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Common Language Infrastructure (CLI)

Partition I1:
Metadata Definition and Semantics
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Introduction

This specification provides the normative description of the metadata: its physical layout (as a file format), its
logical contents (as a set of tables and their relationships), and its semantics (as seen from a hypothetical
assembler, ilasm).
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Overview

This partition focuses on the semantics and the structure of metadata. The semantics of metadata, which dictate
much of the operation of the VES, are described using the syntax of ILAsm, an assembly language for CIL.
The ILAsm syntax itself (contained in clauses 5 through 21) is considered a normative part of this International
Standard. (An implementation of an assembler for ILAsm is described in Partition VI.) The structure (both
logical and physical) is covered in clauses 22 through 25.

[Rationale: An assembly language is really just syntax for specifying the metadata in a file, and the CIL
instructions in that file. Specifying ILAsm provides a means of interchanging programs written directly for the
CLI without the use of a higher-level language; it also provides a convenient way to express examples.

The semantics of the metadata can also be described independently of the actual format in which the metadata
is stored. This point is important because the storage format as specified in clauses 22 through 25 is engineered
to be efficient for both storage space and access time, but this comes at the cost of the simplicity desirable for
describing its semantics. end rationale]
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Validation and verification

Validation refers to the application of a set of tests on any file to check that the file’s format, metadata, and CIL
are self-consistent. These tests are intended to ensure that the file conforms to the normative requirements of
this specification. When a conforming implementation of the CLI is presