13 

[Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be 14 
implemented by any class that implements the interface.  The class specifies a mapping from its own virtual 15 
methods to those of the interface.  Thus it is virtual methods, not specific implementations of those methods 16 
that are associated with interfaces.  Overriding a virtual method on a class with a specific implementation will 17 
thus affect not only the virtual method named in the class but also any interface virtual methods to which that 18 
same virtual method has been mapped. end rationale] 19 
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13  Semantics of value types 1 

In contrast to reference types, value types (see Partition I) are not accessed by using a reference, but are stored 2 
directly in the location of that type. 3 

[Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as 4 
opposed to pointers to struct) types in C++. Compared to reference types, value types are accessed faster since 5 
there is no additional indirection involved. As elements of arrays they do not require allocating memory for the 6 
pointers as well as for the data itself.  Typical value types are complex numbers, geometric points, and dates. 7 
end rationale] 8 

Like other types, value types can have fields (static or instance), methods (static, instance, or virtual), 9 
properties, events, and nested types.  A value of some value type can be converted into an instance of a 10 
corresponding reference type (its boxed form, a class automatically created for this purpose by the VES when a 11 
value type is defined) by a process called boxing. A boxed value type can be converted back into its value type 12 
representation, the unboxed form, by a process called unboxing.  Value types shall be sealed, and they shall 13 
have a base type of either System.ValueType or System.Enum (see Partition IV).  Value types shall implement 14 
zero or more interfaces, but this has meaning only in their boxed form (§13.3). 15 

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst instruction 16 
(see Partition III) on unboxed value types. The isinst instruction can be used for boxed value types, however.  17 
Unboxed value types shall not be assigned the value null and they shall not be compared to null. 18 

Value types support layout control in the same way as do reference types (§10.7). This is especially important 19 
when values are imported from native code. 20 

Since ValueTypes represent direct layout of data, recursive struct definitions such as (in C#) struct S {S x; 21 
S y;} are not permitted. A struct shall have an acyclic finite flattening graph: 22 

For a value type S, define the flattening graph G of S to be the smallest directed graph such that: 23 

• S is in G. 24 
• Whenever T is in G and T has an instance field of value type X then X is in G and there is an edge from T 25 

to X. 26 
• Whenever T is in G and T has a static field of value type Y then Y is in G. 27 

[Example: 28 

class C<U> { } 29 

struct S1<V> { 30 
  S1<V> x; 31 
} 32 

struct S2<V> { 33 
  static S2<V> x; 34 
} 35 

struct S3<V> { 36 
  static S3<C<V>> x; 37 
} 38 

struct S4<V> { 39 
  S4<C<V>>[] x; 40 
} 41 

Struct type S1 has a finite but cyclic flattening graph and is invalid; S2 has a finite acyclic flattening graph and 42 
is valid; S3 has an infinite acyclic flattening graph and is invalid; S4 has a finite acyclic flattening graph and is 43 
valid because field S4<C<V>>.x has reference type, not value type.  44 

The C<U> type is not strictly necessary for the examples, but if it were not used, it might be unclear whether 45 
something like the following 46 

   struct S3<V> { 47 
     static S3<S3<V>> x; 48 
   } 49 
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is problematic due to the inner or the outer occurrence of S3<...> in the field type. end example] 1 

13.1  Referencing value types 2 

The unboxed form of a value type shall be referred to by using the valuetype  keyword followed by a type 3 
reference.   The boxed form of a value type shall be referred to by using the boxed  keyword followed by a 4 
type reference. 5 

ValueTypeReference ::=      

  boxed TypeReference 

| valuetype  TypeReference 
 6 

Implementation-specific (Microsoft) 7 

For historical reasons value class  can be used instead of valuetype  although the latter is 8 
preferred.  V1 of the CLI does not support direct references to boxed value types; they should be treated 9 
as object  instead. 10 

13.2  Initializing value types 11 

Like classes, value types can have both instance constructors (§10.5.1) and type initializers (§10.5.3).  Unlike 12 
classes, whose fields are automatically initialized to null, the following rules constitute the only guarantee 13 
about the initilization of (unboxed) value types: 14 

• Static variables shall be initialized to zero when a type is loaded (§10.5.3.3), hence statics whose 15 
type is a value type are zero-initialized when the type is loaded.  16 

• Local variables shall be initialized to zero if the localsinit   bit in the method header (§25.4.4) 17 
is set. 18 

• Arrays shall be zero-initialized. 19 

• Instances of classes (i.e., objects) shall be zero-initialized prior to calling their instance constructor. 20 

[Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive, 21 
especially on platforms that support thread-local storage and that allow threads to be created outside of the CLI 22 
and then passed to the CLI for management. end rationale] 23 
 24 
[(ote: Boxed value types are classes and follow the rules for classes. end note] 25 

The instruction initobj (see Partition III) performs zero-initialization under program control.  If a value type has 26 
a constructor, an instance of its unboxed type can be created as is done with classes. The newobj instruction 27 
(see Partition III) is used along with the initializer and its parameters to allocate and initialize the instance. The 28 
instance of the value type will be allocated on the stack. The Base Class Library provides the method 29 
System.Array.Initialize (see Partition IV) to zero all instances in an array of unboxed value types. 30 

[Example: The following code declares and initializes three value type variables.  The first variable is zero-31 
initialized, the second is initialized by calling an instance constructor, and the third by creating the object on the 32 
stack and storing it into the local. 33 

.assembly Test { } 34 

.assembly extern System.Drawing { 35 
  .ver 1:0:3102:0 36 
  .publickeytoken = (b03f5f7f11d50a3a) 37 
} 38 

.method public static void Start() 39 
{ .maxstack 3 40 
  .entrypoint 41 
  .locals init (valuetype [System.Drawing]System.Drawing.Size Zero, 42 
          valuetype [System.Drawing]System.Drawing.Size Init, 43 
          valuetype [System.Drawing]System.Drawing.Size Store) 44 



 

 Partition II 61 

  // Zero initialize the local named Zero 1 
  ldloca Zero           // load address of local variable 2 
  initobj valuetype [System.Drawing]System.Drawing.Size 3 

  // Call the initializer on the local named Init 4 
  ldloca Init           // load address of local variable 5 
  ldc.i4 425            // load argument 1 (width) 6 
  ldc.i4 300            // load argument 2 (height) 7 
  call instance void [System.Drawing]System.Drawing.Size::.ctor (int32, int32) 8 

  // Create a new instance on the stack and store into Store.  Note that 9 
  // stobj is used here – but one could equally well  use stloc, stfld, etc. 10 
  ldloca Store 11 
  ldc.i4 425            // load argument 1 (width) 12 
  ldc.i4 300            // load argument 2 (height) 13 
  newobj instance void [System.Drawing]System.Drawing.Size::.ctor (int32, int32) 14 
  stobj valuetype [System.Drawing]System.Drawing.Size 15 
  ret 16 
} 17 

end example] 18 

13.3  Methods of  value types 19 

Value types can have static, instance and virtual methods. Static methods of value types are defined and called 20 
the same way as static methods of class types.  As with classes, both instance and virtual methods of a boxed or 21 
unboxed value type can be called using the call instruction. The callvirt instruction shall not be used with 22 
unboxed value types (see Partition I), but it can be used on boxed value types. 23 

Instance and virtual methods of classes shall be coded to expect a reference to an instance of the class as the 24 
this pointer.  By contrast, instance and virtual methods of value types shall be coded to expect a managed 25 
pointer (see Partition I) to an unboxed instance of the value type.  The CLI shall convert a boxed value type 26 
into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a 27 
virtual method whose implementation is provided by the unboxed value type. 28 

[(ote: This operation is the same as unboxing the instance, since the unbox instruction (see Partition III) is 29 
defined to return a managed pointer to the value type that shares memory with the original boxed instance. 30 

The following diagrams are intended to help the reader understand the relationship between the boxed and 31 
unboxed representations of a value type. 32 

 33 

 34 
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 1 
 2 
end note] 3 

[Rationale: An important use of instance methods on value types is to change internal state of the instance.  4 
This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be 5 
operating on a copy of the value, not the original value: unboxed value types are copied when they are passed 6 
as arguments. 7 

Virtual methods are used to allow multiple types to share implementation code, and this requires that all classes 8 
that implement the virtual method share a common representation defined by the class that first introduces the 9 
method.  Since value types can (and in the Base Class Library do) implement interfaces and virtual methods 10 
defined on System.Object,  it is important that the virtual method be callable using a boxed value type so  it 11 
can be manipulated as would any other type that implements the interface.  This leads to the requirement that 12 
the EE automatically unbox value types on virtual calls. end rationale] 13 

Table 1: Type of this given the CIL instruction and the declaring type of instance method. 14 

 Value Type (Boxed or Unboxed) Interface Object Type 

call managed pointer to value type invalid object reference 

callvirt managed pointer to value type object reference object reference 
 15 
[Example: The following converts an integer of the value type int32 into a string. Recall that int32 16 
corresponds to the unboxed value type System.Int32 defined in the Base Class Library.  Suppose the integer is 17 
declared as: 18 

.locals init (int32 x) 19 

Then the call is made as shown below: 20 

ldloca x  // load managed pointer to local variable 21 
call instance string valuetype [mscorlib]System.Int32::ToString() 22 

However, if System.Object (a class) is used as the type reference rather than System.Int32 (a value type), the 23 
value of x shall be boxed before the call is made and the code becomes: 24 

ldloc x 25 
box valuetype [mscorlib]System.Int32 26 
callvirt instance string [mscorlib]System.Object::ToString() 27 

end example] 28 
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14  Semantics of special  types 1 

Special types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies 2 
the definitions automatically based on information available from the reference. 3 

14.1  Vectors 4 

Type ::= …  

     | Type ‘[’ ‘]’  

 5 
Vectors are single-dimension arrays with a zero lower bound.  They have direct support in CIL instructions 6 
(newarr, ldelem, stelem, and ldelema, see Partition III).  The CIL Framework also provides methods that 7 
deal with multidimensional arrays and single-dimension arrays with a non-zero lower bound (§14.2).  Two 8 
vectors have the same type if their element types are the same, regardless of their actual upper bounds.  9 

Vectors have a fixed size and element type, determined when they are created.  All CIL instructions shall 10 
respect these values.  That is, they shall reliably detect attempts to do the following: index beyond the end of 11 
the vector, store the incorrect type of data into an element of a vector, and take the address of elements of a 12 
vector with an incorrect data type.  See Partition III. 13 

[Example: Declare a vector of Strings: 14 

.field string[] errorStrings 15 

Declare a vector of function pointers: 16 

.field method instance void*(int32) [] myVec 17 

Create a vector of 4 strings, and store it into the field errorStrings.  The 4 strings lie at errorStrings[0] 18 
through errorStrings[3]: 19 

ldc.i4.4 20 
newarr string 21 
stfld string[] CountDownForm::errorStrings 22 

Store the string "First" into errorStrings[0]: 23 

ldfld string[] CountDownForm::errorStrings 24 
ldc.i4.0 25 
ldstr "First" 26 
stelem  27 

end example] 28 

Vectors are subtypes of System.Array, an abstract class pre-defined by the CLI.  It provides several methods 29 
that can be applied to all vectors. See Partition IV. 30 

14.2  Arrays 31 

While vectors (§14.1) have direct support through CIL instructions, all other arrays are supported by the VES 32 
by creating subtypes of the abstract class System.Array (see Partition IV) 33 

Type ::= … 

   | Type ‘[’  [ Bound [ ‘,’ Bound ]*] ‘]’  

 34 
The rank of an array is the number of dimensions.  The CLI does not support arrays with rank 0.  The type of 35 
an array (other than a vector) shall be determined by the type of its elements and the number of dimensions. 36 

Bound ::= Description 

  ‘...’ Lower and upper bounds unspecified.  In the case of 
multi-dimensional arrays, the ellipsis can be omitted 

| Int32 Zero lower bound, Int32 upper bound 
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| Int32 ‘...’  Lower bound only specified 

| Int32 ‘...’  Int32 Both bounds specified 

 1 
The class that the VES creates for arrays contains several methods whose implementation is supplied by the 2 
VES:   3 

• A constructor that takes a sequence of int32 arguments, one for each dimension of the array, that specify 4 
the number of elements in each dimension beginning with the first dimension.  A lower bound of zero is 5 
assumed.   6 

• A constructor that takes twice as many int32 arguments as there are dimensions of the array. These 7 
arguments occur in pairs—one pair per dimension—with the first argument of each pair specifying the 8 
lower bound for that dimension, and the second argument specifying the total number of elements in that 9 
dimension. Note that vectors are not created with this constructor, since a zero lower bound is assumed for 10 
vectors. 11 

•  A Get method that takes a sequence of int32 arguments, one for each dimension of the array, and returns 12 
a value whose type is the element type of the array. This method is used to access a specific element of the 13 
array where the arguments specify the index into each dimension, beginning with the first, of the element 14 
to be returned.  15 

• A Set method that takes a sequence of int32 arguments, one for each dimension of the array, followed by 16 
a value whose type is the element type of the array. The return type of Set is void. This method is used to 17 
set a specific element of the array where the arguments specify the index into each dimension, beginning 18 
with the first, of the element to be set and the final argument specifies the value to be stored into the target 19 
element. 20 

• An Address method that takes a sequence of int32 arguments, one for each dimension of the array, and 21 
has a return type that is a managed pointer to the array’s element type. This method is used to return a 22 
managed pointer to a specific element of the array where the arguments specify the index into each 23 
dimension, beginning with the first, of the element whose address is to be returned. 24 

[Example: The following creates an array, MyArray, of strings with two dimensions, with indexes 5…10 and 25 
3…7.  It then stores the string "One" into MyArray[5, 3], retrieves it and prints it out.  Then it computes the 26 
address of MyArray[5, 4], stores "Test" into it, retrieves it, and prints it out. 27 

.assembly Test { } 28 

.assembly extern mscorlib { } 29 

.method  public static void Start() 30 
{ .maxstack 5 31 
  .entrypoint 32 
  .locals (class [mscorlib]System.String[,] myArray) 33 

  ldc.i4.5 // load lower bound for dim 1 34 
  ldc.i4.6 // load (upper bound - lower bound + 1) for dim 1 35 
  ldc.i4.3 // load lower bound for dim 2 36 
  ldc.i4.5 // load (upper bound - lower bound + 1) for dim 2 37 
  newobj instance void string[,]::.ctor (int32, int32, int32, int32) 38 
  stloc  myArray 39 

  ldloc myArray 40 
  ldc.i4.5 41 
  ldc.i4.3 42 
  ldstr "One" 43 
  call instance void string[,]::Set(int32, int32, string) 44 

  ldloc myArray 45 
  ldc.i4.5 46 
  ldc.i4.3 47 
  call instance string string[,]::Get(int32, int32) 48 
  call void [mscorlib]System.Console::WriteLine(string) 49 



 

 Partition II 65 

  ldloc myArray 1 
  ldc.i4.5 2 
  ldc.i4.4 3 
  call instance string & string[,]::Address(int32, int32) 4 
  ldstr "Test" 5 
  stind.ref 6 

  ldloc myArray 7 
  ldc.i4.5 8 
  ldc.i4.4 9 
  call instance string string[,]::Get(int32, int32) 10 
  call void [mscorlib]System.Console::WriteLine(string) 11 
  ret 12 
} 13 

end example] 14 
 15 

The following text is informative 16 

Whilst the elements of multi-dimensional arrays can be thought of as laid out in contiguous memory, arrays of 17 
arrays are different – each dimension (except the last) holds an array reference.  The following picture 18 
illustrates the difference: 19 

  20 

On the left is a [6, 10] rectangular array.  On the right is not one, but a total of five arrays.  The vertical array is 21 
an array of arrays, and references the four horizontal arrays.  Note how the first and second elements of the 22 
vertical array both reference the same horizontal array. 23 

Note that all dimensions of a multi-dimensional array shall have the same size.  But in an array of arrays, it is 24 
possible to reference arrays of different sizes.  For example, the figure on the right shows the vertical array 25 
referencing arrays of lengths 8, 8, 3, null (i.e., no array), 6 and 1, respectively. 26 

There is no special support for these so-called jagged arrays in either the CIL instruction set or the VES.  They 27 
are simply vectors whose elements reference other (recursively) jagged arrays. 28 

End of informative text 29 

14.3  Enums 30 

An enum (short for enumeration) defines a set of symbols that all have the same type.  A type shall be an enum 31 
if and only if it has an immediate base type of System.Enum.  Since System.Enum itself has an immediate base 32 
type of System.ValueType, (see Partition IV) enums are value types (§13) The symbols of an enum are 33 
represented by an underlying integer type:  one of { bool, char, int8, unsigned int8, int16, unsigned int16, 34 
int32, unsigned int32, int64, unsigned int64, native int, unsigned native int } 35 

[(ote: Unlike Pascal, the CLI does not provide a guarantee that values of the enum type are integers 36 
corresponding to one of the symbols.  In fact, the CLS (see Partition I, CLS) defines a convention for using 37 
enums to represent bit flags which can be combined to form integral value that are not named by the enum type 38 
itself. end note] 39 

Enums obey additional restrictions beyond those on other value types.  Enums shall contain only fields as 40 
members (they shall not even define type initializers or instance constructors); they shall not implement any 41 
interfaces; they shall have auto field layout (§10.1.2); they shall have exactly one instance field and it shall be 42 
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of the underlying type of the enum; all other fields shall be static and literal (§16.1); and they shall not be 1 
initialized with the initobj instruction. 2 

[Rationale: These restrictions allow a very efficient implementation of enums. end rationale]  3 

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an 4 
enum declare the mapping of the symbols of the enum to the underlying values.  All of these fields shall have 5 
the type of the enum and shall have field init metadata that assigns them a value (§16.2). 6 

For binding purposes (e.g., for locating a method definition from the method reference used to call it) enums 7 
shall be distinct from their underlying type.  For all other purposes, including verification and execution of 8 
code, an unboxed enum freely interconverts with its underlying type.  Enums can be boxed (§13) to a 9 
corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so 10 
boxing does not lose the original type of the enum. 11 

[Example: Declare an enum type and then create a local variable of that type.  Store a constant of the 12 
underlying type into the enum (showing automatic coersion from the underlying type to the enum type).  Load 13 
the enum back and print it as the underlying type (showing automatic coersion back).  Finally, load the address 14 
of the enum and extract the contents of the instance field and print that out as well. 15 

.assembly Test { } 16 

.assembly extern mscorlib { } 17 

.class sealed public ErrorCodes extends [mscorlib]System.Enum 18 
{ .field public unsigned int8 MyValue 19 
  .field public static literal valuetype ErrorCodes no_error = int8(0) 20 
  .field public static literal valuetype ErrorCodes format_error = int8(1) 21 
  .field public static literal valuetype ErrorCodes overflow_error = int8(2) 22 
  .field public static literal valuetype ErrorCodes nonpositive_error = int8(3) 23 
} 24 

.method public static void Start() 25 
{ .maxstack 5 26 
  .entrypoint 27 
  .locals init (valuetype ErrorCodes errorCode) 28 

  ldc.i4.1           // load 1 (= format_error) 29 
  stloc errorCode    // store in local, note conversion to enum 30 
  ldloc errorCode 31 
  call void [mscorlib]System.Console::WriteLine(int32) 32 
  ldloca errorCode   // address of enum 33 
  ldfld unsigned int8 valuetype ErrorCodes::MyValue 34 
  call void [mscorlib]System.Console::WriteLine(int32) 35 
  ret 36 
} 37 

end example] 38 

14.4  Pointer types 39 

Type ::= … Clause 

   | Type ‘&’   14.4.2 

   | Type ‘*’  14.4.1 

 40 
A pointer type shall be defined by specifying a signature that includes the type of the location at which it 41 
points.  A pointer can be managed  (reported to the CLI garbage collector, denoted by &, see §14.4.2) or 42 
unmanaged (not reported, denoted by *, see §14.4.1) 43 

Pointers can contain the address of a field (of an object or value type) or of an element of an array.  Pointers 44 
differ from object references in that they do not point to an entire type instance, but, rather, to the interior of an 45 
instance.  The CLI provides two type-safe operations on pointers:  46 

• Loading the value from the location referenced by the pointer. 47 
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• Storing an assignment-compatible value into the location referenced  by the pointer. 1 

For pointers into the same array or object (see Partition I) the following arithmetic operations are supported: 2 

• Adding an integer value to a pointer (where that value is interpreted as a number of bytes), which 3 
results in a pointer of the same kind 4 

• Subtracting an integer value from a pointer (where that value is interpreted as a number of bytes), 5 
which results in a pointer of the same kind. Note that subtracting a pointer from an integer value is 6 
not permitted.   7 

• Two pointers, regardless of kind, can be subtracted from one another, producing an integer value 8 
that specifies the number of bytes between the addresses they reference.  9 

The following is informative text 10 

Pointers are compatible with unsigned int32  on 32-bit architectures, and with unsigned int64  on 11 
64-bit architectures.  They are best considered as unsigned int , whose size varies depending upon the 12 
runtime machine architecture. 13 

The CIL instruction set (see Partition III) contains instructions to compute addresses of fields, local variables, 14 
arguments, and elements of vectors: 15 

Instruction Description 

ldarga Load address of argument 

ldelema Load address of vector element 

ldflda Load address of field 

ldloca Load address of local variable 

ldsflda Load address of static field 
 16 
Once a pointer is loaded onto the stack, the ldind class of instructions can be used to load the data item to 17 
which it points.   Similarly, the stind family of instructions can be used to store data into the location. 18 

Note that the CLI will throw an InvalidOperationException for an ldflda instruction if the address is not 19 
within the current application domain.  This situation arises typically only from the use of objects with a base 20 
type of System.MarshalByRefObject (see Partition IV). 21 

14.4.1  Unmanaged pointers  22 

Unmanaged pointers (*) are the traditional pointers used in languages like C and C++. There are no restrictions 23 
on their use, although, for the most part, they result in code that cannot be verified. While it is perfectly valid to 24 
mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how 25 
they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data. 26 
This is done by using *in a signature for a return value, local variable, or an argument, or by using a pointer 27 
type for a field or array element. 28 

• Unmanaged pointers are not reported to the garbage collector and can be used in any way that an 29 
integer can be used.  30 

• Verifiable code cannot dereference unmanaged pointers. 31 

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is 32 
safe only if one of the following is true: 33 

a. The unmanaged pointer refers to memory that is not in memory used by the CLI for 34 
storing instances of objects (“garbage-collected memory” or “managed memory”). 35 

b. The unmanaged pointer contains the address of a field within an object. 36 

c. The unmanaged pointer contains the address of an element within an array. 37 
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d. The unmanaged pointer contains the address where the element following the last 1 
element in an array would be located. 2 

Implementation Specific (Microsoft) 3 

PEverify will show an error when declaring an unmanaged pointer.   The rational is if a dereferenced 4 
pointer cannot be used, it is not valuable.  This also insures that any API that uses pointers cannot be 5 
verifiable. 6 

14.4.2  Managed pointers 7 

Managed pointers (&) can point to an instance of a value type, a field of an object, a field of a value type, an 8 
element of an array, or the address where an element just past the end of an array would be stored (for pointer 9 
indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage 10 
collector even if they do not point to managed memory.   11 

Managed pointers are specified by using & in a signature for a return value, local variable or an argument, or by 12 
using a byref type for a field or array element. 13 

• Managed pointers can be passed as arguments, stored in local variables, and returned as values. 14 

• If a parameter is passed by reference, the corresponding argument is a managed pointer. 15 

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or value 16 
types.  17 

• Managed pointers are not interchangeable with object references.   18 

• A managed pointer cannot point to another managed pointer, but it can point to an object reference 19 
or a value type.  20 

• A managed pointer can point to a local variable, or a method argument 21 

• Managed pointers that do not point to managed memory can be converted (using conv.u or 22 
conv.ovf.u) into unmanaged pointers, but this is not verifiable. 23 

• Unverified code that erroneously converts a managed pointer into an unmanaged pointer can 24 
seriously compromise the integrity of the CLI. See Partition III (Managed Pointers) for more 25 
details. 26 

End informative text 27 

14.5  Method pointers 28 

Type ::= … 

   | method  CallConv Type ‘*’ ‘(’ Parameters ‘)’  

 29 
Variables of type method pointer shall store the address of the entry point to a method with compatible 30 
signature.  A pointer to a static or instance method is obtained with the ldftn instruction, while a pointer to a 31 
virtual method is obtained with the ldvirtftn instruction.  A method can be called by using a method pointer 32 
with the calli instruction.  See Partition III for the specification of these instructions. 33 

[(ote: Like other pointers, method pointers are compatible with unsigned int64  on 64-bit architectures, 34 
and with unsigned int32  and on 32-bit architectures.  The preferred usage, however, is unsigned 35 
native int , which works on both 32- and 64-bit architectures. end note] 36 

[Example: Call a method using a pointer.  The method MakeDecision::Decide returns a method pointer to 37 
either AddOne or Negate, alternating on each call.  The main program calls MakeDecision::Decide three times, 38 
and after each call uses a calli instruction to call the method specified.  The output printed is "-1 2 –1" 39 
indicating successful alternating calls. 40 

.assembly Test { } 41 

.assembly extern mscorlib { } 42 
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.method public static int32 AddOne(int32 Input) 1 
{ .maxstack 5 2 
  ldarg Input 3 
  ldc.i4.1 4 
  add 5 
  ret 6 
} 7 

.method public static int32 Negate(int32 Input) 8 
{ .maxstack 5 9 
  ldarg Input 10 
  neg 11 
  ret 12 
} 13 

.class value sealed public MakeDecision extends 14 
   [mscorlib]System.ValueType 15 
{ .field static bool Oscillate 16 
  .method public static method int32 *(int32) Decide() 17 
  { ldsfld bool valuetype MakeDecision::Oscillate 18 
    dup 19 
    not 20 
    stsfld bool valuetype MakeDecision::Oscillate 21 
    brfalse NegateIt 22 
    ldftn int32 AddOne(int32) 23 
    ret 24 

NegateIt: 25 
    ldftn int32 Negate(int32) 26 
    ret 27 
  } 28 
} 29 

.method public static void Start() 30 
{ .maxstack 2 31 
  .entrypoint 32 

  ldc.i4.1 33 
  call method int32 *(int32) valuetype MakeDecision::Decide() 34 
  calli int32(int32) 35 
  call  void [mscorlib]System.Console::WriteLine(int32) 36 

  ldc.i4.1 37 
  call method int32 *(int32) valuetype MakeDecision::Decide() 38 
  calli int32(int32) 39 
  call  void [mscorlib]System.Console::WriteLine(int32) 40 

  ldc.i4.1 41 
  call method int32 *(int32) valuetype MakeDecision::Decide() 42 
  calli int32(int32) 43 
  call  void [mscorlib]System.Console::WriteLine(int32) 44 
  ret 45 
} 46 

end example] 47 

14.6  Delegates 48 

Delegates (see Partition I) are the object-oriented equivalent of function pointers. Unlike function pointers, 49 
delegates are object-oriented, type-safe, and secure.  Delegates are reference types, and are declared in the form 50 
of classes.  Delegates shall have a base type of System.Delegate (see Partition IV). 51 

Implementation-Specific (Microsoft) 52 

Delegates have an immediate base type of System.MulticastDelegate, which, in turn, has an 53 
immediate base type of System.Delegate. (This is an extension, permitted by Partition IV.) 54 
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Delegates shall be declared sealed, and the only members a delegate shall have are either the first two or all 1 
four methods as specified here. These methods shall be declared runtime  and managed (§15.4.3).  They 2 
shall not have a body, since that body shall be created automatically by the VES.  Other methods available on 3 
delegates are inherited from the class System.Delegate in the Base Class Library (see Partition IV). The 4 
delegate methods are: 5 

• The instance constructor (named .ctor  and marked specialname  and rtspecialname , 6 
see §10.5.1) shall take exactly two parameters, the first having type System.Object, and the second having 7 
type System.IntPtr.  When actually called (via a newobj instruction, see Partition III), the first argument 8 
shall be an instance of the class (or one of its derived classes) that defines the target method, and the 9 
second argument shall be a method pointer to the method to be called. 10 

• The Invoke method shall be virtual  and its signature constrains the target method to which it can be 11 
bound; see §14.6.1. The verifier treats calls to the Invoke method on a delegate just like it treats calls to 12 
any other method. 13 

• The BeginInvoke method (§14.6.3.1), if present, shall be virtual  and have a signature related to, but 14 
not the same as, that of the Invoke method.  There are two differences in the signature.   First, the return 15 
type shall be System.IAsyncResult (see Partition IV).  Second, there shall be two additional parameters 16 
that follow those of Invoke: the first of type System.AsyncCallback and the second of type 17 
System.Object.  18 

• The EndInvoke method (§14.6.3) shall be virtual  and have the same return type as the Invoke method. 19 
It shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order 20 
they occur in the signature for Invoke.  In addition, there shall be an additional parameter of type 21 
System.IAsyncResult. 22 

Unless stated otherwise, a standard delegate type shall provide the two optional asynchronous methods, 23 
BeginInvoke and EndInvoke. 24 

[Example: The following declares a Delegate used to call functions that take a single integer and return 25 
nothing.  It provides all four methods so it can be called either synchronously or asynchronously.  Because no 26 
parameters are passed by reference (i.e., as managed pointers) there are no additional arguments to EndInvoke. 27 

.assembly Test { } 28 

.assembly extern mscorlib { } 29 

.class private sealed StartStopEventHandler extends [mscorlib]System.Delegate 30 
 { .method public specialname rtspecialname instance void .ctor (object Instance, 31 
          native int Method) runtime managed {} 32 
   .method public virtual void Invoke(int32 action) runtime managed {} 33 
   .method public virtual class [mscorlib]System.IAsyncResult  34 
        BeginInvoke(int32 action, class [mscorlib]System.AsyncCallback callback, 35 
           object Instance) runtime managed {} 36 
   .method public virtual void EndInvoke(class  37 
        [mscorlib]System.IAsyncResult result) runtime managed {} 38 
} 39 

end example] 40 

As with any class, an instance is created using the newobj instruction in conjunction with the instance 41 
constructor.  The first argument to the constructor shall be the object on which the method is to be called, or it 42 
shall be null if the method is a static method.  The second argument shall be a method pointer to a method on 43 
the corresponding class and with a signature that matches that of the delegate class being instantiated. 44 

Implementation-Specific (Microsoft) 45 

The Microsoft implementation of the CLI allows the programmer to add more methods to a delegate, on 46 
the condition that they provide an implementation for those methods (i.e., they cannot be marked 47 
runtime ).  Note that such use makes the resulting assembly non-portable. 48 
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14.6.1  Delegate s ignature compatibi l ity  1 

Delegates can only be bound to target methods where the signatures of the delegate and the target method are 2 
compatible. Compatibility is defined in terms of assignment compatibility (see Partition I), which is determined 3 
by examining the parameter types, return type and calling convention. A delegate with method signature D can 4 
be bound to a target method with method signature T if and only if their signatures satisfy the relationship D := 5 
T.  (Custom modifiers are not considered significant and do not impact compatibility.) 6 

14.6.2  Synchronous call s  to  delegates  7 

The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the 8 
virtual method named Invoke on the delegate. The delegate itself is the first argument to this call (it serves as 9 
the this pointer), followed by the other arguments as specified in the signature.  When this call is made, the 10 
caller shall block until the called method returns. The called method shall be executed on the same thread as the 11 
caller. 12 

[Example: Continuing the previous example, define a class Test that declares a method, onStartStop, 13 
appropriate for use as the target for the delegate. 14 

.class public Test 15 
{ .field public int32 MyData 16 
  .method public void onStartStop(int32 action) 17 
  { ret        // put your code here 18 
  } 19 
  .method public specialname rtspecialname  20 
          instance void .ctor (int32 Data) 21 
  { ret        // call base class constructor, store state, etc. 22 
  } 23 
} 24 

Then define a main program. This one constructs an instance of Test and then a delegate that targets the 25 
onStartStop method of that instance.  Finally, call the delegate. 26 

.method public static void Start() 27 
{ .maxstack 3 28 
  .entrypoint 29 
  .locals (class StartStopEventHandler DelegateOne, 30 
           class Test InstanceOne) 31 
  // Create instance of Test class 32 
  ldc.i4.1 33 
  newobj instance void Test::.ctor (int32) 34 
  stloc InstanceOne 35 

 36 
  // Create delegate to onStartStop method of that class 37 
  ldloc InstanceOne 38 
  ldftn instance void Test::onStartStop(int32) 39 
  newobj void StartStopEventHandler::.ctor (object, native int) 40 
  stloc DelegateOne 41 

  // Invoke the delegate, passing 100 as an argument 42 
  ldloc DelegateOne 43 
  ldc.i4 100 44 
  callvirt instance void StartStopEventHandler::Invoke(int32) 45 
  ret 46 
} 47 

Note that the example above creates a delegate to a non-virtual function.  If onStartStop had been a virtual 48 
function, use the following code sequence instead: 49 
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ldloc InstanceOne 1 
dup 2 
ldvirtftn instance void Test::onStartStop(int32) 3 
newobj void StartStopEventHandler::.ctor(object, native int) 4 
stloc DelegateOne 5 
// Invoke the delegate, passing 100 as an argument 6 
ldloc DelegateOne 7 

end example] 8 

[(ote: The code sequence above shall use dup – not ldloc InstanceOne twice.  The dup code sequence is 9 
easily recognized as type-safe, whereas alternatives would require more complex analysis.  Verifiability of 10 
code is discussed in Partition III end note] 11 

14.6.3  Asynchronous  cal l s  to delegates  12 

In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the 13 
method to return. The called method shall be executed on a separate thread.  14 

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used. 15 

Aote: if the caller thread terminates before the callee completes, the callee thread is unaffected.  The callee 16 
thread continues execution and terminates silently 17 

Aote: the callee can throw exceptions.  Any unhandled exception propagates to the caller via the EndInvoke 18 
method. 19 

14.6.3 .1  The BeginInvoke method 20 

An asynchronous call to a delegate shall begin by making a virtual call to the BeginInvoke method.  21 
BeginInvoke is similar to the Invoke method (§14.6.1), but has two differences: 22 

• It has two additional parameters, appended to the list, of type System.AsyncCallback, and 23 
System.Object. 24 

• The return type of the method is System.IAsyncResult. 25 

Although the BeginInvoke method therefore includes parameters that represent return values, these values are 26 
not updated by this method.  The results instead are obtained from the EndInvoke method (see below). 27 

Unlike a synchronous call, an asynchronous call shall provide a way for the caller to determine when the call 28 
has been completed.  The CLI provides two such mechanisms.  The first is through the result returned from the 29 
call.  This object, an instance of the interface System.IAsyncResult, can be used to wait for the result to be 30 
computed, it can be queried for the current status of the method call, and it contains the System.Object value 31 
that was passed to the call to BeginInvoke.  See Partition IV. 32 

The second mechanism is through the System.AsyncCallback delegate passed to BeginInvoke.  The VES 33 
shall call this delegate when the value is computed or an exception has been raised indicating that the result will 34 
not be available.  The value passed to this callback is the same value passed to the call to BeginInvoke.  A 35 
value of null can be passed for System.AsyncCallback to indicate that the VES need not provide the callback. 36 

[Rationale: This model supports both a polling approach (by checking the status of the returned 37 
System.IAsyncResult) and an event-driven approach (by supplying a System.AsyncCallback) to 38 
asynchronous calls. end rationale] 39 

A synchronous call returns information both through its return value and through output parameters.  Output 40 
parameters are represented in the CLI as parameters with managed pointer type.  Both the returned value and 41 
the values of the output parameters are not available until the VES signals that the asynchronous call has 42 
completed successfully.  They are retrieved by calling the EndInvoke method on the delegate that began the 43 
asynchronous call.  44 

14.6.3 .2  The EndInvoke method 45 

The EndInvoke method can be called at any time after BeginInvoke.   It shall suspend the thread that calls it 46 
until the asynchronous call completes.  If the call completes successfully, EndInvoke will return the value that 47 
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would have been returned had the call been made synchronously, and its managed pointer arguments will point 1 
to values that would have been returned to the out parameters of the synchronous call. 2 

EndInvoke requires as parameters the value returned by the originating call to BeginInvoke (so that different 3 
calls to the same delegate can be distinguished, since they can execute concurrently) as well as any managed 4 
pointers that were passed as arguments (so their return values can be provided). 5 
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15  Defining, referencing, and calling methods 1 

Methods can be defined at the global level (outside of any type): 2 

Decl ::= … 

   | .method  MethodHeader ‘{’ MethodBodyItem* ‘}’  

 3 
as well as inside a type: 4 

ClassMember ::= … 

   | .method  MethodHeader ‘{’ MethodBodyItem* ‘}’  

 5 

15.1  Method descriptors 6 

There are four constructs in ILAsm connected with methods.  These correspond with different metadata 7 
constructs, as described in §23. 8 

15.1.1  Method declarat ions  9 

A MethodDecl, or method declaration, supplies the method name and signature (parameter and return types), 10 
but not its body.  That is, a method declaration provides a MethodHeader but no MethodBodyItems.  These are 11 
used at call sites to specify the call target (call or callvirt instructions, see Partition III) or to declare an abstract 12 
method.  A MethodDecl has no direct logical couterpart in the metadata; it can be either a Method or a 13 
MethodRef. 14 

15.1.2  Method def in itions  15 

A Method, or method definition, supplies the method name, attributes, signature, and body.  That is, a method 16 
definition provides a MethodHeader as well as one or more MethodBodyItems.  The body includes the method's 17 
CIL instructions, exception handlers, local variable information, and additional runtime or custom metadata 18 
about the method.  See §10. 19 

15.1.3  Method references  20 

A MethodRef, or method reference, is a reference to a method. It is used when a method is called and that 21 
method’s definition lies in another module or assembly.  A MethodRef shall be resolved by the VES into a 22 
Method before the method is called at runtime.  If a matching Method cannot be found, the VES shall throw a 23 
System.MissingMethodException.  See §22.25. 24 

15.1.4  Method implementations  25 

A MethodImpl, or method implementation, supplies the executable body for an existing virtual method.  It 26 
associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method).  A 27 
MethodImpl is used to provide an implementation for an inherited virtual method or a virtual method from an 28 
interface when the default mechanism (matching by name and signature) would not provide the correct result.  29 
See §22.27. 30 

15.2  Static,  instance,  and virtual methods 31 

Static methods are methods that are associated with a type, not with its instances. 32 

Instance methods are associated with an instance of a type: within the body of an instance method it is possible 33 
to reference the particular instance on which the method is operating (via the this pointer).  It follows that 34 
instance methods shall only be defined in classes or value types, but not in interfaces or outside of a type (i.e., 35 
globally).  However, notice 36 

1. Instance methods on classes (including boxed value types), have a this pointer that is by default 37 
an object reference to the class on which the method is defined. 38 

2. Instance methods on (unboxed) value types, have a this pointer that is by default a managed 39 
pointer to an instance of the type on which the method is defined. 40 
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3. There is a special encoding (denoted by the syntactic item explicit  in the calling convention, 1 
see §15.3) to specify the type of the this pointer, overriding the default values specified here. 2 

4. The this pointer can be null. 3 

Virtual methods are associated with an instance of a type in much the same way as for instance methods. 4 
However, unlike instance methods, it is possible to call a virtual method in such a way that the implementation 5 
of the method shall be chosen at runtime by the VES depending upon the type of object used for the this 6 
pointer.  The particular Method that implements a virtual method is determined dynamically at runtime (a 7 
virtual call) when invoked via the callvirt instruction; whilst the binding is decided at compile time when 8 
invoked via the call instruction (see Partition III). 9 

With virtual calls (only), the notion of inheritance becomes important.  A derived class can override a virtual 10 
method inherited from its base classes, providing a new implementation of the method.  The method attribute 11 
newslot specifies that the CLI shall not override the virtual method definition of the base type, but shall treat 12 
the new definition as an independent virtual method definition.   13 

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with 14 
a callvirt instruction.  Similarly, the address of an abstract virtual method shall be computed with the ldvirtftn 15 
instruction, and the ldftn instruction shall not be used. 16 

[Rationale: With a concrete virtual method there is always an implementation available from the class that 17 
contains the definition, thus there is no need at runtime to have an instance of a class available.  Abstract virtual 18 
methods, however, receive their implementation only from a subtype or a class that implements the appropriate 19 
interface, hence an instance of a class that actually implements the method is required. end rationale] 20 

15.3  Calling convention 21 

CallConv ::= [ instance  [ explicit  ]] [ CallKind ] 
 22 
A calling convention specifies how a method expects its arguments to be passed from the caller to the called 23 
method.   It consists of two parts: the first deals with the existence and type of the this pointer, while the second 24 
relates to the mechanism for transporting the arguments. 25 

If the attribute instance  is present, it indicates that a this pointer shall be passed to the method.  This 26 
attribute shall be used for both instance and virtual methods.  27 

Implementation-specific (Microsoft) 28 

For simplicity, the assembler automatically sets or clears the instance  bit in the calling convention 29 
for a method definition based on the method attributes static  and virtual .  In a method reference, 30 
however, the instance  bit shall be specified directly since the information about static  or 31 
virtual  is not captured in a reference. 32 

Normally, a parameter list (which always follows the calling convention) does not provide information about 33 
the type of the this pointer, since this can be deduced from other information.  When the combination 34 
instance explicit  is specified, however, the first type in the subsequent parameter list specifies the type 35 
of the this pointer and subsequent entries specify the types of the parameters themselves. 36 

CallKind ::= 

  default 

| unmanaged cdecl  

| unmanaged fastcall  

| unmanaged stdcall  

| unmanaged thiscall  

| vararg  

 37 
Managed code shall have only the default  or vararg  calling kind.  default  shall be used in all cases 38 
except when a method accepts an arbitrary number of arguments, in which case vararg  shall be used.  39 
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When dealing with methods implemented outside the CLI it is important to be able to specify the calling 1 
convention required.  For this reason there are 16 possible encodings of the calling kind.  Two are used for the 2 
managed calling kinds.  Four are reserved with defined meaning across many platforms, as follows:  3 

• unmanaged cdecl  is the calling convention used by Standard C 4 

• unmanaged stdcall  specifies a standard C++ call 5 

• unmanaged fastcall  is a special optimized C++ calling convention 6 

• unmanaged thiscall  is a C++ call that passes a this pointer to the method 7 

Four more are reserved for existing calling conventions, but their use is not maximally portable.  Four more are 8 
reserved for future standardization, and two are available for non-standard experimental use. 9 

(In this context, "portable" means a feature that is available on all conforming implementations of the CLI.) 10 

15.4  Defining methods 11 

MethodHeader ::= 

  MethAttr* [ CallConv ] Type  

              [ marshal ‘(’ [ (ativeType ] ‘)’  ]  

              Method(ame [ ‘<’ GenPars‘>’  ] ‘(’ Parameters ‘)’ ImplAttr* 
 12 

Implementation-specific (Microsoft) 13 

The implementation permits [ParamAttr*] between [CallConv] and Type. 14 

The method head (see also §10) consists of 15 

• the calling convention (CallConv, see §15.3) 16 

• any number of predefined method attributes (MethAttr, see §15.4.1.5) 17 

• a return type with optional attributes  18 

• optional marshalling information (§7.4) 19 

• a method name 20 

• optional generic parameters (when defining generic methods, see §10.1.7) 21 

• a signature  22 

• and any number of implementation attributes (ImplAttr, see §15.4.3) 23 

Methods that do not have a return value shall use void  as the return type. 24 

Method(ame ::= 

  .cctor 

| .ctor  

| Dotted(ame 
 25 
Method names are either simple names or the special names used for instance constructors and type initializers. 26 

Parameters ::= [ Param [ ‘,’  Param ]* ] 

Param ::= 

  ... 

| [ ParamAttr* ] Type [ marshal ‘(’ [ (ativeType ] ‘)’  ] [ Id ] 
 27 
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The Id, if present, is the name of the parameter. A parameter can be referenced either by using its name or the 1 
zero-based index of the parameter.  In CIL instructions it is always encoded using the zero-based index (the 2 
name is for ease of use in ILAsm). 3 

Note that, in contrast to calling a vararg  method, the definition of a vararg  method does not include any 4 
ellipsis (“…”) 5 

ParamAttr ::= 

  ‘[’ in ‘]’  

| ‘[’ opt ‘]’  

| ‘[’ out ‘]’  

 6 
Implementation-specific (Microsoft) 7 

The implementation provides a fourth option for ParamAttr, namely, an Int32. This integer is a 16-bit 8 
set of flags, whose meaning is unspecified. 9 

The parameter attributes shall be attached to the parameters (§22.33) and hence are not part of a method 10 
signature. 11 

[(ote: Unlike parameter attributes, custom modifiers (modopt  and modreq ) are part of the signature.  Thus, 12 
modifiers form part of the method’s contract while parameter attributes do not. end note] 13 

in and out shall only be attached to parameters of pointer (managed or unmanaged) type.  They specify 14 
whether the parameter is intended to supply input to the method, return a value from the method, or both.  If 15 
neither is specified in is assumed.  The CLI itself does not enforce the semantics of these bits, although they 16 
can be used to optimize performance, especially in scenarios where the call site and the method are in different 17 
application domains, processes, or computers. 18 

opt specifies that this parameter is intended to be optional from an end-user point of view.  The value to be 19 
supplied is stored using the .param  syntax (§15.4.1.4). 20 

15.4.1  Method body 21 

The method body shall contain the instructions of a program. However, it can also contain labels, additional 22 
syntactic forms and many directives that provide additional information to ilasm and are helpful in the 23 
compilation of methods of some languages. 24 

MethodBodyItem ::= Description Clause 

  .custom  CustomDecl Definition of custom attributes. 21 

| .data  DataDecl Emits data to the data section  16.3 

| .emitbyte  Int32 Emits an unsigned byte to the code section 
of the method. 

15.4.1.1 

| .entrypoint  Specifies that this method is the entry point 
to the application (only one such method is 
allowed). 

15.4.1.2 

| .locals  [ init  ]  

  ‘(’ LocalsSignature ‘)’  

Defines a set of local variables for this 
method. 

15.4.1.3 

| .maxstack  Int32 The int32 specifies the maximum number 
of elements on the evaluation stack during 
the execution of the method. 

15.4.1 

| .override  TypeSpec ‘::’ Method(ame Use current method as the implementation 
for the method specified. 

10.3.2 
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MethodBodyItem ::= Description Clause 

| .override  method  CallConv Type 
TypeSpec ‘::’ Method(ame GenArity ‘(’ 
Parameters ‘)’  

Use current method as the implementation 
for the method specified. 

10.3.2 

| .param ‘[’  Int32 ‘]’ [ ‘=’ FieldInit ] Store a constant FieldInit value for 
parameter Int32 

15.4.1.4 

| .param type ‘[’  Int32 ‘]’  Specifies a type parameter for a generic 
method 

15.4.1.5 

| ExternSourceDecl .line  or #line  5.7 

| Instr An instruction Partition VI  

| Id ‘:’  A label 5.4 

| ScopeBlock Lexical scope of local variables 15.4.4 

| SecurityDecl .permission  or .permissionset  20 

| SEHBlock An exception block 19 

 1 

15.4.1 .1  The .emitbyte direct ive  2 

MethodBodyItem ::= …  

   | .emitbyte  Int32 
 3 
This directive causes an unsigned 8-bit value to be emitted directly into the CIL stream of the method, at the 4 
point at which the directive appears. 5 

[(ote: The .emitbyte  directive is used for generating tests.  It is not required in generating regular 6 
programs. end note] 7 

15.4.1 .2  The .entrypoint  d irect ive  8 

MethodBodyItem ::= …  

   | .entrypoint  

 9 
The .entrypoint  directive marks the current method, which shall be static, as the entry point to an 10 
application. The VES shall call this method to start the application. An executable shall have exactly one entry 11 
point method. This entry point method can be a global method or it can appear inside a type.  (The effect of the 12 
directive is to place the metadata token for this method into the CLI header of the PE file) 13 

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings, 14 
the strings shall represent the arguments to the executable, with index 0 containing the first argument.  The 15 
mechanism for specifying these arguments is platform-specific and is not specified here. 16 

The return type of the entry point method shall be void , int32 , or unsigned int32 . If an int32  or 17 
unsigned int32  is returned, the executable can return an exit code to the host environment. A value of 0 18 
shall indicate that the application terminated ordinarily.  19 

The accessibility of the entry point method shall not prevent its use in starting execution.  Once started the VES 20 
shall treat the entry point as it would any other method. 21 

The entry point method cannot be defined in a generic class. 22 

 [Example: The following prints the first argument and returns successfully to the operating system: 23 
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.method public static int32 MyEntry(string[] s) cil managed 1 
{ .entrypoint 2 
  .maxstack 2 3 
  ldarg.0   // load and print the first argument 4 
  ldc.i4.0 5 
  ldelem.ref 6 
  call void [mscorlib]System.Console::WriteLine(string) 7 
  ldc.i4.0   // return success 8 
  ret 9 
} 10 

end example] 11 

Implementation-specific (Microsoft) 12 

Entrypoint methods for library assemblies are supported, but deprecated, and the signature of the 13 
method does not conform to that for an application. For further details see Microsoft’s documentation. 14 

15.4.1 .3  The . locals  d irect ive  15 

The .locals  statement declares one or more local variables (see Partition I) for the current method.  16 

MethodBodyItem ::= …  

   | .locals   [ init  ] ‘(’ LocalsSignature ‘)’  

LocalsSignature ::= Local [ ‘,’  Local ]* 

Local ::= Type [ Id ] 
 17 
If present, the Id is the name of the corresponding local variable. 18 

If init  is specified, the variables are initialized to their default values according to their type: reference types 19 
are initialized to null and value types are zeroed out.  20 

[(ote: Verifiable methods shall include the init  keyword.   See Partition III. end note] 21 

Implementation-specific (Microsoft) 22 

ilasm allows nested local variable scopes to be provided and allows locals in nested scopes to share the 23 
same location as those in the outer scope. The information about local names, scoping, and overlapping 24 
of scoped locals is persisted to the PDB (debugger symbol) file rather than the PE file itself. 25 

Local ::= [ ‘[’  Int32 ‘]’  ] Type [ Id ] 26 

The integer in brackets that precedes the Type, if present, specifies the local number (starting with 0) 27 
being described. This allows nested locals to reuse the same location as a local in the outer scope.  It is 28 
not valid to overlap two local variables unless they have the same type. When no explicit index is 29 
specified, the next unused index is chosen. That is, two locals never share an index unless the index is 30 
given explicitly. 31 

If init  is used, all local variables will be initialized to their default values, even variables in another 32 
.locals  directive in the same method, which does not have the init  directive. 33 

[Example: The following declares 4 local variables, each of which is to be initialized to its default value: 34 

.locals init ( int32 i, int32 j, float32 f, int64[] vect) 35 

end example] 36 

15.4.1 .4  The .param direct ive  37 

MethodBodyItem ::= …  

   | .param  ‘[’  Int32 ‘]’  [ ‘=’  FieldInit ] 
 38 
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This directive stores in the metadata a constant value associated with method parameter number Int32, 1 
see §22.9.  While the CLI requires that a value be supplied for the parameter, some tools can use the presence 2 
of this attribute to indicate that the tool rather than the user is intended to supply the value of the parameter.   3 
Unlike CIL instructions, .param  uses index 0 to specify the return value of the method, index 1 to specify the 4 
first parameter of the method, index 2 to specify the second parameter of the method, and so on. 5 

[(ote: The CLI attaches no semantic whatsoever to these values—it is entirely up to compilers to implement 6 
any semantic they wish (e.g., so-called default argument values). end note] 7 

15.4.1 .5  The .param type d irect ive  8 

MethodBodyItem ::= …  

   | .param type  ‘[’  Int32 ‘]’  

 9 
This directive allows type parameters for a generic type or method to be specified. Int32 is the 1-based ordinal 10 
of the type or method parameter to which the directive applies. [(ote: This directive is used in conjunction with 11 
a .custom directive to associate a custom attribute with a type parameter. end note] 12 

When a .param type directive is used within class scope, it refers to a type parameter of that class. When the 13 
directive is used within method scope inside a class definition, it refers to a type parameter of that method. 14 
Otherwise, the program is ill-formed. 15 

[Example: 16 

.class public G<T,U> { 17 
  .param type [1]  // refers to T 18 
  .custom instance void TypeParamAttribute::.ctor() = (01 00 ... ) 19 
  .method public void Foo<M>(!!0 m) { 20 
     .param type [1] // refers to M 21 
     .custom instance void AnotherTypeParamAttribute::.ctor() = (01 00 ... ) 22 
      … 23 
  } 24 
  … 25 
} 26 

end example] 27 

15.4.2  Predef ined at tributes on methods  28 

MethAttr ::= Description Clause 

  abstract  The method is abstract  (shall also be 
virtual). 

15.4.2.4 

| assembly  Assembly accessibility 15.4.2.1 

| compilercontrolled  Compiler-controlled accessibility. 15.4.2.1 

| famandassem  Family and Assembly accessibility 15.4.2.1 

| family  Family accessibility 15.4.2.1 

| famorassem  Family or Assembly accessibility 15.4.2.1 

| final  This virtual method cannot be overridden by 
derived classes. 

15.4.2.2 

| hidebysig  Hide by signature. Ignored by the runtime. 15.4.2.2 

| newslot  Specifies that this method shall get a new slot 
in the virtual method table. 

15.4.2.3 

| pinvokeimpl ‘(’  
    QSTRI(G [ as  QSTRI(G ] 
    PinvAttr* ‘)’  

Method is actually implemented in native 
code on the underlying platform 

15.4.2.5 
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MethAttr ::= Description Clause 

| private  Private accessibility 15.4.2.1 

| public  Public accessibility. 15.4.2.1 

| rtspecialname  The method name needs to be treated in a 
special way by the runtime. 

15.4.2.6 

| specialname  The method name needs to be treated in a 
special way by some tool. 

15.4.2.6 

| static  Method is static. 15.4.2.2 

| virtual  Method is virtual. 15.4.2.2 

| strict  Check accessibility on override 15.4.2.2 
 1 

Implementation-specific (Microsoft) 2 

The following syntax is supported: 3 

    MethAttr ::= … | unmanagedexp | reqsecobj 4 

unmanagedexp  indicates that the method is exported to unmanaged code using COM interop; 5 
reqsecobj  indicates that the method calls another method with security attributes. 6 

Note that ilasm does not recognize the compilercontrolled  keyword.  Instead, use 7 
privatescope . 8 

The following combinations of predefined attributes are invalid: 9 

• static  combined with any of final , newslot , or virtual  10 

• abstract  combined with any of final  or pinvokeimpl  11 

• compilercontrolled  combined with any of final , rtspecialname , specialname , or 12 
virtual  13 

15.4.2 .1  Access ib il ity  information  14 

MethAttr ::= …  

| assembly  

| compilercontrolled  

| famandassem  

| family  

| famorassem  

| private  

| public  

 15 
Only one of these attributes shall be applied to a given method.  See Partition I.  16 

15.4.2 .2  Method contract  attr ibutes 17 

MethAttr ::= …  

| final  

| hidebysig  

| static  
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| virtual  

| strict 
 1 
These attributes can be combined, except a method shall not be both static  and virtual ; only virtual  2 
methods shall be final  or strict ; and abstract methods shall not be final .  3 

final  methods shall not be overridden by derived classes of this type.  4 

hidebysig  is supplied for the use of tools and is ignored by the VES.  It specifies that the declared method 5 
hides all methods of the base class types that have a matching method signature; when omitted, the method 6 
should hide all methods of the same name, regardless of the signature. 7 

[Rationale: Some languages (such as C++) use a hide-by-name semantics while others (such as C#, Java™) use 8 
a hide-by-name-and-signature semantics. end rationale] 9 

static  and virtual  are described in §15.2. 10 

strict  virtual  methods can only be overridden if they are also accessible. See §23.1.10. 11 

15.4.2 .3  Overrid ing behavior  12 

MethAttr ::= …  

   | newslot  

 13 
newslot  shall only be used with virtual  methods. See 10.3. 14 

15.4.2 .4  Method attr ibutes  15 

MethAttr ::= …  

   | abstract  

 16 
abstract  shall only be used with virtual  methods that are not final . It specifies that an implementation 17 
of the method is not provided but shall be provided by a derived class.  abstract  methods shall only appear 18 
in abstract  types (§10.1.4). 19 

15.4.2 .5  Interoperat ion attr ibutes  20 

MethAttr ::= …  

   | pinvokeimpl ‘(’ QSTRI(G [ as  QSTRI(G ] PinvAttr* ‘)’  

 21 
See §15.5.2and §22.20. 22 

15.4.2 .6  Special  handl ing attr ibutes  23 

MethAttr ::= …  

   | rtspecialname  

   | specialname  

 24 
The attribute rtspecialname  specifies that the method name shall be treated in a special way by the 25 
runtime. Examples of special names are .ctor  (object constructor) and .cctor  (type initializer).  26 

specialname  indicates that the name of this method has special meaning to some tools. 27 

15.4.3  Implementat ion attributes of  methods 28 

ImplAttr ::= Description Clause 

  cil  The method contains standard CIL code. 15.4.3.1 
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ImplAttr ::= Description Clause 

| forwardref  The body of this method is not specified 
with this declaration. 

15.4.3.3 

| internalcall  Denotes the method body is provided by 
the CLI itself 

15.4.3.3 

| managed The method is a managed method. 15.4.3.2 

| native  The method contains native code. 15.4.3.1 

| noinlining  The runtime shall not expand the method 
inline. 

15.4.3.3 

| nooptimization  The runtime shall not optimize the method 
when generating native code. 

15.4.3.3 

| runtime  The body of the method is not defined, but 
is produced by the runtime. 

15.4.3.1 

| synchronized  The method shall be executed in a single 
threaded fashion. 

15.4.3.3 

| unmanaged Specifies that the method is unmanaged. 15.4.3.2 
 1 

Implementation-specific (Microsoft) 2 

The following syntax is accepted: 3 

ImplAttr ::= … | preservesig 4 

preservesig  specifies the method signature is mangled to return HRESULT, with the return value 5 
as a parameter. 6 

15.4.3 .1  Code imple mentat ion attr ibutes  7 

ImplAttr ::= …  

   | cil  

   | native  

   | runtime  

 8 
These attributes are mutually exclusive; they specify the type of code the method contains. 9 

cil  specifies that the method body consists of cil code. Unless the method is declared abstract , the body of 10 
the method shall be provided if cil  is used. 11 

native  specifies that a method was implemented using native code, tied to a specific processor for which it 12 
was generated. native  methods shall not have a body but instead refer to a native method that declares the 13 
body. Typically, the PInvoke functionality (§15.5.2) of the CLI is used to refer to a native method.  14 

runtime  specifies that the implementation of the method is automatically provided by the runtime and is 15 
primarily used for the methods of delegates (§14.6). 16 

15.4.3 .2  Managed or unmanaged 17 

ImplAttr ::= …  

   | managed 

   | unmanaged 

 18 
These shall not be combined.  Methods implemented using CIL are managed.  unmanaged  is used primarily 19 
with PInvoke (§15.5.2). 20 
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15.4.3 .3  Implementat ion inf ormat ion 1 

ImplAttr ::= …  

   | forwardref  

   | internalcall  

   | noinlining   

   | nooptimization  

   | synchronized  

 2 
These attributes can be combined. 3 

forwardref  specifies that the body of the method is provided elsewhere.  This attribute shall not be present 4 
when an assembly is loaded by the VES.  It is used for tools (like a static linker) that will combine separately 5 
compiled modules and resolve the forward reference. 6 

internalcall  specifies that the method body is provided by this CLI (and is typically used by low-level 7 
methods in a system library).  It shall not be applied to methods that are intended for use across 8 
implementations of the CLI.   9 

Implementation-specific (Microsoft) 10 

internalcall  allows the lowest level parts of the Base Class Library to wrap unmanaged code built 11 
into the CLI. 12 

noinlining  specifies that the body of this method should not be included into the code of any caller 13 
methods, by a  CIL-to-native-code compiler; it shall be kept as a separate routine.  14 

nooptimization specifies that a  CIL-to-native-code compiler should not perform code optimizations.  15 

 [Rationale: specifying that a method not be inlined ensures that it remains 'visible' for debugging (e.g., 16 
displaying stack traces) and profiling.  It also provides a mechanism for the programmer to override the default 17 
heuristics a CIL-to-native-code compiler uses for inlining. end rationale] 18 

synchronized  specifies that the whole body of the method shall be single-threaded. If this method is an 19 
instance or virtual method, a lock on the object shall be obtained before the method is entered. If this method is 20 
a static method, a lock on the closed type shall be obtained before the method is entered. If a lock cannot be 21 
obtained, the requesting thread shall not proceed until it is granted the lock. This can cause deadlocks. The lock 22 
is released when the method exits, either through a normal return or an exception.  Exiting a synchronized 23 
method using a tail. call shall be implemented as though the tail. had not been specified.  noinlining  24 
specifies that the runtime shall not inline this method. Inlining refers to the process of replacing the call 25 
instruction with the body of the called method. This can be done by the runtime for optimization purposes. 26 

15.4.4  Scope blocks  27 

    ScopeBlock ::= ‘{’  MethodBodyItem* ‘}’  

A ScopeBlock is used to group elements of a method body together.  For example, it is used to designate the 28 
code sequence that constitutes the body of an exception handler. 29 

Implementation-specific (Microsoft) 30 

Scope blocks are syntactic sugar and primarily serve for readability and debugging purposes. 31 

    ScopeBlock ::= ‘{’  MethodBodyItem* ‘}’  32 

A scope block defines the scope in which a local variable is accessible by its name. Scope blocks might 33 
be nested, such that a reference of a local variable will first be resolved in the innermost scope block, 34 
then at the next level, and so on until the top-most level of the method, is reached. A declaration in an 35 
inner scope block hides declarations in the outer layers. 36 
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If duplicate declarations are used, the reference will be resolved to the first occurrence. Even though 1 
correct CIL, duplicate declarations are not recommended. 2 

Scoping does not affect the lifetime of a local variable. All local variables are created (and if specified 3 
initialized) when the method is entered. They stay alive until the execution of the method is completed. 4 

The scoping does not affect the accessibility of a local variable by its zero based index. All local 5 
variables are accessible from anywhere within the method by their index. 6 

The index is assigned to a local variable in the order of declaration. Scoping is ignored for indexing 7 
purposes. Thus, each local variable is assigned the next available index starting at the top of the 8 
method. This behavior can be altered by specifying an explicit index, as described by a LocalsSignature 9 
as shown in §15.4.1.3. 10 

15.4.5  vararg methods  11 

vararg  methods accept a variable number of arguments.  They shall use the vararg  calling convention 12 
(§15.3). 13 

At each call site, a method reference shall be used to describe the types of the fixed and variable arguments that 14 
are passed.  The fixed part of the argument list shall be separated from the additional arguments with an ellipsis 15 
(see Partition I). [(ote: The method reference is represented by either a MethodRef  (§22.25) or MethodDef 16 
(§22.26). A MethodRef might be needed even if the method is defined in the same assembly, because the 17 
MethodDef only describes the fixed part of the argument list. If the call site does not pass any additional 18 
arguments, then it can use the MethodDef for vararg methods defined in the same assembly. end note] 19 

The vararg  arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction 20 
arglist (see Partition III). The handle can be used to create an instance of the value type System.ArgIterator 21 
which provides a type-safe mechanism for accessing the arguments (see Partition IV). 22 

[Example: The following example shows how a vararg  method is declared and how the first vararg  23 
argument is accessed, assuming that at least one additional argument was passed to the method: 24 

.method public static vararg void MyMethod(int32 required) { 25 
  .maxstack 3 26 
  .locals init (valuetype [mscorlib]System.ArgIterator it, int32 x) 27 

  ldloca it    // initialize the iterator 28 
  initobj  valuetype [mscorlib]System.ArgIterator 29 
  ldloca it 30 
  arglist     // obtain the argument handle 31 
  call instance void [mscorlib]System.ArgIterator::.ctor (valuetype  32 
     [mscorlib]System.RuntimeArgumentHandle) // call constructor of iterator 33 

  /* argument value will be stored in x when retrieved, so load 34 
   address of x */ 35 
  ldloca x 36 
  ldloca it 37 
  // retrieve the argument, the argument for required does not matter 38 
  call instance typedref [mscorlib]System.ArgIterator::GetNextArg() 39 

  call object [mscorlib]System.TypedReference::ToObject(typedref) /* retrieve 40 
the 41 
     object */ 42 
  castclass [mscorlib]System.Int32  // cast and unbox 43 
  unbox int32 44 
  cpobj int32    // copy the value into x 45 
  // first vararg argument is stored in x 46 
  ret 47 
} 48 

end example] 49 
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15.5  Unmanaged methods 1 

In addition to supporting managed code and managed data, the CLI provides facilities for accessing pre-2 
existing native code from the underlying platform, known as unmanaged code.  These facilities are, by 3 
necessity, platform-specific and hence are only partially specified here.   4 

This Standard specifies: 5 

• A mechanism in the file format for providing function pointers to managed code that can be called 6 
from unmanaged code (§15.5.1).  7 

• A mechanism for marking certain method definitions as being implemented in unmanaged code 8 
(called platform invoke, see §15.5.2).  9 

• A mechanism for marking call sites used with method pointers to indicate that the call is to an 10 
unmanaged method (§15.5.3).  11 

• A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on all 12 
implementations of the CLI (§15.5.5).  The set of types is extensible through the use of custom 13 
attributes and modifiers, but these extensions are platform-specific. 14 

15.5.1  Method transit ion thunks  15 

[(ote: As this mechanism is not part of the Kernel Profile, it might not be present in all conforming 16 
implementations of the CLI.  See Partition IV. end note] 17 

In order to call managed code from unmanaged code, some platforms require a specific transition sequence to 18 
be performed.  In addition, some platforms require that the representation of data types be converted (data 19 
marshaling).  Both of these problems are solved by the .vtfixup  directive. This directive can appear several 20 
times, but only at the top level of a CIL assembly file, as shown by the following grammar: 21 

Decl ::= Clause 

  .vtfixup  VTFixupDecl   

| … 5.10 
 22 
The .vtfixup  directive declares that at a certain memory location there is a table that contains metadata 23 
tokens referring to methods that shall be converted into method pointers. The CLI will do this conversion 24 
automatically when the file containing the .vtfixup  directive is loaded into memory for execution.  The 25 
declaration specifies the number of entries in the table, the kind of method pointer that is required, the width of 26 
an entry in the table, and the location of the table: 27 

VTFixupDecl ::= 

  [ Int32 ] VTFixupAttr* at  DataLabel 
 28 
VTFixupAttr ::= 

 fromunmanaged 

| int32  

| int64  

 29 
The attributes int32  and int64  are mutually exclusive, with int32  being the default. These attributes 30 
specify the width of each slot in the table.  Each slot contains a 32-bit metadata token (zero-padded if the table 31 
has 64-bit slots), and the CLI converts it into a method pointer of the same width as the slot.  32 

If fromunmanaged  is specified, the CLI will generate a thunk that will convert the unmanaged method call 33 
to a managed call, call the method, and return the result to the unmanaged environment.  The thunk will also 34 
perform data marshalling in the platform-specific manner described for platform invoke. 35 
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Implementation-specific (Microsoft) 1 

The following syntax is also supported: 2 

    VTFixupAttr ::= … | retainappdomain 3 

retainappdomain  indicates that the generated unmanaged-to-managed thunk will ensure method 4 
calls execute in the same application domain that the caller thread was last in, or in the default domain 5 
if this is the first time the caller thread has entered managed code. 6 

The ILAsm syntax does not specify a mechanism for creating the table of tokens, but a compiler can simply 7 
emit the tokens as byte literals into a block specified using the .data  directive. 8 

15.5.2  Platform invoke 9 

Methods defined in native code can be invoked using the platform invoke (also know as PInvoke or p/invoke) 10 
functionality of the CLI.  Platform invoke will switch from managed to unmanaged state and back, and also 11 
handle necessary data marshalling. Methods that need to be called using PInvoke are marked as 12 
pinvokeimpl . In addition, the methods shall have the implementation attributes native  and unmanaged  13 
(§15.4.2.4).   14 

MethAttr ::= Description Clause 

  pinvokeimpl  ‘(’  QSTRI(G [ as  QSTRI(G ] 
PinvAttr* ‘)’  

Implemented in native code  

| …  15.4.1.5 
 15 
The first quoted string is a platform-specific description indicating where the implementation of the method is 16 
located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the 17 
method).  The second (optional) string is the name of the method as it exists on that platform, since the 18 
platform can use name-mangling rules that force the name as it appears to a managed program to differ from 19 
the name as seen in the native implementation (this is common, for example, when the native code is generated 20 
by a C++ compiler). 21 

Only static methods, defined at global scope (i.e., outside of any type), can be marked pinvokeimpl . A 22 
method declared with pinvokeimpl  shall not have a body specified as part of the definition. 23 

PinvAttr ::= Description (platform-specific, suggestion only) 

  ansi  ANSI character set. 

| autochar  Determine character set automatically. 

| cdecl  Standard C style call 

| fastcall  C style fastcall. 

| stdcall  Standard C++ style call. 

| thiscall  The method accepts an implicit this pointer. 

| unicode  Unicode character set. 

| platformapi  Use call convention appropriate to target platform. 
 24 

Implementation-specific (Microsoft) 25 

platformapi  is not recognized by ilasm.  Instead use winapi . If none of cdecl , fastcall , 26 
stdcall thiscall  or winapi  are specified, the calling convention will default to winapi . 27 

The attributes ansi , autochar , and unicode  are mutually exclusive.  They govern how strings will be 28 
marshaled for calls to this method: ansi  indicates that the native code will receive (and possibly return) a 29 
platform-specific representation that corresponds to a string encoded in the ANSI character set (typically this 30 
would match the representation of a C or C++ string constant); autochar  indicates a platform-specific 31 
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representation that is “natural” for the underlying platform; and unicode  indicates a platform-specific 1 
representation that corresponds to a string encoded for use with Unicode methods on that platform.  2 

The attributes cdecl , fastcall , stdcall , thiscall , and platformapi  are mutually exclusive.  3 
They are platform-specific and specify the calling conventions for native code. 4 

Implementation-specific (Microsoft) 5 

In addition, the Microsoft implementation of the CLI on Microsoft Windows™ supports the following 6 
attributes: 7 

lasterr  to indicate that the native method supports C style last error querying. 8 

nomangle  to indicate that the name in the DLL should be used precisely as specified, rather than 9 
attempting to add A (for ascii) or W (widechar) to find platform-specific variants based on the type of 10 
string marshalling requested. 11 
 12 
[Example: The following shows the declaration of the method MessageBeep located in the Microsoft 13 
Windows™ DLL user32.dll: 14 

.method public static pinvokeimpl("user32.dll" stdcall) int8 15 
      MessageBeep(unsigned int32) native unmanaged {} 16 

end example] 17 

15.5.3  Method call s  v ia funct ion pointers 18 

Unmanaged methods can also be called via function pointers. There is no difference between calling managed 19 
or unmanaged methods with pointers. However, the unmanaged method needs to be declared with 20 
pinvokeimpl  as described in §15.5.2. Calling managed methods with function pointers is described 21 
in §14.5. 22 

15.5.4  COM interop 23 

Implementation-specific (Microsoft) 24 

Unmanaged COM operates primarily by publishing uniquely identified interfaces and then sharing them 25 
between implementers (traditionally called “servers”) and users (traditionally called “clients”) of a 26 
given interface. It supports a rich set of types for use across the interface, and the interface itself can 27 
supply named constants and static methods, but it does not supply instance fields, instance methods, or 28 
virtual methods. 29 

The CLI provides mechanisms useful to both implementers and users of existing classical COM 30 
interfaces. The goal is to permit programmers to deal with managed data types (thus eliminating the 31 
need for explicit memory management) while at the same time allowing interoperability with existing 32 
unmanaged servers and clients. COM Interop does not support the use of global functions (i.e., methods 33 
that are not part of a managed type), static functions, or parameterized constructors. 34 

Given an existing classical COM interface definition as a type library, the tlbimp tool produces a file 35 
that contains the metadata describing that interface. The types it exposes in the metadata are managed 36 
counterparts of the unmanaged types in the original interface. 37 

Implementers of an existing classical COM interface can import the metadata produced by tlbimp and 38 
then write managed types that provide the implementation of the methods required by that interface. 39 
The metadata specifies the use of managed data types in many places, and the CLI provides automatic 40 
marshaling (i.e., copying with reformatting) of data between the managed and unmanaged data types. 41 

Implementers of a new service can simply write a managed program whose publicly visible types 42 
adhere to a simple set of rules. They can then run the tlbexp tool to produce a type library for classical 43 
COM users. This set of rules guarantees that the data types exposed to the classical COM user are 44 
unmanaged types that can be marshaled automatically by the CLI. 45 

Implementers need to run the RegAsm tool to register their implementation with classical COM for 46 
location and activation purposes – if they wish to expose managed services to unmanaged code 47 
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Users of existing classical COM interfaces simply import the metadata produced by tlbimp. They can 1 
then reference the (managed) types defined there and the CLI uses the assembly mechanism and 2 
activation information to locate and instantiate instances of objects implementing the interface. Their 3 
code is the same whether the implementation of the interfaces is provided using classical COM 4 
(unmanaged) code or the CLI (managed) code: the interfaces they see use managed data types, and 5 
hence do not need explicit memory management. 6 

For some existing classical COM interfaces, the CLI provides an implementation of the interface. In 7 
some cases the EE allows the user to specify all or parts of the implementation; for others it provides 8 
the entire implementation. 9 

15.5.5  Data type marshal ing 10 

While data type marshaling is necessarily platform-specific, this Standard specifies a minimum set of data 11 
types that shall be supported by all conforming implementations of the CLI.  Additional data types can be 12 
supported in a platform-specific manner, using custom attributes and/or custom modifiers to specify any special 13 
handling required on the particular implementation. 14 

The following data types shall be marshaled by all conforming implementations of the CLI; the native data type 15 
to which they conform is implementation-specific: 16 

• All integer data types (int8 , int16 , unsigned int8 , bool , char , etc.) including the 17 
native  integer types. 18 

• Enumerations, as their underlying data type. 19 

• All floating-point data types (float32  and float64 ), if they are supported by the CLI 20 
implementation for managed code. 21 

• The type string . 22 

• Unmanaged pointers to any of the above types. 23 

In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but 24 
need not be supported in the reverse direction (i.e., as return types when calling unmanaged methods or as 25 
parameters when calling from unmanaged methods into managed methods): 26 

• One-dimensional zero-based arrays of any of the above 27 

• Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it 28 
should not be assumed that marshaling a delegate will produce a function pointer that can be used 29 
directly from unmanaged code). 30 

Finally, the type System.Runtime.InteropServices.GCHandle can be used to marshal an object to unmanaged 31 
code.  The unmanaged code receives a platform-specific data type that can be used as an “opaque handle” to a 32 
specific object.   See Partition IV. 33 

15.5.6  Managed nat ive  cal l ing convent ions (x86)  34 

Implementation Specific (Microsoft) 35 

This subclause is intended for an advanced audience. It describes the details of a native method call 36 
from managed code on the x86 architecture. The information provided in this subclause can be 37 
important for optimization purposes. This subclause is not important for the further understanding of 38 
the CLI and can be skipped. 39 

There are two managed native calling conventions used on the x86. They are described here for 40 
completeness and because knowledge of these conventions allows an unsafe mechanism for bypassing 41 
the overhead of a managed to unmanaged code transition. 42 

Methods of generic types, or generic methods, can share code between various instantiations. A certain 43 
category of such methods receive a hidden argument as the last argument. This argument can be used by 44 
the shared code to access instantiation-specific values.    45 
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15.5.6 .1  Standard 80x86 cal l ing convent ion  1 

Implementation Specific (Microsoft) 2 

The standard native calling convention is a variation on the fastcall convention used by VC. It differs 3 
primarily in the order in which arguments are pushed on the stack. 4 

The only values that can be passed in registers are managed and unmanaged pointers, object references, 5 
and the built-in integer types int8, unsigned int8, int16, unsigned int16, int32, unsigned it32, native int, 6 
native unsigned int, and enums and value types with only one primitive-type field. Enums are passed as 7 
their underlying type. All floating-point values and 8-byte integer values are passed on the stack. When 8 
the return type is a value type that cannot be passed in a register, the caller shall create a buffer to hold 9 
the result and pass the address of this buffer as a hidden parameter. 10 

Arguments are passed in left-to-right order, starting with the this pointer (for instance and virtual 11 
methods), followed by the return buffer pointer if needed, followed by the user-specified argument 12 
values.  The first of these that can be placed in a register is put into ECX, the next in EDX, and all 13 
subsequent ones are passed on the stack. 14 

The return value is handled as follows: 15 

1) Floating-point values are returned on the top of the hardware FP stack. 16 

2) Integers up to 32 bits long are returned in EAX. 17 

3) 64-bit integers are passed with EAX holding the least significant 32 bits and EDX holding the most 18 
significant 32 bits. 19 

4) All other cases require the use of a return buffer, through which the value is returned. 20 

In addition, there is a guarantee that if a return buffer is used a value is stored there only upon ordinary 21 
exit from the method. The buffer is not allowed to be used for temporary storage within the method and 22 
its contents will be unaltered if an exception occurs while executing the method. 23 

[Example:  24 

static System.Int32 f(int32 x) 25 

The incoming argument (x) is placed in ECX; the return value is in EAX 26 

static float64 f(int32 x, int32 y, int32 z) 27 

x is passed in ECX, y in EDX, z on the top of stack; the return value is on the top of the floating-point 28 
(FP) stack 29 

static float64 f(int32 x, float64 y, int32 z) 30 

x is passed in ECX, y on the top of the stack (not FP stack), z in EDX; the return value is on the top of 31 
the FP stack 32 

virtual float64 f(int32 x, int64 y, int64 z) 33 

this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is top of the 34 
stack); the return value is on the top of the FP stack 35 

virtual int64 f(int32 x, float64 y, float64 z) 36 

this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is on top of 37 
the stack); the return value is in EDX/EAX 38 

virtual [mscorlib]System.Guid f(int32 x, float64 y, float64 z) 39 

Since System.Guid is a value type the this pointer is passed in ECX, a pointer to the return buffer is 40 
passed in EDX, x is pushed, then y, and then z (hence z is on top the of stack); the return value is stored 41 
in the return buffer. end example] 42 
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15.5.6 .2  Vararg x86 cal l ing convention 1 

Implementation Specific (Microsoft) 2 

All user-specified arguments are passed on the stack, pushed in left-to-right order.  Following the last 3 
argument (hence on top of the stack upon entry to the method body) a special opaque “handle to 4 
argument type data” is passed which provides information about the types of the arguments that have 5 
been pushed. The caller is responsible for popping off the arguments. 6 

As with the standard calling convention, the this pointer and a return buffer (if either is needed) are 7 
passed in ECX and/or EDX. 8 

Values are returned in the same way as for the standard calling convention. 9 

15.5.6 .3  Fast  cal l s  to unmanaged code  10 

Implementation Specific (Microsoft) 11 

Transitions from managed to unmanaged code require a small amount of overhead to allow exceptions 12 
and garbage collection to correctly determine the execution context. On an x86 processor, under the 13 
best circumstances, these transitions take approximately 5 instructions per call/return from managed to 14 
unmanaged code. In addition, any method that includes calls with transitions incurs an 8 instruction 15 
overhead spread across the calling method’s prolog and epilog. 16 

This overhead can become a factor in performance of certain applications. For use in unverifiable code 17 
only, there is a mechanism to call from managed code to unmanaged code without the overhead of a 18 
transition. A “fast native call” is accomplished by the use of a calli instruction which indicates that the 19 
destination is managed even though the code address to which it refers is unmanaged. This can be 20 
arranged, for example, by initializing a variable of type function pointer in unmanaged code. 21 

Clearly, this mechanism shall be tightly constrained since the transition is essential if there is any 22 
possibility of a garbage collection or exception occurring while in the unmanaged code. The following 23 
restrictions apply to the use of this mechanism: 24 

1) The unmanaged code shall follow one of the two managed calling conventions (regular and vararg) 25 
that are specified below. In V1, only the regular calling convention is supported for fast native calls. 26 

2) The unmanaged code shall not execute for any extended time, since garbage collection cannot begin 27 
while executing this code. It is wise to keep this under 100 instructions under all control flow paths. 28 

3) The unmanaged code shall not throw an exception (managed or unmanaged), including access 29 
violations, etc. Page faults are not considered an exception for this purpose. 30 

4) The unmanaged code shall not call back into managed code. 31 

5) The unmanaged code shall not trigger a garbage collection (this usually follows from the restriction 32 
on calling back to managed code). 33 

6) The unmanaged code shall not block. That is, it shall not call any OS-provided routine that might 34 
block the thread (synchronous I/O, explicitly acquiring locks, etc.)  Again, page faults are not a 35 
problem for this purpose. 36 

7) The managed code that calls the unmanaged method shall not have a long, tight loop in which it 37 
makes the call. The total time for the loop to execute should remain under 100 instructions or the loop 38 
should include at least one call to a managed method. More technically, the method including the call 39 
shall produce “fully interruptible native code.” In future versions, there can be a way to indicate this as 40 
a requirement on a method. 41 

Restrictions 2 through 6 apply not only to the unmanaged code called directly, but to anything it can 42 
call. 43 
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16  Defining and referencing fields  1 

Fields are typed memory locations that store the data of a program.  The CLI allows the declaration of both 2 
instance and static fields. While static fields are associated with a type, and are shared across all instances of 3 
that type, instance fields are associated with a particular instance of that type.  Once instantiated, an instance 4 
has its own copy of each instance field.  5 

The CLI also supports global fields, which are fields declared outside of any type definition.  Global fields shall 6 
be static.  7 

A field is defined by the .field  directive:  (§22.15) 8 

Field ::= .field  FieldDecl 
 9 
FieldDecl ::= 

  [ ‘[’  Int32 ‘]’  ] FieldAttr* Type Id [ ‘=’  FieldInit | at  DataLabel ] 
 10 
The FieldDecl has the following parts: 11 

• An optional integer specifying the byte offset of the field within an instance (§10.7). If present, the 12 
type containing this field shall have the explicit  layout attribute. An offset shall not be supplied 13 
for global or static fields. 14 

• Any number of field attributes (§16.2). 15 

• Type. 16 

• Name. 17 

• Optionally, either a FieldInit clause (§16.2) or a DataLabel (§5.4) clause. 18 

Global fields shall have a data label associated with them.  This specifies where, in the PE file, the data for that 19 
field is located.  Static fields of a type can, but need not, be assigned a data label. 20 

[Example:  21 

.field private class [.module Counter.dll]Counter counter 22 

.field public static initonly int32 pointCount 23 

.field private int32 xOrigin 24 

.field public static int32 count at D_0001B040 25 

end example] 26 

16.1  Attributes of  f ields 27 

Attributes of a field specify information about accessibility, contract information, interoperation attributes, as 28 
well as information on special handling. 29 

The following subclauses contain additional information on each group of predefined attributes of a field. 30 

FieldAttr ::= Description Clause 

  assembly  Assembly accessibility. 16.1.1 

| famandassem  Family and Assembly accessibility. 16.1.1 

| family  Family accessibility. 16.1.1 

| famorassem  Family or Assembly accessibility. 16.1.1 

| initonly  Marks a constant field. 16.1.2 

| literal  Specifies metadata field.  No memory is allocated 
at runtime for this field. 

16.1.2 

| marshal ‘(’ (ativeType ‘)’  Marshaling information. 16.1.3 
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FieldAttr ::= Description Clause 

| notserialized  Reserved (indicates this field is not to be 
serialized). 

16.1.2 

| private  Private accessibility. 16.1.1 

| compilercontrolled  Compiler controlled accessibility. 16.1.1 

| public  Public accessibility. 16.1.1 

| rtspecialname  Special treatment by runtime. 16.1.4 

| specialname  Special name for other tools. 16.1.4 

| static  Static field. 16.1.2 
 1 

16.1.1  Accessib il ity  informat ion 2 

The accessibility attributes are assembly , famandassem , family , famorassem , private , 3 
compilercontrolled , and public .  These attributes are mutually exclusive.   4 

Accessibility attributes are described in §8.2. 5 

16.1.2  Fie ld contract  at tributes  6 

Field contract attributes are initonly , literal , static  and notserialized .  These attributes can be 7 
combined; however, only static  fields shall be literal .  The default is an instance field that can be 8 
serialized. 9 

static  specifies that the field is associated with the type itself rather than with an instance of the type.  Static 10 
fields can be accessed without having an instance of a type, e.g., by static methods.  As a consequence, within 11 
an application domain, a static field is shared between all instances of a type, and any modification of this field 12 
will affect all instances. If static  is not specified, an instance field is created. 13 

initonly  marks fields which are constant after they are initialized. These fields shall only be mutated inside 14 
a constructor. If the field is a static field, then it shall be mutated only inside the type initializer of the type in 15 
which it was declared. If it is an instance field, then it shall be mutated only in one of the instance constructors 16 
of the type in which it was defined. It shall not be mutated in any other method or in any other constructor, 17 
including constructors of derived classes. 18 

[(ote: The use of ldflda or ldsflda on an initonly  field makes code unverifiable.  In unverifiable code, the 19 
VES need not check whether initonly  fields are mutated outside the constructors. The VES need not report 20 
any errors if a method changes the value of a constant. However, such code is not valid. end note] 21 

Implementation Specific (Microsoft) 22 

notserialized  specifies that this field is not serialized when an instance of this type is serialized 23 
(§10.1.6). It has no meaning on global or static fields, or if the type does not have the serializable  24 
attribute. 25 

literal  specifies that this field represents a constant value; such fields shall be assigned a value. In contrast 26 
to initonly  fields, literal  fields do not exist at runtime. There is no memory allocated for them. 27 
literal  fields become part of the metadata, but cannot be accessed by the code. literal  fields are 28 
assigned a value by using the FieldInit syntax (§16.2).   29 

[(ote: It is the responsibility of tools generating CIL to replace source code references to the literal with its 30 
actual value.  Hence changing the value of a literal requires recompilation of any code that references the 31 
literal.  Literal values are, thus, not version-resilient. end note] 32 

16.1.3  Interoperat ion attr ibutes 33 

There is one attribute for interoperation with pre-existing native applications; it is platform-specific and shall 34 
not be used in code intended to run on multiple implementations of the CLI. The attribute is marshal  and 35 
specifies that the field’s contents should be converted to and from a specified native data type when passed to 36 
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unmanaged code.  Every conforming implementation of the CLI will have default marshaling rules as well as 1 
restrictions on what automatic conversions can be specified using the marshal  attribute.  See also §15.5.5. 2 

[(ote: Marshaling of user-defined types is not required of all implementations of the CLI.  It is specified in this 3 
standard so that implementations which choose to provide it will allow control over its behavior in a consistent 4 
manner.  While this is not sufficient to guarantee portability of code that uses this feature, it does increase the 5 
likelihood that such code will be portable. end note] 6 

16.1.4  Other attr ibutes 7 

The attribute rtspecialname  indicates that the field name shall be treated in a special way by the runtime.   8 

[Rationale: There are currently no field names that are required to be marked with rtspecialname .  It is 9 
provided for extensions, future standardization, and to increase consistency between the declaration of fields 10 
and methods (instance and type initializer methods shall be marked with this attribute). By convention, the 11 
single instance field of an enumeration is named “value__” and marked with rtspecialname . end 12 
rationale] 13 

The attribute specialname  indicates that the field name has special meaning to tools other than the runtime, 14 
typically because it marks a name that has meaning for the CLS (see Partition I). 15 

16.2  Field init  metadata 16 

The FieldInit metadata can optionally be added to a field declaration. The use of this feature shall not be 17 
combined with a data label. 18 

The FieldInit information is stored in metadata and this information can be queried from metadata.  But the CLI 19 
does not use this information to automatically initialize the corresponding fields.  The field initializer is 20 
typically used with literal  fields (§16.1.2) or parameters with default values.  See §22.9. 21 

The following table lists the options for a field initializer. Note that while both the type and the field initializer 22 
are stored in metadata there is no requirement that they match.  (Any importing compiler is responsible for 23 
coercing the stored value to the target field type).  The description column in the table below provides 24 
additional information. 25 

FieldInit ::= Description 

  bool ‘(’  true  | false ‘)’  Boolean value, encoded as true or false 

| bytearray ‘(’  Bytes ‘)’  String of bytes, stored without conversion.  Can be 
padded with one zero byte to make the total byte-count 
an even number 

| char ‘(’  Int32 ‘)’  16-bit unsigned integer (Unicode character) 

| float32 ‘(’  Float64 ‘)’  32-bit floating-point number, with the floating-point 
number specified in parentheses.  

| float32 ‘(’  Int32 ‘)’  Int32 is binary representation of float 

| float64 ‘(’  Float64 ‘)’  64-bit floating-point number, with the floating-point 
number specified in parentheses. 

| float64 ‘(’  Int64 ‘)’  Int64 is binary representation of double 

| [ unsigned  ] int8 ‘(’  Int32 ‘)’  8-bit integer with the value specified in parentheses. 

| [ unsigned  ] int16 ‘(’ Int32 ‘)’  16-bit integer with the value specified in parentheses. 

| [ unsigned  ] int32 ‘(’ Int32 ‘)’  32-bit integer with the value specified in parentheses. 

| [ unsigned  ] int64 ‘(’ Int64 ‘)’  64-bit integer with the value specified in parentheses. 

| QSTRI(G String. QSTRI(G is stored as Unicode 

| nullref  Null object reference 
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 1 
Implementation Specific (Microsoft) 2 

ilasm does not recognize the optional unsigned  modifier before the int8 , int16 , int32  or 3 
int64  keywords 4 

[Example: The following shows a typical use of this: 5 

.field public static literal valuetype ErrorCodes no_error = int8(0) 6 

The field named no_error  is a literal of type ErrorCodes  (a value type) for which no memory is 7 
allocated. Tools and compilers can look up the value and detect that it is intended to be an 8-bit signed integer 8 
whose value is 0. end example] 9 

16.3  Embedding data in a PE fi le 10 

There are several ways to declare a data field that is stored in a PE file. In all cases, the .data  directive is 11 
used. 12 

Data can be embedded in a PE file by using the .data  directive at the top-level. 13 

Decl ::= Clause 

  .data  DataDecl  

| … 6.6 
 14 
Data can also be declared as part of a type: 15 

ClassMember ::= Clause 

  .data  DataDecl  

| … 10.2 
 16 
Yet another alternative is to declare data inside a method: 17 

MethodBodyItem ::= Clause 

  .data  DataDecl  

| … 15.4.1 
 18 

16.3.1  Data dec larat ion  19 

A .data  directive contains an optional data label and the body which defines the actual data. A data label 20 
shall be used if the data is to be accessed by the code. 21 

DataDecl ::= [ DataLabel ‘=’  ] DdBody 

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an 22 
array. 23 

DdBody ::= 

  DdItem 

| ‘{’  DdItemList ‘}’  

 24 
A list of items consists of any number of items: 25 

DdItemList ::= DdItem [ ‘,’  DdItemList ] 
 26 
The list can be used to declare multiple data items associated with one label. The items will be laid out in the 27 
order declared. The first data item is accessible directly through the label. To access the other items, pointer 28 
arithmetic is used, adding the size of each data item to get to the next one in the list. The use of pointer 29 
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arithmetic will make the application non-verifiable.  (Each data item shall have a DataLabel if it is to be 1 
referenced afterwards; missing a DataLabel is useful in order to insert alignment padding between data items) 2 

A data item declares the type of the data and provides the data in parentheses. If a list of data items contains 3 
items of the same type and initial value, the grammar below can be used as a short cut for some of the types: 4 
the number of times the item shall be replicated is put in brackets after the declaration.  5 

DdItem ::= Description 

  ‘&’ ‘(’  Id ‘)’  Address of label 

| bytearray ‘(’  Bytes ‘)’  Array of bytes 

| char ‘*’ ‘(’  QSTRI(G ‘)’  Array of (Unicode) characters 

| float32  [ ‘(’ Float64 ‘)’  ] [ ‘[’ Int32 ‘]’  ] 32-bit floating-point number, can be 
replicated 

| float64  [ ‘(’  Float64 ‘)’  ] [ ‘[’  Int32 ‘]’  ] 64-bit floating-point number, can be 
replicated 

| int8  [ ‘(’  Int32 ‘)’  ] [‘[’  Int32 ‘]’  ] 8-bit integer, can be replicated 

| int16  [ ‘(’  Int32 ‘)’  ] [ ‘[’  Int32 ‘]’  ] 16-bit integer, can be replicated 

| int32  [ ‘(’  Int32 ‘)’  ] [‘[’  Int32 ‘]’  ] 32-bit integer, can be replicated 

| int64  [ ‘(’  Int64 ‘)’  ] [ ‘[’  Int32 ‘]’  ] 64-bit integer, can be replicated 

 6 
[Example:  7 

The following declares a 32-bit signed integer with value 123: 8 

.data theInt = int32(123) 9 

The following declares 10 replications of an 8-bit unsigned integer with value 3: 10 

.data theBytes = int8 (3) [10] 11 

end example] 12 

16.3.2  Accessing data from the  PE f i le  13 

The data stored in a PE File using the .data  directive can be accessed through a static  variable, either 14 
global or a member of a type, declared at a particular position of the data: 15 

FieldDecl ::= FieldAttr* Type Id at  DataLabel 
 16 
The data is then accessed by a program as it would access any other static variable, using instructions such as 17 
ldsfld , ldsflda , and so on (see Partition III). 18 

The ability to access data from within the PE File can be subject to platform-specific rules, typically related to 19 
section access permissions within the PE File format itself. 20 

[Example: The following accesses the data declared in the example of §16.3.1. First a static variable needs to 21 
be declared for the data, e.g., a global static variable: 22 

.field public static int32 myInt at theInt 23 

Then the static variable can be used to load the data: 24 

ldsfld int32 myInt 25 
// data on stack 26 

end example] 27 

16.3.3  Unmanaged thread- local  storage  28 

Implementation Specific (Microsoft) 29 
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Each PE file has a particular section whose initial contents are copied whenever a new thread is created. 1 
This section is called unmanaged thread local storage. The Microsoft implementation of ilasm allows 2 
the creation of this unmanaged thread local storage by extending the data declaration to include an 3 
option attribute, tls : 4 

     DataDecl ::= [ tls  ] [ DataLabel ‘=’  ] DdBody 5 

The CLI provides two mechanisms for dealing with thread-local storage (tls ): an unmanaged 6 
mechanism and a managed mechanism. The unmanaged mechanism has a number of restrictions which 7 
are carried forward directly from the underlying platform into the CLI. For example, the amount of 8 
thread local storage is determined when the PE file is loaded and cannot be expanded. The amount is 9 
computed based on the static dependencies of the PE file, DLLs that are loaded as a program executes 10 
cannot create their own thread local storage through this mechanism. The managed mechanism, which 11 
does not have these restrictions, is part of the Base Class Library. 12 

For unmanaged tls  there is a particular native code sequence that can be used to locate the start of this 13 
section for the current thread. The CLI respects this mechanism. That is, when a reference is made to a 14 
static variable with a fixed RVA in the PE file and that RVA is in the thread-local section of the PE, the 15 
native code generated from the CIL will use the thread-local access sequence. 16 

This has two important consequences: 17 

A static variable with a specified RVA shall reside entirely in a single section of the PE file. The RVA 18 
specifies where the data begins and the type of the variable specifies how large the data area is. 19 

When a new thread is created it is only the data from the PE file that is used to initialize the new copy 20 
of the variable. There is no opportunity to run the type initializer. For this reason it is probably wise to 21 
restrict the use of unmanaged thread local storage to the primitive numeric types and value types with 22 
explicit layout that have a fixed initial value and no type initializer. 23 

16.4  Init ialization of  non-l iteral  static data 24 

This subclause and its subclauses contain only informative text. 25 

Many languages that support static data provide for a means to initialize that data before the program begins 26 
execution. There are three common mechanisms for doing this, and each is supported in the CLI. 27 

16.4.1  Data known at  l ink t ime 28 

When the correct value to be stored into the static data is known at the time the program is linked (or compiled 29 
for those languages with no linker step), the actual value can be stored directly into the PE file, typically into 30 
the data area (§16.3). References to the variable are made directly to the location where this data has been 31 
placed in memory, using the OS-supplied fix-up mechanism to adjust any references to this area if the file loads 32 
at an address other than the one assumed by the linker. 33 

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric types or is 34 
a value type with explicit type layout and no embedded references to managed objects. In this case the data is 35 
laid out in the data area as usual and the static variable is assigned a particular RVA (i.e., offset from the start 36 
of the PE file) by using a data label with the field declaration (using the at  syntax).   37 

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition I). 38 
An application domain is intended to isolate two applications running in the same OS process from one another 39 
by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data 40 
accessed via this mechanism is visible to all application domains in the process, thus violating the application 41 
domain isolation boundary. 42 

16.5  Data known at load t ime 43 

When the correct value is not known until the PE file is loaded (for example, if it contains values computed 44 
based on the load addresses of several PE files) it can be possible to supply arbitrary code to run as the PE file 45 
is loaded, but this mechanism is platform-specific and might not be available in all conforming 46 
implementations of the CLI. 47 
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Implementation Specific (Microsoft) 1 

While this mechanism is available in the CLI, its use is strongly discouraged. The code runs under the 2 
process-wide loader lock, and the restrictions imposed by the underlying operating system make this a 3 
fragile mechanism.  The details are provided in §25.3.3.3. 4 

16.5.1  Data known at run time 5 

When the correct value cannot be determined until type layout is computed, the user shall supply code as part 6 
of a type initializer to initialize the static data. The guarantees about type initialization are covered in §10.5.3.1. 7 
As will be explained below, global statics are modeled in the CLI as though they belonged to a type, so the 8 
same guarantees apply to both global and type statics. 9 

Because the layout of managed types need not occur until a type is first referenced, it is not possible to 10 
statically initialize managed types by simply laying out the data in the PE file. Instead, there is a type 11 
initialization process that proceeds in the following steps: 12 

1. All static variables are zeroed. 13 

2. The user-supplied type initialization procedure, if any, is invoked as described in §10.5.3. 14 

Within a type initialization procedure there are several techniques: 15 

• Generate explicit code that stores constants into the appropriate fields of the static variables. For 16 
small data structures this can be efficient, but it requires that the initializer be converted to native 17 
code, which can prove to be both a code space and an execution time problem. 18 

• Box value types. When the static variable is simply a boxed version of a primitive numeric type or a 19 
value type with explicit layout, introduce an additional static variable with known RVA that holds 20 
the unboxed instance and then simply use the box instruction to create the boxed copy. 21 

• Create a managed array from a static native array of data. This can be done by marshaling the 22 
native array to a managed array. The specific marshaler to be used depends on the native array. 23 
e.g., it can be a safearray. 24 

• Default initialize a managed array of a value type. The Base Class Library provides a method that 25 
zeroes the storage for every element of an array of unboxed value types 26 
(System.Runtime.CompilerServices.InitializeArray) 27 

Implementation Specific (Microsoft) 28 

Use Base Class Library deserialization. The Base Class Library provides serialization and 29 
deserialization services. These services can be found in the System.Runtime.Serialization 30 
namespace. An object can be converted to a serialized form, stored in the data section and accessed 31 
using a static variable with known RVA of type unsigned int8[]. The corresponding deserialization 32 
mechanism can then be used in the type initializer. 33 

End informative text 34 
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17  Defining properties 1 

A Property is declared by the using the .property  directive.  Properties shall only be declared inside of 2 
types (i.e., global properties are not supported). 3 

ClassMember ::= 

  .property  PropHeader ‘{’  PropMember* ‘}’  

 4 
See §22.34 and §22.35 for how property information is stored in metadata. 5 

PropHeader ::= 

 [ specialname  ][ rtspecialname  ] CallConv Type Id ‘(’  Parameters ‘)’  

 6 
The .property  directive specifies a calling convention (§15.3), type, name, and parameters in parentheses. 7 
specialname  marks the property as special to other tools, while rtspecialname  marks the property as 8 
special to the CLI.  The signature for the property (i.e., the PropHeader production) shall match the signature 9 
of the property's .get  method (see below) 10 

[Rationale: There are currently no property names that are required to be marked with rtspecialname .  It is 11 
provided for extensions, future standardization, and to increase consistency between the declaration of 12 
properties and methods (instance and type initializer methods shall be marked with this attribute). end 13 
rationale] 14 

While the CLI places no constraints on the methods that make up a property, the CLS (see Partition I) specifies 15 
a set of consistency constraints. 16 

A property can contain any number of methods in its body.  The following table shows how these methods are 17 
identified, and provides short descriptions of each kind of item: 18 

PropMember ::= Description Clause 

| .custom  CustomDecl Custom attribute. 21 

| .get  CallConv Type [ TypeSpec ‘::’  ] Method(ame 
‘(’  Parameters ‘)’  

Specifies the getter for the 
property. 

 

| .other  CallConv Type [ TypeSpec ‘::’  ] 
Method(ame ‘(’  Parameters ‘)’  

Specifies a method for the 
property other than the getter or 
setter. 

 

| .set  CallConv Type [ TypeSpec ‘::’  ] Method(ame 
‘(’  Parameters ‘)’  

Specifies the setter for the 
property. 

 

| ExternSourceDecl .line  or #line 5.7 

 19 
.get  specifies the getter for this property.  The TypeSpec defaults to the current type.  Only one getter can be 20 
specified for a property.  To be CLS-compliant, the definition of getter shall be marked specialname . 21 

.set  specifies the setter for this property.  The TypeSpec defaults to the current type.  Only one setter can be 22 
specified for a property.  To be CLS-compliant, the definition of setter shall be marked specialname . 23 

.other  is used to specify any other methods that this property comprises.  24 

In addition, custom attributes (§21) or source line declarations can be specified. 25 

[Example: This shows the declaration of the property called count. 26 

.class public auto autochar MyCount extends [mscorlib]System.Object { 27 
  .method virtual hidebysig public specialname instance int32 get_Count() { 28 
  // body of getter 29 
  } 30 
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  .method virtual hidebysig public specialname instance void set_Count( 1 
      int32 newCount) { 2 
  // body of setter 3 
  } 4 

  .method virtual hidebysig public instance void reset_Count() { 5 
  // body of refresh method 6 
  } 7 

  // the declaration of the property 8 
  .property int32 Count() { 9 
    .get instance int32 MyCount::get_Count() 10 
    .set instance void MyCount::set_Count(int32) 11 
    .other instance void MyCount::reset_Count() 12 
  } 13 
} 14 

end example] 15 
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18  Defining events 1 

Events are declared inside types, using the .event  directive; there are no global events. 2 

ClassMember ::= Clause 

  .event  EventHeader ‘{’  EventMember* ‘}’   

| … 9 
 3 
See §22.13 and §22.11 4 

EventHeader ::= 

  [ specialname  ] [ rtspecialname  ] [ TypeSpec ] Id 
 5 
In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed 6 
to the event’s fire method. 7 

The event head can contain the keywords specialname  or rtspecialname . specialname  marks the 8 
name of the property for other tools, while rtspecialname  marks the name of the event as special for the 9 
runtime. 10 

[Rationale: There are currently no event names that are required to be marked with rtspecialname .  It is 11 
provided for extensions, future standardization, and to increase consistency between the declaration of events 12 
and methods (instance and type initializer methods shall be marked with this attribute). end rationale] 13 

EventMember ::= Description Clause 

  .addon  CallConv Type [ TypeSpec ‘::’  ] Method(ame 
‘(’  Parameters ‘)’  

Add method for event.  

| .custom  CustomDecl Custom attribute. 21 

| .fire  CallConv Type [ TypeSpec ‘::’  ] Method(ame ‘(’  
Parameters ‘)’  

Fire method for event.  

| .other  CallConv Type [ TypeSpec ‘::’  ] Method(ame 
‘(’  Parameters ‘)’  

Other method.  

| .removeon  CallConv Type [ TypeSpec ‘::’  ] Method(ame 
‘(’  Parameters ‘)’  

Remove method for event.  

| ExternSourceDecl .line  or #line  5.7 

 14 
The .addon  directive specifies the add method, and the TypeSpec defaults to the same type as the event.  The 15 
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the 16 
add method be marked with specialname . 17 

The .removeon  directive specifies the remove method, and the TypeSpec defaults to the same type as the 18 
event.  The CLS specifies naming conventions and consistency constraints for events, and requires that the 19 
definition of the remove method be marked with specialname . 20 

The .fire  directive specifies the fire method, and the TypeSpec defaults to the same type as the event.  The 21 
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the 22 
fire method be marked with specialname . 23 

An event can contain any number of other methods specified with the .other  directive. From the point of 24 
view of the CLI, these methods are only associated with each other through the event. If they have special 25 
semantics, this needs to be documented by the implementer. 26 

Events can also have custom attributes (§21) associated with them and they can declare source line information. 27 
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[Example: This shows the declaration of an event, its corresponding delegate, and typical implementations of 1 
the add, remove, and fire method of the event. The event and the methods are declared in a class called 2 
Counter. 3 

// the delegate 4 
.class private sealed auto autochar TimeUpEventHandler extends 5 
     [mscorlib]System.Delegate { 6 
  .method public hidebysig specialname rtspecialname instance void .ctor (object 7 
      'object', native int 'method') runtime managed {} 8 

  .method public hidebysig virtual instance void Invoke() runtime managed {} 9 

  .method public hidebysig newslot virtual instance class 10 
    [mscorlib]System.IAsyncResult BeginInvoke(class  11 
    mscorlib]System.AsyncCallback callback, object 'object') runtime managed {} 12 

  .method public hidebysig newslot virtual instance void EndInvoke(class 13 
     [mscorlib]System.IAsyncResult result) runtime managed {} 14 
} 15 
 16 

// the class that declares the event 17 
.class public auto autochar Counter extends [mscorlib]System.Object { 18 
  // field to store the handlers, initialized to null 19 
  .field private class TimeUpEventHandler timeUpEventHandler 20 
  // the event declaration 21 
  .event TimeUpEventHandler startStopEvent { 22 
    .addon instance void Counter::add_TimeUp(class TimeUpEventHandler 'handler') 23 
    .removeon instance void Counter::remove_TimeUp(class TimeUpEventHandler 24 
'handler') 25 
    .fire instance void Counter::fire_TimeUpEvent() 26 
  } 27 
  // the add method, combines the handler with existing delegates 28 
  .method public hidebysig virtual specialname instance void add_TimeUp(class  29 
      TimeUpEventHandler 'handler') { 30 
    .maxstack 4 31 
    ldarg.0 32 
    dup 33 

    ldfld class TimeUpEventHandler Counter::TimeUpEventHandler 34 
    ldarg 'handler' 35 
    call class[mscorlib]System.Delegate  36 
      [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class  37 
      [mscorlib]System.Delegate) 38 
    castclass TimeUpEventHandler 39 
    stfld class TimeUpEventHandler Counter::timeUpEventHandler 40 
    ret 41 
  } 42 

  // the remove method, removes the handler from the delegate 43 
  .method virtual public specialname void remove_TimeUp(class TimeUpEventHandler  44 
        'handler') { 45 
    .maxstack 4 46 
    ldarg.0 47 
    dup 48 
    ldfld class TimeUpEventHandler Counter::timeUpEventHandler 49 

    ldarg 'handler' 50 
    call class[mscorlib]System.Delegate 51 
       [mscorlib]System.Delegate::Remove(class  52 
       [mscorlib]System.Delegate, class [mscorlib]System.Delegate) 53 
    castclass TimeUpEventHandler 54 
    stfld class TimeUpEventHandler Counter::timeUpEventHandler 55 
    ret 56 
  } 57 
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  // the fire method 1 
  .method virtual family specialname void fire_TimeUpEvent() { 2 
    .maxstack 3 3 
    ldarg.0 4 
    ldfld class TimeUpEventHandler Counter::timeUpEventHandler 5 
    callvirt instance void TimeUpEventHandler::Invoke() 6 
    ret 7 
  } 8 
} // end of class Counter 9 

end example] 10 
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19  Exception handling 1 

In the CLI, a method can define a range of CIL instructions that are said to be protected.  This is called a try 2 
block.  It can then associate one or more handlers with that try block.  If an exception occurs during execution 3 
anywhere within the try block, an exception object is created that describes the problem.  The CLI then takes 4 
over, transferring control from the point at which the exception was thrown, to the block of code that is willing 5 
to handle that exception.  See Partition I. 6 

No two handlers (fault, filter, catch, or finally) can have the same starting address.  When an exception occurs it 7 
is necessary to convert the execution address to the correct most lexically nested try block in which the 8 
exception occurred. 9 

SEHBlock ::= 

  TryBlock SEHClause [ SEHClause* ] 
 10 
The next few subclauses expand upon this simple description, by describing the five kinds of code block that 11 
take part in exception processing: try , catch , filter , finally , and fault .   (Note that there are 12 
restrictions upon how many, and what kinds of SEHClause a given TryBlock can have; see Partition I for 13 
details.) 14 

The remaining syntax items are described in detail below; they are collected here for reference. 15 

TryBlock ::= Description 

.try  Label to  Label Protect region from first label to prior to second  

| .try  ScopeBlock ScopeBlock is protected 

 16 
SEHClause ::= Description 

  catch  TypeReference HandlerBlock Catch all objects of the specified type 

| fault  HandlerBlock Handle all exceptions but not normal exit 

| filter  Label HandlerBlock Enter handler only if filter succeeds 

| finally  HandlerBlock Handle all exceptions and normal exit 

 17 
HandlerBlock::= Description 

handler  Label to  Label Handler range is from first label to prior to second 

| ScopeBlock  ScopeBlock is the handler block 

 18 

19.1  Protected blocks 19 

A try, or protected, or guarded, block is declared with the .try  directive.   20 

TryBlock ::= Descriptions 

.try  Label to  Label Protect region from first label to prior to second. 

| .try  ScopeBlock ScopeBlock is protected 

 21 
In the first case, the protected block is delimited by two labels.  The first label is the first instruction to be 22 
protected, while the second label is the instruction just beyond the last one to be protected.  Both labels shall be 23 
defined prior to this point.  24 

The second case uses a scope block (§15.4.4) after the .try  directive—the instructions within that scope are 25 
the ones to be protected.  26 
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19.2  Handler blocks 1 

HandlerBlock ::= Description 

| handler  Label to  Label Handler range is from first label to prior to second 

| ScopeBlock ScopeBlock is the handler block 

 2 
In the first case, the labels enclose the instructions of the handler block, the first label being the first instruction 3 
of the handler while the second is the instruction immediately after the handler. In the second case, the handler 4 
block is just a scope block. 5 

Implementation Specific (Microsoft) 6 

ilasm requires labels used to specify any exceptions blocks to be defined beforehand in the source. 7 
ilasm supports the following additional syntax for use in round-tripping: 8 

HandlerBlock ::=  handler Int32 to Int32 9 

19.3  Catch blocks  10 

A catch block is declared using the catch  keyword.  This specifies the type of exception object the clause is 11 
designed to handle, and the handler code itself. 12 

SEHClause ::= 

  catch  TypeReference HandlerBlock 
 13 
[Example:  14 

. try { 15 
 …    // protected instructions 16 
 leave exitSEH  // normal exit 17 
} catch [mscorlib]System.FormatException { 18 
 …    // handle the exception 19 
 pop    // pop the exception object 20 
 leave exitSEH  // leave catch handler 21 
} 22 
exitSEH:    // continue here 23 

end example] 24 

19.4  Filter blocks 25 

A filter block is declared using the filter keyword. 26 

SEHClause ::= … 

| filter  Label HandlerBlock 

| filter  Scope HandlerBlock 
 27 
The filter code begins at the specified label and ends at the first instruction of the handler block.  (Note that the 28 
CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler 29 
block.) 30 

[Example:  31 

.method public static void m () { 32 
    .try  { 33 
      …   // protected instructions 34 
      leave exitSEH // normal exit 35 
    } 36 
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    filter { 1 
      …   // decide whether to handle 2 
      pop   // pop exception object 3 
      ldc.i4.1  // EXCEPTION_EXECUTE_HANDLER 4 
      endfilter  // return answer to CLI 5 
    } 6 

    { 7 
      …   // handle the exception 8 
      pop   // pop the exception object 9 
      leave exitSEH // leave filter handler 10 
    } 11 
exitSEH: 12 
    … 13 
} 14 

end example] 15 

19.5  Finally blocks 16 

A finally block is declared using the finally keyword.  This specifies the handler code, with this grammar: 17 

SEHClause ::= … 

| finally  HandlerBlock 
 18 
The last possible CIL instruction that can be executed in a finally handler shall be endfinally . 19 

[Example:  20 

.try { 21 
 …   // protected instructions 22 
 leave exitTry  // shall use leave 23 
} finally { 24 
 …   // finally handler 25 
 endfinally 26 
} 27 
exitTry:   // back to normal 28 

19.6  Fault  handlers 29 

end example] 30 

A fault block is declared using the fault keyword.  This specifies the handler code, with this grammar: 31 

SEHClause ::= … 

| fault  HandlerBlock 
 32 
The last possible CIL instruction that can be executed in a fault handler shall be endfault . 33 

[Example:  34 

.method public static void m() { 35 
  startTry: 36 
 …   // protected instructions 37 
 leave exitSEH // shall use leave 38 
  endTry: 39 

startFault: 40 
 …   // fault handler instructions 41 
 endfault 42 

endFault: 43 
 .try startTry to endTry fault handler startFault to endFault 44 

exitSEH:   // back to normal 45 
} 46 
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end example] 1 
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20  Declarative security 1 

Many languages that target the CLI use attribute syntax to attach declarative security attributes to items in the 2 
metadata. This information is actually converted by the compiler into an XML-based representation that is 3 
stored in the metadata, see §22.11.  By contrast, ilasm requires the conversion information to be represented in 4 
its input. 5 

SecurityDecl ::= 

  .permissionset  SecAction = ‘(’ Bytes ‘)’  

| .permission  SecAction TypeReference ‘(’  (ameValPairs ‘)’  

 6 
(ameValPairs ::= (ameValPair [ ‘,’  (ameValPair ]* 
 7 
(ameValPair ::= SQSTRI(G ‘=’  SQSTRI(G 

In .permission , TypeReference specifies the permission class and (ameValPairs specifies the settings.   8 
See §22.11 9 

In .permissionset  the bytes specify the encoded version of the security settings: 10 

SecAction ::= Description 

  assert  Assert permission so that callers do not need it. 

| demand Demand permission of all callers. 

| deny  Deny permission so checks will fail. 

| inheritcheck  Demand permission of a derived class. 

| linkcheck  Demand permission of caller. 

| permitonly  Reduce permissions so check will fail. 

| reqopt  Request optional additional permissions. 

| reqrefuse  Refuse to be granted these permissions. 

| request  Hint that permission might be required. 
 11 

Implementation Specific (Microsoft) 12 

The following security action is Microsoft-specific.  A conforming implementation of the CLI can 13 
ignore this security action if present in an assembly 14 

Implementation Specific (Microsoft) 

SecAction ::= Description 

| prejitgrant  Persisted denied set at prejit time. 
 15 
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21  Custom attributes 1 

Custom attributes add user-defined annotations to the metadata.  Custom attributes allow an instance of a type 2 
to be stored with any element of the metadata. This mechanism can be used to store application-specific 3 
information at compile time, and to access it either at runtime or when another tool reads the metadata. While 4 
any user-defined type can be used as an attribute, CLS compliance requires that attributes will be instances of 5 
types whose base class is System.Attribute. The CLI predefines some attribute types and uses them to control 6 
runtime behavior. Some languages predefine attribute types to represent language features not directly 7 
represented in the CTS. Users or other tools are welcome to define and use additional attribute types. 8 

Custom attributes are declared using the directive .custom , followed by the method declaration for a type 9 
constructor, optionally followed by a Bytes in parentheses: 10 

CustomDecl ::= 

  Ctor [ ‘=’ ‘(’  Bytes ‘)’  ]  
 11 
The Ctor item represents a method declaration (§15.4), specific for the case where the method's name is 12 
.ctor . [Example: 13 

.custom instance void myAttribute::.ctor(bool, bool ) = ( 01 00 00 01 00 14 
00 ) 15 

end example] 16 

Custom attributes can be attached to any item in metadata, except a custom attribute itself.  Commonly, custom 17 
attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties, 18 
generic parameters, and events (the custom attribute is attached to the immediately preceding declaration) 19 

The Bytes item is not required if the constructor takes no arguments.  In such cases, all that matters is the 20 
presence of the custom attribute. 21 

If the constructor takes parameters, their values shall be specified in the Bytes item.  The format for this ‘blob’ 22 
is defined in §23.3. 23 

[Example: The following shows a class that is marked with the attribute called 24 
System.CLSCompliantAttribute and a method that is marked with the attribute called 25 
System.ObsoleteAttribute. 26 

.class public MyClass extends [mscorlib]System.Object 27 
{ .custom instance void [mscorlib]System.CLSCompliantAttribute::.ctor(bool) = 28 
    ( 01 00 01 00 00 ) 29 
  .method public static void CalculateTotals() cil managed 30 
{  .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor() =  31 
    ( 01 00 00 00 ) 32 
  ret 33 
} 34 

end example] 35 

21.1  CLS conventions: custom attribute usage  36 

CLS imposes certain conventions upon the use of custom attributes in order to improve cross-language 37 
operation.  See Partition I for details. 38 

21.2  Attributes used by the CLI 39 

There are two kinds of custom attributes, called genuine custom attributes, and pseudo custom attributes. 40 
Custom attributes and pseudo custom attributes are treated differently, at the time they are defined, as follows: 41 

• A custom attribute is stored directly into the metadata; the‘blob’ which holds its defining data is 42 
stored as-is. That ‘blob’ can be retrieved later. 43 
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• A pseudo custom attribute is recognized because its name is one of a short list.  Rather than store 1 
its ‘blob’ directly in metadata, that ‘blob’ is parsed, and the information it contains is used to set 2 
bits and/or fields within metadata tables.  The ‘blob’ is then discarded; it cannot be retrieved later. 3 

Pseudo custom attributes therefore serve to capture user directives, using the same familiar syntax the compiler 4 
provides for genuine custom attributes, but these user directives are then stored into the more space-efficient 5 
form of metadata tables. Tables are also faster to check at runtime than are genuine custom attributes. 6 

Many custom attributes are invented by higher layers of software. They are stored and returned by the CLI, 7 
without its knowing or caring what they ‘mean’.  But all pseudo custom attributes, plus a collection of genuine 8 
custom attributes, are of special interest to compilers and to the CLI.  An example of such custom attributes is 9 
System.Reflection.DefaultMemberAttribute.  This is stored in metadata as a genuine custom attribute 10 
‘blob’, but reflection uses this custom attribute when called to invoke the default member (property) for a type. 11 

The following subclauses list all of the pseudo custom attributes and distinguished custom attributes, where 12 
distinguished means that the CLI and/or compilers pay direct attention to them, and their behavior is affected in 13 
some way. 14 

In order to prevent name collisions into the future, all custom attributes in the System namespace are reserved 15 
for standardization. 16 

21.2.1  Pseudo custom attr ibutes 17 

The following table lists the CLI pseudo custom attributes. (Not all of these attributes are specified in this 18 
Standard, but all of their names are reserved and shall not be used for other purposes.  For details on these 19 
attributes, see the documentation for the corresponding class in Partition IV.) They are defined in the 20 
namespaces System.Reflection, System.Runtime.CompilerServices, and 21 
System.Runtime.InteropServices namespaces.   22 

Attribute Description 

AssemblyAlgorithmIDAttribute Records the ID of the hash algorithm used (reserved only) 

AssemblyFlagsAttribute Records the flags for this assembly (reserved only) 

DllImportAttribute Provides information about code implemented within an unmanaged 
library 

FieldOffsetAttribute Specifies the byte offset of fields within their enclosing class or value type 

InAttribute Indicates that a method parameter is an [in] argument 

MarshalAsAttribute Specifies how a data item should be marshalled between managed and 
unmanaged code (see §23.4). 

MethodImplAttribute Specifies details of how a method is implemented 

OutAttribute Indicates that a method parameter is an [out] argument 

StructLayoutAttribute Allows the caller to control how the fields of a class or value type are laid 
out in managed memory 

 23 
These attributes affect bits and fields in metadata, as follows: 24 

AssemblyAlgorithmIDAttribute: sets the Assembly.HashAlgId field. 25 

AssemblyFlagsAttribute: sets the Assembly.Flags field. 26 

DllImportAttribute: sets the Method.Flags.PinvokeImpl bit for the attributed method; also, adds a new row 27 
into the ImplMap table (setting MappingFlags, MemberForwarded, Import(ame and ImportScope columns). 28 

FieldOffsetAttribute: sets the FieldLayout.OffSet value for the attributed field. 29 

InAttribute: sets the Param.Flags.In bit for the attributed parameter. 30 
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MarshalAsAttribute: sets the Field.Flags.HasFieldMarshal bit for the attributed field (or the 1 
Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters a new row into the FieldMarshal 2 
table for both Parent and (ativeType columns.  3 

MethodImplAttribute: sets the Method.ImplFlags field of the attributed method. 4 

OutAttribute: sets the Param.Flags.Out bit for the attributed parameter. 5 

StructLayoutAttribute: sets the TypeDef.Flags.LayoutMask sub-field for the attributed type, and, optionally, 6 
the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout.PackingSize,and ClassLayout.ClassSize fields 7 
for that type. 8 

Implementation Specific (Microsoft) 9 

Use of the following pseudo custom attributes renders the assembly that contains them non-portable; a 10 
conforming implementation of the CLI can reject such an assembly when it is loaded, or throw an 11 
exception at runtime if any attempt is made to access the metadata items set by those attributes. 12 

Implementation Specific (Microsoft) 

Attribute Description 

ComImportAttribute Provides information about native code reached as a COM component 

OptionalAttribute Marks a method parameter as optional 

NonSerializedAttribute Indicates that a field should not be serialized 

PreserveSigAttribute Specifies HRESULT or retval signature transformation 

SerializableAttribute Indicates that a type can be serialized 
 13 

Implementation Specific (Microsoft) 14 

The pseudo custom attributes above affect bits and fields in metadata, as follows: 15 

ComImportAttribute: sets the TypeDef.Flags.Import bit for the attributed type. 16 

OptionalAttribute: sets the Param.Flags.Optional bit for the attributed parameter. 17 

NonSerializedAttribute: sets the Field.Flags.NotSerialized bit for the attributed field. 18 

PreserveSigAttribute: sets the Method.ImplFlags.PreserveSig bit of the attributed method. 19 

SerializableAttribute: sets the TypeDef.Flags.Serializable bit for the attributed type. 20 

21.2.2  Custom attr ibutes def ined by  the CLS 21 

 The CLS specifies certain Custom Attributes and requires that conformant languages support them. These 22 
attributes are located under System. 23 

Attribute Description 

AttributeUsageAttribute Used to specify how an attribute is intended to be used. 

ObsoleteAttribute Indicates that an element is not to be used. 

CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant 
through an instance field on the attribute object. 

 24 

21.2.3  Custom attr ibutes for  CIL-to-nat ive-code compiler and debugger  25 

Implementation Specific (Microsoft) 26 

The following custom attributes control the runtime behavior of a CIL-to-native-code compiler and a 27 
runtime debugger; they are defined in the System.Diagnostics namespace.  Their use renders the 28 
assembly that contains them non-portable; a conforming implementation of the CLI can reject such an 29 
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assembly when it is loaded, or throw an exception at runtime if any attempt is made to access those 1 
attributes. 2 

Implementation Specific (Microsoft) 

Attribute Description 

DebuggableAttribute Controls a CIL-to-native-code compiler to produce code that is 
easier to debug 

DebuggerHiddenAttribute Specifies a debugger should step over the attributed method or 
property 

DebuggerStepThroughAttribute Specifies a debugger should step through the attributed method or 
property (it might step into a method called by this one) 

 3 

21.2.4  Custom attr ibutes for remoting 4 

Implementation Specific (Microsoft) 5 

The following custom attributes are used to control the behavior of remoting; they are defined in the 6 
System.Runtime.Remoting namespace.  Their use renders the assembly that contains them non-7 
portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or 8 
throw an exception at runtime if any attempt is made to access those custom attributes. 9 

Implementation Specific (Microsoft) 

Attribute Description 

ContextAttribute Root for all context attributes. 

OneWayAttribute Marks a method as “fire and forget” 

SynchronizationAttribute Specifies the synchronization options for a class 

ThreadAffinityAttribute Refinement of Synchronized Context. 
 10 

21.2.5  Custom attr ibutes for security  11 

Implementation Specific (Microsoft) 12 

The following custom attributes affect the security checks performed upon method invocations at 13 
runtime.  They are defined in the System.Security namespace. 14 

Implementation Specific (Microsoft) 

Attribute Description 

DynamicSecurityMethodAttribute Indicates to the CLI that the method requires space to be 
allocated for a security object 

SuppressUnmanagedCodeSecurityAttribute Indicates the target method, implemented as unmanaged 
code, should skip per-call checks 

 15 
Implementation Specific (Microsoft) 16 

The following custom attributes are defined in the System.Security and 17 
System.Security.Permissions namespaces.   Note that these are all base classes; the actual instances 18 
of security attributes found in assemblies will be sub-classes of these. 19 

Implementation Specific (Microsoft) 

Attribute Description 
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Implementation Specific (Microsoft) 

Attribute Description 

SiteIdentityPermissionAttribute  Custom attribute class for declarative security with 
SiteIdentityPermission. 

StrongNameIdentityPermissionAttribute Custom attribute class for declarative security with 
StrongNameIdentityPermission. 

The following custom attributes are defined in the System.Net and System.Security.Permissions 1 
namespaces.   Note that these are all base classes; the actual instances of security attributes found in assemblies 2 
will be sub-classes of these. 3 

Attribute Description 

CodeAccessSecurityAttribute This is the base attribute class for declarative security using 
custom attributes. 

DnsPermissionAttribute Custom attribute class for declarative security with 
DnsPermission 

EnvironmentPermissionAttribute Custom attribute class for declarative security with 
EnvironmentPermission. 

FileIOPermissionAttribute  Custom attribute class for declarative security with 
FileIOPermission. 

ReflectionPermissionAttribute Custom attribute class for declarative security with 
ReflectionPermission. 

SecurityAttribute This is the base attribute class for declarative security from 
which CodeAccessSecurityAttribute is derived. 

SecurityPermissionAttribute Indicates whether the attributed method can affect security 
settings 

SocketPermissionAttribute Custom attribute class for declarative security with 
SocketPermission. 

WebPermissionAttribute Custom attribute class for declarative security with 
WebPermission. 

 4 
Note that any other security-related custom attributes (i.e., any custom attributes that derive from 5 
System.Security.Permissions.SecurityAttribute) included into an assembly, can cause a conforming 6 
implementaion of the CLI to reject such an assembly when it is loaded, or throw an exception at runtime if any 7 
attempt is made to access those security-related custom attributes.  (This statement holds true for any custom 8 
attributes that cannot be resolved; security-related custom attributes are just one particular case) 9 

Implementation Specific (Microsoft) 10 

The following security-related custom attributes are defined in the System.Security.Permissions 11 
namespace.  Their use renders the assembly that contains them non-portable; a conforming 12 
implementation of the CLI can reject such an assembly when it is loaded, or throw an exception at 13 
runtime if any attempt is made to access those custom attributes. 14 

Implementation Specific (Microsoft) 

Attribute Description 

RegistryPermissionAttribute Indicates whether the attributed method can access the 
Registry 
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UIPermissionAttribute Custom attribute class for declarative security with 
UIPermission. 

ZoneIdentityPermissionAttribute Custom attribute class for declarative security with 
ZoneIdentityPermission. 

 1 

21.2.6  Custom attr ibutes for TLS 2 

A custom attribute that denotes a TLS (thread-local storage, see §16.3.3) field is defined in the System 3 
namespace. 4 

Attribute Description 

ThreadStaticAttribute Provides for type member fields that are relative for the thread. 
 5 

21.2.7  Pseudo custom attr ibutes for  the assembly  l inker  6 

Implementation Specific (Microsoft) 7 

The following pseudo custom attributes are used by the al tool to transfer information between modules 8 
and assemblies (they are temporarily attached to a TypeRef to a class called 9 
AssemblyAttributesGoHere) then merged by al and attached to the assembly. These attributes are 10 
defined in the System.Reflection namespace.  Their use renders the assembly that contains them non-11 
portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or 12 
throw an exception at runtime if any attempt is made to access those Pseudo Custom Attributes. 13 

Implementation Specific (Microsoft) 

Attribute Description 

AssemblyCultureAttribute Specifies which culture an assembly supports 

AssemblyVersionAttribute String holding version of assembly (in the format 
major.minor.build.revision) 

 14 
Implementation Specific (Microsoft) 15 

The pseudo custom attributes above affect bits and fields in metadata, as follows: 16 

AssemblyCultureAttribute: sets the Assembly.Culture field 17 

AssemblyVersionAttribute: sets the Assembly.MajorVersion, MinorVersion, Build(umber and 18 
Revision(umber 19 

21.2.8  Custom attr ibutes provided for interoperat ion  with unmanaged code 20 

Implementation Specific (Microsoft) 21 

The following custom attributes are used to control the interoperation with COM 1.x and classical 22 
COM. These attributes are located in the namespace System.Runtime.InteropServices.  More 23 
information can also be found in the Partition IV.  Their use renders the assembly that contains them 24 
non-portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or 25 
throw an exception at runtime if any attempt is made to access those custom attributes. 26 

Implementation Specific (Microsoft) 

Attribute Description 

ClassInterfaceAttribute Specifies how the class is exported to COM (as DispInterface, as a 
Dual Interface, or not at all) 

ComAliasNameAttribute  Applied to a parameter or field to indicate the COM alias for the 
parameter or field type. 
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Implementation Specific (Microsoft) 

Attribute Description 

ComConversionLossAttribute  Indicates that information was lost about a class or interface when 
it was imported from a type library to an assembly 

ComEmulateAttribute  Used on a type to indicate that it is an emulator type for a different 
type. 

ComRegisterFunctionAttribute  Used on a method to indicate that the method should be called 
when the assembly is registered for use from COM. 

ComSourceInterfacesAttribute  Identifies the list of interfaces that are sources of events for the 
type. 

ComUnregisterFunctionAttribute  Used on a method to indicate that the method should be called 
when the assembly is unregistered for use from COM. 

ComVisibleAttribute  Can be applied to an individual type or to an entire assembly to 
control COM visibility. 

DispIdAttribute  Custom attribute to specify the COM DISPID of a Method or Field. 

GuidAttribute  Used to supply the GUID of a type, interface or an entire type 
library. 

HasDefaultInterfaceAttribute  Used to specify that a class has a COM default interface. 

IdispatchImplAttribute  Indicates which IDispatch implementation the CLI uses when 
exposing dual interfaces and dispinterfaces to COM 

ImportedFromTypeLibAttribute  Custom attribute to specify that a module is imported from a COM 
type library. 

InterfaceTypeAttribute Indicates whether a managed interface is dual, IDispatch or 
IUnknown when exposed to COM 

NoComRegistrationAttribute  Used to indicate that an otherwise public, COM-creatable type 
should not be registered for use form COM applications. 

NoIDispatchAttribute  This attribute is used to control how the class responds to queries 
for an IDispatch Interface. 

ProgIdAttribute  Custom attribute that allows the user to specify the prog ID of a 
class. 

TypeLibFuncAttribute  Contains the FUNCFLAGS that were originally imported for this 
function from the COM type library. 

TypeLibTypeAttribute  Contains the TYPEFLAGS that were originally imported for this 
type from the COM type library. 

TypeLibVarAttribute  Contains the VARFLAGS that were originally imported for this 
variable from the COM type library. 

 1 

21.2.9  Custom attr ibutes,  various 2 

The following custom attributes control various aspects of the CLI: 3 

Attribute Aamespace Description 
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Attribute Aamespace Description 

ConditionalAttribute System.Diagnostics Used to mark methods as callable, 
based on some compile-time condition.  
If the condition is false, the method will 
not be called 

DecimalConstantAttribute System.Runtime.CompilerServices Stores the value of a decimal constant 
in metadata 

DefaultMemberAttribute System.Reflection Defines the member of a type that is the 
default member used by reflection’s 
InvokeMember. 

FaultModeAttribute System.Runtime.CompilerServices Indicates whether exceptions from 
instruction checks are precise or 
imprecise. 

FlagsAttribute System Custom attribute indicating an 
enumeration should be treated as a 
bitfield; that is, a set of flags 

IndexerNameAttribute System.Runtime.CompilerServices Indicates the name by which a property 
having one or more parameters will be 
known in programming languages that 
do not support such a facility directly 

ParamArrayAttribute System Indicates that the method will allow a 
variable number of arguments in its 
invocation 

 1 
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22  Metadata logical format: tables 1 

This clause defines the structures that describe metadata, and how they are cross-indexed.  This corresponds to 2 
how metadata is laid out, after being read into memory from a PE file.  (For a description of metadata layout 3 
inside the PE file itself, see §24) 4 

Metadata is stored in two kinds of structure: tables (arrays of records) and heaps.  There are four heaps in any 5 
module: String, Blob, Userstring, and Guid.  The first three are byte arrays (so valid indexes into these heaps 6 
might be 0, 23, 25, 39, etc).  The Guid heap is an array of GUIDs, each 16 bytes wide.  Its first element is 7 
numbered 1, its second 2, and so on. 8 

Each entry in each column of each table is either a constant or an index.  9 

Constants are either literal values (e.g.,  ALG_SID_SHA1 = 4, stored in the HashAlgId column of the Assembly 10 
table), or, more commonly, bitmasks.  Most bitmasks (they are almost all called Flags) are 2 bytes wide (e.g., 11 
the Flags column in the Field table), but there are a few that are 4 bytes (e.g., the Flags column in the TypeDef 12 
table). 13 

Each index is either 2 or 4 bytes wide.  The index points into the same or another table, or into one of the four 14 
heaps.  The size of each index column in a table is only made 4 bytes if it needs to be for that particular 15 
module.   So, if a particular column indexes a table, or tables, whose highest row number fits in a 2-byte value, 16 
the indexer column need only be 2 bytes wide.  Conversely, for tables containing 64K or more rows, an indexer 17 
of that table will be 4 bytes wide. 18 

Indexes to tables begin at 1, so index 1 means the first row in any given metadata table.  (An index value of 19 
zero denotes that it does not index a row at all; that is, it behaves like a null reference.) 20 

There are two kinds of columns that index a metadata table. (For details of the physical representation of these 21 
tables, see §24.2.6): 22 

• Simple – such a column indexes one, and only one, table.  For example, the FieldList column in the 23 
TypeDef table always indexes the Field table.  So all values in that column are simple integers, 24 
giving the row number in the target table 25 

• Coded – such a column indexes any of several tables. For example, the Extends column in the 26 
TypeDef table can index into the TypeDef or TypeRef table.   A few bits of that index value are 27 
reserved to define which table it targets.  For the most part, this specification talks of index values 28 
after being decoded into row numbers within the target table.  However, the specification includes a 29 
description of these coded indexes in the section that describes the physical layout of 30 
Metadata (§24). 31 

Metadata preserves name strings, as created by a compiler or code generator, unchanged.  Essentially, it treats 32 
each string as an opaque blob.  In particular, it preserves case.  The CLI imposes no limit on the length of 33 
names stored in metadata and subsequently processed by the CLI 34 

Implementation Specific (Microsoft) 35 

For the first release, strings are limited in length.  Depending on its purpose, a string can be no larger 36 
than MAX_CLASS_NAME (defined as 1024) or MAX_PATH_NAME (defined as 260).  These values refer to the 37 
maximum number of bytes that the string, after being converted into UTF8 format, can occupy; that 38 
includes a terminating null character.  It is intended that this limitation be removed in a future release.  39 
Within this partition, the above restrictions are abbreviated to the phrase: “… is limited to 40 
MAX_CLASS_NAME” or “… is limited to MAX_PATH_NAME”. 41 

Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed 42 
case-blind (see Partition I).  However, all other name matches (type, field, method, property, event) shall be 43 
exact – so that this level of resolution is the same across all platforms, whether their OS is case-sensitive or not. 44 

Tables are given both a name (e.g., "Assembly") and a number (e.g., 0x20).  The number for each table is listed 45 
immediately with its title in the following subclauses. The table numbers indicate the order in which their 46 
corresponding table shall appear in the PE file, and there is a set of bits (§24.2.6) saying whether a given table 47 
exists or not.  The number of a table is the position within that set of bits. 48 
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A few of the tables represent extensions to regular CLI files.  Specifically, ENCLog and ENCMap, which occur 1 
in temporary images, generated during "Edit and Continue" or "incremental compilation" scenarios, whilst 2 
debugging.  Both table types are reserved for future use. 3 

References to the methods or fields of a type are stored together in a metadata table called the MemberRef 4 
table.  However, sometimes, for clearer explanation, this standard distinguishes between these two kinds of 5 
reference, calling them “MethodRef” and “FieldRef”. 6 

Certain tables are required to be sorted by a primary key, as follows: 7 

 8 

Table Primary Key Column 

ClassLayout Parent 

Constant Parent 

CustomAttribute Parent 

DeclSecurity Parent 

FieldLayout Field 

FieldMarshal Parent 

FieldRVA Field 

GenericParam Owner 

GenericParamConstraint Owner 

ImplMap MemberForwarded 

InterfaceImpl Class 

MethodImpl Class 

MethodSemantics Association 

NestedClass NestedClass 

 9 

Furthermore, the InterfaceImpl table is sorted using the Interface column as a secondary key, and the 10 
GenericParam table is sorted using the Number column as a secondary key. 11 

Finally, the TypeDef table has a special ordering constraint: the definition of an enclosing class shall precede 12 
the definition of all classes it encloses. 13 

Metadata items (records in the metadata tables) are addressed by metadata tokens.  Uncoded metadata tokens 14 
are 4-byte unsigned integers, which contain the metadata table index in the most significant byte and a 1-based 15 
record index in the three least-significant bytes.  Metadata tables and their respective indexes are described in 16 
§22.2 and later subclauses. 17 

Coded metadata tokens also contain table and record indexes, but in a different format. For details on the 18 
encoding, see §24.2.6. 19 

22.1  Metadata validation rules 20 

This contains informative text only 21 

The subclauses that follow describe the schema for each kind of metadata table, and explain the detailed rules 22 
that guarantee metadata emitted into any PE file is valid.  Checking that metadata is valid ensures that later 23 
processing (such as checking the CIL instruction stream for type safety, building method tables, CIL-to-native-24 
code compilation, and data marshalling) will not cause the CLI to crash or behave in an insecure fashion.  25 
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In addition, some of the rules are used to check compliance with the CLS requirements (see Partition I) even 1 
though these are not related to valid Metadata.  These are marked with a trailing [CLS]  tag. 2 

The rules for valid metadata refer to an individual module.  A module is any collection of metadata that could 3 
typically be saved to a disk file. This includes the output of compilers and linkers, or the output of script 4 
compilers (where the metadata is often held only in memory, but never actually saved to a file on disk). 5 

The rules address intra-module validation only.  As such, software that checks conformance with this standard 6 
need not resolve references or walk type hierarchies defined in other modules. However, even if two modules, 7 
A and B, analyzed separately, contain only valid metadata, they can still be in error when viewed together (e.g., 8 
a call from Module A, to a method defined in module B, might specify a call site signature that does not match 9 
the signatures defined for that method in B). 10 

All checks are categorized as ERROR, WARNING, or CLS.  11 

• An ERROR check reports something that might cause a CLI to crash or hang, it might run but 12 
produce wrong answers; or it might be entirely benign.   Conforming implementations of the CLI 13 
can exist that will not accept metadata that violates an ERROR rule, and therefore such metadata is 14 
invalid and is not portable. 15 

• A WARNING check reports something, not actually wrong, but possibly a slip on the part of the 16 
compiler.  Normally, it indicates a case where a compiler could have encoded the same information 17 
in a more compact fashion or where the metadata represents a construct that can have no actual use 18 
at runtime.  All conforming implementations shall support metadata that violate only WARNING 19 
rules; hence such metadata is both valid and portable. 20 

• A CLS check reports lack of compliance with the Common Language Specification (see 21 
Partition I).  Such metadata is both valid and portable, but programming languages might exist that 22 
cannot process it, even though all conforming implementations of the CLI support the constructs. 23 

Validation rules fall into the following broad categories: 24 

• Aumber of Rows:  A few tables are allowed only one row (e.g., Module table).  Most have no such 25 
restriction. 26 

• Unique Rows: No table shall contain duplicate rows, where “duplicate” is defined in terms of its 27 
key column, or combination of columns. 28 

• Valid Indexes: Columns which are indexes shall point somewhere sensible, as follows: 29 

o Every index into the String, Blob, or Userstring heaps shall point into that heap, neither 30 
before its start (offset 0), nor after its end. 31 

o Every index into the Guid heap shall lie between 1 and the maximum element number in 32 
this module, inclusive. 33 

o Every index (row number) into another metadata table shall lie between 0 and that table’s 34 
row count + 1  (for some tables, the index can point just past the end of any target table, 35 
meaning it indexes nothing). 36 

• Valid Bitmasks: Columns which are bitmasks shall have only valid permutations of bits set. 37 

• Valid RVAs: There are restrictions upon fields and methods that are assigned RVAs (Relative 38 
Virtual Addresses, which are byte offsets, expressed from the address at which the corresponding 39 
PE file is loaded into memory). 40 

Note that some of the rules listed below really don’t say anything—for example, some rules state that a 41 
particular table is allowed zero or more rows—in which case, there is no way that the check can fail.  This is 42 
done simply for completeness, to record that such details have indeed been addressed, rather than overlooked. 43 

End informative text 44 

The CLI imposes no limit on the length of names stored in metadata, and subsequently processed by a CLI 45 
implementation. 46 
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22.2  Assembly :  0x20 1 

The Assembly table has the following columns: 2 

• HashAlgId (a 4-byte constant of type AssemblyHashAlgorithm, §23.1.1) 3 

• MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants) 4 

• Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2) 5 

• PublicKey (an index into the Blob heap) 6 

• (ame (an index into the String heap) 7 

• Culture (an index into the String heap)  8 

The Assembly table is defined using the .assembly  directive (§6.2); its columns are obtained from the 9 
respective .hash algorithm , .ver , .publickey , and .culture  (§6.2.1). (For an example, see §6.2.) 10 

This contains informative text only 11 

1. The Assembly table shall contain zero or one row  [ERROR] 12 

2. HashAlgId shall be one of the specified values  [ERROR] 13 

Implementation Specific (Microsoft) 14 

The Microsoft implementation treats this as a WARNING rather than an error, using numbers 15 
based on the Crypto APIs.  This means that the Microsoft implementation can handle additional 16 
algorithms based on the constants of type ALG_CLASS_HASH in WinCrypt.h as well as those 17 
dynamically discovered at runtime.  18 

3. MajorVersion, MinorVersion, Build(umber, and Revision(umber can each have any value 19 

4. Flags shall have only those values set that are specified [ERROR] 20 

5. PublicKey can be null or non-null 21 

6. (ame shall index a non-empty string in the String heap [ERROR] 22 

7. The string indexed by (ame can be of unlimited length 23 

8. Culture can be null or non-null 24 

9. If Culture is non-null, it shall index a single string from the list specified (§23.1.3) [ERROR] 25 

[(ote: (ame is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-26 
compliant systems, (ame contains no colon, no forward-slash, no backslash, and no period. end note] 27 

End informative text 28 

22.3  AssemblyOS :  0x22 29 

The AssemblyOS table has the following columns: 30 

• OSPlatformID (a 4-byte constant) 31 

• OSMajorVersion (a 4-byte constant) 32 

• OSMinorVersion (a 4-byte constant) 33 

This record should not be emitted into any PE file.  However, if present in a PE file, it shall be treated as if all 34 
its fields were zero.  It shall be ignored by the CLI. 35 

22.4  AssemblyProcessor :  0x21 36 

The AssemblyProcessor table has the following column: 37 

• Processor (a 4-byte constant) 38 
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This record should not be emitted into any PE file.  However, if present in a PE file, it should be treated as if its 1 
field were zero.  It should be ignored by the CLI. 2 

22.5  AssemblyRef  : 0x23 3 

The AssemblyRef table has the following columns: 4 

• MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants) 5 

• Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2) 6 

• PublicKeyOrToken (an index into the Blob heap, indicating the public key or token that identifies 7 
the author of this Assembly) 8 

• (ame (an index into the String heap) 9 

• Culture (an index into the String heap) 10 

• HashValue (an index into the Blob heap) 11 

The table is defined by the .assembly extern directive (§6.3).  Its columns are filled using directives 12 
similar to those of the Assembly table except for the PublicKeyOrToken column, which is defined using the 13 
.publickeytoken  directive.  (For an example, see §6.3.) 14 

This contains informative text only 15 

1. MajorVersion, MinorVersion, Build(umber, and Revision(umber can each have any value 16 

2. Flags shall have only one bit set, the PublicKey  bit (§23.1.2).   All other bits shall be zero. 17 
[ERROR] 18 

3. PublicKeyOrToken can be null, or non-null (note that the Flags.PublicKey  bit specifies 19 
whether the 'blob' is a full public key, or the short hashed token) 20 

4. If non-null, then PublicKeyOrToken shall index a valid offset in the Blob heap [ERROR] 21 

5. (ame shall index a non-empty string, in the String heap (there is no limit to its length) [ERROR] 22 

6. Culture can be null or non-null. 23 

7. If non-null, it shall index a single string from the list specified (§23.1.3) [ERROR] 24 

8. HashValue can be null or non-null 25 

9. If non-null, then HashValue shall index a non-empty 'blob' in the Blob heap [ERROR] 26 

10. The AssemblyRef table shall contain no duplicates (where duplicate rows are deemd to be those 27 
having the same MajorVersion, MinorVersion, Build(umber, Revision(umber, 28 
PublicKeyOrToken, (ame, and Culture) [WARNING] 29 

[(ote: (ame is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-30 
compliant systems (ame contains no colon, no forward-slash, no backslash, and no period. end note] 31 

End informative text 32 

22.6  AssemblyRefOS : 0x25 33 

The AssemblyRefOS table has the following columns: 34 

• OSPlatformId (a 4-byte constant) 35 

• OSMajorVersion (a 4-byte constant) 36 

• OSMinorVersion (a 4-byte constant) 37 

• AssemblyRef  (an index into the AssemblyRef table) 38 

These records should not be emitted into any PE file.  However, if present in a PE file, they should be treated 39 
as-if their fields were zero.  They should be ignored by the CLI. 40 
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22.7  AssemblyRefProcessor :  0x24 1 

The AssemblyRefProcessor table has the following columns: 2 

• Processor (a 4-byte constant) 3 

• AssemblyRef  (an index into the AssemblyRef table) 4 

These records should not be emitted into any PE file.  However, if present in a PE file, they should be treated 5 
as-if their fields were zero.  They should be ignored by the CLI. 6 

22.8  ClassLayout :  0x0F 7 

The ClassLayout table is used to define how the fields of a class or value type shall be laid out by the CLI. 8 
(Normally, the CLI is free to reorder and/or insert gaps between the fields defined for a class or value type.) 9 

[Rationale: This feature is used to lay out a managed value type in exactly the same way as an unmanaged 10 
C struct, allowing a managed value type to be handed to unmanaged code, which then accesses the fields 11 
exactly as if that block of memory had been laid out by unmanaged code. end rationale] 12 

The information held in the ClassLayout table depends upon the Flags value for {AutoLayout, 13 
SequentialLayout, ExplicitLayout} in the owner class or value type.  14 

A type has layout if it is marked SequentialLayout or ExplicitLayout.  If any type within an inheritance chain 15 
has layout, then so shall all its base classes, up to the one that descends immediately from System.ValueType 16 
(if it exists in the type’s hierarchy); otherwise, from System.Object. 17 

This contains informative text only 18 

Layout cannot begin part way down the chain.  But it is valid to stop “having layout” at any point down the 19 
chain. 20 

For example, in the diagrams below, Class A derives from System.Object; class B derives from A; class C 21 
derives from B.  System.Object has no layout.  But A, B and C are all defined with layout, and that is valid. 22 

 23 
 24 
The situation with classes E, F, and G is similar.  G has no layout, and this too is valid.   The following picture 25 
shows two invalid setups: 26 



 

1 
 2 
On the left, the “chain with layout” does not start at the ‘highest’ class.  And on the right, there is a ‘hole’ in the 3 
“chain with layout” 4 

Layout information for a class or value type is held in two tables5 
the following diagram: 6 

7 
In this example, row 3 of the ClassLayout 8 
called “MyClass”).  Rows 4–6 of the 9 
illustrates how the CLI stores the explicit offsets for the three fields that are defined in “MyClass” (there is 10 
always one row in the FieldLayout 11 
table acts as an extension to those rows of the 12 
have layout info, overall, this design saves space13 

End informative text 14 

The ClassLayout table has the following columns:15 

• PackingSize (a 2-byte constant)16 

• ClassSize (a 4-byte constant)17 

• Parent (an index into the TypeDef 18 

The rows of the ClassLayout table are defined by placing 19 
declaration in which this type is declared 20 
value is zero.  (See §10.7.) 21 

ClassSize of zero does not mean the class has zero size.  It means that no 22 
definition time, in which case, the actual size is calculated from the field types, taking account of packing size 23 
(default or specified) and natural alignment on the target, runtime platform.24 

This contains informative text only25 

1. A ClassLayout table can 26 

2. Parent shall index a valid row in the 27 
not to an Interface)  [ERROR]28 
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3. The Class or ValueType indexed by Parent shall be SequentialLayout or ExplicitLayout 1 
(§23.1.15). (That is, AutoLayout types shall not own any rows in the ClassLayout table.) 2 
[ERROR] 3 

4. If Parent indexes a SequentialLayout type, then: 4 

o PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128}.  (0 means use the default pack size 5 
for the platform on which the application is running.)  [ERROR] 6 

o If Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes).  7 
[ERROR] 8 

Implementation Specific (Microsoft) 9 

The current implementation of desktop CLI allows 0x3F0000 bytes, but that might be 10 
reduced in the future. 11 

5. If Parent indexes an ExplicitLayout type, then 12 

o if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes)  13 
[ERROR] 14 

Implementation Specific (Microsoft) 15 

The current implementation allows 0x3F0000 bytes, but this might be reduced in the future. 16 

o PackingSize shall be 0. (It makes no sense to provide explicit offsets for each field, as well 17 
as a packing size.)  [ERROR] 18 

6. Note that an ExplicitLayout type might result in a verifiable type, provided the layout does not 19 
create a type whose fields overlap. 20 

7. Layout along the length of an inheritance chain shall follow the rules specified above (starting at 21 
‘highest’ Type, with no ‘holes’, etc.)   [ERROR] 22 

End informative text 23 

22.9  Constant : 0x0B 24 

The Constant table is used to store compile-time, constant values for fields, parameters, and properties. 25 

The Constant table has the following columns: 26 

• Type (a 1-byte constant, followed by a 1-byte padding zero); see §23.1.16 .  The encoding of Type 27 
for the nullref value for FieldInit in ilasm (§16.2) is ELEMENT_TYPE_CLASS with a Value of a 4-byte 28 
zero.  Unlike uses of ELEMENT_TYPE_CLASS in signatures, this one is not followed by a type token. 29 

• Parent (an index into the Param, Field, or Property table; more precisely, a HasConstant (§24.2.6) 30 
coded index) 31 

• Value (an index into the Blob heap) 32 

Note that Constant information does not directly influence runtime behavior, although it is visible via 33 
Reflection (and hence can be used to implement functionality such as that provided by 34 
System.Enum.ToString).  Compilers inspect this information, at compile time, when importing metadata, but 35 
the value of the constant itself, if used, becomes embedded into the CIL stream the compiler emits.  There are 36 
no CIL instructions to access the Constant table at runtime. 37 

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent. 38 
(For an example, see §16.2. ) 39 

This contains informative text only 40 

1. Type shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, 41 
ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, 42 
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ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, or 1 
ELEMENT_TYPE_STRING; or ELEMENT_TYPE_CLASS with a Value of zero  (§23.1.16) [ERROR] 2 

2. Type shall not be any of: ELEMENT_TYPE_I1, ELEMENT_TYPE_U2, ELEMENT_TYPE_U4, or 3 
ELEMENT_TYPE_U8 (§23.1.16)  [CLS] 4 

3. Parent shall index a valid row in the Field, Property, or Param table.  [ERROR] 5 

4. There shall be no duplicate rows, based upon Parent  [ERROR] 6 

5. Type shall match exactly the declared type of the Param, Field, or Property identified by Parent 7 
(in the case where the parent is an enum, it shall match exactly the underlying type of that enum).  8 
[CLS] 9 

End informative text 10 

22.10  CustomAttribute :  0x0C 11 

The CustomAttribute table has the following columns: 12 

• Parent (an index into any metadata table, except the CustomAttribute table itself; more precisely, a 13 
HasCustomAttribute  (§24.2.6) coded index) 14 

• Type (an index into the MethodDef or MemberRef table; more precisely, a CustomAttributeType  15 
(§24.2.6) coded index) 16 

• Value (an index into the Blob heap) 17 

The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an 18 
object of the specified Custom Attribute class) at runtime.  The column called Type is slightly misleading—it 19 
actually indexes a constructor method—the owner of that constructor method is the Type of the Custom 20 
Attribute. 21 

A row in the CustomAttribute table for a parent is created by the .custom  attribute, which gives the value of 22 
the Type column and optionally that of the Value column (§21). 23 

This contains informative text only 24 

All binary values are stored in little-endian format (except for PackedLen items, which are used only as a count 25 
for the number of bytes to follow in a UTF8 string). 26 

1. No CustomAttribute is required; that is, Value is permitted to be null. 27 

2. Parent can be an index into any metadata table, except the CustomAttribute table itself  [ERROR] 28 

3. Type shall index a valid row in the Method or MemberRef table.  That row shall be a constructor 29 
method (for the class of which this information forms an instance)  [ERROR] 30 

4. Value can be null or non-null. 31 

5. If Value is non-null, it shall index a 'blob' in the Blob heap  [ERROR] 32 

6. The following rules apply to the overall structure of the Value 'blob' (§23.3): 33 

o Prolog shall be 0x0001  [ERROR] 34 

o There shall be as many occurrences of FixedArg as are declared in the Constructor method  35 
[ERROR] 36 

o (um(amed can be zero or more 37 

o There shall be exactly (um(amed occurrences of (amedArg  [ERROR] 38 

o Each (amedArg shall be accessible by the caller  [ERROR] 39 

o If (um(amed = 0 then there shall be no further items in the CustomAttrib  [ERROR] 40 

7. The following rules apply to the structure of FixedArg (§23.3): 41 
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o If this item is not for a vector (a single-dimension array with lower bound of 0), then there 1 
shall be exactly one Elem  [ERROR] 2 

o If this item is for a vector, then: 3 

o (umElem shall be 1 or more  [ERROR] 4 

o This shall be followed by (umElem occurrences of Elem  [ERROR] 5 

8. The following rules apply to the structure of Elem (§23.3): 6 

o If this is a simple type or an enum (see §23.3 for how this is defined), then Elem consists 7 
simply of its value  [ERROR] 8 

o If this is a string or a Type, then Elem consists of a SerString – PackedLen count of bytes, 9 
followed by the UTF8 characters   [ERROR]  10 

o If this is a boxed simple value type (bool, char, float32, float64, int8, int16, int32, 11 
int64, unsigned int8, unsigned int16, unsigned int32, or unsigned int64), then Elem 12 
consists of the corresponding type denoter (ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, 13 
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, 14 
ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, 15 
ELEMENT_TYPE_R4, or ELEMENT_TYPE_R8), followed by its value.  [ERROR] 16 

9. The following rules apply to the structure of (amedArg (§23.3): 17 

o The single byte FIELD (0x53) or PROPERTY (0x54)  [ERROR] 18 

o The type of the Field or Property is one of ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, 19 
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, 20 
ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, 21 
ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING, or the constant 0x50 (for an 22 
argument of type System.Type) [ERROR] 23 

o The name of the Field or Property, respectively with the previous item, as a SerString – 24 
PackedLen count of bytes, followed by the UTF8 characters of the name  [ERROR] 25 

o A FixedArg  (see above)  [ERROR] 26 

End informative text 27 

22.11  DeclSecurity :  0x0E 28 

Security attributes, which derive from System.Security.Permissions.SecurityAttribute (see Partition IV), 29 
can be attached to a TypeDef, a Method, or an Assembly.  All constructors of this class shall take a 30 
System.Security.Permissions.SecurityAction value as their first parameter, describing what should be 31 
done with the permission on the type, method or assembly to which it is attached.  Code access security 32 
attributes, which derive from System.Security.Permissions. CodeAccessSecurityAttribute, can have any 33 
of the security actions. 34 

These different security actions are encoded in the DeclSecurity table as a 2-byte enum (see below).  All 35 
security custom attributes for a given security action on a method, type, or assembly shall be gathered together, 36 
and one System.Security.PermissionSet instance shall be created, stored in the Blob heap, and referenced 37 
from the DeclSecurity table. 38 

[(ote: The general flow from a compiler’s point of view is as follows.  The user specifies a custom attribute 39 
through some language-specific syntax that encodes a call to the attribute’s constructor. If the attribute’s type is 40 
derived (directly or indirectly) from System.Security.Permissions.SecurityAttribute then it is a security 41 
custom attribute and requires special treatment, as follows (other custom attributes are handled by simply 42 
recording the constructor in the metadata as described in §22.10). The attribute object is constructed, and 43 
provides a method (CreatePermission) to convert it into a security permission object (an object derived from 44 
System.Security.Permission). All the permission objects attached to a given metadata item with the same 45 
security action are combined together into a System.Security.PermissionSet.  This permission set is 46 
converted into a form that is ready to be stored in XML using its ToXML method to create a 47 
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System.Security.SecurityElement.  Finally, the XML that is required for the metadata is created using the 1 
ToString method on the security element. end note] 2 

The DeclSecurity table has the following columns: 3 

• Action (a 2-byte value) 4 

• Parent (an index into the TypeDef, MethodDef, or Assembly table; more precisely, a 5 
HasDeclSecurity  (§24.2.6) coded index) 6 

• PermissionSet (an index into the Blob heap)  7 

Action is a 2-byte representation of Security Actions (see System.Security.SecurityAction in Partition IV).  8 
The values 0–0xFF are reserved for future standards use.  Values 0x20–0x7F and 0x100–0x07FF are for uses 9 
where the action can be ignored if it is not understood or supported.  Values 0x80–0xFF and 0x0800–0xFFFF 10 
are for uses where the action shall be implemented for secure operation; in implementations where the action is 11 
not available, no access to the assembly, type, or method shall be permitted. 12 

Security Action Aote Explanation of behavior Valid Scope 

Assert 1 Without further checks, satisfy Demand for the 
specified permission. 

Method, Type  

Demand 1 Check that all callers in the call chain have been 
granted specified permission, throw 
SecurityException (see Partition IV) on failure. 

Method, Type  

Deny 1 Without further checks refuse Demand for the 
specified permission. 

Method, Type  

InheritanceDemand 1 The specified permission shall be granted in order 
to inherit from class or override virtual method.  

Method, Type  

LinkDemand 1 Check that the immediate caller has been granted 
the specified permission; throw 
SecurityException (see Partition IV) on failure. 

Method, Type  

NonCasDemand 2 Check that the current assembly has been granted 
the specified permission; throw 
SecurityException (see Partition IV) otherwise. 

Method, Type  

NonCasLinkDemand 2 Check that the immediate caller has been granted 
the specified permission; throw 
SecurityException (see Partition IV) otherwise. 

Method, Type 

PrejitGrant  Reserved for implementation-specific use. Assembly 

PermitOnly 1 Without further checks, refuse Demand for all 
permissions other than those specified. 

Method, Type  

RequestMinimum  Specify the minimum permissions required to run. Assembly 

RequestOptional  Specify the optional permissions to grant. Assembly 

RequestRefuse  Specify the permissions not to be granted. Assembly 
 13 
Aote 1: The specified attribute shall derive from System.Security.Permissions.CodeAccess-14 
SecurityAttribute 15 

Aote 2: The attribute shall derive from System.Security.Permissions.SecurityAttribute, but shall not 16 
derive from System.Security.Permissions.CodeAccessSecurityAttribute 17 

Parent is a metadata token that identifies the Method, Type, or Assembly on which security custom attributes 18 
encoded in PermissionSet was defined. 19 

PermissionSet is a 'blob' having the following format: 20 
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• A byte containing a period (.). 1 

• A compressed int32 containing the number of attributes encoded in the blob. 2 

• An array of attributes each containing the following: 3 

o A String, which is the fully-qualified type name of the attribute. (Strings are encoded as a 4 
compressed int to indicate the size followed by an array of UTF8 characters.) 5 

o A set of properties, encoded as the named arguments to a custom attribute would be (as in 6 
§23.3, beginning with NumNamed). 7 

The permission set contains the permissions that were requested with an Action on a specific Method, Type, or 8 
Assembly (see Parent). In other words, the blob will contain an encoding of all the attributes on the Parent with 9 
that particular Action. 10 

[(ote: The first edition of this standard specified an XML encoding of a permission set. Implementations 11 
should continue supporting this encoding for backward compatibility. end note] 12 

The rows of the DeclSecurity table are filled by attaching a .permission  or .permissionset  directive 13 
that specifies the Action and PermissionSet on a parent assembly (§6.6) or parent type or method (§10.2). 14 

This contains informative text only 15 

1. Action shall have only those values set that are specified  [ERROR] 16 

2. Parent shall be one of TypeDef, MethodDef, or Assembly.   That is, it shall index a valid row in 17 
the TypeDef table, the MethodDef table, or the Assembly table.  [ERROR] 18 

3. If Parent indexes a row in the TypeDef table, that row should not define an Interface.  The 19 
security system ignores any such parent; compilers should not emit such permissions sets.  20 
[WARNING] 21 

4. If Parent indexes a TypeDef, then its TypeDef.Flags.HasSecurity bit shall be set  [ERROR] 22 

5. If Parent indexes a MethodDef, then its MethodDef.Flags.HasSecurity bit shall be set  [ERROR] 23 

6. PermissionSet shall index a 'blob' in the Blob heap  [ERROR] 24 

7. The format of the 'blob' indexed by PermissionSet shall represent a valid, encoded CLI object 25 
graph.  (The encoded form of all standardized permissions is specified in Partition IV.) [ERROR] 26 

End informative text 27 

22.12  EventMap :  0x12 28 

The EventMap table has the following columns: 29 

• Parent (an index into the TypeDef table) 30 

• EventList (an index into the Event table).  It marks the first of a contiguous run of Events owned by 31 
this Type.  That run continues to the smaller of: 32 

o the last row of the Event table 33 

o the next run of Events, found by inspecting the EventList of the next row in the EventMap  34 
table 35 

Note that EventMap info does not directly influence runtime behavior; what counts is the information stored for 36 
each method that the event comprises.  37 

The EventMap and Event tables result from putting the .event  directive on a class (§18). 38 

This contains informative text only 39 

1. EventMap table can contain zero or more rows 40 



 

 Partition II 129 

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the 1 
start of its event list)  [ERROR] 2 

3. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the 3 
Event table)  [ERROR] 4 

End informative text 5 

22.13  Event :  0x14 6 

Events are treated within metadata much like Properties; that is, as a way to associate a collection of methods 7 
defined on a given class.  There are two required methods (add_ and remove_) plus an optional one (raise_); 8 
others are permitted.  All of the methods gathered together as an Event shall be defined on the class. 9 

The association between a row in the TypeDef table and the collection of methods that make up a given Event 10 
is held in three separate tables (exactly analogous to the approach used for Properties), as follows: 11 

 12 
 13 

Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4 14 
of the Event table on the right (the row for an Event called DocChanged).  This setup establishes that MyClass 15 
has an Event called DocChanged.  But what methods in the MethodDef table are gathered together as 16 
‘belonging’ to event DocChanged?  That association is contained in the MethodSemantics table – its row 2 17 
indexes event DocChanged to the right, and row 2 in the MethodDef table to the left (a method called 18 
add_DocChanged).  Also, row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in 19 
the MethodDef table to the left (a method called remove_DocChanged).  As the shading suggests, MyClass has 20 
another event, called TimedOut, with two methods, add_TimedOut and remove_TimedOut. 21 

Event tables do a little more than group together existing rows from other tables.  The Event table has columns 22 
for EventFlags, (ame (e.g., DocChanged and TimedOut in  the example here), and EventType.  In addition, the 23 
MethodSemantics table has a column to record whether the method it indexes is an add_, a remove_, a raise_, 24 
or other function. 25 

The Event table has the following columns: 26 

• EventFlags (a 2-byte bitmask of type EventAttributes, §23.1.4) 27 

• (ame (an index into the String heap) 28 

• EventType (an index into a TypeDef, a TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef  29 
(§24.2.6) coded index) (This corresponds to the Type of the Event; it is not the Type that owns this 30 
event.) 31 

Note that Event information does not directly influence runtime behavior; what counts is the information stored 32 
for each method that the event comprises. 33 

The EventMap and Event tables result from putting the .event  directive on a class (§18). 34 
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This contains informative text only 1 

1. The Event table can contain zero or more rows 2 

2. Each row shall have one, and only one, owner row in the EventMap table  [ERROR] 3 

3. EventFlags shall have only those values set that are specified (all combinations valid)  [ERROR] 4 

4. (ame shall index a non-empty string in the String heap  [ERROR] 5 

Implementation Specific (Microsoft) 6 

This string is limited to MAX_CLASS_NAME. 7 

5. The (ame string shall be a valid CLS identifier  [CLS] 8 

6. EventType can be null or non-null 9 

7. If EventType is non-null, then it shall index a valid row in the TypeDef or TypeRef table  10 
[ERROR] 11 

8. If EventType is non-null, then the row in the TypeDef, TypeRef, or TypeSpec table that it indexes 12 
shall be a Class (not an Interface or a ValueType)  [ERROR] 13 

9. For each row, there shall be one add_ and one remove_ row in the MethodSemantics table  14 
[ERROR] 15 

10. For each row, there can be zero or one raise_ row, as well as zero or more other rows in the 16 
MethodSemantics table  [ERROR] 17 

11. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based 18 
upon (ame  [ERROR] 19 

12. There shall be no duplicate rows based upon (ame, where (ame fields are compared using CLS 20 
conflicting-identifier-rules  [CLS] 21 

End informative text 22 

22.14  ExportedType :  0x27 23 

The ExportedType table holds a row for each type: 24 

a. Defined within other modules of this Assembly; that is exported out of this Assembly.  In essence, it 25 
stores TypeDef row numbers of all types that are marked public in other modules that this Assembly 26 
comprises.   27 

The actual target row in a TypeDef table is given by the combination of TypeDefId (in effect, row 28 
number) and Implementation (in effect, the module that holds the target TypeDef table).  Note that this 29 
is the only occurrence in metadata of foreign tokens; that is, token values that have a meaning in 30 
another module.  (A regular token value is an index into a table in the current module); OR 31 

b. Originally defined in this Assembly but now moved to another Assembly. Flags must have 32 
IsTypeForwarder set and Implementation is an AssemblyRef indicating the Assembly the type may 33 
now be found in. 34 

The full name of the type need not be stored directly.  Instead, it can be split into two parts at any included “.” 35 
(although typically this is done at the last “.” in the full name).  The part preceding the “.” is stored as the 36 
Type(amespace and that following the “.” is stored as the Type(ame.  If there is no “.” in the full name, then 37 
the Type(amespace shall be the index of the empty string. 38 

The ExportedType table has the following columns: 39 

• Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15) 40 

• TypeDefId (a 4-byte index into a TypeDef table of another module in this Assembly).  This column 41 
is used as a hint only.  If the entry in the target TypeDef table matches the Type(ame and 42 
Type(amespace entries in this table, resolution has succeeded.  But if there is a mismatch, the CLI 43 
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shall fall back to a search of the target TypeDef table. Ignored and should be zero if Flags has 1 
IsTypeForwarder set 2 

• Type(ame (an index into the String heap) 3 

• Type(amespace (an index into the String heap) 4 

• Implementation.  This is an index (more precisely, an Implementation (§24.2.6) coded index) into 5 
either of the following tables: 6 

o File table, where that entry says which module in the current assembly holds the TypeDef 7 

o ExportedType table, where that entry is the enclosing Type of the current nested Type 8 

o AssemblyRef table, where that entry says in which assembly the type may now be found 9 
(Flags must have the IsTypeForwarder flag set). 10 

The rows in the ExportedType table are the result of the .class extern  directive (§6.7). 11 

This contains informative text only 12 

 The term “Full(ame” refers to the string created as follows: if the Type(amespace is null, then use the 13 
Type(ame, otherwise use the concatenation of Typenamespace, “.”, and Type(ame. 14 

1. The ExportedType table can contain zero or more rows 15 

2. There shall be no entries in the ExportedType table for Types that are defined in the current 16 
module—just for Types defined in other modules within the Assembly  [ERROR] 17 

3. Flags shall have only those values set that are specified   [ERROR] 18 

4. If Implementation indexes the File table, then Flags.VisibilityMask shall be public (§23.1.15) 19 
[ERROR] 20 

5. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be 21 
NestedPublic (§23.1.15)  [ERROR] 22 

6. If non-null, TypeDefId should index a valid row in a TypeDef table in a module somewhere within 23 
this Assembly (but not this module), and the row so indexed should have its Flags.Public = 1  24 
(§23.1.15)  [WARNING] 25 

7. Type(ame shall index a non-empty string in the String heap  [ERROR] 26 

Implementation Specific (Microsoft) 27 

This string is limited to MAX_CLASS_NAME   28 

8. Type(amespace can be null, or non-null 29 

9. If Type(amespace is non-null, then it shall index a non-empty string in the String heap  [ERROR]  30 

Implementation Specific (Microsoft) 31 

This string is limited to MAX_CLASS_NAME.  Also, the Full(ame (concatenated Type(amespace + 32 
"."  + Type(ame) shall be less than MAX_CLASS_NAME. 33 

10. Full(ame shall be a valid CLS identifier  [CLS] 34 

11. If this is a nested Type, then Type(amespace should be null, and Type(ame should represent the 35 
unmangled, simple name of the nested Type  [ERROR] 36 

12. Implementation shall be a valid index into either of the following:  [ERROR] 37 

o the File table; that file shall hold a definition of the target Type in its TypeDef table 38 

o a different row in the current ExportedType table—this identifies the enclosing Type of the 39 
current, nested Type 40 
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13. Full(ame shall match exactly the corresponding Full(ame for the row in the TypeDef table 1 
indexed by TypeDefId  [ERROR] 2 

14. Ignoring nested Types, there shall be no duplicate rows, based upon Full(ame [ERROR] 3 

15. For nested Types, there shall be no duplicate rows, based upon Type(ame and enclosing Type  4 
[ERROR] 5 

16. The complete list of Types exported from the current Assembly is given as the catenation of the 6 
ExportedType table with all public Types in the current TypeDef table, where “public” means a 7 
Flags.VisibilityMask of either Public or (estedPublic.  There shall be no duplicate rows, in this 8 
concatenated table, based upon Full(ame (add Enclosing Type into the duplicates check if this is 9 
a nested Type)  [ERROR] 10 

End informative text 11 

22.15  Field : 0x04 12 

The Field table has the following columns: 13 

• Flags (a 2-byte bitmask of type FieldAttributes, §23.1.5) 14 

• (ame (an index into the String heap) 15 

• Signature (an index into the Blob heap) 16 

Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However, 17 
the owner of any row in the Field table is not stored anywhere in the Field table itself.   There is merely a 18 
‘forward-pointer’ from each row in the TypeDef table (the FieldList column), as shown in the following 19 
illustration.   20 

 21 

The TypeDef table has rows 1–4.  The first row in the TypeDef table corresponds to a pseudo type, inserted 22 
automatically by the CLI.  It is used to denote those rows in the Field table corresponding to global variables.  23 
The Field table has rows 1–6.  Type 1 (pseudo type for ‘module’) owns rows 1 and 2 in the Field table.  Type 2 24 
owns no rows in the Field table, even though its FieldList indexes row 3 in the Field table.  Type 3 owns 25 
rows 3–5 in the Field table.  Type 4 owns row 6 in the Field table.  So, in the Field table, rows 1 and 2 belong 26 
to Type 1 (global variables); rows 3–5 belong to Type 3; row 6 belongs to Type 4. 27 

Each row in the Field table results from a top-level .field  directive (§5.10), or a .field  directive inside a 28 
Type (§10.2).  (For an example, see §14.5.) 29 

This contains informative text only 30 

1. The Field table can contain zero or more rows 31 

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR] 32 

3. The owner row in the TypeDef table shall not be an Interface  [CLS] 33 

4. Flags shall have only those values set that are specified  [ERROR] 34 

5. The FieldAccessMask subfield of Flags shall contain precisely one of CompilerControlled, 35 
Private, FamANDAssem, Assembly, Family, FamORAssem, or Public (§23.1.5)  [ERROR] 36 

6. Flags can set either or neither of Literal or InitOnly, but not both (§23.1.5)   [ERROR] 37 
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7. If Flags.Literal = 1 then Flags.Static shall also be 1  (§23.1.5)  [ERROR] 1 

8. If Flags.RTSpecial(ame = 1, then Flags.Special(ame shall also be 1  (§23.1.5)  [ERROR] 2 

9. If Flags.HasFieldMarshal = 1, then this row shall ‘own’ exactly one row in the FieldMarshal 3 
table  (§23.1.5)   [ERROR] 4 

10. If Flags.HasDefault = 1, then this row shall ‘own’ exactly one row in the Constant table  5 
(§23.1.5)  [ERROR] 6 

11. If Flags.HasFieldRVA = 1, then this row shall ‘own’ exactly one row in the Field’s RVA table  7 
(§23.1.5)   [ERROR] 8 

12. (ame shall index a non-empty string in the String heap  [ERROR] 9 

Implementation Specific (Microsoft) 10 

This string is limited to MAX_CLASS_NAME  11 

13. The (ame string shall be a valid CLS identifier  [CLS] 12 

14. Signature shall index a valid field signature in the Blob heap   [ERROR] 13 

15. If Flags.CompilerControlled = 1 (§23.1.5), then this row is ignored completely in duplicate 14 
checking.  15 

16. If the owner of this field is the internally-generated type called <Module>, it denotes that this field 16 
is defined at module scope (commonly called a global variable). In this case: 17 

o Flags.Static shall be 1  [ERROR] 18 

o Flags.MemberAccessMask subfield shall be one of Public, CompilerControlled, or 19 
Private (§23.1.5)  [ERROR] 20 

o module-scope fields are not allowed  [CLS] 21 

17. There shall be no duplicate rows in the Field table, based upon owner+(ame+Signature (where 22 
owner is the owning row in the TypeDef table, as described above)  (Note however that if 23 
Flags.CompilerControlled = 1, then this row is completely excluded from duplicate checking)  24 
[ERROR] 25 

18. There shall be no duplicate rows in the Field table, based upon owner+(ame, where (ame fields 26 
are compared using CLS conflicting-identifier-rules.  So, for example,"int i" and "float i" 27 
would be considered CLS duplicates.  (Note however that if Flags.CompilerControlled = 1, then 28 
this row is completely excluded from duplicate checking, as noted above)  [CLS] 29 

19. If this is a field of an Enum then: 30 

a. RTSpecialName shall be 1  [ERROR] 31 

b. owner row in TypeDef table shall derive directly from System.Enum  [ERROR] 32 

c. the owner row in TypeDef table shall have no other instance fields  [CLS] 33 

d. its Signature shall be one of ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_I4, or 34 
ELEMENT_TYPE_I8 (§23.1.16 ): [CLS] 35 

20. its Signature shall be an integral type. [ERROR] 36 

End informative text 37 

22.16  FieldLayout :  0x10 38 

The FieldLayout table has the following columns: 39 

• Offset (a 4-byte constant) 40 

• Field (an index into the Field table) 41 
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Note that each Field in any Type is defined by its Signature.  When a Type instance (i.e., an object) is laid out 1 
by the CLI, each Field is one of four kinds: 2 

• Scalar: for any member of built-in type, such as int32.  The size of the field is given by the size of 3 
that intrinsic, which varies between 1 and 8 bytes 4 

• ObjectRef: for ELEMENT_TYPE_CLASS, ELEMENT_TYPE_STRING, ELEMENT_TYPE_OBJECT, 5 
ELEMENT_TYPE_ARRAY, ELEMENT_TYPE_SZARRAY 6 

• Pointer: for ELEMENT_TYPE_PTR, ELEMENT_TYPE_FNPTR 7 

• ValueType: for ELEMENT_TYPE_VALUETYPE.  The instance of that ValueType is actually laid out in 8 
this object, so the size of the field is the size of that ValueType 9 

Note that metadata specifying explicit structure layout can be valid for use on one platform but not on another, 10 
since some of the rules specified here are dependent on platform-specific alignment rules. 11 

A row in the FieldLayout table is created if the .field  directive for the parent field has specified a field 12 
offset (§16). 13 

This contains informative text only 14 

1. A FieldLayout table can contain zero or more or rows 15 

2. The Type whose Fields are described by each row of the FieldLayout table shall have 16 
Flags.ExplicitLayout (§23.1.15) set  [ERROR] 17 

3. Offset shall be zero or more  [ERROR] 18 

4. Field shall index a valid row in the Field table  [ERROR] 19 

5. Flags.Static for the row in the Field table indexed by Field shall be non-static (i.e., zero 0)  20 
[ERROR] 21 

6. Among the rows owned by a given Type there shall be no duplicates, based upon Field.  That is, a 22 
given Field of a Type cannot be given two offsets.   [ERROR] 23 

7. Each Field of kind ObjectRef shall be naturally aligned within the Type  [ERROR] 24 

8. Among the rows owned by a given Type it is perfectly valid for several rows to have the same 25 
value of Offset.  ObjectRef and a valuetype cannot have the same offset  [ERROR] 26 

9. Every Field of an ExplicitLayout Type shall be given an offset; that is, it shall have a row in the 27 
FieldLayout table  [ERROR] 28 

Implementation Specific (Microsoft) 29 

Note that the rules above specify whether metadata is valid or invalid. However, there is a finer 30 
distinction that can be drawn—what layouts permit type-safe access by code?  For example, a class that 31 
overlaps two ValueTypes constitutes valid metadata, but accesses to that class can result in code that is 32 
not provably type-safe.  At runtime, it is the Class loader that will perform these type-safety checks.   33 
Version 1 takes a simple approach—if the type has any explicit layout, it is not type-safe. [This might 34 
be refined in future versions.] 35 

End informative text 36 

22.17  FieldMarshal :  0x0D 37 

The FieldMarshal table has two columns.  It ‘links’ an existing row in the Field or Param table, to information 38 
in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as 39 
parameter number 0) shall be marshalled when calling to or from unmanaged code via PInvoke dispatch. 40 

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code.  41 
In order to execute such paths, the caller, on most platforms, would be installed with elevated security 42 
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permission.  Once it invokes unmanaged code, it lies outside the regime that the CLI can check—it is simply 1 
trusted not to violate the type system. 2 

The FieldMarshal table has the following columns: 3 

• Parent (an index into Field or Param table; more precisely, a HasFieldMarshal (§24.2.6) coded 4 
index) 5 

• (ativeType (an index into the Blob heap) 6 

For the detailed format of the 'blob', see §23.4 7 

A row in the FieldMarshal table is created if the .field  directive for the parent field has specified a 8 
marshal  attribute (§16.1). 9 

This contains informative text only 10 

1. A FieldMarshal table can contain zero or more rows 11 

2. Parent shall index a valid row in the Field or Param table (Parent values are encoded to say 12 
which of these two tables each refers to)  [ERROR] 13 

3. (ativeType shall index a non-null 'blob' in the Blob heap  [ERROR]  14 

4. No two rows shall point to the same parent.  In other words, after the Parent values have been 15 
decoded to determine whether they refer to the Field or the Param table, no two rows can point to 16 
the same row in the Field table or in the Param table [ERROR] 17 

5. The following checks apply to the MarshalSpec 'blob' (§23.4): 18 

a. (ativeIntrinsic shall be exactly one of the constant values in its production (§23.4)  19 
[ERROR] 20 

b. If ARRAY, then ArrayElemType shall be exactly one of the constant values in its production  21 
[ERROR] 22 

c. If ARRAY, then Param(um can be zero 23 

d. If ARRAY, then Param(um cannot be < 0  [ERROR] 24 

e. If ARRAY, and Param(um > 0, then Parent shall point to a row in the Param table, not in the 25 
Field table  [ERROR] 26 

f. If ARRAY, and Param(um > 0, then Param(um cannot exceed the number of parameters 27 
supplied to the MethodDef (or MethodRef if a VARARG call) of which the parent Param is a 28 
member  [ERROR] 29 

g. If ARRAY, then ElemMult shall be >= 1  [ERROR] 30 

h. If ARRAY and ElemMult != 1 issue a warning, because it is probably a mistake  [WARNING] 31 

i. If ARRAY and Param(um = 0, then (umElem shall be >= 1  [ERROR] 32 

j. If ARRAY and Param(um != 0 and NumElem != 0 then issue a warning, because  it is 33 
probably a mistake  [WARNING] 34 

Implementation Specific (Microsoft) 35 

The following rules apply to Microsoft-specific features: 36 

a. If CUSTOMMARSHALLER, then Guid shall be an in-place, counted-UTF8 string, that represents a string 37 
format GUID.  Its length, when expanded from UTF8, shall be exactly 38 characters, to include 38 
leading { and trailing }  [ERROR] 39 

b. If CUSTOMMARSHALLER, then UnmanagedType shall be a non-empty, counted-UTF8 string  [ERROR] 40 
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c. If CUSTOMMARSHALLER, then ManagedType shall be a non-empty, counted-UTF8 string, that represents 1 
the fully-qualified namespace+"."+name of a Class or ValueType defined somewhere within the current 2 
Assembly  [ERROR] 3 

d. If CUSTOMMARSHALLER, then the Cookie shall be a counted-UTF8 string - its size can legitimately be 4 
zero  [ERROR] 5 

e. If SAFEARRAY, then SafeArrayElemType shall be exactly one of the constant values in its production  6 
[ERROR] 7 

f. If (ativeIntrinsic has the value BYVALSTR, then Parent shall point to a row in the Field table, not the 8 
Param table  [ERROR] 9 

g. If FIXEDARRAY, then Parent shall point to a row in the Field table, not the Param table  [ERROR] 10 

h. If FIXEDARRAY, then (umElem shall be 1 or more [ERROR] 11 

i. If FIXEDARRAY, then ArrayElemType shall be exactly one of the constant values in its production 12 
[ERROR] 13 

End informative text 14 

22.18  FieldRVA : 0x1D 15 

The FieldRVA table has the following columns: 16 

• RVA (a 4-byte constant) 17 

• Field (an index into Field table) 18 

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records 19 
the RVA (Relative Virtual Address) within the image file at which this field’s initial value is stored. 20 

A row in the FieldRVA table is created for each static parent field that has specified the optional data  21 
label §16).  The RVA column is the relative virtual address of the data in the PE file (§16.3). 22 

This contains informative text only 23 

1. RVA shall be non-zero  [ERROR] 24 

2. RVA shall point into the current module’s data area (not its metadata area)  [ERROR] 25 

3. Field shall index a valid row in the Field table  [ERROR] 26 

4. Any field with an RVA shall be a ValueType (not a Class or an Interface).  Moreover, it shall not 27 
have any private fields (and likewise for any of its fields that are themselves ValueTypes).  (If 28 
any of these conditions were breached, code could overlay that global static and access its private 29 
fields.)  Moreover, no fields of that ValueType can be Object References (into the GC heap)  30 
[ERROR] 31 

5. So long as two RVA-based fields comply with the previous conditions, the ranges of memory 32 
spanned by the two ValueTypes can overlap, with no further constraints.  This is not actually an 33 
additional rule; it simply clarifies the position with regard to overlapped RVA-based fields 34 

End informative text 35 

22.19  File :  0x26 36 

The File table has the following columns: 37 

• Flags (a 4-byte bitmask of type FileAttributes, §23.1.6) 38 

• (ame (an index into the String heap) 39 

• HashValue (an index into the Blob heap) 40 
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The rows of the File table result from .file  directives in an Assembly (§6.2.3) 1 

This contains informative text only 2 

1. Flags shall have only those values set that are specified (all combinations valid)  [ERROR] 3 

2. (ame shall index a non-empty string in the String heap.  It shall be in the format 4 
<filename>.<extension>  (e.g., “foo.dll”, but not “c:\utils\foo.dll”)  [ERROR] 5 

Implementation Specific (Microsoft) 6 

This string is limited to MAX_PATH_NAME 7 

Also, the following values for (ame are invalid (since these represent device, rather than file, 8 
names): 9 

S [N] [[C]*] where: 10 

S ::= con | aux | lpt | prn | null | com   (case-blind) 11 
N ::= a number 0 .. 9 12 
C ::= $ | : 13 
 14 
[] denotes optional, * denotes Kleene closure, | denotes alternatives  [ERROR] 15 

The CLI also checks dynamically against opening a device, which can be assigned an arbitrary 16 
name by the user 17 

3. HashValue shall index a non-empty 'blob' in the Blob heap  [ERROR] 18 

4. There shall be no duplicate rows; that is, rows with the same (ame value  [ERROR] 19 

5. If this module contains a row in the Assembly table (that is, if this module “holds the manifest”) 20 
then there shall not be any row in the File table for this module; i.e., no self-reference  [ERROR] 21 

6. If the File table is empty, then this, by definition, is a single-file assembly.  In this case, the 22 
ExportedType table should be empty  [WARNING] 23 

End informative text 24 

22.20  GenericParam : 0x2A 25 

The GenericParam table has the following columns: 26 

• (umber (the 2-byte index of the generic parameter, numbered left-to-right, from zero) 27 

• Flags (a 2-byte bitmask of type GenericParamAttributes, §23.1.7) 28 

• Owner (an index into the TypeDef or MethodDef table, specifying the Type or Method to which this 29 
generic parameter applies; more precisely, a TypeOrMethodDef  (§24.2.6) coded index) 30 

• (ame (a non-null index into the String heap, giving the name for the generic parameter.  This is 31 
purely descriptive and is used only by source language compilers and by Reflection) 32 

The GenericParam table stores the generic parameters used in generic type definitions and generic method 33 
definitions.  These generic parameters can be constrained (i.e., generic arguments shall extend some class 34 
and/or implement certain interfaces) or unconstrained.  (Such constraints are stored in the 35 
GenericParamConstraint table.) 36 

Conceptually, each row in the GenericParam table is owned by one, and only one, row in either the TypeDef or 37 
MethodDef tables.  38 

[Example: 39 

.class Dict`2<([mscorlib]System.IComparable) K, V> 40 
  41 
The generic parameter K of class Dict is constrained to implement System.IComparable. 42 
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.method static void ReverseArray<T>(!!0[] 'array') 1 

There is no constraint on the generic parameter T of the generic method ReverseArray. 2 

end example] 3 

Implementation Specific (Microsoft) 4 

The following additional restrictions apply: 5 

• Owner cannot be a non-nested enumeration type; and 6 

• If Owner is a nested enumeration type then (umber must be less than or equal to the number of 7 
generic parameters of the enclosing class. 8 

Generic enumeration types serve little purpose and usually only exist to meet CLR Rule 42. These 9 
additional restrictions limit the genericty of enumeration types while allowing CLS Rule 42 to be met. 10 

This contains informative text only 11 

1. GenericParam table can contain zero or more rows 12 

2. Each row shall have one, and only one, owner row in the TypeDef or MethodDef table  (i.e., no 13 
row sharing) [ERROR] 14 

3. Every generic type shall own one row in the GenericParam table for each of its generic 15 
parameters  [ERROR] 16 

4. Every generic method shall own one row in the GenericParam table for each of its generic 17 
parameters  [ERROR] 18 

Flags: 19 

• Can hold the value Covariant or Contravariant, but only if the owner row corresponds to a generic 20 
interface, or a generic delegate class.  [ERROR] 21 

• Otherwise, shall hold the value (one indicating nonvariant (i.e., where the parameter is nonvariant 22 
or the owner is a non delegate class, a value-type, or a generic method)    [ERROR] 23 

If Flags == Covariant then the corresponding generic parameter can appear in a type definition only as 24 
[ERROR]: 25 

• The result type of a method 26 

• A generic parameter to an inherited interface 27 

If Flags == Contravariant then the corresponding generic parameter can appear in a type definition only 28 
as the argument to a method  [ERROR] 29 

(umber shall have a value >= 0 and < the number of generic parameters in owner type or method.  30 
[ERROR] 31 

Successive rows of the GenericParam table that are owned by the same method shall be ordered by 32 
increasing (umber value; there shall be no gaps in the (umber sequence  [ERROR] 33 

(ame shall be non-null and index a string in the String heap  [ERROR]  34 

[Rationale: Otherwise, Reflection output is not fully usable. end rationale] 35 

There shall be no duplicate rows based upon Owner+(ame  [ERROR]  [Rationale: Otherwise, code 36 
using Reflection cannot disambiguate the different generic parameters. end rationale] 37 

There shall be no duplicate rows based upon Owner+(umber [ERROR] 38 

End informative text 39 
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22.21  GenericParamConstraint :  0x2C 1 

The GenericParamConstraint table has the following columns: 2 

• Owner (an index into the GenericParam table, specifying to which generic parameter this row 3 
refers) 4 

• Constraint (an index into the TypeDef, TypeRef, or TypeSpec tables, specifying from which class 5 
this generic parameter is constrained to derive; or which interface this generic parameter is 6 
constrained to implement;  more precisely, a TypeDefOrRef  (§24.2.6) coded index) 7 

The GenericParamConstraint table records the constraints for each generic parameter.  Each generic parameter 8 
can be constrained to derive from zero or one class.  Each generic parameter can be constrained to implement 9 
zero or more interfaces. 10 

Conceptually, each row in the GenericParamConstraint table is ‘owned’ by a row in the GenericParam table. 11 

All rows in the GenericParamConstraint table for a given Owner shall refer to distinct constraints. 12 

Note that if Constraint is a TypeRef to System.ValueType, then it means the constraint type shall be 13 
System.ValueType, or one of its sub types.  However, since System.ValueType itself is a reference type, this 14 
particular mechanism does not guarantee that the type is a non-reference type. 15 

This contains informative text only 16 

1. The GenericParamConstraint table can contain zero or more rows  17 

2. Each row shall have one, and only one, owner row in the GenericParam table (i.e., no row sharing)  18 
[ERROR] 19 

3. Each row in the GenericParam table shall ‘own’ a separate row in the GenericParamConstraint 20 
table for each constraint that generic parameter has  [ERROR] 21 

4. All of the rows in the GenericParamConstraint table that are owned by a given row in the 22 
GenericParam table shall form a contiguous range (of rows)  [ERROR] 23 

5. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or one 24 
row in the GenericParamConstraint table corresponding to a class constraint.  [ERROR] 25 

6. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or more 26 
rows in the GenericParamConstraint table corresponding to an interface constraint.  [ERROR] 27 

7. There shall be no duplicate rows based upon Owner+Constraint  [ERROR] 28 

8. Constraint shall not reference System.Void. [ERROR] 29 

End informative text 30 

22.22  ImplMap :  0x1C 31 

The ImplMap table holds information about unmanaged methods that can be reached from managed code, 32 
using PInvoke dispatch.  33 

Each row of the ImplMap table associates a row in the MethodDef table (MemberForwarded) with the name of 34 
a routine (Import(ame) in some unmanaged DLL (ImportScope).   35 

[(ote: A typical example would be: associate the managed Method stored in row N of the Method table (so 36 
MemberForwarded would have the value N) with the routine called “GetEnvironmentVariable” (the string 37 
indexed by Import(ame) in the DLL called “kernel32” (the string in the ModuleRef table indexed by 38 
ImportScope).  The CLI intercepts calls to managed Method number N, and instead forwards them as calls to 39 
the unmanaged routine called “GetEnvironmentVariable” in “kernel32.dll” (including marshalling any 40 
arguments, as required) 41 

The CLI does not support this mechanism to access fields that are exported from a DLL, only methods. end 42 
note] 43 
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The ImplMap table has the following columns: 1 

• MappingFlags (a 2-byte bitmask of type PInvokeAttributes, §23.1.7) 2 

• MemberForwarded (an index into the Field or MethodDef table; more precisely, a 3 
MemberForwarded  (§24.2.6) coded index).  However, it only ever indexes the MethodDef table, 4 
since Field export is not supported. 5 

• Import(ame (an index into the String heap) 6 

• ImportScope (an index into the ModuleRef table) 7 

A row is entered in the ImplMap table for each parent Method (§15.5) that is defined with a .pinvokeimpl  8 
interoperation attribute specifying the MappingFlags, Import(ame, and ImportScope. 9 

This contains informative text only 10 

1. ImplMap can contain zero or more rows 11 

2. MappingFlags shall have only those values set that are specified  [ERROR] 12 

3. MemberForwarded shall index a valid row in the MethodDef table  [ERROR] 13 

4. The MappingFlags.CharSetMask (§23.1.7) in the row of the MethodDef table indexed by 14 
MemberForwarded shall have at most one of the following bits set: CharSetAnsi, 15 
CharSetUnicode, or CharSetAuto (if none is set, the default is CharSetNotSpec)  [ERROR] 16 

Implementation Specific (Microsoft) 17 

The MappingFlags.CallConvMask in the row of the Method table indexed by MemberForwarded 18 
shall have at most one of the following values: CallConvWinapi, CallConvCdecl, 19 
CallConvStdcall.  It cannot have the value CallConvFastcall or CallConvThiscall.  [ERROR] 20 

5. Import(ame shall index a non-empty string in the String heap  [ERROR] 21 

Implementation Specific (Microsoft) 22 

This string is limited to MAX_CLASS_NAME 23 

6. ImportScope shall index a valid row in the ModuleRef table  [ERROR] 24 

7. The row indexed in the MethodDef table by MemberForwarded shall have its Flags.PinvokeImpl 25 
= 1, and Flags.Static = 1  [ERROR] 26 

End informative text 27 

22.23  InterfaceImpl :  0x09 28 

The InterfaceImpl table has the following columns: 29 

• Class (an index into the TypeDef table) 30 

• Interface (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef  31 
(§24.2.6) coded index) 32 

The InterfaceImpl table records the interfaces a type implements explicitly.  Conceptually, each row in the 33 
InterfaceImpl table indicates that Class implements Interface. 34 

This contains informative text only 35 

1. The InterfaceImpl table can contain zero or more rows 36 

2. Class shall be non-null [ERROR] 37 

Implementation Specific (Microsoft) 38 
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If Class = null this row should be treated as if it does not exist.  In incremental compilation 1 
scenarios, this is used to mark a class as being deleted, without physically deleting its metadata. 2 

3. If Class is non-null, then: 3 

a. Class shall index a valid row in the TypeDef table  [ERROR] 4 

b. Interface shall index a valid row in the TypeDef or TypeRef table  [ERROR] 5 

c. The row in the TypeDef, TypeRef, or TypeSpec table indexed by Interface shall be an 6 
interface (Flags.Interface = 1), not a Class or ValueType  [ERROR] 7 

4. There should be no duplicates in the InterfaceImpl table, based upon non-null Class and Interface 8 
values  [WARNING] 9 

5. There can be many rows with the same value for Class (since a class can implement many 10 
interfaces) 11 

6. There can be many rows with the same value for Interface (since many classes can implement the 12 
same interface) 13 

End informative text 14 

22.24  ManifestResource : 0x28 15 

The ManifestResource table has the following columns: 16 

• Offset  (a 4-byte constant) 17 

• Flags (a 4-byte bitmask of type ManifestResourceAttributes, §23.1.9)  18 

• (ame (an index into the String heap) 19 

• Implementation (an index into a File table, a AssemblyRef table, or  null; more precisely, an 20 
Implementation  (§24.2.6) coded index) 21 

The Offset specifies the byte offset within the referenced file at which this resource record begins.  The 22 
Implementation specifies which file holds this resource.  The rows in the table result from .mresource  23 
directives on the Assembly (§6.2.2). 24 

This contains informative text only 25 

1. The ManifestResource table can contain zero or more rows 26 

2. Offset shall be a valid offset into the target file, starting from the Resource entry in the CLI 27 
header  [ERROR] 28 

3. Flags shall have only those values set that are specified  [ERROR] 29 

4. The VisibilityMask (§23.1.9) subfield of Flags shall be one of Public or Private  [ERROR] 30 

5. (ame shall index a non-empty string in the String heap  [ERROR] 31 

Implementation Specific (Microsoft) 32 

This string is limited to MAX_CLASS_NAME. 33 

6. Implementation can be null or non-null (if null, it means the resource is stored in the current file) 34 

7. If Implementation is null, then Offset shall be a valid offset in the current file, starting from the 35 
Resource entry in the CLI header  [ERROR] 36 

8. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table  37 
[ERROR] 38 

9. There shall be no duplicate rows, based upon (ame  [ERROR] 39 

10. If the resource is an index into the File table, Offset shall be zero  [ERROR] 40 
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End informative text 1 

22.25  MemberRef  :  0x0A 2 

The MemberRef table combines two sorts of references, to Methods and to Fields of a class, known as 3 
‘MethodRef’ and ‘FieldRef’, respectively.    The MemberRef table has the following columns: 4 

• Class (an index into the MethodDef, ModuleRef,TypeDef, TypeRef, or TypeSpec tables; more 5 
precisely, a MemberRefParent  (§24.2.6) coded index) 6 

• (ame (an index into the String heap) 7 

• Signature (an index into the Blob heap) 8 

An entry is made into the MemberRef table whenever a reference is made in the CIL code to a method or field 9 
which is defined in another module or assembly.  (Also, an entry is made for a call to a method with a VARARG 10 
signature, even when it is defined in the same module as the call site.)  11 

This contains informative text only 12 

1. Class shall be one of the following:  [ERROR] 13 

a. a TypeRef token, if the class that defines the member is defined in another module.  (Note 14 
that it is unusual, but valid, to use a TypeRef token when the member is defined in this same 15 
module, in which case, its TypeDef token can be used instead.) 16 

b. a ModuleRef token, if the member is defined, in another module of the same assembly, as a 17 
global function or variable. 18 

c. a MethodDef token, when used to supply a call-site signature for a vararg method that is 19 
defined in this module.  The (ame shall match the (ame in the corresponding MethodDef 20 
row.  The Signature shall match the Signature in the target method definition  [ERROR] 21 

d. a TypeSpec token, if the member is a member of a generic type 22 

2. Class shall not be null (as this would indicate an unresolved reference to a global function or 23 
variable)  [ERROR] 24 

3. (ame shall index a non-empty string in the String heap  [ERROR] 25 

Implementation Specific (Microsoft) 26 

This string is limited to MAX_CLASS_NAME  27 

4. The (ame string shall be a valid CLS identifier  [CLS] 28 

5. Signature shall index a valid field or method signature in the Blob heap.  In particular, it shall 29 
embed exactly one of the following ‘calling conventions’:  [ERROR] 30 

a. DEFAULT (0x0) 31 

b. VARARG (0x5) 32 

c. FIELD (0x6) 33 

d. GENERIC (0x10) 34 

Implementation Specific (Microsoft) 35 

The above names are defined in the file inc\CorHdr.h as part of the SDK using the prefix 36 
IMAGE_CEE_CS_CALLCONV_ 37 

6. The MemberRef table shall contain no duplicates, where duplicate rows have the same Class, 38 
(ame, and Signature  [WARNING] 39 

7. Signature shall not have the VARARG (0x5) calling convention  [CLS] 40 
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8. There shall be no duplicate rows, where (ame fields are compared using CLS conflicting-1 
identifier-rules.  (In particular, note that the return type and whether parameters are marked 2 
ELEMENT_TYPE_BYREF (§23.1.16) are ignored in the CLS.  For example, .method int32 M()and 3 
.method float64 M() result in duplicate rows by CLS rules.  Similarly, .method void 4 
N(int32 i)and .method void N(int32& i)also result in duplicate rows by CLS rules.)  [CLS] 5 

Implementation Specific (Microsoft) 6 

(ame shall not be of the form _VtblGapSequenceNumber<_CountOfSlots>—such methods are 7 
dummies, used to pad entries in the vtable that CLI generates for COM interop.  Such methods 8 
cannot be called from managed or unmanaged code  [ERROR] 9 

9. If Class and (ame resolve to a field, then that field shall not have a value of CompilerControlled 10 
(§23.1.5) in its Flags.FieldAccessMask subfield  [ERROR]  11 

10. If Class and (ame resolve to a method, then that method shall not have a value of 12 
CompilerControlled in its Flags.MemberAccessMask (§23.1.10) subfield  [ERROR] 13 

11. The type containing the definition of a MemberRef shall be a TypeSpec representing an 14 
instantiated type. 15 

End informative text 16 

22.26  MethodDef  :  0x06 17 

The MethodDef table has the following columns: 18 

• RVA (a 4-byte constant) 19 

• ImplFlags (a 2-byte bitmask of type MethodImplAttributes, §23.1.10) 20 

• Flags (a 2-byte bitmask of type MethodAttributes, §23.1.10) 21 

• (ame (an index into the String heap) 22 

• Signature (an index into the Blob heap) 23 

• ParamList (an index into the Param table).  It marks the first of a contiguous run of Parameters 24 
owned by this method.  The run continues to the smaller of: 25 

o the last row of the Param table 26 

o the next run of Parameters, found by inspecting the ParamList of the next row in the 27 
MethodDef  table 28 

Conceptually, every row in the MethodDef table is owned by one, and only one, row in the TypeDef table. 29 

The rows in the MethodDef table result from .method  directives (§15). The RVA column is computed when 30 
the image for the PE file is emitted and points to the COR_ILMETHOD structure for the body of the method 31 
(§25.4)  32 

[(ote: If Signature is GENERIC (0x10), the generic arguments are described in the GenericParam table (§22.20). 33 
end note] 34 

This contains informative text only 35 

1. The MethodDef table can contain zero or more rows 36 

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR] 37 

3. ImplFlags shall have only those values set that are specified   [ERROR] 38 

4. Flags shall have only those values set that are specified  [ERROR] 39 

5. If Name is .ctor and the method is marked SpecialName, there shall not be a row in the 40 
GenericParam table which has this MethodDef as its owner. [ERROR] 41 
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6. The MemberAccessMask (§23.1.10) subfield of Flags shall contain precisely one of 1 
CompilerControlled, Private, FamANDAssem, Assem, Family, FamORAssem, or Public [ERROR] 2 

7. The following combined bit settings in Flags are invalid  [ERROR] 3 

a. Static | Final 4 

b. Static | Virtual 5 

c. Static | NewSlot 6 

d. Final  | Abstract 7 

e. Abstract | PinvokeImpl 8 

f. CompilerControlled | SpecialName 9 

g. CompilerControlled | RTSpecialName 10 

8. An abstract method shall be virtual.  So, if Flags.Abstract = 1 then Flags.Virtual shall also be 1  11 
[ERROR] 12 

9. If Flags.RTSpecial(ame = 1 then Flags.Special(ame shall also be 1  [ERROR] 13 

Implementation Specific (Microsoft) 14 

An abstract method cannot have ForwardRef (§23.1.11) set, and vice versa.  So:  15 

if Flags.Abstract = 1 then ImplFlags.ForwardRef shall be 0  [ERROR] 16 

if ImplFlags.ForwardRef = 1 then Flags.Abstract shall be 0 [ERROR] 17 

The ForwardRef bit shall be set only in an OBJ file (used by managed extensions for C++).  By 18 
the time a method executes, its ForwardRef shall be 0.  [ERROR] 19 

10. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:  [ERROR] 20 

o this Method owns at least row in the DeclSecurity table  21 

o this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute 22 

11. If this Method owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall 23 
be 1  [ERROR] 24 

12. If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then 25 
Flags.HasSecurity shall be 1  [ERROR] 26 

13. A Method can have a custom attribute called DynamicSecurityMethodAttribute, but this has no 27 
effect whatsoever upon the value of its Flags.HasSecurity 28 

14. (ame shall index a non-empty string in the String heap  [ERROR] 29 

Implementation Specific (Microsoft) 30 

This string is limited to MAX_CLASS_NAME  31 

15. Interfaces cannot have instance constructors.  So, if this Method is owned by an Interface, then its 32 
(ame cannot be .ctor   [ERROR] 33 

16. Interfaces can only own virtual methods (not static or instance methods).  So, if this Method is 34 
owned by an Interface, Flags.Static shall be clear  [ERROR] 35 

17. The (ame string shall be a valid CLS identifier  (unless Flags.RTSpecial(ame is set - for 36 
example, .cctor  is valid)   [CLS] 37 

18. Signature shall index a valid method signature in the Blob heap  [ERROR] 38 

19. If Flags.CompilerControlled = 1, then this row is ignored completely in duplicate checking 39 
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20. If the owner of this method is the internally-generated type called <Module>, it denotes that this 1 
method is defined at module scope. [(ote: In C++, the method is called global and can be 2 
referenced only within its compiland, from its point of declaration forwards. end note]  In this 3 
case: 4 

a. Flags.Static shall be 1  [ERROR] 5 

b. Flags.Abstract shall be 0  [ERROR] 6 

c. Flags.Virtual shall be 0  [ERROR] 7 

d. Flags.MemberAccessMask subfield shall be one of CompilerControlled, Public, or 8 
Private  [ERROR] 9 

e. module-scope methods are not allowed  [CLS] 10 

21. It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless 11 
they are boxed).  So, if the owner of this method is a ValueType then the method cannot be 12 
synchronized.  That is, ImplFlags.Synchronized shall be 0  [ERROR] 13 

22. There shall be no duplicate rows in the MethodDef table, based upon owner + (ame + Signature 14 
(where owner is the owning row in the TypeDef table). (Note that the Signature encodes whether 15 
or not the method is generic, and for generic methods, it encodes the number of generic 16 
parameters.)  (Note, however, that if Flags.CompilerControlled = 1, then this row is excluded 17 
from duplicate checking)  [ERROR] 18 

23. There shall be no duplicate rows in the MethodDef table, based upon owner + (ame + Signature, 19 
where (ame fields are compared using CLS conflicting-identifier-rules; also, the Type defined in 20 
the signatures shall be different.  So, for example, "int i" and "float i" would be considered 21 
CLS duplicates; also, the return type of the method is ignored  (Note, however, that if 22 
Flags.CompilerControlled = 1, this row is excluded from duplicate checking as explained above.)  23 
[CLS] 24 

24. If Final, NewSlot, or Strict are set in Flags, then Flags.Virtual shall also be set  [ERROR] 25 

25. If Flags.PInvokeImpl is set, then Flags.Virtual shall be 0  [ERROR] 26 

26. If Flags.Abstract != 1 then exactly one of the following shall also be true:  [ERROR] 27 

o RVA != 0 28 

o Flags.PInvokeImpl = 1 29 

o ImplFlags.Runtime = 1 30 

Implementation Specific (Microsoft) 31 

There is an additional mutually exclusive possibility related to COM Interop: the owner of 32 
this method is marked Import = 1 33 

27. If the method is CompilerControlled, then the RVA shall be non-zero or marked with 34 
PinvokeImpl = 1  [ERROR] 35 

28. Signature shall have exactly one of the following managed calling conventions  [ERROR] 36 

a. DEFAULT (0x0) 37 

b. VARARG (0x5) 38 

c. GENERIC (0x10) 39 

Implementation Specific (Microsoft) 40 

The above names are defined in the file inc\CorHdr.h  as part of the SDK, using a prefix 41 
of “IMAGE_CEE_CS_CALLCONV_” 42 

29. Signature shall have the calling convention DEFAULT (0x0) or GENERIC (0x10). [CLS] 43 
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30. Signature: If and only if the method is not Static then the calling convention byte in Signature 1 
has its HASTHIS (0x20) bit set  [ERROR] 2 

31. Signature: If the method is static, then the HASTHIS (0x20) bit in the calling convention shall 3 
be 0  [ERROR]  4 

32. If EXPLICITTHIS (0x40) in the signature is set, then HASTHIS (0x20) shall also be set  (note that if 5 
EXPLICITTHIS is set, then the code is not verifiable)  [ERROR] 6 

33. The EXPLICITTHIS (0x40) bit can be set only in signatures for function pointers: signatures whose 7 
MethodDefSig is preceded by FNPTR (0x1B)  [ERROR] 8 

34. If RVA = 0, then either: [ERROR] 9 

o Flags.Abstract = 1, or 10 

o ImplFlags.Runtime = 1, or 11 

o Flags.PinvokeImpl = 1, or 12 

Implementation Specific (Microsoft) 13 

There are two additional mutually exclusive possibilities: 14 

ImplFlags.InternalCall = 1, or 15 

owner row in TypeDef table has Flags.Import = 1 16 

35. If RVA != 0, then: [ERROR] 17 

a. Flags.Abstract shall be 0, and 18 

b. ImplFlags.CodeTypeMask shall have exactly one of the following values: Native,  CIL, or 19 
Runtime, and 20 

c. RVA shall point into the CIL code stream in this file 21 

Implementation Specific (Microsoft) 22 

There are two additional requirements: 23 

ImplFlags.InternalCall = 0, and 24 

the owner row in TypeDef table has Flags.tdImport = 0 25 

36. If Flags.PinvokeImpl = 1 then  [ERROR] 26 

o RVA = 0 and the method owns a row in the ImplMap table 27 

Implementation Specific (Microsoft) 28 

For IJW thunks there is an additional possibility, where the method is actually a managed 29 
method in the current module: 30 

RVA != 0 and the method does not own a row in the ImplMap table and the method signature 31 
includes a custom modifier that specifies the native calling convention  32 

37. If Flags.RTSpecial(ame = 1 then (ame shall be one of:  [ERROR] 33 

a. .ctor  (an object constructor method) 34 

b. .cctor  (a class constructor method) 35 

Implementation Specific (Microsoft) 36 

For COM Interop, an additional class of method names are permitted: 37 

 _VtblGap<Sequence(umber>_<CountOfSlots> 38 

where <SequenceNumber> and <CountOfSlots> are decimal numbers 39 
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38. Conversely, if (ame is any of the above special names then Flags.RTSpecial(ame shall be set  1 
[ERROR] 2 

39. If (ame = .ctor  (an object constructor method) then: 3 

a. return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16)  [ERROR]  4 

b. Flags.Static shall be 0  [ERROR] 5 

c. Flags.Abstract shall be 0  [ERROR]  6 

d. Flags.Virtual shall be 0  [ERROR] 7 

e. ‘Owner’ type shall be a valid Class or ValueType (not <Module> and not an Interface) in the 8 
TypeDef table  [ERROR] 9 

f. there can be zero or more .ctors  for any given ‘owner’  10 

40. If (ame = .cctor  (a class constructor method) then: 11 

a. the return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16)   [ERROR]  12 

b. Signature shall have DEFAULT (0x0) for its calling convention [ERROR] 13 

c. there shall be no parameters supplied in Signature  [ERROR] 14 

d. Flags.Static shall be set  [ERROR] 15 

e. Flags.Virtual shall be clear  [ERROR] 16 

f. Flags.Abstract shall be clear  [ERROR] 17 

41. Among the set of methods owned by any given row in the TypeDef table there can only be 0 or 1 18 
methods named .cctor   [ERROR] 19 

End informative text 20 

22.27  MethodImpl : 0x19 21 

MethodImpl tables let a compiler override the default inheritance rules provided by the CLI. Their original use 22 
was to allow a class C, that inherited method M from both interfaces I and J, to provide implementations for 23 
both methods (rather than have only one slot for M in its vtable). However, MethodImpls can be used for other 24 
reasons too, limited only by the compiler writer’s ingenuity within the constraints defined in the Validation 25 
rules below. 26 

In the example above, Class specifies C, MethodDeclaration specifies I::M, MethodBody specifies the method 27 
which provides the implementation for I::M (either a method body within C, or a method body implemented by 28 
a base class of C). 29 

The MethodImpl table has the following columns: 30 

• Class (an index into the TypeDef table) 31 

• MethodBody (an index into the MethodDef or MemberRef table; more precisely, a MethodDefOrRef  32 
(§24.2.6) coded index) 33 

• MethodDeclaration (an index into the MethodDef or MemberRef table; more precisely, a 34 
MethodDefOrRef  (§24.2.6) coded index) 35 

ILAsm uses the .override  directive to specify the rows of the MethodImpl table (§10.3.2 and §15.4.1). 36 

This contains informative text only 37 

1. The MethodImpl table can contain zero or more rows 38 

2. Class shall index a valid row in the TypeDef table  [ERROR] 39 

3. MethodBody shall index a valid row in the MethodDef or MemberRef table  [ERROR] 40 
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4. The method indexed by MethodDeclaration shall have Flags.Virtual set  [ERROR] 1 

5. The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 0  2 
[ERROR] 3 

6. The method indexed by MethodBody shall be a member of Class or some base class of Class 4 
(MethodImpls do not allow compilers to ‘hook’ arbitrary method bodies)  [ERROR] 5 

7. The method indexed by MethodBody shall be virtual  [ERROR] 6 

8. The method indexed by MethodBody shall have its Method.RVA != 0  (cannot be an unmanaged 7 
method reached via PInvoke, for example)  [ERROR] 8 

9. MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends 9 
chain) or in the interface tree of Class (reached via its InterfaceImpl entries)  [ERROR] 10 

10. The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0)  11 
[ERROR] 12 

11. If MethodDeclaration has the Strict flag set, the method indexed by MethodDeclaration shall be 13 
accessible to Class.  [ERROR] 14 

12. The method signature defined by MethodBody shall match those defined by MethodDeclaration  15 
[ERROR] 16 

13. There shall be no duplicate rows, based upon Class+MethodDeclaration  [ERROR] 17 

End informative text 18 

22.28  MethodSemantics :  0x18 19 

The MethodSemantics table has the following columns: 20 

• Semantics (a 2-byte bitmask of type MethodSemanticsAttributes, §23.1.12) 21 

• Method (an index into the MethodDef table) 22 

• Association (an index into the Event or Property table; more precisely, a HasSemantics (§24.2.6) 23 
coded index)  24 

The rows of the MethodSemantics table are filled by .property  (§17) and .event  directives (§18).   25 
(See §22.13 for more information.) 26 

This contains informative text only 27 

1. MethodSemantics table can contain zero or more rows 28 

2. Semantics shall have only those values set that are specified  [ERROR] 29 

3. Method shall index a valid row in the MethodDef table, and that row shall be for a method defined 30 
on the same class as the Property or Event this row describes  [ERROR] 31 

4. All methods for a given Property or Event shall have the same accessibility (ie the 32 
MemberAccessMask subfield of their Flags row) and cannot be CompilerControlled  [CLS] 33 

5. Semantics: constrained as follows: 34 

o If this row is for a Property, then exactly one of Setter, Getter, or Other shall be set  35 
[ERROR] 36 

o If this row is for an Event, then exactly one of AddOn, RemoveOn, Fire, or Other shall be set  37 
[ERROR] 38 

6. If this row is for an Event, and its Semantics is Addon or RemoveOn, then the row in the MethodDef 39 
table indexed by Method shall take a Delegate as a parameter, and return void  [ERROR] 40 

7. If this row is for an Event, and its Semantics is Fire, then the row indexed in the MethodDef table 41 
by Method can return any type 42 
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Implementation Specific (Microsoft) 1 

The return type of the Fire method shall be void 2 

8. For each property, there shall be a setter, or a getter, or both [CLS] 3 

9. Any getter method for a property whose (ame is xxx shall be called get_xxx  [CLS] 4 

10. Any setter method for a property whose (ame is xxx shall be called set_xxx  [CLS] 5 

11. If a property provides both getter and setter methods, then these methods shall have the same 6 
value in the Flags.MemberAccessMask subfield  [CLS] 7 

12. If a property provides both getter and setter methods, then these methods shall have the same 8 
value for their Method.Flags.Virtual  [CLS] 9 

13. Any getter and setter methods shall have Method.Flags.Special(ame = 1  [CLS] 10 

14. Any getter method shall have a return type which matches the signature indexed by the 11 
Property.Type field  [CLS] 12 

15. The last parameter for any setter method shall have a type which matches the signature indexed 13 
by the Property.Type field  [CLS] 14 

16. Any setter method shall have return type ELEMENT_TYPE_VOID (§23.1.16) in Method.Signature  15 
[CLS] 16 

17. If the property is indexed, the indexes for getter and setter shall agree in number and type  [CLS] 17 

18. Any AddOn method for an event whose (ame is xxx shall have the signature: void add_xxx 18 
(< DelegateType> handler)   [CLS] 19 

19. Any RemoveOn method for an event whose (ame is xxx shall have the signature: void 20 
remove_xxx(< DelegateType> handler)   [CLS] 21 

20. Any Fire method for an event whose (ame is xxx shall have the signature: void 22 
raise_xxx(Event e)   [CLS] 23 

End informative text 24 

22.29  MethodSpec :  0x2B 25 

The MethodSpec table has the following columns: 26 

• Method (an index into the MethodDef or MemberRef table, specifying to which generic method this 27 
row refers; that is, which generic method this row is an instantiation of; more precisely, a 28 
MethodDefOrRef  (§24.2.6) coded index) 29 

• Instantiation  (an index into the Blob heap (§23.2.15), holding the signature of this instantiation) 30 

The MethodSpec table records the signature of an instantiated generic method.  31 

Each unique instantiation of a generic method (i.e., a combination of Method and Instantiation) shall be 32 
represented by a single row in the table. 33 

This contains informative text only 34 

1. The MethodSpec table can contain zero or more rows 35 

2. One or more rows can refer to the same row in the MethodDef or MemberRef table.  (There can be 36 
multiple instantiations of the same generic method.) 37 

3. The signature stored at Instantiation shall be a valid instantiation of the signature of the generic 38 
method stored at Method  [ERROR] 39 

4. There shall be no duplicate rows based upon Method+Instantiation  [ERROR] 40 
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End informative text 1 

22.30  Module :  0x00 2 

The Module table has the following columns: 3 

• Generation (a 2-byte value, reserved, shall be zero) 4 

• (ame (an index into the String heap) 5 

• Mvid  (an index into the Guid heap; simply a Guid used to distinguish between two versions of the 6 
same module) 7 

• EncId (an index into the Guid heap; reserved, shall be zero) 8 

• EncBaseId (an index into the Guid heap; reserved, shall be zero) 9 

The Mvid column shall index a unique GUID in the GUID heap (§24.2.5) that identifies this instance of the 10 
module.  The Mvid can be ignored on read by conforming implementations of the CLI. The Mvid should be 11 
newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or another 12 
compatible algorithm. 13 

[(ote: The term GUID stands for Globally Unique IDentifier, a 16-byte long number typically displayed using 14 
its hexadecimal encoding.  A GUID can be generated by several well-known algorithms including those used 15 
for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, as well as CLSIDs, GUIDs, and IIDs in 16 
COM. end note] 17 
 18 
[Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside 19 
the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another. end 20 
rationale] 21 

The Generation, EncId, and EncBaseId columns can be written as zero, and can be ignored by conforming 22 
implementations of the CLI.  The rows in the Module table result from .module  directives in the Assembly 23 
(§6.4). 24 

This contains informative text only 25 

1. The Module table shall contain one and only one row  [ERROR] 26 

2. (ame shall index a non-empty string.  This string should match exactly any corresponding 27 
ModuleRef.(ame string that resolves to this module.  [ERROR] 28 

Implementation Specific (Microsoft) 29 

(ame is limited to MAX_PATH_NAME 30 

The format of (ame is <file name>.<file extension> with no path or drive letter; on POSIX-31 
compliant systems (ame contains no colon, no forward-slash, no backslash. 32 

3. Mvid shall index a non-null GUID in the Guid heap  [ERROR] 33 

End informative text 34 

22.31  ModuleRef  :  0x1A 35 

The ModuleRef table has the following column: 36 

• (ame (an index into the String heap) 37 

The rows in the ModuleRef table result from .module extern directives in the Assembly (§6.5). 38 

This contains informative text only 39 

1. (ame shall index a non-empty string in the String heap.  This string shall enable the CLI to locate 40 
the target module (typically, it might name the file used to hold the module)  [ERROR]  41 
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Implementation Specific (Microsoft) 1 

(ame is limited to MAX_PATH_NAME  2 

The format of (ame is <filename>.<extension> (eg, “Foo.DLL” - no drive letter, no path); on 3 
POSIX-compliant systems (ame contains no colon, no forward-slash, no backslash. 4 

2. There should be no duplicate rows  [WARNING] 5 

3. (ame should match an entry in the (ame column of the File table.  Moreover, that entry shall 6 
enable the CLI to locate the target module (typically it might name the file used to hold the 7 
module)  [ERROR] 8 

End informative text 9 

22.32  AestedClass :  0x29 10 

The (estedClass table has the following columns: 11 

• (estedClass (an index into the TypeDef table) 12 

• EnclosingClass (an index into the TypeDef table) 13 

(estedClass is defined as lexically ‘inside’ the text of its enclosing Type. 14 

This contains informative text only 15 

The (estedClass table records which Type definitions are nested within which other Type definition. In a 16 
typical high-level language, the nested class is defined as lexically ‘inside’ the text of its enclosing Type 17 

1. The (estedClass table can contain zero or more rows 18 

2. (estedClass shall index a valid row in the TypeDef table  [ERROR] 19 

3. EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to 20 
index the TypeRef table)  [ERROR] 21 

4. There should be no duplicate rows (ie same values for (estedClass and EnclosingClass)  22 
[WARNING] 23 

5. A given Type can only be nested by one encloser.  So, there cannot be two rows with the same 24 
value for (estedClass, but different value for EnclosingClass  [ERROR] 25 

6. A given Type can ‘own’ several different nested Types, so it is perfectly valid to have two or 26 
more rows with the same value for EnclosingClass but different values for (estedClass 27 

End informative text 28 

22.33  Param : 0x08 29 

The Param table has the following columns: 30 

• Flags (a 2-byte bitmask of type ParamAttributes, §23.1.13) 31 

• Sequence (a 2-byte constant) 32 

• (ame (an index into the String heap) 33 

Conceptually, every row in the Param table is owned by one, and only one, row in the MethodDef table  34 

The rows in the Param table result from the parameters in a method declaration (§15.4), or from a .param  35 
attribute attached to a method (§15.4.1). 36 

This contains informative text only 37 

1. Param table can contain zero or more rows 38 
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2. Each row shall have one, and only one, owner row in the MethodDef table  [ERROR] 1 

3. Flags shall have only those values set that are specified (all combinations valid)  [ERROR] 2 

4. Sequence shall have a value >= 0 and <= number of parameters in owner method.  A Sequence 3 
value of 0 refers to the owner method’s return type; its parameters are then numbered from 1 4 
onwards  [ERROR] 5 

5. Successive rows of the Param table that are owned by the same method shall be ordered by 6 
increasing Sequence value - although gaps in the sequence are allowed  [WARNING] 7 

6. If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table  [ERROR] 8 

7. If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row  9 
[ERROR] 10 

8. parameters cannot be given default values, so Flags.HasDefault shall be 0  [CLS] 11 

9. if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table  12 
[ERROR] 13 

10. (ame can be null or non-null 14 

11. If (ame is non-null, then it shall index a non-empty string in the String heap  [WARNING] 15 

Implementation Specific (Microsoft) 16 

This string is limited to MAX_CLASS_NAME 17 

End informative text 18 

22.34  Property :  0x17 19 

Properties within metadata are best viewed as a means to gather together collections of methods defined on a 20 
class, give them a name, and not much else.  The methods are typically get_ and set_ methods, already defined 21 
on the class, and inserted like any other methods into the MethodDef table.  The association is held together by 22 
three separate tables, as shown below: 23 

 24 

Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing 25 
row 4 of the Property table on the right – the row for a property called Foo.  This setup establishes that 26 
MyClass has a property called Foo.  But what methods in the MethodDef table are gathered together as 27 
‘belonging’ to property Foo?  That association is contained in the MethodSemantics table – its row 2 indexes 28 
property Foo to the right, and row 2 in the MethodDef table to the left (a method called get_Foo).  Also, row 3 29 
of the MethodSemantics table indexes Foo to the right, and row 3 in the MethodDef table to the left (a method 30 
called set_Foo).  As the shading suggests, MyClass has another property, called Bar, with two methods, 31 
get_Bar and set_Bar. 32 
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Property tables do a little more than group together existing rows from other tables.  The Property table has 1 
columns for Flags, (ame (eg Foo and Bar in  the example here) and Type.  In addition, the MethodSemantics 2 
table has a column to record whether the method it points at is a set_, a get_ or other. 3 

[(ote: The CLS (see Partition I) refers to instance, virtual, and static properties.  The signature of a property 4 
(from the Type column) can be used to distinguish a static property, since instance and virtual properties will 5 
have the “HASTHIS” bit set in the signature (§23.2.1) while a static property will not.  The distinction between 6 
an instance and a virtual property depends on the signature of the getter and setter methods, which the CLS 7 
requires to be either both virtual or both instance. end note] 8 

The Property ( 0x17 ) table has the following columns: 9 

• Flags (a 2-byte bitmask of type PropertyAttributes, §23.1.14) 10 

• (ame (an index into the String heap) 11 

• Type (an index into the Blob heap)  (The name of this column is misleading.  It does not index a 12 
TypeDef or TypeRef table—instead it indexes the signature in the Blob heap of the Property) 13 

This contains informative text only 14 

1. Property table can contain zero or more rows 15 

2. Each row shall have one, and only one, owner row in the PropertyMap table (as described above)  16 
[ERROR] 17 

3. PropFlags shall have only those values set that are specified (all combinations valid)  [ERROR] 18 

4. (ame shall index a non-empty string in the String heap  [ERROR] 19 

Implementation Specific (Microsoft) 20 

This string is limited to MAX_CLASS_NAME 21 

5. The (ame string shall be a valid CLS identifier  [CLS] 22 

6. Type shall index a non-null signature in the Blob heap  [ERROR] 23 

7. The signature indexed by Type shall be a valid signature for a property (ie, low nibble of leading 24 
byte is 0x8).  Apart from this leading byte, the signature is the same as the property’s get_ method  25 
[ERROR] 26 

8. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based 27 
upon (ame+Type  [ERROR] 28 

9. There shall be no duplicate rows based upon (ame, where (ame fields are compared using CLS 29 
conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type – a class 30 
cannot have two properties, "int Foo" and "String Foo", for example)  [CLS] 31 

End informative text 32 

22.35  PropertyMap : 0x15 33 

The PropertyMap table has the following columns: 34 

• Parent (an index into the TypeDef table) 35 

• PropertyList (an index into the Property table).  It marks the first of a contiguous run of Properties 36 
owned by Parent.  The run continues to the smaller of: 37 

o the last row of the Property table 38 

o the next run of Properties, found by inspecting the PropertyList of the next row in this 39 
PropertyMap table 40 

The PropertyMap and Property tables result from putting the .property  directive on a class (§17). 41 
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This contains informative text only 1 

1. PropertyMap table can contain zero or more rows 2 

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the 3 
start of its property list)  [ERROR] 4 

3. There shall be no duplicate rows, based upon PropertyList (different classes cannot share rows in 5 
the Property table)  [ERROR] 6 

End informative text 7 

22.36  StandAloneSig :  0x11 8 

Signatures are stored in the metadata Blob heap.  In most cases, they are indexed by a column in some table—9 
Field.Signature, Method.Signature, MemberRef.Signature, etc.  However, there are two cases that require a 10 
metadata token for a signature that is not indexed by any metadata table.  The StandAloneSig table fulfils this 11 
need.  It has just one column, which points to a Signature in the Blob heap. 12 

The signature shall describe either: 13 

• a method – code generators create a row in the StandAloneSig table for each occurrence of a calli 14 
CIL instruction.  That row indexes the call-site signature for the function pointer operand of the 15 
calli instruction 16 

• local variables – code generators create one row in the StandAloneSig table for each method, to 17 
describe all of its local variables.  The .locals  directive (§15.4.1) in ILAsm generates a row in 18 
the StandAloneSig table. 19 

TheStandAloneSig table has the following column: 20 

• Signature (an index into the Blob heap) 21 

[Example:  22 

// On encountering the calli instruction, ilasm generates a signature 23 
// in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Param1 = int32),  24 
// indexed by the StandAloneSig table: 25 
.assembly Test {} 26 
.method static int32 AddTen(int32) 27 
{ ldarg.0 28 
  ldc.i4  10 29 
  add 30 
  ret  31 
} 32 

.class Test 33 
{ .method static void main() 34 
  { .entrypoint 35 
    ldc.i4.1 36 
    ldftn int32 AddTen(int32) 37 
    calli int32(int32) 38 
    pop 39 
    ret 40 
  } 41 
} 42 

end example] 43 

This contains informative text only 44 

1. The StandAloneSig table can contain zero or more rows 45 

2. Signature shall index a valid signature in the Blob heap  [ERROR] 46 

3. The signature 'blob' indexed by Signature shall be a valid METHOD or LOCALS signature  [ERROR] 47 
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4. Duplicate rows are allowed 1 

End informative text 2 

22.37  TypeDef :  0x02 3 

The TypeDef table has the following columns: 4 

• Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15) 5 

• Type(ame (an index into the String heap) 6 

• Type(amespace (an index into the String heap) 7 

• Extends (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef  8 
(§24.2.6) coded index) 9 

• FieldList (an index into the Field table; it marks the first of a contiguous run of Fields owned by 10 
this Type).  The run continues to the smaller of: 11 

o the last row of the Field table 12 

o the next run of Fields, found by inspecting the FieldList of the next row in this TypeDef 13 
table 14 

• MethodList (an index into the MethodDef table; it marks the first of a continguous run of Methods 15 
owned by this Type).  The run continues to the smaller of: 16 

o the last row of the MethodDef table 17 

o the next run of Methods, found by inspecting the MethodList of the next row in this TypeDef 18 
table 19 

The first row of the TypeDef table represents the pseudo class that acts as parent for functions and variables 20 
defined at module scope. 21 

Note that any type shall be one, and only one, of 22 

• Class (Flags.Interface = 0, and derives ultimately from System.Object) 23 

• Interface (Flags.Interface = 1) 24 

• Value type, derived ultimately from System.ValueType 25 

For any given type, there are two separate and distinct chains of pointers to other types (the pointers are 26 
actually implemented as indexes into metadata tables).  The two chains are: 27 

• Extension chain – defined via the Extends column of the TypeDef table.  Typically, a derived Class 28 
extends a base Class (always one, and only one, base Class) 29 

• Interface chains – defined via the InterfaceImpl table.  Typically, a Class implements zero, one or 30 
more Interfaces 31 

These two chains (extension and interface) are always kept separate in metadata.  The Extends chain represents 32 
one-to-one relations—that is, one Class extends (or ‘derives from’) exactly one other Class (called its 33 
immediate base class).  The Interface chains can represent one-to-many relations—that is, one Class might well 34 
implement two or more Interfaces.  35 

An interface can also implement one or more other interfaces—metadata stores those links via the 36 
InterfaceImpl table (the nomenclature is a little inappropriate here—there is no “implementation” involved; 37 
perhaps a clearer name might have been Interface table, or InterfaceInherit table)   38 

Another slightly specialized type is a nested type which is declared in ILAsm as lexically nested within an 39 
enclosing type declaration.   Whether a type is nested can be determined by the value of its Flags.Visibility sub-40 
field – it shall be one of the set {(estedPublic, (estedPrivate, (estedFamily, (estedAssembly, 41 
(estedFamA(DAssem, (estedFamORAssem}.  42 
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If a type is generic, its parameters are defined in the GenericParam table (§22.20). Entries in the 1 
GenericParam table reference entries in the TypeDef table; there is no reference from the TypeDef table to the 2 
GenericParam table. 3 

This contains informative text only 4 

The roots of the inheritance hierarchies look like this: 5 

 6 
 7 
There is one system-defined root, System.Object.  All Classes and ValueTypes shall derive, ultimately, from 8 
System.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth 9 
required.  This Extends inheritance chain is shown with heavy arrows. 10 

(See below for details of the System.Delegate Class) 11 

Interfaces do not inherit from one another; however, they can have zero or more required interfaces, which 12 
shall be implemented.  The Interface requirement chain is shown as light, dashed arrows.  This includes links 13 
between Interfaces and Classes/ValueTypes – where the latter are said to implement that interface or interfaces. 14 

Regular ValueTypes (i.e., excluding Enums – see later) are defined as deriving directly from 15 
System.ValueType.  Regular ValueTypes cannot be derived to a depth of more than one.  (Another way to state 16 
this is that user-defined ValueTypes shall be sealed.)  User-defined Enums shall derive directly from 17 
System.Enum.  Enums cannot be derived to a depth of more than one below System.Enum.  (Another way to 18 
state this is that user-defined Enums shall be sealed.)  System.Enum derives directly from System.ValueType. 19 

User-defined delegates derive from System.Delegate.   Delegates cannot be derived to a depth of more than 20 
one. 21 

Implementation-Specific (Microsoft) 22 

The hierarchy below System.Delegate is as follows: 23 

 24 

 25 
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User-defined delegates derive directly from System.MulticastDelegate. 1 

For the directives to declare types see §9. 2 

1. A TypeDef table can contain one or more rows. 3 

2. Flags: 4 

a. Flags shall have only those values set that are specified  [ERROR] 5 

b. can set 0 or 1 of SequentialLayout and  ExplicitLayout (if none set, then defaults to 6 
AutoLayout)  [ERROR]  7 

c. can set 0 or 1 of UnicodeClass and AutoClass (if none set, then defaults to AnsiClass)  8 
[ERROR] 9 

Implementation Specific (Microsoft) 10 

if RTSpecialName is set, then this Type is regarded as deleted (used in Edit&Continue and 11 
incremental compilation scenarios)  Perform no checks on this Type or any of its members 12 
(the information is not physically deleted; it is just ‘flagged’ as logically deleted)  Note: this 13 
situation can only be seen on in-memory metadata—it is not persisted to disk, and therefore 14 
irrelevant to checks done by an offline tool 15 

if Import is set (denotes a Type defined via the TlbImp tool), then all the methods owned by 16 
this Type shall have their Method.RVA = 0  [ERROR] 17 

d. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:  18 
[ERROR] 19 

• this Type owns at least one row in the DeclSecurity table  20 

• this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute 21 

e. If this Type owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall 22 
be 1  [ERROR] 23 

f. If this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then 24 
Flags.HasSecurity shall be 1  [ERROR] 25 

g. Note that it is valid for an Interface to have HasSecurity set.  However, the security system 26 
ignores any permission requests attached to that Interface 27 

3. (ame shall index a non-empty string  in the String heap  [ERROR] 28 

Implementation Specific (Microsoft) 29 

This string is limited to MAX_CLASS_NAME 30 

4. The Type(ame string shall be a valid CLS identifier  [CLS] 31 

5. Type(amespace can be null or non-null 32 

6. If non-null, then Type(amespace shall index a non-empty string in the String heap  [ERROR] 33 

Implementation Specific (Microsoft) 34 

This string is limited to MAX_CLASS_NAME.  Also, the concatenated Type(amespace + "." + 35 
Type(ame shall be less than MAX_CLASS_NAME 36 

7. If non-null, Type(amespace’s string shall be a valid CLS Identifier  [CLS] 37 

8. Every Class (with the exception of System.Object and the special class <Module>) shall extend 38 
one, and only one, other Class - so Extends for a Class shall be non-null [ERROR] 39 

9. System.Object shall have an Extends value of null  [ERROR] 40 

10. System.ValueType shall have an Extends value of System.Object  [ERROR] 41 
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11. With the exception of System.Object and the special class <Module>, for any Class, Extends shall 1 
index a valid row in the TypeDef, TypeRef, or TypeSpec table, where valid means 1 <= row <= 2 
rowcount.  In addition, that row itself shall be a Class (not an Interface or ValueType)  In 3 
addition, that base Class shall not be sealed (its Flags.Sealed shall be 0)  [ERROR] 4 

12. A Class cannot extend itself, or any of its children (i.e., its derived Classes), since this would 5 
introduce loops in the hierarchy tree  [ERROR] (For generic types, see §9.1 and §9.2.) 6 

13. An Interface never extends another Type - so Extends shall be null (Interfaces do implement other 7 
Interfaces, but recall that this relationship is captured via the InterfaceImpl table, rather than the 8 
Extends column)  [ERROR] 9 

14. FieldList can be null or non-null 10 

15. A Class or Interface can ‘own’ zero or more fields 11 

16. A ValueType shall have a non-zero size - either by defining at least one field, or by providing a 12 
non-zero ClassSize  [ERROR] 13 

17. If FieldList is non-null, it shall index a valid row in the Field table, where valid means 1 <= row 14 
<= rowcount+1  [ERROR] 15 

18. MethodList can be null or non-null 16 

19. A Type can ‘own’ zero or more methods 17 

20. The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes)  [ERROR] 18 

Implementation Specific (Microsoft) 19 

Current implementation actually allows 0x3F0000 bytes, but might be reduced in future 20 

21. If MethodList is non-null, it shall index a valid row in the MethodDef table, where valid means 1 21 
<= row <= rowcount+1  [ERROR] 22 

22. A Class which has  one or more abstract methods cannot be instantiated, and shall have 23 
Flags.Abstract = 1.   Note that the methods owned by the class include all of those inherited from 24 
its base class and interfaces it implements, plus those defined via its MethodList.  (The CLI shall 25 
analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but 26 
has Flags.Abstract = 0, it will throw an exception)  [ERROR] 27 

23. An Interface shall have Flags.Abstract = 1  [ERROR] 28 

24. It is valid for an abstract Type to have a constructor method (ie, a method named .ctor ) 29 

25. Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every 30 
method its contract requires.  Its methods can be inherited from its base class, from the interfaces 31 
it implements, or defined by itself.  The implementations can be inherited from its base class, or 32 
defined by itself  [ERROR] 33 

26. An Interface (Flags.Interface = 1) can own static fields (Field.Static = 1) but cannot own instance 34 
fields (Field.Static = 0)  [ERROR] 35 

27. An Interface cannot be sealed (if Flags.Interface = 1, then Flags.Sealed shall be 0)  [ERROR] 36 

28. All of the methods owned by an Interface (Flags.Interface = 1) shall be abstract (Flags.Abstract 37 
= 1)  [ERROR] 38 

29. There shall be no duplicate rows in the TypeDef table, based on Type(amespace+Type(ame 39 
(unless this is a nested type - see below)  [ERROR] 40 

30. If this is a nested type, there shall be no duplicate row in the TypeDef table, based upon 41 
Type(amespace+Type(ame+OwnerRowIn(estedClassTable  [ERROR] 42 

31. There shall be no duplicate rows, where Type(amespace+Type(ame fields are compared using 43 
CLS conflicting-identifier-rules (unless this is a nested type - see below)  [CLS] 44 
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32. If this is a nested type, there shall be no duplicate rows, based upon 1 
Type(amespace+Type(ame+OwnerRowIn(estedClassTable and where 2 
Type(amespace+Type(ame fields are compared using CLS conflicting-identifier-rules  [CLS] 3 

33. If Extends = System.Enum  (i.e., type is a user-defined Enum) then: 4 

a. shall be sealed (Sealed = 1)  [ERROR] 5 

b. shall not have any methods of its own (MethodList chain shall be zero length)  [ERROR] 6 

c. shall not implement any interfaces (no entries in InterfaceImpl table for this type)  7 
[ERROR] 8 

d. shall not have any properties   [ERROR] 9 

e. shall not have any events   [ERROR] 10 

f. any static fields shall be literal (have Flags.Literal = 1)  [ERROR] 11 

g. shall have one or more static, literal fields, each of which has the type of the Enum  [CLS] 12 

h. shall be exactly one instance field, of built-in integer type  [ERROR] 13 

i. the (ame string of the instance field shall be "value__", the field shall be marked 14 
RTSpecialName, and that field shall have one of the CLS integer types [CLS] 15 

j. shall not have any static fields unless they are literal [ERROR] 16 

34. A Nested type (defined above) shall own exactly one row in the (estedClass table, where ‘owns’ 17 
means a row in that (estedClass table whose (estedClass column holds the TypeDef token for 18 
this type definition  [ERROR] 19 

35. A ValueType shall be sealed  [ERROR] 20 

End informative text 21 

22.38  TypeRef :  0x01 22 

The TypeRef table has the following columns: 23 

• ResolutionScope (an index into a Module, ModuleRef, AssemblyRef or TypeRef table, or null; more 24 
precisely, a ResolutionScope  (§24.2.6) coded index) 25 

• Type(ame (an index into the String heap) 26 

• Type(amespace (an index into the String heap) 27 

This contains informative text only 28 

1. ResolutionScope shall be exactly one of: 29 

a. null - in this case, there shall be a row in the ExportedType table for this Type - its 30 
Implementation field shall contain a File token or an AssemblyRef token that says where the 31 
type is defined [ERROR] 32 

b. a TypeRef token, if this is a nested type (which can be determined by, for example, 33 
inspecting the Flags column in its TypeDef table - the accessibility subfield is one of the 34 
tdNestedXXX set)  [ERROR] 35 

c. a ModuleRef token, if the target type is defined in another module within the same 36 
Assembly as this one [ERROR] 37 

d. a Module token, if the target type is defined in the current module - this should not occur in 38 
a CLI (“compressed metadata”) module  [WARNING] 39 

e. an AssemblyRef token, if the target type is defined in a different Assembly from the current 40 
module [ERROR] 41 
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2. Type(ame shall index a non-empty string in the String heap  [ERROR] 1 

Implementation Specific (Microsoft) 2 

This string is limited to MAX_CLASS_NAME 3 

3. Type(amespace can be null, or non-null 4 

4. If non-null, Type(amespace shall index a non-empty string in the String heap  [ERROR] 5 

Implementation Specific (Microsoft) 6 

This string is limited to MAX_CLASS_NAME.  Also, the concatenated Type(amespace + "." + 7 
Type(ame shall be less than MAX_CLASS_NAME 8 

5. The Type(ame string shall be a valid CLS identifier  [CLS] 9 

6. There shall be no duplicate rows, where a duplicate has the same ResolutionScope, Type(ame and 10 
Type(amespace  [ERROR] 11 

7. There shall be no duplicate rows, where Type(ame and Type(amespace fields are compared 12 
using CLS conflicting-identifier-rules  [CLS] 13 

End informative text 14 

22.39  TypeSpec :  0x1B 15 

The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap.  16 
This provides a metadata token for that Type (rather than simply an index into the Blob heap). This is required, 17 
typically, for array operations, such as creating, or calling methods on the array class. 18 

The TypeSpec table has the following column: 19 

• Signature (index into the Blob heap, where the blob is formatted as specified in §23.2.14) 20 

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token; 21 
specifically, castclass, cpobj, initobj, isinst, ldelema, ldobj, mkrefany, newarr, refanyval, sizeof, stobj, 22 
box, and unbox. 23 

This contains informative text only 24 

1. The TypeSpec table can contain zero or more rows 25 

2. Signature shall index a valid Type specification in the Blob heap  [ERROR] 26 

3. There shall be no duplicate rows, based upon Signature  [ERROR] 27 

End informative text 28 
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23  Metadata logical format: other structures 1 

23.1  Bitmasks and f lags 2 

This subclause explains the flags and bitmasks used in the metadata tables. When a conforming implementation 3 
encounters a metadata structure (such as a flag) that is not specified in this standard, the behavior of the 4 
implementation is unspecified. 5 

23.1.1  Values for  AssemblyHashAlgorithm 6 

Algorithm Value 

None 0x0000 

Reserved (MD5) 0x8003 

SHA1  0x8004 
 7 

23.1.2  Values for  AssemblyFlags 8 

Flag Value Description 

PublicKey 0x0001 The assembly reference holds the full (unhashed) 
public key. 

<reserved> 0xC0F0 Reserved: all bits shall be zero 

Retargetable 0x0100 The implementation of this assembly used at runtime is 
not expected to match the version seen at compile time. 
(See the text following this table.) 

 9 
In portable programs, the Retargetable (0x100) bit shall be set on all references to assemblies specified in this 10 
Standard. 11 

23.1.3  Values for  Culture  12 

ar-SA ar-IQ ar-EG ar-LY 

ar-DZ ar-MA ar-TN ar-OM 

ar-YE ar-SY ar-JO ar-LB 

ar-KW ar-AE ar-BH ar-QA 

bg-BG ca-ES zh-TW zh-CN 

zh-HK zh-SG zh-MO cs-CZ 

da-DK de-DE de-CH de-AT 

de-LU de-LI el-GR en-US 

en-GB en-AU en-CA en-NZ 

en-IE en-ZA en-JM en-CB 

en-BZ en-TT en-ZW en-PH 

es-ES-Ts es-MX es-ES-Is es-GT 

es-CR es-PA es-DO es-VE 

es-CO es-PE es-AR es-EC 

es-CL es-UY es-PY es-BO 

es-SV es-HN es-NI es-PR 

fi-FI fr-FR fr-BE fr-CA 

fr-CH fr-LU fr-MC he-IL 

hu-HU is-IS it-IT it-CH 
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ja-JP ko-KR nl-NL nl-BE 

nb-NO nn-NO pl-PL pt-BR 

pt-PT ro-RO ru-RU hr-HR 

lt-sr-SP cy-sr-SP sk-SK sq-AL 

sv-SE sv-FI th-TH tr-TR 

ur-PK id-ID uk-UA be-BY 

sl-SI et-EE lv-LV lt-LT 

fa-IR vi-VN hy-AM lt-az-AZ 

cy-az-AZ eu-ES mk-MK af-ZA 

ka-GE fo-FO hi-IN ms-MY 

ms-BN kk-KZ ky-KZ sw-KE 

lt-uz-UZ cy-uz-UZ tt-TA pa-IN 

gu-IN ta-IN te-IN kn-IN 

mr-IN sa-IN mn-MN gl-ES 

kok-IN syr-SY div-MV  

 1 
Note on RFC 1766, Locale names: a typical string would be “en-US”.  The first part (“en” in the example) uses 2 
ISO 639 characters (“Latin-alphabet characters in lowercase.  No diacritical marks of modified characters are 3 
used”).  The second part (“US” in the example) uses ISO 3166 characters (similar to ISO 639, but uppercase); 4 
that is, the familiar ASCII characters a–z and A–Z, respectively.  However, whilst RFC 1766 recommends the 5 
first part be lowercase and the second part be uppercase, it allows mixed case.  Therefore,  the validation rule 6 
checks only that Culture is one of the strings in the list above—but the check is totally case-blind—where case-7 
blind is the familiar fold on values less than U+0080 8 

23.1.4  Flags for  events  [EventAttr ibutes]  9 

Flag Value Description 

SpecialName 0x0200 Event is special. 

RTSpecialName  0x0400 CLI provides 'special' behavior, depending upon the name of the 
event 

 10 

23.1.5  Flags for  f ie lds [Fie ldAttributes]  11 

Flag Value Description 

FieldAccessMask 0x0007 These 3 bits contain one of the following values: 

CompilerControlled 0x0000 Member not referenceable 

Private 0x0001 Accessible only by the parent type 

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly 

Assembly 0x0003 Accessibly by anyone in the Assembly 

Family 0x0004 Accessible only by type and sub-types 

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly 

Public 0x0006 Accessibly by anyone who has visibility to this scope field 
contract attributes 

Static 0x0010 Defined on type, else per instance 

InitOnly 0x0020 Field can only be initialized, not written to after init 
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Literal 0x0040 Value is compile time constant 

NotSerialized 0x0080 Reserved (to indicate this field should not be serialized when 
type is remoted) 

SpecialName 0x0200 Field is special 

Interop Attributes 

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke. 

Additional flags 

RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the 
field 

HasFieldMarshal 0x1000 Field has marshalling information 

HasDefault 0x8000 Field has default 

HasFieldRVA 0x0100 Field has RVA 
 1 

23.1.6  Flags for f i les  [Fi leAttributes]  2 

Flag Value Description 

ContainsMetaData 0x0000 This is not a resource file 

ContainsNoMetaData 0x0001 This is a resource file or other non-metadata-containing file 
 3 

23.1.7  Flags for Generic  Parameters [GenericParamAttr ibutes]  4 

Flag Value Description 

VarianceMask 0x0003 These 2 bits contain one of the following values: 

None 0x0000 The generic parameter is non-variant and has no special 
constraints 

Covariant 0x0001 The generic parameter is covariant 

Contravariant 0x0002 The generic parameter is contravariant 

SpecialConstraintMask 0x001C These 3 bits contain one of the following values: 

ReferenceTypeConstraint 0x0004 The generic parameter has the class special constraint 

NotNullableValueTypeConstraint 0x0008 The generic parameter has the valuetype special 
constraint 

DefaultConstructorConstraint 0x0010 The generic parameter has the .ctor special constraint 

23.1.8  Flags for ImplMap [PInvokeAttributes]  5 

Flag Value Description 

NoMangle 0x0001 PInvoke is to use the member name as specified 

Character set 

CharSetMask 0x0006 This is a resource file or other non-metadata-containing file. 
These 2 bits contain one of the following values: 

CharSetNotSpec 0x0000  

CharSetAnsi 0x0002  
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CharSetUnicode 0x0004  

CharSetAuto 0x0006  

SupportsLastError 0x0040 Information about target function. Not relevant for fields 

Calling convention 

CallConvMask 0x0700 These 3 bits contain one of the following values: 

CallConvWinapi 0x0100  

CallConvCdecl 0x0200  

CallConvStdcall 0x0300  

CallConvThiscall 0x0400  

CallConvFastcall 0x0500  
 1 

23.1.9  Flags for  Manife stResource [ManifestResourceAttr ibutes]  2 

Flag Value Description 

VisibilityMask 0x0007 These 3 bits contain one of the following values: 

Public 0x0001 The Resource is exported from the Assembly 

Private 0x0002 The Resource is private to the Assembly 
 3 

23.1.10  Flags for  methods [MethodAttr ibutes ]  4 
 5 
Flag Value Description 

MemberAccessMask 0x0007 These 3 bits contain one of the following values: 

CompilerControlled 0x0000 Member not referenceable 

Private 0x0001 Accessible only by the parent type 

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly 

Assem 0x0003 Accessibly by anyone in the Assembly 

Family 0x0004 Accessible only by type and sub-types 

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly 

Public 0x0006 Accessibly by anyone who has visibility to this scope 

Static 0x0010 Defined on type, else per instance 

Final 0x0020 Method cannot be overridden 

Virtual 0x0040 Method is virtual 

HideBySig 0x0080 Method hides by name+sig, else just by name 

VtableLayoutMask 0x0100 Use this mask to retrieve vtable attributes. This bit contains 
one of the following values: 

ReuseSlot 0x0000 Method reuses existing slot in vtable 

NewSlot 0x0100 Method always gets a new slot in the vtable 

Strict 0x0200 Method can only be overriden if also accessible 

Abstract 0x0400 Method does not provide an implementation 
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SpecialName 0x0800 Method is special 

Interop attributes 

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke 

UnmanagedExport 0x0008 Reserved: shall be zero for conforming implementations 

Additional flags 

RTSpecialName 0x1000 CLI provides 'special' behavior, depending upon the name of 
the method 

HasSecurity 0x4000 Method has security associate with it 

RequireSecObject 0x8000 Method calls another method containing security code. 
 1 

Implementation Specific (Microsoft) 2 

UnmanagedExport indicates a managed method exported via thunk to unmanaged code. 3 

Strict is referred to as CheckAccessOnOverride.  4 

23.1.11  Flags for methods [MethodImplAttr ibutes]  5 

Flag Value Description 

CodeTypeMask 0x0003 These 2 bits contain one of the following values: 

IL 0x0000 Method impl is CIL 

Native 0x0001 Method impl is native 

OPTIL 0x0002 Reserved: shall be zero in conforming implementations 

Runtime 0x0003 Method impl is provided by the runtime 

ManagedMask 0x0004 Flags specifying whether the code is managed or unmanaged. 
This bit contains one of the following values: 

Unmanaged 0x0004 Method impl is unmanaged, otherwise managed 

Managed 0x0000 Method impl is managed 

Implementation info and interop 

ForwardRef 0x0010 Indicates method is defined; used primarily in merge 
scenarios 

PreserveSig 0x0080 Reserved: conforming implementations can ignore 

InternalCall 0x1000 Reserved: shall be zero in conforming implementations 

Synchronized 0x0020 Method is single threaded through the body 

NoInlining 0x0008 Method cannot be inlined 

MaxMethodImplVal 0xffff Range check value     
 6 

Implementation Specific (Microsoft) 7 

PreserveSig method signature is not to be mangled to do HRESULT conversion. InternalCall indicates 8 
the method body is provided by the CLI itself.  9 

23.1.12  Flags for MethodSemantics  [MethodSe manticsAttributes]  10 

Flag Value Description 

Setter 0x0001 Setter for property 
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Getter 0x0002 Getter for property 

Other 0x0004 Other method for property or event 

AddOn 0x0008 AddOn method for event 

RemoveOn 0x0010 RemoveOn method for event 

Fire 0x0020 Fire method for event 
 1 

23.1.13  Flags for  params [ParamAttributes]  2 

Flag Value Description 

In 0x0001 Param is [In] 

Out 0x0002 Param is [out] 

Optional 0x0010 Param is optional 

HasDefault 0x1000 Param has default value 

HasFieldMarshal 0x2000 Param has FieldMarshal 

Unused 0xcfe0 Reserved: shall be zero in a conforming implementation 
 3 

23.1.14  Flags for  propert ies  [PropertyAttr ibutes]  4 

Flag Value Description 

SpecialName 0x0200 Property is special 

RTSpecialName 0x0400 Runtime(metadata internal APIs) should check name 
encoding 

HasDefault 0x1000 Property has default 

Unused 0xe9ff Reserved: shall be zero in a conforming implementation 
 5 

23.1.15  Flags for  types [TypeAttributes]  6 

Flag Value Description 

Visibility attributes 

VisibilityMask 0x00000007 Use this mask to retrieve visibility information. 
These 3 bits contain one of the following 
values:  

NotPublic 0x00000000 Class has no public scope 

Public 0x00000001 Class has public scope 

NestedPublic 0x00000002 Class is nested with public visibility 

NestedPrivate 0x00000003 Class is nested with private visibility 

NestedFamily 0x00000004 Class is nested with family visibility 

NestedAssembly 0x00000005 Class is nested with assembly visibility 

NestedFamANDAssem 0x00000006 Class is nested with family and assembly 
visibility 

NestedFamORAssem 0x00000007 Class is nested with family or assembly 
visibility 
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Class layout attributes 

LayoutMask 0x00000018 Use this mask to retrieve class layout 
information. These 2 bits contain one of the 
following values: 

AutoLayout 0x00000000 Class fields are auto-laid out 

SequentialLayout 0x00000008 Class fields are laid out sequentially 

ExplicitLayout 0x00000010 Layout is supplied explicitly 

Class semantics attributes 

ClassSemanticsMask 0x00000020 Use this mask to retrive class semantics 
information. This bit contains one of the 
following values: 

Class 0x00000000 Type is a class 

Interface 0x00000020 Type is an interface 

Special semantics in addition to class semantics 

Abstract 0x00000080 Class is abstract 

Sealed 0x00000100 Class cannot be extended 

SpecialName 0x00000400 Class name is special 

Implementation Attributes 

Import 0x00001000 Class/Interface is imported 

Serializable 0x00002000 Reserved (Class is serializable) 

String formatting Attributes 

StringFormatMask 0x00030000 Use this mask to retrieve string information for 
native interop. These 2 bits contain one of the 
following values: 

AnsiClass 0x00000000 LPSTR is interpreted as ANSI 

UnicodeClass 0x00010000 LPSTR is interpreted as Unicode 

AutoClass 0x00020000 LPSTR is interpreted automatically 

CustomFormatClass 0x00030000 A non-standard encoding specified by 
CustomStringFormatMask 

CustomStringFormatMask 0x00C00000 Use this mask to retrieve non-standard 
encoding information for native interop. The 
meaning of the values of these 2 bits is 
unspecified. 

Class Initialization Attributes 

BeforeFieldInit 0x00100000 Initialize the class before first static field 
access 

Additional Flags 

RTSpecialName 0x00000800 CLI provides 'special' behavior, depending 
upon the name of the Type 

HasSecurity 0x00040000 Type has security associate with it 
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IsTypeForwarder 0x00200000 This ExportedType entry is a type forwarder 
 1 

23.1.16  Element types used in s ignatures 2 

The following table lists the values for ELEMENT_TYPE constants.  These are used extensively in metadata 3 
signature blobs – see §23.2 4 

Implementation Specific (Microsoft) 5 

These values are defined in the file inc\CorHdr.h  in the SDK 6 

Aame Value Remarks 

ELEMENT_TYPE_END 0x00 Marks end of a list 

ELEMENT_TYPE_VOID  0x01  

ELEMENT_TYPE_BOOLEAN  0x02  

ELEMENT_TYPE_CHAR  0x03  

ELEMENT_TYPE_I1  0x04  

ELEMENT_TYPE_U1  0x05  

ELEMENT_TYPE_I2  0x06  

ELEMENT_TYPE_U2  0x07  

ELEMENT_TYPE_I4  0x08  

ELEMENT_TYPE_U4  0x09  

ELEMENT_TYPE_I8  0x0a  

ELEMENT_TYPE_U8  0x0b  

ELEMENT_TYPE_R4  0x0c  

ELEMENT_TYPE_R8  0x0d  

ELEMENT_TYPE_STRING  0x0e  

ELEMENT_TYPE_PTR    0x0f Followed by type 

ELEMENT_TYPE_BYREF  0x10 Followed by type 

ELEMENT_TYPE_VALUETYPE  0x11 Followed by TypeDef or TypeRef token 

ELEMENT_TYPE_CLASS  0x12 Followed by TypeDef or TypeRef token 

ELEMENT_TYPE_VAR 0x13 Generic parameter in a generic type definition, 
represented as number (compressed unsigned 
integer) 

ELEMENT_TYPE_ARRAY  0x14 type rank boundsCount bound1 … loCount lo1 … 

ELEMENT_TYPE_GENERICINST 0x15 Generic type instantiation.  Followed by type type-
arg-count  type-1 ... type-n 

ELEMENT_TYPE_TYPEDBYREF 0x16  

ELEMENT_TYPE_I 0x18 System.IntPtr 

ELEMENT_TYPE_U  0x19 System.UIntPtr 

ELEMENT_TYPE_FNPTR 0x1b Followed by full method signature 

ELEMENT_TYPE_OBJECT 0x1c System.Object 
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ELEMENT_TYPE_SZARRAY 0x1d Single-dim array with 0 lower bound 

ELEMENT_TYPE_MVAR 0x1e Generic parameter in a generic method definition, 
represented as number (compressed unsigned 
integer) 

ELEMENT_TYPE_CMOD_REQD 0x1f Required modifier : followed by a TypeDef or 
TypeRef token 

ELEMENT_TYPE_CMOD_OPT 0x20 Optional modifier : followed by a TypeDef or 
TypeRef token 

ELEMENT_TYPE_INTERNAL 0x21 Implemented within the CLI 

ELEMENT_TYPE_MODIFIER  0x40 Or’d with following element types 

ELEMENT_TYPE_SENTINEL 0x41 Sentinel for vararg method signature 

ELEMENT_TYPE_PINNED 0x45 Denotes a local variable that points at a pinned 
object 

 0x50 Indicates an argument of type System.Type. 

 0x51 Used in custom attributes to specify a boxed object 
(§23.3). 

 0x52 Reserved 

 0x53 Used in custom attributes to indicate a FIELD 
(§22.10, 23.3). 

 0x54 Used in custom attributes to indicate a PROPERTY 
(§22.10, 23.3). 

 0x55 Used in custom attributes to specify an enum 
(§23.3).    

23.2  Blobs and signatures 1 

The word signature is conventionally used to describe the type info for a function or method; that is, the type of 2 
each of its parameters, and the type of its return value.  Within metadata, the word signature is also used to 3 
describe the type info for fields, properties, and local variables.  Each Signature is stored as a (counted) byte 4 
array in the Blob heap.  There are several kinds of Signature, as follows: 5 

• MethodRefSig (differs from a MethodDefSig only for VARARG calls) 6 

• MethodDefSig 7 

• FieldSig 8 

• PropertySig 9 

• LocalVarSig 10 

• TypeSpec 11 

• MethodSpec 12 

The value of the first byte of a Signature 'blob' indicates what kind of Signature it is. Its lowest 4 bits hold one 13 
of the following: C, DEFAULT, FASTCALL, STDCALL, THISCALL, or VARARG (whose values are defined in §23.2.3), 14 
which qualify method signatures; FIELD, which denotes a field signature (whose value is defined in §23.2.4); or 15 
PROPERTY, which denotes a property signature (whose value is defined in §23.2.5).  This subclause defines the 16 
binary 'blob' format for each kind of Signature.  In the syntax diagrams that accompany many of the definitions, 17 
shading is used to combine into a single diagram what would otherwise be multiple diagrams; the 18 
accompanying text describes the use of shading. 19 



 

170 Partition II 

Signatures are compressed before being stored into the Blob heap (described below) by compressing the integers 1 
embedded in the signature.  The maximum encodable unsigned integer is 29 bits long, 0x1FFFFFFF. For signed 2 
integers, as occur in ArrayShape (§23.2.13), the range is -228 (0xF0000000) to 228-1 (0x0FFFFFFF). The compression 3 
algorithm used is as follows (bit 0 is the least significant bit): 4 

• For unsigned integers: 5 

o If the value lies between 0 (0x00) and 127 (0x7F), inclusive, encode as a one-byte integer 6 
(bit 7 is clear, value held in bits 6 through 0) 7 

o If the value lies between 28 (0x80) and 214 – 1 (0x3FFF), inclusive, encode as a 2-byte 8 
integer with bit 15 set, bit 14 clear (value held in bits 13 through 0) 9 

o Otherwise, encode as a 4-byte integer, with bit 31 set, bit 30 set, bit 29 clear (value held in 10 
bits 28 through 0) 11 

• For signed integers: 12 

o If the value lies between -64 (0xFFFFFFC0) and 63 (0x3F), inclusive, encode as a one-byte 13 
integer: bit 7 clear, value bits 5 through 0 held in bits 6 through 1, sign bit (value bit 31) in 14 
bit 0. 15 

o If the value lies between -8192 (0xFFFFE000) and 8191 (0x1FFF), inclusive, encode as a 16 
two-byte integer: 15 set, bit 14 clear, value bits 12 through 0 held in bits 13 through 1, sign 17 
bit (value bit 31) in bit 0. 18 

o If the value lies between -268435456 (0xF000000) and 268435455 (0x0FFFFFFF), 19 
inclusive, encode as a four-byte integer: 31 set, 30 set, bit 29 clear, value bits 27 through 0 20 
held in bits 28 through 1, sign bit (value bit 31) in bit 0. 21 

• [(ote: When uncompressing the sign bit is used to fill all the missing bits. end note] 22 

• A null string should be represented with the reserved single byte 0xFF, and no following data 23 

 [(ote: The tables below show several examples. The first column gives a value, expressed in familiar (C-like) 24 
hex notation. The second column shows the corresponding, compressed result, as it would appear in a PE file, 25 
with successive bytes of the result lying at successively higher byte offsets within the file.  (This is the opposite 26 
order from how regular binary integers are laid out in a PE file.) 27 

Unsigned examples: 28 

Original Value Compressed Representation 

0x03 03 

0x7F 7F (7 bits set) 

0x80 8080 

0x2E57 AE57 

0x3FFF BFFF 

0x4000 C000 4000 

0x1FFF FFFF DFFF FFFF 

Signed examples: 29 

Original Value Compressed Representation 

3 06 

-3 7B 

64 8080 

-64 01 
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8192 C000 4000 

-8192 8001 

268435455 DFFF FFFE 

-268435456 C000 0001 

end note] 1 

The most significant bits (the first ones encountered in a PE file) of a “compressed” field, can reveal whether it 2 
occupies 1, 2, or 4 bytes, as well as its value.  For this to work, the “compressed” value, as explained above, is 3 
stored in big-endian order; i.e., with the most significant byte at the smallest offset within the file. 4 

Signatures make extensive use of constant values called ELEMENT_TYPE_xxx – see §23.1.16.  In particular, 5 
signatures include two modifiers called: 6 

ELEMENT_TYPE_BYREF – this element is a managed pointer (see Partition I).  This modifier can only occur in the 7 
definition of LocalVarSig (§23.2.6), Param (§23.2.10) or RetType (§23.2.11).  It shall not occur within the 8 
definition of a Field (§23.2.4)  9 

ELEMENT_TYPE_PTR – this element is an unmanaged pointer (see Partition I).  This modifier can occur in the 10 
definition of LocalVarSig (§23.2.6), Param (§23.2.10),  RetType (§23.2.11) or Field (§23.2.4) 11 

23.2.1  MethodDefSig 12 

A MethodDefSig is indexed by the Method.Signature column.  It captures the signature of a method or global 13 
function.  The syntax diagram for a MethodDefSig is: 14 

 15 

 16 

 17 

This diagram uses the following abbreviations: 18 

HASTHIS = 0x20, used to encode the keyword instance  in the calling convention, see §15.3 19 

EXPLICITTHIS = 0x40, used to encode the keyword explicit  in the calling convention, see §15.3 20 

DEFAULT = 0x0, used to encode the keyword default  in the calling convention, see §15.3 21 

VARARG = 0x5, used to encode the keyword vararg  in the calling convention, see §15.3 22 
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GENERIC = 0x10, used to indicate that the method has one or more generic parameters. 1 

Implementation Specific (Microsoft) 2 

The above names are defined in the file inc\CorHdr.h  as part of the SDK, using a prefix of 3 
“IMAGE_CEE_CS_CALLCONV_” 4 

The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention (DEFAULT, VARARG, 5 
or GENERIC).  These are ORed together.  6 

GenParamCount is the number of generic parameters for the method.  This is a compressed unsigned integer. 7 
[(ote: For generic methods, both MethodDef and MemberRef shall include the GENERIC calling convention, 8 
together with GenParamCount; these are significant for binding—they enable the CLI to overload on generic 9 
methods by the number of generic parameters they include. end note] 10 

ParamCount is an unsigned integer that holds the number of parameters (0 or more).  It can be any number 11 
between 0 and 0x1FFFFFFF.  The compiler compresses it too (see Partition II Metadata Validation) – before 12 
storing into the 'blob' (ParamCount counts just the method parameters – it does not include the method’s return 13 
type) 14 

The RetType item describes the type of the method’s return value (§23.2.11) 15 

The Param item describes the type of each of the method’s parameters.  There shall be ParamCount instances 16 
of the Param item (§23.2.10). 17 

23.2.2  MethodRefSig 18 

A MethodRefSig is indexed by the MemberRef.Signature column.  This provides the call site Signature for a 19 
method.  Normally, this call site Signature shall match exactly the Signature specified in the definition of the 20 
target method.  For example, if a method Foo is defined that takes two unsigned int32s and returns void; then 21 
any call site shall index a signature that takes exactly two unsigned int32s and returns void.  In this case, the 22 
syntax diagram for a MethodRefSig is identical with that for a MethodDefSig – see §23.2.1 23 

The Signature at a call site differs from that at its definition, only for a method with the VARARG calling 24 
convention.  In this case, the call site Signature is extended to include info about the extra VARARG arguments 25 
(for example, corresponding to the “...” in C syntax).  The syntax diagram for this case is: 26 

 27 

 28 
This diagram uses the following abbreviations: 29 

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3 30 

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3 31 

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see 15.3 32 

SENTINEL = 0x41 (§23.1.16), used to encode “...” in the parameter list, see §15.3 33 

Implementation Specific (Microsoft) 34 
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The above names are defined in the file inc\CorHdr.h  as part of the SDK, using a prefix of 1 
“IMAGE_CEE_CS_CALLCONV_”.   2 

• The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS, and the calling convention 3 
VARARG.   These are ORed together.  4 

• ParamCount is an unsigned integer that holds the number of parameters (0 or more).  It can be any 5 
number between 0 and 0x1FFFFFFF  The compiler compresses it (see Partition II Metadata 6 
Validation) – before storing into the 'blob' (ParamCount counts just the method parameters – it 7 
does not include the method’s return type) 8 

• The RetType item describes the type of the method’s return value (§23.2.11) 9 

• The Param item describes the type of each of the method’s parameters.  There shall be 10 
ParamCount instances of the Param item (§23.2.10). 11 

The Param item describes the type of each of the method’s parameters.  There shall be ParamCount instances 12 
of the Param item.This starts just like the MethodDefSig for a VARARG method (§23.2.1).  But then a SENTINEL 13 
token is appended, followed by extra Param items to describe the extra VARARG arguments.  Note that the 14 
ParamCount item shall  indicate the total number of Param items in the Signature – before and after the 15 
SENTINEL byte (0x41).   16 

In the unusual case that a call site supplies no extra arguments, the signature shall not include a SENTINEL (this 17 
is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the MethodRefSig 18 
definition). 19 

23.2.3  StandAloneMethodSig 20 

A StandAloneMethodSig is indexed by the StandAloneSig.Signature column.  It is typically created as 21 
preparation for executing a calli instruction.  It is similar to a MethodRefSig, in that it represents a call site 22 
signature, but its calling convention can specify an unmanaged target (the calli instruction invokes either 23 
managed, or unmanaged code).  Its syntax diagram is: 24 

 25 

 26 
This diagram uses the following abbreviations (§15.3): 27 

HASTHIS for 0x20 28 

EXPLICITTHIS for 0x40 29 
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DEFAULT for 0x0 1 

VARARG for 0x5 2 

C for 0x1 3 

STDCALL for 0x2 4 

THISCALL for 0x3 5 

FASTCALL for 0x4 6 

SENTINEL for  0x41 (§23.1.16 and §15.37 

Implementation Specific (Microsoft)8 

The above names are defined in the file 9 
“IMAGE_CEE_CS_CALLCONV_” 10 

• The first byte of the Signature holds bits for 11 
DEFAULT, VARARG, C, STDCALL, THISCALL12 

• ParamCount is an unsigned integer that holds the number of 13 
combined.  It can be any number between 0 and 0x1FFFFFFF  The compiler compre14 
Partition II Metadata Validation) 15 
method parameters – it does not include the method’s return type)16 

• The RetType item describes the type of 17 

• The first Param item describes the type of each of the method’s 18 
(optional) second Param item describes the type of each of the method’s vararg parameters.  19 
shall be ParamCount instances of 20 

This is the most complex of the various method signatures.   Two separate 21 
one in this diagram, using shading to distinguish between them.  Thus, for the following calling conventions: 22 
DEFAULT (managed), STDCALL, THISCALL23 
SENTINEL item (these are all non vararg signatures).  However, for the managed and unmanaged vararg calling 24 
conventions: 25 

VARARG (managed) and C (unmanaged), the s26 
not required, however).   These options are  indicated by the shading of boxes in the syntax 27 

In the unusual case that a call site supplies no extra arguments, the signature shall 28 
is the route shown by the lower arrow that bypasses 29 
definition). 30 

23.2.4  FieldSig 31 

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case 32 
where it specifies a reference to a field, not a method, of course).   The Signature captures the field’s definition.  33 
The field can be a static or instance field in a class, or it 34 
FieldSig looks like this: 35 

36 

This diagram uses the following abbreviations:37 

FIELD for 0x6 38 

Implementation Specific (Microsoft)39 
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15.3) 

Implementation Specific (Microsoft) 

The above names are defined in the file inc\CorHdr.h  as part of the SDK, using a prefix of 

The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convent
THISCALL, or FASTCALL.   These are OR’d together.  

integer that holds the number of non-vararg and vararg parameters
.  It can be any number between 0 and 0x1FFFFFFF  The compiler compresses 

Metadata Validation) – before storing into the blob  (ParamCount counts just the 
it does not include the method’s return type) 

item describes the type of the method’s return value (§23.2.11) 

item describes the type of each of the method’s non-vararg parameter
item describes the type of each of the method’s vararg parameters.  

instances of Param (§23.2.10). 

This is the most complex of the various method signatures.   Two separate diagrams have been combined into 
one in this diagram, using shading to distinguish between them.  Thus, for the following calling conventions: 

THISCALL and FASTCALL (unmanaged), the signature ends just before the 
item (these are all non vararg signatures).  However, for the managed and unmanaged vararg calling 

(unmanaged), the signature can include the SENTINEL and final Param items (they are 
not required, however).   These options are  indicated by the shading of boxes in the syntax diagram

In the unusual case that a call site supplies no extra arguments, the signature shall not include a 
is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the StandAloneMethodSig 

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case 
where it specifies a reference to a field, not a method, of course).   The Signature captures the field’s definition.  

nce field in a class, or it can be a global variable.  The syntax diagram

 

uses the following abbreviations: 

Implementation Specific (Microsoft) 

as part of the SDK, using a prefix of 

and calling convention – 

parameters, 
sses it (see 

counts just the 

parameters.  The 
item describes the type of each of the method’s vararg parameters.  There 

s have been combined into 
one in this diagram, using shading to distinguish between them.  Thus, for the following calling conventions: 

(unmanaged), the signature ends just before the 
item (these are all non vararg signatures).  However, for the managed and unmanaged vararg calling 

and final Param items (they are 
diagram. 

include a SENTINEL (this 
and goes to the end of the StandAloneMethodSig 

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case 
where it specifies a reference to a field, not a method, of course).   The Signature captures the field’s definition.  

diagram for a 
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IMAGE_CEE_CS_CALLCONV_FIELD is defined in the file inc\CorHdr.h  as part of the SDK. 1 

CustomMod is defined in §23.2.7.  Type is defined in §23.2.12 2 

23.2.5  PropertySig 3 

A PropertySig is indexed by the Property.Type column.  It captures the type information for a Property – 4 
essentially, the signature of its getter method: 5 

the number of parameters supplied to its getter method 6 

the base type of the Property (the type returned by its getter method) 7 

type information for each parameter in the getter method (that is,  the index parameters) 8 

Note that the signatures of getter and setter are related precisely as follows: 9 

• The types of a getter’s  paramCount parameters are exactly the same as the first paramCount 10 
parameters of the setter 11 

• The return type of a getter is exactly the same as the type of the last parameter supplied to the 12 
setter 13 

The syntax diagram for a PropertySig looks like this: 14 

 15 

Implementation Specific (Microsoft) 16 

IMAGE_CEE_CS_CALLCONV_PROPERTY is defined in the file inc\CorHdr.h  as part of the SDK. 17 

The first byte of the Signature holds bits for HASTHIS and PROPERTY.  These are OR’d together.  18 

Type specifies the type returned by the Getter method for this property.  Type is defined in §23.2.12.  Param is 19 
defined in §23.2.10. 20 

ParamCount is a compressed unsigned integer that holds the number of index parameters in the getter methods 21 
(0 or more). (§23.2.1)  (ParamCount counts just the method parameters – it does not include the method’s base 22 
type of the Property) 23 

23.2.6  LocalVarSig 24 

A LocalVarSig is indexed by the StandAloneSig.Signature column.  It captures the type of all the local 25 
variables in a method.  Its syntax diagram is: 26 

 27 
This diagram uses the following abbreviations: 28 

LOCAL_SIG for 0x7, used for the .locals  directive, see§15.4.1.3 29 

Implementation Specific (Microsoft) 30 
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IMAGE_CEE_CS_CALLCONV_LOCAL_SIG1 

BYREF for ELEMENT_TYPE_BYREF (§23.1.162 

Constraint is defined in §23.2.9.  3 

Type is defined in §23.2.12 4 

Count is acompressed unsigned integer that holds the number of local variables.  It can be any number between 5 
1 and 0xFFFE.   6 

There shall be Count instances of the Type7 

23.2.7  CustomMod 8 

The CustomMod (custom modifier) item in Signatures has a syntax 9 

10 
This diagram uses the following abbreviations:11 

CMOD_OPT for ELEMENT_TYPE_CMOD_OPT12 

CMOD_REQD for ELEMENT_TYPE_CMOD_REQD13 

The CMOD_OPT or CMOD_REQD value is compressed, see14 

The CMOD_OPT or CMOD_REQD is followed by a metadata token that indexes a row in the 15 
TypeRef table.  However, these tokens are encoded and compressed 16 

If the CustomModifier is tagged CMOD_OPT17 
Conversely, if the CustomModifier is tagged 18 
semantic implied by this CustomModifier in order to reference the surrounding Signature.19 

Implementation Specific (Microsoft)20 

A typical use for a CustomModifier 21 
It does this using a CMOD_OPT, followed by a 22 
Microsoft.VisualC.DLL) 23 

VISUAL C++ .NET also uses a CustomModifier24 
the native calling convention of a function.  Of course, if that routine is implemented as managed code, 25 
this info is not used.  But if it turns out to be implemented a26 
that automatically generated thunks marshal the arguments correctly.  This technique is used in IJW (“It 27 
Just Works”) scenarios.  Strictly speaking, such a custom modifier does not apply only to the 28 
it really applies to the whole function.  In these cases, the 29 
CallConvCdecl, CallConvStdcall, CallConvThiscall30 

23.2.8  TypeDefOrRefEncoded  31 

These items are compact ways to store a 32 

Consider a regular TypeRef token, such as 0x01000012.  The top byte of 0x01 indicates that this is a 33 
token (see Partition VI  for a list of the supported metadata token types).  The lower 334 
row number 0x12 in the TypeRef table.35 

The encoded version of this TypeRef token is made up as follows:36 
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IMAGE_CEE_CS_CALLCONV_LOCAL_SIG is defined in the file inc\CorHdr.h  as part of the SDK.

23.1.16) 

gned integer that holds the number of local variables.  It can be any number between 

Type in the LocalVarSig 

(custom modifier) item in Signatures has a syntax diagram like this: 

 
uses the following abbreviations: 

ELEMENT_TYPE_CMOD_OPT (§23.1.16) 

ELEMENT_TYPE_CMOD_REQD (§23.1.16) 

value is compressed, see §23.2. 

is followed by a metadata token that indexes a row in the TypeDef 
owever, these tokens are encoded and compressed – see §23.2.8 for details 

CMOD_OPT, then any importing compiler can freely ignore it entirely.  
Conversely, if the CustomModifier is tagged CMOD_REQD, any importing compiler shall ‘understand’ the 
semantic implied by this CustomModifier in order to reference the surrounding Signature. 

Implementation Specific (Microsoft) 

 is for VISUAL C++ .NET to denote a method parameter as 
, followed by a TypeRef to Microsoft.VisualC.IsConstModifier (defined in 

CustomModifier (embedded within a RetType – see §23.2.11
the native calling convention of a function.  Of course, if that routine is implemented as managed code, 
this info is not used.  But if it turns out to be implemented as unmanaged code, it becomes crucial, so 
that automatically generated thunks marshal the arguments correctly.  This technique is used in IJW (“It 
Just Works”) scenarios.  Strictly speaking, such a custom modifier does not apply only to the 

ly applies to the whole function.  In these cases, the TypeRef following the CMOD_OPT
CallConvThiscall or CallConvFastcall. 

These items are compact ways to store a TypeDef, TypeRef, or TypeSpec token in a Signature (§

token, such as 0x01000012.  The top byte of 0x01 indicates that this is a 
for a list of the supported metadata token types).  The lower 3 bytes (0x000012) index 

table. 

token is made up as follows: 

as part of the SDK. 

gned integer that holds the number of local variables.  It can be any number between 

 table or the 

, then any importing compiler can freely ignore it entirely.  
shall ‘understand’ the 

is for VISUAL C++ .NET to denote a method parameter as const.  
to Microsoft.VisualC.IsConstModifier (defined in 

23.2.11) to mark 
the native calling convention of a function.  Of course, if that routine is implemented as managed code, 

s unmanaged code, it becomes crucial, so 
that automatically generated thunks marshal the arguments correctly.  This technique is used in IJW (“It 
Just Works”) scenarios.  Strictly speaking, such a custom modifier does not apply only to the RetType, 

CMOD_OPT is to one of 

§23.2.12). 

token, such as 0x01000012.  The top byte of 0x01 indicates that this is a TypeRef 
bytes (0x000012) index 



 

1. encode the table that this token indexes as the least significant 21 
1 and 2, specifying the target table is the 2 

2. shift the 3-byte row index (0x000012 in  this example) left by 23 
encoding from step 1 4 

3. compress the resulting value (5 

a)  encoded = value for TypeRef table = 0x01 (from 1. above) 6 

b)  encoded = ( 0x000012 << 2 ) 7 

            = 0x48 | 0x01 8 

            = 0x49 9 

c)  encoded = Compress (0x49) 10 

            = 0x49 11 

So, instead of the original, regular 12 
Signature 'blob',  this TypeRef token is encoded as a single byte. 13 

23.2.9  Constraint  14 

The Constraint item in Signatures currently has only one possible value15 
which specifies that the target type is pinned in the runtime heap, and will not be moved by the actions of 16 
garbage collection.   17 

A Constraint can only be applied within a LocalVarSig (not a FieldSig).  The Type of the local variable shall 18 
either be a reference type (in other words, it 19 
or it shall include the BYREF item.  The reason is that local variables are allocated on the runtime stack 20 
are never allocated from the runtime heap; so un21 
heap, pinning makes no sense. 22 

23.2.10  Param 23 

The Param (parameter) item in Signatures24 

25 

This diagram uses the following abbreviations:26 

BYREF for 0x10 (§23.1.16) 27 

TYPEDBYREF for 0x16 (§23.1.1628 

CustomMod is defined in §23.2.729 

23.2.11  RetType 30 

The RetType (return type) item in Signatures has this syntax 31 
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encode the table that this token indexes as the least significant 2 bits.  The bit values to use are
1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively  

te row index (0x000012 in  this example) left by 2 bits and OR into the 2

compress the resulting value (§23.2).   This example yields the following encoded value:

a)  encoded = value for TypeRef table = 0x01 (from 1. above)  

b)  encoded = ( 0x000012 << 2 ) |  0x01 

 

c)  encoded = Compress (0x49)  

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the 
Signature 'blob',  this TypeRef token is encoded as a single byte.  

item in Signatures currently has only one possible value, ELEMENT_TYPE_PINNED
pecifies that the target type is pinned in the runtime heap, and will not be moved by the actions of 

can only be applied within a LocalVarSig (not a FieldSig).  The Type of the local variable shall 
ype (in other words, it points to the actual variable – for example, an Object, or a String); 

item.  The reason is that local variables are allocated on the runtime stack 
are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC 

Signatures has this syntax diagram: 

uses the following abbreviations: 

23.1.16) 

23.2.7.  Type is defined in §23.2.12 

(return type) item in Signatures has this syntax diagram: 
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bits.  The bit values to use are 0, 
table, respectively   

bits and OR into the 2-bit 

).   This example yields the following encoded value: 

bytes of space in the 

ELEMENT_TYPE_PINNED (§23.1.16), 
pecifies that the target type is pinned in the runtime heap, and will not be moved by the actions of 

can only be applied within a LocalVarSig (not a FieldSig).  The Type of the local variable shall 
for example, an Object, or a String); 

item.  The reason is that local variables are allocated on the runtime stack – they 
at an object allocated in the GC 
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1 
RetType is identical to Param except for one extra possibility, that it can include the type VOID.  This 2 
uses the following abbreviations: 3 

BYREF for ELEMENT_TYPE_BYREF (4 

TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF5 

VOID for ELEMENT_TYPE_VOID (§23.1.166 

23.2.12  Type 7 

Type is encoded in signatures as follows (8 
ELEMENT_TYPE_U1, and so on; see 23.1.169 

Type ::=    10 

BOOLEAN | CHAR | I1 | U1 |11 

| ARRAY Type ArrayShape (general array, see12 

| CLASS TypeDefOrRefEncoded13 

| FNPTR MethodDefSig 14 

| FNPTR MethodRefSig 15 

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded 16 

| MVAR number 17 

| OBJECT 18 

| PTR CustomMod* Type 19 

| PTR CustomMod* VOID 20 

| STRING 21 

| SZARRAY CustomMod* Type (single dimensional, zero22 

| VALUETYPE TypeDefOrRefEncoded23 

| VAR number 24 

The GenArgCount non-terminal is an int32 value 25 
this signature.  The number non-terminal following MVAR 26 

23.2.13  ArrayShape  27 

An ArrayShape has the following syntax 28 
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except for one extra possibility, that it can include the type VOID.  This 

(§23.1.16) 

ELEMENT_TYPE_TYPEDBYREF (§23.1.16) 

23.1.16) 

is encoded in signatures as follows (I1 is an abbreviation for ELEMENT_TYPE_I1, U1 is an abbreviation for 
23.1.16): 

| I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I 

ARRAY Type ArrayShape (general array, see §23.2.13) 

CLASS TypeDefOrRefEncoded 

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type *

SZARRAY CustomMod* Type (single dimensional, zero-based array i.e., vector)

ncoded 

terminal is an int32 value (compressed) specifying the number of generic argument
terminal following MVAR or VAR is an unsigned integer value (compressed).

An ArrayShape has the following syntax diagram: 

 
except for one extra possibility, that it can include the type VOID.  This diagram 

is an abbreviation for 

I | U 

Type * 

based array i.e., vector) 

generic arguments in 
value (compressed). 



 

1 
Rank is an unsigned integer (stored in compressed form, see2 
the array (shall be 1 or more).  (umSizes 3 
have specified sizes (it shall be 0 or more).  4 
dimension – the sequence starts at the first dimension, and goes on for a total of 5 
(umLoBounds is a compressed unsigned 6 
(it shall be 0 or more). And LoBound 7 
dimension – the sequence starts at the first dimension, and goes on for a total of 8 
the dimensions in these two sequences can be skipped, but the number 9 
Rank. 10 

Here are a few examples, all for element type 11 

 Type

[0...2] I4 

[,,,,,,] I4 

[0...3, 0...2,,,,] I4 

[1...2, 6...8] I4 

[5, 3...5, , ] I4 

 12 
[(ote: definitions can nest, since the Type 13 

23.2.14  TypeSpec  14 

The signature in the Blob heap indexed by a 15 

TypeSpecBlob ::= 16 

  PTR      CustomMod*  VOID17 

| PTR      CustomMod*  Type18 

| FNPTR    MethodDefSig19 

| FNPTR    MethodRefSig20 

| ARRAY    Type  ArrayShape21 

| SZARRAY  CustomMod*  Type22 

| GENERICINST (CLASS | VALUETYPE) 23 

For compactness, the ELEMENT_TYPE_24 
shorthand for ELEMENT_TYPE_PTR25 
convention byte, so it differs from the various other signatures that are stored into Metadata.26 

23.2.15  MethodSpec  27 

The signature in the Blob heap indexed by a 28 

MethodSpecBlob ::= 29 

  GENRICINST GenArgCount 30 

GENRICINST has the value 0x0A31 
the Microsoft CLR implementation.32 
the number of generic arguments in the method.  The blob then specifies the instantiated type, repeating a total 33 
of GenArgCount times. 34 
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integer (stored in compressed form, see §23.2) that specifies the number of dimensions in 
(umSizes is a compressed unsigned integer that says how many dimensions 

have specified sizes (it shall be 0 or more).  Size is a compressed unsigned integer specifying th
the sequence starts at the first dimension, and goes on for a total of (umSizes 

unsigned integer that says how many dimensions have specified lower bounds 
LoBound is a compressed signed integer specifying the lower bound of that 

the sequence starts at the first dimension, and goes on for a total of (umLoBounds 
the dimensions in these two sequences can be skipped, but the number of specified dimensions can be less than 

Here are a few examples, all for element type int32: 

Type Rank AumSizes Size AumLoBounds

1 1 3 0 

7 0  0 

6 2 4  3 2 

2 2 2  3 2 

4 2 5  3 2 

definitions can nest, since the Type can itself be an array. end note] 

The signature in the Blob heap indexed by a TypeSpec token has the following format – 

PTR      CustomMod*  VOID 

PTR      CustomMod*  Type 

FNPTR    MethodDefSig 

FNPTR    MethodRefSig 

ARRAY    Type  ArrayShape 

SZARRAY  CustomMod*  Type 

GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount

ELEMENT_TYPE_ prefixes  have been omitted from this list.  So, for example, “PTR” is 
ELEMENT_TYPE_PTR.  (§23.1.16)   Note that a TypeSpecBlob does not begin with a calling

convention byte, so it differs from the various other signatures that are stored into Metadata.

The signature in the Blob heap indexed by a MethodSpec token has the following format –

GENRICINST GenArgCount Type Type* 

has the value 0x0A. [(ote: This value is known as IMAGE_CEE_CS_CALLCONV_GENERICINST
the Microsoft CLR implementation. end note]  The GenArgCount is a compressed unsigned integer
the number of generic arguments in the method.  The blob then specifies the instantiated type, repeating a total 
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) that specifies the number of dimensions in 
integer that says how many dimensions 

integer specifying the size of that 
(umSizes items.  Similarly, 

integer that says how many dimensions have specified lower bounds 
integer specifying the lower bound of that 

(umLoBounds items.  None of 
of specified dimensions can be less than 

AumLoBounds LoBound 

 

 

0  0 

1  6 

0  3 

GenArgCount Type Type* 

prefixes  have been omitted from this list.  So, for example, “PTR” is 
begin with a calling-

convention byte, so it differs from the various other signatures that are stored into Metadata. 

– 

IMAGE_CEE_CS_CALLCONV_GENERICINST in 
unsigned integer indicating 

the number of generic arguments in the method.  The blob then specifies the instantiated type, repeating a total 
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23.2.16  Short  for m s ignatures 1 

The general specification for signatures leaves some leeway in 2 
appears valid to encode a String as either3 

long-form:    (ELEMENT_TYPE_CLASS4 

short-form:   ELEMENT_TYPE_STRING5 

Only the short form is valid.  The following table shows which short6 
long-form item.  (As usual, for compactness, the 7 
is short for ELEMENT_TYPE_VALUETYPE)8 

Long Form 

Prefix TypeRef to: 

CLASS System.String

CLASS System.Object

VALUETYPE System.Void 

VALUETYPE System.Boolean

VALUETYPE System.Char 

VALUETYPE System.Byte 

VALUETYPE System.Sbyte

VALUETYPE System.Int16

VALUETYPE System.UInt16

VALUETYPE System.Int32

VALUETYPE System.UInt32

VALUETYPE System.Int64

VALUETYPE System.UInt64

VALUETYPE System.IntPtr

VALUETYPE System.UIntPtr

VALUETYPE System.TypedReference

 9 
[(ote: arrays shall be encoded in signatures using one of 10 
There is no long form involving a TypeRef to 11 

23.3  Custom attributes 12 

A Custom Attribute has the following syntax 13 

14 
All binary values are stored in little-endian format (except 15 
the number of bytes to follow in a UTF8 string)16 
entire attribute is represented as an empty blob.17 

CustomAttrib starts with a Prolog – an un18 

Next comes a description of the fixed arguments for the constructor method.  Their number and type is found 19 
by examining that constructor’s row in the20 
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The general specification for signatures leaves some leeway in how to encode certain items.  For example, it 
to encode a String as either 

ELEMENT_TYPE_CLASS, TypeRef-to-System.String ) 

ELEMENT_TYPE_STRING 

Only the short form is valid.  The following table shows which short-forms should be used in place of each 
form item.  (As usual, for compactness, the ELEMENT_TYPE_ prefix have been omitted here 

) 

Short Form 

  

System.String STRING 

System.Object OBJECT 

 VOID 

System.Boolean BOOLEAN 

 CHAR 

 U1 

System.Sbyte I1 

System.Int16 I2 

System.UInt16 U2 

System.Int32 I4 

System.UInt32 U4 

System.Int64 I8 

System.UInt64 U8 

System.IntPtr I 

System.UIntPtr U 

System.TypedReference TYPEDBYREF 

arrays shall be encoded in signatures using one of ELEMENT_TYPE_ARRAY or ELEMENT_TYPE_SZARRAY
There is no long form involving a TypeRef to System.Array. end note] 

A Custom Attribute has the following syntax diagram: 

endian format (except PackedLen items, which are used only as counts for 
the number of bytes to follow in a UTF8 string).  If there are no fields, parameters, or properties specified the 

represented as an empty blob. 

an unsigned int16, with value 0x0001. 

Next comes a description of the fixed arguments for the constructor method.  Their number and type is found 
row in the MethodDef table; this information is not repeated in the 

how to encode certain items.  For example, it 

rms should be used in place of each 
prefix have been omitted here – so VALUETYPE 

ELEMENT_TYPE_SZARRAY.  

 
used only as counts for 

If there are no fields, parameters, or properties specified the 

Next comes a description of the fixed arguments for the constructor method.  Their number and type is found 
repeated in the 



 

CustomAttrib itself.  As the syntax 1 
constructor methods are not allowed in the definition of Custom Attributes2 

Next is a description of the optional “named” fields and properties.  This starts with 3 
int16 giving the number of “named” properties or fields that follow.  Note that 4 
present.  A value of zero indicates that 5 
case, the CustomAttrib shall end immediately after 6 
is followed by (um(amed repeats of 7 

8 

The format for each FixedArg depends upon whether that argument is an 9 
lower and upper paths, respectively, of the syntax 10 
(umElem repeats of Elem.  11 

(SZARRAY is the single byte 0x1D, and denotes a vector 12 

(umElem is an unsigned int32 specifying the number of elements in the 13 
that the value is null. 14 

15 
 16 
An Elem takes one of the forms in this diagram, as follows:17 

• If the parameter kind is simple18 
float64 , int8 , int16 , 19 
int32  or unsigned  int6420 
byte with value 0 (false) or 1 (true); 21 
obvious meaning.) This pattern is also used if the parameter kind is an 22 
value of the enum's underlying integer type23 

• If the parameter kind is string24 
a PackedLen count of bytes, followed by the UTF8 characters.25 
has the value 0xFF (with no following characters).  If the string is empty (“”), then 26 
the value 0x00 (with no following characters27 
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self.  As the syntax diagram shows, there can be zero or more FixedArgs.  (
constructor methods are not allowed in the definition of Custom Attributes.) 

Next is a description of the optional “named” fields and properties.  This starts with (um(amed
giving the number of “named” properties or fields that follow.  Note that (um(amed

indicates that there are no “named” properties or fields to follow (and of course, in this 
shall end immediately after (um(amed).  In the case where (um(amed 

repeats of (amedArgs. 

 

depends upon whether that argument is an SZARRAY or not –
upper paths, respectively, of the syntax diagram.  So each FixedArg is either a single 

, and denotes a vector – a single-dimension array with a lower bound of zero

specifying the number of elements in the SZARRAY, or 0xFFFFFFFF

 

in this diagram, as follows: 

f the parameter kind is simple (first line in the above diagram) (bool , char , float32
, int32 , int64 , unsigned  int8 , unsigned  int16

int64 ) then the 'blob' contains its binary value (Val). (A 
byte with value 0 (false) or 1 (true); char is a two-byte Unicode character; and the others have their 

This pattern is also used if the parameter kind is an enum -- simply store the 
value of the enum's underlying integer type. 

string, (middle line in above diagram) then the blob contains a
count of bytes, followed by the UTF8 characters.  If the string is null, its 

has the value 0xFF (with no following characters).  If the string is empty (“”), then 
the value 0x00 (with no following characters). 
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s.  (Note that VARARG 

(um(amed – an unsigned 
(um(amed shall always be 

there are no “named” properties or fields to follow (and of course, in this 
(um(amed is non-zero, it 

– this is shown in the 
is either a single Elem, or 

dimension array with a lower bound of zero.) 

0xFFFFFFFF to indicate 

float32 , 
int16 , unsigned  

(A bool is a single 
and the others have their 

simply store the 

contains a SerString – 
If the string is null, its PackedLen 

has the value 0xFF (with no following characters).  If the string is empty (“”), then PackedLen has 
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• If the parameter kind is System.Type, (also, the middle line in above diagram) its value is stored as 1 
a SerString (as defined in the previous paragraph), representing its canonical name.  The canonical 2 
name is its full type name, followed optionally by the assembly where it is defined, its version, 3 
culture and public-key-token.  If the assembly name is omitted, the CLI looks first in the current 4 
assembly, and then in the system library (mscorlib); in these two special cases, it is permitted to 5 
omit the assembly-name, version, culture and public-key-token.   6 

• If the parameter kind is System.Object, (third line in the above diagram) the value stored represents 7 
the “boxed” instance of that value-type.  In this case, the blob contains the actual type's 8 
FieldOrPropType (see below), followed by the argument’s unboxed value.  [(ote: it is not possible 9 
to pass a value of null in this case. end note] 10 

• If the type is a boxed simple value type (bool , char , float32 , float64 , int8 , int16 , 11 
int32 , int64 , unsigned int8 , unsigned int16 , unsigned int32  or unsigned 12 
int64 ) then FieldOrPropType is immediately preceded by a byte containing the value 0x51 . 13 
 14 
The FieldOrPropType shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, 15 
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, 16 
ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, 17 
ELEMENT_TYPE_STRING.  A single-dimensional, zero-based array is specified as a single byte 0x1D 18 
followed by the FieldOrPropType of the element type.  (See §23.1.16)  An enum is specified as a 19 
single byte 0x55 followed by a SerString.  20 

 21 
 22 
A (amedArg is simply a FixedArg (discussed above) preceded by information to identify which field or 23 
property it represents.  [(ote: Recall that the CLI allows fields and properties to have the same name; so we 24 
require a means to disambiguate such situations. end note] 25 

FIELD is the single byte 0x53. 26 

PROPERTY is the single byte 0x54. 27 

The FieldOrProp(ame is the name of the field or property, stored as a SerString (defined above). 28 

A number of examples involving custom attributes are contained in Annex B of Partition VI. 29 

23.4  Marshalling descriptors 30 

A Marshalling Descriptor is like a signature – it’s a 'blob' of binary data.  It describes how a field or parameter 31 
(which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or 32 
from unmanaged code via PInvoke dispatch.  The ILAsm syntax marshal  can be used to create a marshalling 33 
descriptor, as can the pseudo custom attribute MarshalAsAttribute – see §21.2.1) 34 

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier 35 
– see §15.5.5. 36 

Marshalling descriptors make use of constants named NATIVE_TYPE_xxx.  Their names and values are listed 37 
in the following table: 38 

Aame Value 

NATIVE_TYPE_BOOLEAN 0x02 

NATIVE_TYPE_I1 0x03 
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NATIVE_TYPE_U1 0x04 

NATIVE_TYPE_I2 0x05 

NATIVE_TYPE_U2 0x06 

NATIVE_TYPE_I4 0x07 

NATIVE_TYPE_U4 0x08 

NATIVE_TYPE_I8 0x09 

NATIVE_TYPE_U8 0x0a 

NATIVE_TYPE_R4 0x0b 

NATIVE_TYPE_R8 0x0c 

NATIVE_TYPE_LPSTR  0x14 

NATIVE_TYPE_LPWSTR  0x15 

NATIVE_TYPE_INT  0x1f 

NATIVE_TYPE_UINT  0x20 

NATIVE_TYPE_FUNC 0x26 

NATIVE_TYPE_ARRAY 0x2a 

 1 
Implementation Specific (Microsoft) 2 

The Microsoft implementation supports a richer set of types to describe marshalling between Windows 3 
native types and COM.  These additional options are listed in the following table: 4 

Implementation Specific (Microsoft) 

Name Value Remarks 

NATIVE_TYPE_CURRENCY 0x0f  

NATIVE_TYPE_BSTR 0x13  

NATIVE_TYPE_LPTSTR 0x16  

NATIVE_TYPE_FIXEDSYSSTRING 0x17  

NATIVE_TYPE_IUNKNOWN 0x19  

NATIVE_TYPE_IDISPATCH 0x1a  

NATIVE_TYPE_STRUCT 0x1b  

NATIVE_TYPE_INTF 0x1c  

NATIVE_TYPE_SAFEARRAY 0x1d  

NATIVE_TYPE_FIXEDARRAY 0x1e  

NATIVE_TYPE_BYVALSTR 0x22  

NATIVE_TYPE_ANSIBSTR 0x23  

NATIVE_TYPE_TBSTR 0x24 Selects BSTR or ANSIBSTR depending on 
platform 

NATIVE_TYPE_VARIANTBOOL 0x25 2-byte Boolean value: false = 0; true = -1 

NATIVE_TYPE_ASANY 0x28  

NATIVE_TYPE_LPSTRUCT 0x2b  
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NATIVE_TYPE_CUSTOMMARSHALER 0x2c Custom marshaler native type.  Shall be followed 
by a string in the format: "Native type 
name/0Custom marshaler type name/0Optional 
cookie/0"  OR  // "{Native type GUID}/0Custom 
marshaler type name/0Optional cookie/0" 

NATIVE_TYPE_ERROR 0x2d This native type coupled with 
ELEMENT_TYPE_I4 will map to 
VT_HRESULT 

NATIVE_TYPE_MAX 0x50 Used to indicate “no info” 
 1 
The 'blob' has the following format – 2 

MarshalSpec ::= 3 
  NativeIntrinsic 4 
| ARRAY ArrayElemType 5 
| ARRAY ArrayElemType ParamNum 6 
| ARRAY ArrayElemType ParamNum NumElem 7 

Implementation Specific (Microsoft) 8 

The Microsoft implementation supports a wider range of options: 9 

MarshalSpec ::= 10 
   NativeIntrinsic 11 
| ARRAY ArrayElemType 12 
| ARRAY ArrayElemType ParamNum 13 
| ARRAY ArrayElemType ParamNum NumElem 14 
| CUSTOMMARSHALLER Guid UnmanagedType ManagedType Cookie 15 
| FIXEDARRAY NumElem ArrayElemType  16 
| SAFEARRAY SafeArrayElemType 17 

NativeIntrinsic ::= 18 
  BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 19 
| LPSTR | LPSTR | INT | UINT | FUNC  20 

For compactness, the NATIVE_TYPE_ prefixes have been omitted in the above lists; for example, “ARRAY” is 21 
shorthand for NATIVE_TYPE_ARRAY. 22 

Implementation Specific (Microsoft) 23 

NativeIntrinsic ::= … 24 
| CURRENCY | BSTR | LPTSTR 25 
| FIXEDSYSSTRING | STRUCT | INTF | FIXEDARRAY | BYVALSTR | ANSIBSTR  26 
| TBSTR | VARIANTBOOL | ASANY | LPSTRUCT | ERROR 27 

Guid is a counted-UTF8 string – e.g., “{90883F05-3D28-11D2-8F17-00A0C9A6186D}” – it shall 28 
include leading { and trailing } and be exactly 38 characters long 29 

UnmanagedType is a counted-UTF8 string – e.g., “Point” 30 

ManagedType is a counted-UTF8 string – e.g., “System.Util.MyGeometry” – it shall be the fully-31 
qualified name (namespace and name) of a managed Type defined within the current assembly (that 32 
Type shall implement ICustomMarshaller, and provides a “to” and “from” marshalling method) 33 

Cookie is a counted-UTF8 string – e.g., “123” – an empty string is allowed 34 

ArrayElemType ::= 35 
   NativeIntrinsic  36 

Implementation Specific (Microsoft) 37 
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ArrayElemType ::= … 1 
| MAX 2 

The value MAX is used to indicate “no info” 3 

The following information and table are specific to the Microsoft implementation of the CLI: 4 

SafeArrayElemType ::=    5 
I2 | I4 | R4 | R8 | CY | DATE | BSTR | DISPATCH | ERROR | BOOL | VARIANT | UNKNOWN 6 
   | DECIMAL | I1 | UI1 | UI2 | UI4 | INT | UINT 7 

where each is prefixed by VT_.   The values for the VT_xxx constants are given in the following table: 8 

Implementation Specific (Microsoft) 

Constant Value 

VT_I2 = 2, 

VT_I4 = 3, 

VT_R4 = 4, 

VT_R8 = 5, 

VT_CY = 6, 

VT_DATE = 7, 

VT_BSTR = 8, 

VT_DISPATCH = 9, 

VT_ERROR = 10, 

VT_BOOL = 11, 

VT_VARIANT = 12, 

VT_UNKNOWN = 13, 

VT_DECIMAL = 14, 

VT_I1 = 16, 

VT_UI1 = 17, 

VT_UI2 = 18, 

VT_UI4 = 19, 

VT_INT = 22, 

VT_UINT = 23, 

 9 
Param(um is an unsigned integer (compressed as described in §23.2) specifying the parameter in the method 10 
call that provides the number of elements in the array – see below. 11 

(umElem is an unsigned integer (compressed as described in §23.2) specifying the number of elements or 12 
additional elements – see below. 13 

[(ote: For example, in the method declaration: 14 

.method void M(int32[] ar1, int32 size1, unsigned int8[] ar2, int32 size2) { … } 15 

The ar1 parameter might own a row in the FieldMarshal table, which indexes a MarshalSpec in the Blob heap 16 
with the format: 17 

ARRAY  MAX  2  1 18 

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY.  There is no additional info about the type of 19 
each element (signified by that NATIVE_TYPE_MAX).  The value of Param(um is 2, which indicates that 20 
parameter number 2 in the method (the one called size1) will  specify the number of elements in the actual 21 
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array – let’s suppose its value on a particular call is 42.  The value of (umElem is 0.  The calculated total size, 1 
in bytes, of the array is given by the formula: 2 

if ParamNum = 0 3 
   SizeInBytes = NumElem * sizeof (elem) 4 
else 5 
   SizeInBytes = ( @ParamNum +  NumElem ) * sizeof (elem) 6 
endif 7 

 The syntax “@Param(um” is used here to denote the value passed in for parameter number Param(um – it 8 
would be 42 in this example.  The size of each element is calculated from the metadata for the ar1 parameter in 9 
Foo’s signature – an ELEMENT_TYPE_I4 (§23.1.16) of size 4 bytes. end note] 10 
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24  Metadata physical layout 1 

The physical on-disk representation of metadata is a direct reflection of the logical representation described 2 
in §22 and §23. That is, data is stored in streams representating the metadata tables and heaps. The main 3 
complication is that, where the logical representation is abstracted from the number of bytes needed for 4 
indexing into tables and columns, the physical representation has to take care of that explicitly by defining how 5 
to map logical metadata heaps and tables into their physical representations. 6 

 Unless stated otherwise, all binary values are stored in little-endian format. 7 

24.1  Fixed f ields 8 

Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable 9 
Executable (PE) File Format (§25).  Because of this heritage, some of the fields in the physical representation 10 
of metadata have fixed values. When writing these fields it is best that they be set to the value indicated, on 11 
reading they should be ignored.  12 

24.2  File headers 13 

24.2.1  Metadata root  14 

The root of the physical metadata starts with a magic signature, several bytes of version and other 15 
miscellaneous information, followed by a count and an array of stream headers, one for each stream that is 16 
present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of 17 
headers. 18 

Offset Size Field Description 

0 4 Signature Magic signature for physical metadata : 0x424A5342. 

4 2 MajorVersion Major version, 1 (ignore on read) 

6 2 MinorVersion Minor version, 1 (ignore on read)  

8 4 Reserved Reserved, always 0 (§24.1). 

12 4 Length Number of bytes allocated to hold version string (including 
null terminator), call this x. 

Call the length of the string (including the terminator) m (we 
require m <= 255); the length x is m rounded up to a multiple 
of four. 

16 m Version UTF8-encoded null-terminated  version string of length m 
(see below) 

16+m x-m  Padding to next 4 byte boundary. 

16+x 2 Flags Reserved, always 0 (§24.1). 

16+x+2 2 Streams Number of streams, say n. 

16+x+4  StreamHeaders Array of n StreamHdr structures. 
 19 
The Version string shall be “Standard CLI 2005” for any file that is intended to be executed on any conforming 20 
implementation of the CLI, and all conforming implementations of the CLI shall accept files that use this 21 
version string.  Other strings shall be used when the file is restricted to a vendor-specific implementation of the 22 
CLI.  Future versions of this standard shall specify different strings, but they shall begin “Standard CLI”. Other 23 
standards that specify additional functionality shall specify their own specific version strings beginning with 24 
“Standard□”, where “□” represents a single space.  Vendors that provide implementation-specific extensions 25 
shall provide a version string that does not begin with “Standard□”. (For the first version of this Standard, the 26 
Version string was “Standard CLI 2002”.) 27 
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24.2.2  Stream header  1 

A stream header gives the names, and the position and length of a particular table or heap. Note that the length 2 
of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-3 
terminated string).  4 

Offset Size Field Description 

0 4 Offset Memory offset to start of this stream from start of the 
metadata root (§24.2.1) 

4 4 Size Size of this stream in bytes, shall be a multiple of 4. 

8  Aame Name of the stream as null-terminated variable length array 
of ASCII characters, padded to the next 4-byte boundary 
with \0 characters. The name is limited to 32 characters. 

 5 
Both logical tables and heaps are stored in streams.  There are five possible kinds of streams. A stream header 6 
with name “#Strings” that points to the physical representation of the string heap where identifier strings are 7 
stored; a stream header with name “#US” that points to the physical representation of the user string heap; a 8 
stream header with name “#Blob” that points to the physical representation of the blob heap, a stream header 9 
with name “#GUID” that points to the physical representation of the GUID heap; and a stream header with 10 
name “#~” that points to the physical representation of a set of tables. 11 

Implementation Specific (Microsoft Only) 12 

Some compilers store metadata in a #- stream, which holds an uncompressed, or non-optimized, 13 
representation of metadata tables; this includes extra metadata “pointer” tables.  Such PE files do not 14 
form part of this International standard 15 

Each kind of stream shall occur at most once, that is, a meta-data file shall not contain two “#US” streams, or 16 
five “#Blob” streams. Streams need not be there if they are empty. 17 

The next subclauses describe the structure of each kind of stream in more detail. 18 

24.2.3  #Str ings heap 19 

The stream of bytes pointed to by a “#Strings” header is the physical representation of the logical string heap. 20 
The physical heap can contain garbage, that is, it can contain parts that are unreachable from any of the tables, 21 
but parts that are reachable from a table shall contain a valid null-terminated UTF8 string. When the #String 22 
heap is present, the first entry is always the empty string (i.e., \0). 23 

24.2.4  #US and #Blob heaps 24 

The stream of bytes pointed to by a “#US” or “#Blob” header are the physical representation of logical 25 
Userstring and 'blob' heaps respectively. Both these heaps can contain garbage, as long as any part that is 26 
reachable from any of the tables contains a valid 'blob'. Individual blobs are stored with their length encoded in 27 
the first few bytes: 28 

• If the first one byte of the 'blob' is 0bbbbbbb2, then the rest of the 'blob' contains the bbbbbbb2 29 
bytes of actual data. 30 

• If the first two bytes of the 'blob' are 10bbbbbb2 and x, then the rest of the 'blob' contains the 31 
(bbbbbb2 << 8 + x) bytes of actual data. 32 

• If the first four bytes of the 'blob' are 110bbbbb2, x, y, and z, then the rest of the 'blob' contains the 33 
(bbbbb2 << 24 + x << 16 + y << 8 + z) bytes of actual data.  34 

The first entry in both these heaps is the empty 'blob' that consists of the single byte 0x00. 35 

Strings in the #US (user string) heap are encoded using 16-bit Unicode encodings. The count on each string is 36 
the number of bytes (not characters) in the string. Furthermore, there is an additional terminal byte (so all byte 37 
counts are odd, not even). This final byte holds the value 1 if and only if any UTF16 character within the string 38 
has any bit set in its top byte, or its low byte is any of the following: 0x01–0x08, 0x0E–0x1F, 0x27, 0x2D, 39 
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0x7F.  Otherwise, it holds 0. The 1 signifies Unicode characters that require handling beyond that normally 1 
provided for 8-bit encoding sets. 2 

24.2.5  #GUID heap 3 

The “#GUID” header points to a sequence of 128-bit GUIDs. There might be unreachable GUIDs stored in the 4 
stream. 5 

24.2.6  #~ stream 6 

The “#~” streams contain the actual physical representations of the logical metadata tables (§22).  A  “#~” 7 
stream has the following top-level structure: 8 

Offset Size Field Description 

0 4 Reserved Reserved, always 0 (§24.1). 

4 1 MajorVersion Major version of table schemata; shall be 2 (§24.1). 

5 1 MinorVersion Minor version of table schemata; shall be 0 (§24.1). 

6 1 HeapSizes Bit vector for heap sizes. 

7 1 Reserved Reserved, always 1 (§24.1). 

8 8 Valid Bit vector of present tables, let n be the number of bits that 
are 1. 

16 8 Sorted Bit vector of sorted tables. 

24 4*n Rows Array of n 4-byte unsigned integers indicating the number of 
rows for each present table. 

24+4*n  Tables The sequence of physical tables. 
 9 
The HeapSizes field is a bitvector that encodes the width of indexes into the various heaps.  If bit 0 is set, 10 
indexes into the “#String” heap are 4 bytes wide; if bit 1 is set, indexes into the “#GUID” heap are 4 bytes 11 
wide; if bit 2 is set, indexes into the “#Blob” heap are 4 bytes wide.  Conversely, if the HeapSize bit for a 12 
particular heap is not set, indexes into that heap are 2 bytes wide. 13 

Heap size flag Description 

0x01 Size of “#String” stream >= 216. 

0x02 Size of “#GUID” stream >= 216. 

0x04 Size of “#Blob” stream >= 216. 
 14 
The Valid field is a 64-bit bitvector that has a specific bit set for each table that is stored in the stream; the 15 
mapping of tables to indexes is given at the start of §22. For example when the DeclSecurity table is present in 16 
the logical metadata, bit 0x0e should be set in the Valid vector. It is invalid to include non-existent tables in 17 
Valid, so all bits above 0x2c shall be zero.  18 

The Rows array contains the number of rows for each of the tables that are present. When decoding physical 19 
metadata to logical metadata, the number of 1’s in Valid indicates the number of elements in the Rows array. 20 

A crucial aspect in the encoding of a logical table is its schema. The schema for each table is given in §22. For 21 
example, the table with assigned index 0x02 is a TypeDef  table, which, according to its specification in §22.37, 22 
has the following columns: a 4-byte-wide flags, an index into the String heap, another index into the String 23 
heap, an index into TypeDef , TypeRef , or TypeSpec table, an index into Field table, and an index into 24 
MethodDef table.  25 

The physical representation of a table with n columns and m rows with schema (C0,…,Cn-1) consists of the 26 
concatenation of the physical representation of each of its rows. The physical representation of a row with 27 
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schema (C0,…, n-1) is the concatenation of the physical representation of each of its elements. The physical 1 
representation of a row cell e at a column with type C is defined as follows: 2 

• If e is a constant, it is stored using the number of bytes as specified for its column type C (i.e., a 2-3 
bit mask of type PropertyAttributes) 4 

• If e is an index into the GUID heap, 'blob', or String heap, it is stored using the number of bytes as 5 
defined in the HeapSizes field. 6 

• If e is a simple index into a table with index i, it is stored using 2 bytes if table i has less than 216 7 
rows, otherwise it is stored using 4 bytes. 8 

• If  e is a coded index that points into table ti out of n possible tables t0, …tn-1, then it is stored as e 9 
<< (log n) | tag{ t0, …tn-1}[ ti] using 2 bytes if the maximum number of rows of tables t0, …tn-1, is 10 
less than 2(16 – (log n)), and using 4 bytes otherwise. The family of finite maps tag{ t0, …tn-1} is 11 
defined below. Note that decoding a physical row requires the inverse of this mapping. [For 12 
example, the Parent column of the Constant table indexes a row in the Field, Param, or Property 13 
tables.  The actual table is encoded into the low 2 bits of the number, using the values: 0 => Field, 14 
1 => Param, 2 => Property.The remaining bits hold the actual row number being indexed.  For 15 
example, a value of 0x321, indexes row number 0xC8 in the Param table.] 16 

TypeDefOrRef: 2 bits to encode tag Tag 

TypeDef 0 

TypeRef 1 

TypeSpec 2 

 17 
HasConstant: 2 bits to encode tag Tag 

Field 0 

Param 1 

Property 2 

 18 
HasCustomAttribute: 5 bits to encode tag Tag 

MethodDef 0 

Field 1 

TypeRef 2 

TypeDef 3 

Param 4 

InterfaceImpl 5 

MemberRef 6 

Module 7 

Permission 8 

Property 9 

Event 10 

StandAloneSig 11 

ModuleRef 12 

TypeSpec 13 

Assembly 14 

AssemblyRef 15 

File 16 
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ExportedType 17 

ManifestResource 18 

 1 
[(ote: HasCustomAttributes only has values for tables that are “externally visible”; that is, that correspond to items 2 
in a user source program.  For example, an attribute can be attached to a TypeDef table and a Field table, but not a 3 
ClassLayout table.  As a result, some table types are missing from the enum above. end note] 4 

HasFieldMarshall: 1 bit to encode tag Tag 

Field 0 

Param 1 

 5 
HasDeclSecurity: 2 bits to encode tag Tag 

TypeDef 0 

MethodDef 1 

Assembly 2 

 6 
MemberRefParent: 3 bits to encode tag Tag 

TypeDef 0 

TypeRef 1 

ModuleRef 2 

MethodDef 3 

TypeSpec 4 

 7 
HasSemantics: 1 bit to encode tag Tag 

Event 0 

Property 1 

 8 
MethodDefOrRef: 1 bit to encode tag Tag 

MethodDef 0 

MemberRef 1 

 9 
MemberForwarded: 1 bit to encode tag Tag 

Field 0 

MethodDef 1 

 10 
Implementation: 2 bits to encode tag Tag 

File 0 

AssemblyRef 1 

ExportedType 2 

 11 
CustomAttributeType: 3 bits to encode tag Tag 

Not used 0 

Not used 1 

MethodDef 2 
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MemberRef 3 

Not used 4 

 1 
ResolutionScope: 2 bits to encode tag Tag 

Module 0 

ModuleRef 1 

AssemblyRef 2 

TypeRef 3 

 2 

TypeOrMethodDef: 1 bit to encode tag Tag 

TypeDef 0 

MethodDef 1 

 3 



 

25  File format extensions to PE1 

This contains informative text only2 

The file format for CLI components is a strict extension of the current Portable Executable (PE) File3 
This extended PE format enables the operating system to recognize runtime images, accommodates code 4 
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.    5 
There are also specifications for a su6 
tool or compiler can use the specifications to emit valid CLI images. 7 

The PE format frequently uses the term RVA (Relative Virtual Address). An RVA is the address of an item 8 
once loaded into memory, with the base address of the image file subtracted from it (9 
base address where the file is loaded). The RVA of an item will almost always differ from its position within 10 
the file on disk. To compute the file posi11 
the section with RVA s, length l and file position 12 
the item is then given by p+(r-s).13 

Unless stated otherwise, all binary values are stored in little14 

End informative text 15 

25.1  Structure of  the runt ime 16 

The figure below provides a high17 

• PE headers, with specific guidelines on 18 

• A CLI header that contains all of the runtime specific data entries. The runtime header is read19 
and shall be placed in any read20 

• The sections that contain the actual data as described by t21 
data, and code. 22 

23 

The CLI header (§25.3.3) is found using CLI Header direct24 
contains the address and sizes of the runtime data (25 
image.  Note that the runtime data can be merged into other areas of the PE format with the other data based on 26 
the attributes of the sections (such as read only versus execute, etc.). 27 

25.2  PE headers 28 

A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and 29 
then the PE optional header followed by PE section headers.30 
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25.2.1  MS-DOS header  1 

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the 2 
module. At offset 0x3c in the DOS header is a 4-byte unsigned integer offset, lfanew, to the PE signature (shall 3 
be “PE\0\0”), immediately followed by the PE file header.   4 

0x4d 0x5a 0x90 0x00 0x03 0x00 0x00 0x00 

0x04 0x00 0x00 0x00 0xFF 0xFF 0x00 0x00 

0xb8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 lfanew 

0x0e 0x1f 0xba 0x0e 0x00 0xb4 0x09 0xcd 

0x21 0xb8 0x01 0x4c 0xcd 0x21 0x54 0x68 

0x69 0x73 0x20 0x70 0x72 0x6f 0x67 0x72 

0x61 0x6d 0x20 0x63 0x61 0x6e 0x6e 0x6f 

0x74 0x20 0x62 0x65 0x20 0x72 0x75 0x6e 

0x20 0x69 0x6e 0x20 0x44 0x4f 0x53 0x20 

0x6d 0x6f 0x64 0x65 0x2e 0x0d 0x0d 0x0a 

0x24 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

 5 

25.2.2  PE f i le  header  6 

Immediately after the PE signature is the PE File header consisting of the following: 7 

Offset Size Field Description 

0 2 Machine Always 0x14c. (§24.1) 

2 2 Number of Sections Number of sections; indicates size of the Section Table, 
which immediately follows the headers. 

4 4 Time/Date Stamp Time and date the file was created in seconds since 
January 1st 1970 00:00:00 or 0. 

8 4 Pointer to Symbol Table Always 0 (§24.1). 

12 4 Number of Symbols Always 0 (§24.1). 

16 2 Optional Header Size Size of the optional header, the format is described below. 

18 2 Characteristics Flags indicating attributes of the file, see §25.2.2.1. 
 8 

25.2.2 .1  Characteri st ics  9 

A CIL-only DLL sets flag 0x2000 to 1, while a CIL-only .exe has flag 0x2000 set to zero: 10 

Flag Value Description 

IMAGE_FILE_DLL 0x2000 The image file is a dynamic-link library (DLL).  
 11 
Except for the IMAGE_FILE_DLL flag (0x2000), flag 0x0002 (IMAGE_FILE_EXECUTABLE_IMAGE) shall be 12 
set, flags 0x0010, 0x0020, 0x0100, 0x0400 and 0x0800 are implementation-specific, and all others shall always 13 
be zero (§24.1). 14 
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Implementation Specific (Microsoft Only) 1 

The following table explains the Microsoft implementation-specific DLL characteristic flags (see 2 
winnt.h). 3 

Flag Value  

IMAGE_FILE_AGGRESSIVE_WS_TRIM 0x0010 Should default to zero 

IMAGE_FILE_LARGE_ADDRESS_AWARE 0x0020 Should default to one 

IMAGE_FILE_32BIT_MACHINE 0x0100 Must be the same as COMIMAGE_FLAGS_32BITREQUIRED 
(see 25.3.3.1) 

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP 0x0400 Should default to zero 

IMAGE_FILE_NET_RUN_FROM_SWAP 0x0800 Should default to zero 

 4 

25.2.3  PE opt ional header  5 

Immediately after the PE Header is the PE Optional Header. This header contains the following information: 6 

Offset Size Header part Description 

0 28 Standard fields These define general properties of the PE file, see §25.2.3.1. 

28 68 NT-specific fields These include additional fields to support specific features of 
Windows, see 25.2.3.2. 

96 128 Data directories These fields are address/size pairs for special tables, found in 
the image file (for example, Import Table and Export Table). 

 7 

25.2.3 .1  PE header standard f ie lds 8 

These fields are required for all PE files and contain the following information: 9 

Offset Size Field Description 

0 2 Magic Always 0x10B. (§24.1) 

2 1 LMajor Always 6 (§24.1). 

3 1 LMinor Always 0 (§24.1). 

4 4 Code Size Size of the code (text) section, or the sum of all code sections 
if there are multiple sections.  

8 4 Initialized Data Size Size of the initialized data section, or the sum of all such 
sections if there are multiple data sections. 

12 4 Uninitialized Data Size Size of the uninitialized data section, or the sum of all such 
sections if there are multiple unitinitalized data sections. 

16 4 Entry Point RVA RVA of entry point , needs to point to bytes 0xFF 0x25 
followed by the RVA in a section marked execute/read for 
EXEs or 0 for DLLs 

20 4 Base Of Code RVA of the code section. (This is a hint to the loader.) 

24 4 Base Of Data RVA of the data section. (This is a hint to the loader.) 
 10 

This contains informative text only 11 
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The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CLI aware platforms, this 1 
stub will call the entry point API of mscoree (_CorExeMain or _CorDllMain). The mscoree entry point will use 2 
the module handle to load the metadata from the image, and invoke the entry point specified in vthe CLI 3 
header. 4 

End informative text 5 

25.2.3 .2  PE header Window s AT-spec if ic  f ie lds  6 

These fields are Windows NT specific: 7 

Offset Size Field Description 

28 4 Image Base Always 0x400000 (§24.1).  

32 4 Section Alignment Always 0x2000 (§24.1). 

36 4 File Alignment Always 0x200 (§24.1). 

40 2 OS Major Always 5 (§24.1). 

42 2 OS Minor Always 0 (§24.1). 

44 2 User Major Always 0 (§24.1). 

46 2 User Minor Always 0 (§24.1). 

48 2 SubSys Major Always 5 (§24.1). 

50 2 SubSys Minor  Always 0 (§24.1). 

52 4 Reserved Always 0 (§24.1). 

56 4 Image Size Size, in bytes, of image, including all headers and padding; 
shall be a multiple of Section Alignment. 

60 4 Header Size Combined size of MS-DOS Header, PE Header, PE Optional 
Header and padding; shall be a multiple of the file alignment.  

64 4 File Checksum Always 0 (§24.1). 

68 2 SubSystem Subsystem required to run this image.  Shall be either 
IMAGE_SUBSYSTEM_WINDOWS_CUI (0x3) or 
IMAGE_SUBSYSTEM_WINDOWS_GUI (0x2). 

70 2 DLL Flags Always 0x8540, see below (§24.1). 

72 4 Stack Reserve Size Always 0x100000 (1Mb) (§24.1). 

76 4 Stack Commit Size Always 0x1000 (4Kb) (§24.1). 

80 4 Heap Reserve Size Always 0x100000 (1Mb) (§24.1). 

84 4 Heap Commit Size Always 0x1000 (4Kb) (§24.1). 

88 4 Loader Flags Always 0 (§24.1) 

92 4 Number of Data 
Directories 

Always 0x10 (§24.1).  

 8 
Implementation Specific (Microsoft Only) 9 

The following table explains the DLL Flags field value (see winnt.h). 10 

Flag Value 

IMAGE_DLL_CHARATERISTICS_TERMINAL_SERVER_AWARE 0x8000 
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IMAGE_DLL_CHARATERISTICS_NO_SEH 0x0400 

IMAGE_DLL_CHARATERISTICS_NX_COMPAT 0x0100 

IMAGE_DLL_CHARATERISTICS_DYNAMIC_BASE 0x0040 

25.2.3 .3  PE header data d irectories  1 

The optional header data directories give the address and size of several tables that appear in the sections of the 2 
PE file. Each data directory entry contains the RVA and Size of the structure it describes, in that order.  3 

Offset Size Field Description 

96 8 Export Table Always 0 (§24.1). 

104 8 Import Table RVA and Size of Import Table, (§25.3.1). 

112 8 Resource Table Always 0 (§24.1). 

120 8 Exception Table Always 0 (§24.1). 

128 8 Certificate Table Always 0 (§24.1). 

136 8 Base Relocation Table Relocation Table; set to 0 if unused (§25.3.2). 

144 8 Debug Always 0 (§24.1). 

152 8 Copyright Always 0 (§24.1). 

160 8 Global Ptr Always 0 (§24.1). 

168 8 TLS Table Always 0 (§24.1). 

176 8 Load Config Table Always 0 (§24.1). 

184 8 Bound Import Always 0 (§24.1). 

192 8 IAT RVA and Size of Import Address Table, 
(§25.3.1). 

200 8 Delay Import Descriptor Always 0 (§24.1). 

208 8 CLI Header CLI Header with directories for runtime data, 
(§25.3.1). 

216 8 Reserved Always 0 (§24.1). 
 4 
The tables pointed to by the directory entries are stored in one of the PE file’s sections; these sections 5 
themselves are described by section headers.  6 

25.3  Section headers 7 

Immediately following the optional header is the Section Table, which contains a number of section headers. 8 
This positioning is required because the file header does not contain a direct pointer to the section table; the 9 
location of the section table is determined by calculating the location of the first byte after the headers. 10 

Each section header has the following format, for a total of 40 bytes per entry: 11 

Offset Size Field Description 

0 8 Name An 8-byte, null-padded ASCII string. There is no terminating null 
if the string is exactly eight characters long. 

8 4 VirtualSize Total size of the section in bytes. If this value is greater than 
SizeOfRawData, the section is zero-padded. 

12 4 VirtualAddress For executable images this is the address of the first byte of the 
section, when loaded into memory, relative to the image base.  
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16 4 SizeOfRawData Size of the initialized data on disk in bytes, shall be a multiple of 
FileAlignment from the PE header. If this is less than VirtualSize 
the remainder of the section is zero filled. Because this field is 
rounded while the VirtualSize field is not it is possible for this to 
be greater than VirtualSize as well. When a section contains only 
uninitialized data, this field should be 0. 

20 4 PointerToRawData Offset of section’s first page within the PE file. This shall be a 
multiple of FileAlignment from the optional header. When a 
section contains only uninitialized data, this field should be 0. 

24 4 PointerToRelocations Always 0 (§24.1).  

28 4 PointerToLinenumbers Always 0 (§24.1). 

32 2 NumberOfRelocations Always 0 (§24.1). 

34 2 NumberOfLinenumbers Always 0 (§24.1). 

36 4 Characteristics Flags describing section’s characteristics, see below. 
 1 
The following table defines the possible characteristics of the section. 2 

Flag Value Description 

IMAGE_SCN_CNT_CODE 0x00000020 Section contains code. 

IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 Section contains initialized data. 

IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitialized data. 

IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as code. 

IMAGE_SCN_MEM_READ 0x40000000 Section can be read. 

IMAGE_SCN_MEM_WRITE 0x80000000 Section can be written to. 
 3 

25.3.1  Import  Table  and Import  Address Table ( IAT) 4 

The Import Table and the Import Address Table (IAT) are used to import the _CorExeMain (for a .exe) or 5 
_CorDllMain (for a .dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to 6 
a one element zero terminated array of Import Directory entries (in a general PE file there is one entry for each 7 
imported DLL): 8 

Offset Size Field Description 

0 4 ImportLookupTable RVA of the Import Lookup Table  

4 4 DateTimeStamp Always 0 (§24.1). 

8 4 ForwarderChain Always 0 (§24.1). 

12 4 Name RVA of null-terminated ASCII string “mscoree.dll”. 

16 4 ImportAddressTable RVA of Import Address Table (this is the same as the 
RVA of the IAT descriptor in the optional header).  

20 20  End of Import Table. Shall be filled with zeros. 
 9 
The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of 10 
RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In a general PE file there is one entry in 11 
this table for every imported symbol.  12 

Offset Size Field Description 
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0 4 Hint/Name Table RVA A 31-bit RVA into the Hint/Name Table. Bit 31 
shall be set to 0 indicating import by name. 

4 4  End of table, shall be filled with zeros. 
 1 
The IAT should be in an executable and writable section as the loader will replace the pointers into the 2 
Hint/Name table by the actual entry points of the imported symbols. 3 

The Hint/Name table contains the name of the dll-entry that is imported. 4 

Offset Size Field Description 

0 2 Hint Shall be 0. 

2 variable Name Case sensitive, null-terminated ASCII string containing name to 
import. Shall be “_CorExeMain” for a .exe file and 
“_CorDllMain” for a .dll file. 

 5 

25.3.2  Relocat ions 6 

In a pure CIL image, a single fixup of type IMAGE_REL_BASED_HIGHLOW (0x3) is required for the x86 7 
startup stub which access the IAT to load the runtime engine on down level loaders.  When building a mixed 8 
CIL/native image or when the image contains embedded RVAs in user data, the relocation section contains 9 
relocations for these as well.     10 

The relocations shall be in their own section, named “.reloc”, which shall be the final section in the PE file. The 11 
relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block 12 
represents the fixups for a 4K page, and each block shall start on a 32-bit boundary. 13 

Each fixup block starts with the following structure: 14 

Offset Size Field Description 

0 4 PageRVA The RVA of the block in which the fixup needs to be 
applied. The low 12 bits shall be zero. 

4 4 Block Size Total number of bytes in the fixup block, including the 
Page RVA and Block Size fields, as well as the 
Type/Offset fields that follow, rounded up to the next 
multiple of 4. 

 15 
The Block Size field is then followed by (BlockSize –8)/2 Type/Offset. Each entry is a word (2 bytes) and has 16 
the following structure (if necessary, insert 2 bytes of 0 to pad to a multiple of 4 bytes in length): 17 

Offset Size Field Description 

0 4 bits Type Stored in high 4 bits of word. Value indicating which 
type of fixup is to be applied (described above) 

0 12 bits Offset Stored in remaining 12 bits of word. Offset from starting 
address specified in the Page RVA field for the block. 
This offset specifies where the fixup is to be applied. 

 18 

25.3.3  CLI header  19 

The CLI header contains all of the runtime-specific data entries and other information.  The header should be 20 
placed in a read-only, sharable section of the image.  This header is defined as follows: 21 

Offset Size Field Description 

0 4 Cb Size of the header in bytes 
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4 2 MajorRuntimeVersion The minimum version of the runtime required to run 
this program, currently 2. 

6 2 MinorRuntimeVersion The minor portion of the version, currently 0. 

8 8 MetaData RVA and size of the physical metadata (§24). 

16 4 Flags Flags describing this runtime image.  (§25.3.3.1). 

20 4 EntryPointToken Token for the MethodDef or File of the entry point 
for the image 

24 8 Resources RVA and size of implementation-specific resources. 

32 8 StrongNameSignature RVA of the hash data for this PE file used by the 
CLI loader for binding and versioning 

40 8 CodeManagerTable Always 0 (§24.1). 

48 8 VTableFixups RVA of an array of locations in the file that contain 
an array of function pointers (e.g., vtable slots), see 
below. 

56 8 ExportAddressTableJumps Always 0 (§24.1). 

64 8 ManagedNativeHeader Always 0 (§24.1). 
 1 

25.3.3 .1  Runtime f lags 2 

The following flags describe this runtime image and are used by the loader. All unspecified bits should be zero. 3 

Flag Value Description 

COMIMAGE_FLAGS_ILONLY 0x00000001 Always 1. (§24.1) 

COMIMAGE_FLAGS_32BITREQUIRED 0x00000002 Image can only be loaded into a 32-bit process, 
for instance if there are 32-bit vtablefixups, or 
casts from native integers to int32. CLI 
implementations that have 64-bit native 
integers shall refuse loading binaries with this 
flag set. 

COMIMAGE_FLAGS_STRONGNAMESIGNED 0x00000008 Image has a strong name signature. 

COMIMAGE_FLAGS_NATIVE_ENTRYPOINT 0x00000010 Always 0. 

COMIMAGE_FLAGS_TRACKDEBUGDATA 0x00010000 Always 0 (§24.1). 
 4 

Implementation Specific (Microsoft Only) 5 

If COMIMAGE_FLAGS_NATIVE_ENTRYPOINT is 1 the RVA references the native function which is the real 6 
entry point and COMIMAGE_FLAGS_ILONLY must be 0. 7 

25.3.3 .2  Entry  point  metadata token 8 

• The entry point token (§15.4.1.2) is always a MethodDef token (§22.26) or File token (§22.19 ) 9 
when the entry point for a multi-module assembly is not in the manifest assembly.  The signature 10 
and implementation flags in metadata for the method indicate how the entry is run 11 

25.3.3 .3  Vtable  f ixup 12 

Certain languages, which choose not to follow the common type system runtime model, can have virtual 13 
functions which need to be represented in a v-table.  These v-tables are laid out by the compiler, not by the 14 
runtime.  Finding the correct v-table slot and calling indirectly through the value held in that slot is also done 15 
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by the compiler. The VtableFixups field in the runtime header contains the location and size of an array of 1 
Vtable Fixups (§15.5.1). V-tables shall be emitted into a read-write section of the PE file.   2 

Each entry in this array describes a contiguous array of v-table slots of the specified size.  Each slot starts out 3 
initialized to the metadata token value for the method they need to call.  At image load time, the runtime 4 
Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.  5 

Offset Size Field Description 

0 4 VirtualAddress RVA of Vtable 

4 2 Size Number of entries in Vtable 

6 2 Type Type of the entries, as defined in table below 
 6 
Constant Value Description 

COR_VTABLE_32BIT 0x01 Vtable slots are 32 bits. 

COR_VTABLE_64BIT 0x02 Vtable slots are 64 bits. 

COR_VTABLE_FROM_UNMANAGED 0x04 Transition from unmanaged to managed code. 

COR_VTABLE_CALL_MOST_DERIVED 0x10 Call most derived method described by the 
token (only valid for virtual methods). 

 7 

25.3.3 .4  Strong name signature  8 

This header entry points to the strong name hash for an image that can be used to deterministically identify a 9 
module from a referencing point (§6.2.1.3). 10 

25.4  Common Intermediate Language physical  layout 11 

This section contains the layout of the data structures used to describe a CIL method and its exceptions. Method 12 
bodies can be stored in any read-only section of a PE file. The MethodDef (§22.26) records in metadata carry 13 
each method's RVA.  14 

A method consists of a method header immediately followed by the method body, possibly followed by extra 15 
method data sections (§25.4.5), typically exception handling data.  If exception-handling data is present, then 16 
CorILMethod_MoreSects flag (§25.4.4) shall be specified in the method header and for each chained item after 17 
that. 18 

There are two flavors of method headers - tiny (§25.4.2) and fat (§25.4.3). The two least significant bits in a 19 
method header indicate which type is present (§25.4.1). The tiny header is 1 byte long and stores only the 20 
method's code size. A method is given a tiny header if it has no local variables, maxstack is 8 or less, the 21 
method has no exceptions, the method size is less than 64 bytes, and the method has no flags above 0x7. Fat 22 
headers carry full information - local vars signature token, maxstack, code size, flag. Tiny method headers can 23 
start on any byte boundary.  Fat method headers shall start on a 4-byte boundary. 24 

25.4.1  Method header type values 25 

The two least significant bits of the first byte of the method header indicate what type of header is present.  26 
These 2 bits will be one and only one of the following: 27 

Value Value Description 

CorILMethod_TinyFormat 0x2 The method header is tiny (§25.4.2) . 

CorILMethod_FatFormat 0x3 The method header is fat (§25.4.3). 
 28 

25.4.2  Tiny  format  29 

Tiny headers use a 6-bit length encoding.  The following is true for all tiny headers: 30 

• No local variables are allowed 31 
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• No exceptions 1 

• No extra data sections 2 

• The operand stack shall be no bigger than 8 entries 3 

A Tiny Format header is encoded as follows: 4 

Start Bit Count of Bits Description 

0 2 Flags (CorILMethod_TinyFormat shall be set, see §25.4.4). 

2 6 Size, in bytes, of the method body immediately following this 
header. 

 5 

25.4.3  Fat  format  6 

The fat format is used whenever the tiny format is not sufficient.  This can be true for one or more of the 7 
following reasons: 8 

• The method is too large to encode the size (i.e., at least 64 bytes) 9 

• There are exceptions 10 

• There are extra data sections 11 

• There are local variables 12 

• The operand stack needs more than 8 entries 13 

A fat header has the following structure  14 

Offset  Size  Field Description 

0 12 (bits) Flags Flags (CorILMethod_FatFormat shall be set in bits 0:1, 
see §25.4.4) 

12 (bits) 4 (bits) Size Size of this header expressed as the count of 4-byte 
integers occupied (currently 3) 

2  2  MaxStack Maximum number of items on the operand stack 

4 4 CodeSize Size in bytes of the actual method body 

8 4 LocalVarSigTok Meta Data token for a signature describing the layout 
of the local variables for the method.  0 means there 
are no local variables present 

 15 

25.4.4  Flags for  method headers  16 

The first byte of a method header can also contain the following flags, valid only for the Fat format, that 17 
indicate how the method is to be executed: 18 

Flag Value Description 

CorILMethod_FatFormat 0x3 Method header is fat. 

CorILMethod_TinyFormat 0x2 Method header is tiny. 

CorILMethod_MoreSects 0x8 More sections follow after this header (§25.4.5). 

CorILMethod_InitLocals 0x10 Call default constructor on all local variables. 
 19 
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25.4.5  Method data sect ion  1 

At the next 4-byte boundary following the method body can be extra method data sections. These method data 2 
sections start with a two byte header (1 byte for flags, 1 byte for the length of the actual data)  or a 4-byte 3 
header  (1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the 4 
header, and what data is in the actual section:  5 

Flag Value Description 

CorILMethod_Sect_EHTable 0x1 Exception handling data. 

CorILMethod_Sect_OptILTable 0x2 Reserved, shall be 0. 

CorILMethod_Sect_FatFormat 0x40 Data format is of the fat variety, meaning there is a 3-
byte length least-significant byte first format.  If not 
set, the header is small with a  1-byte length 

CorILMethod_Sect_MoreSects 0x80 Another data section occurs after this current section 
 6 
Currently, the method data sections are only used for exception tables (§19). The layout of a small exception 7 
header structure as is a follows: 8 

Offset Size Field Description 

0 1 Kind Flags as described above. 

1 1 DataSize Size of the data for the block, including the header, say 
n*12+4. 

2 2 Reserved Padding, always 0. 

4 n Clauses n small exception clauses (§25.4.6). 
 9 
The layout of a fat exception header structure is as follows: 10 

Offset Size Field Description 

0 1 Kind Which type of exception block is being used 

1 3 DataSize Size of the data for the block, including the header, say 
n*24+4. 

4 n Clauses n fat exception clauses (§25.4.6). 
 11 

25.4.6  Except ion handl ing clauses  12 

Exception handling clauses also come in small and fat versions.  13 

The small form of the exception clause should be used whenever the code sizes for the try block and the 14 
handler code are both smaller than 256 bytes and both their offsets are smaller than 65536.  The format for a 15 
small exception clause is as follows: 16 

Offset Size Field Description 

0 2 Flags Flags, see below. 

2 2 TryOffset Offset in bytes of try block from start of method body. 

4 1 TryLength Length in bytes of the try block 

5 2 HandlerOffset Location of the handler for this try block 

7 1 HandlerLength Size of the handler code in bytes 

8 4 ClassToken Meta data token for a type-based exception handler 
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8 4 FilterOffset Offset in method body for filter-based exception handler 
 1 
The layout of the fat form of exception handling clauses is as follows: 2 

Offset Size Field Description 

0 4 Flags Flags, see below. 

4 4 TryOffset Offset in bytes of try block from start of method body. 

8 4 TryLength Length in bytes of the try block 

12 4 HandlerOffset Location of the handler for this try block 

16 4 HandlerLength Size of the handler code in bytes 

20 4 ClassToken Meta data token for a type-based exception handler 

20 4 FilterOffset Offset in method body for filter-based exception handler 
 3 
The following flag values are used for each exception-handling clause: 4 

Flag Value Description 

COR_ILEXCEPTION_CLAUSE_EXCEPTION 0x0000 A typed exception clause 

COR_ILEXCEPTION_CLAUSE_FILTER 0x0001 An exception filter and handler clause 

COR_ILEXCEPTION_CLAUSE_FINALLY 0x0002 A finally clause 

COR_ILEXCEPTION_CLAUSE_FAULT 0x0004 Fault clause (finally that is called on 
exception only) 

 5 
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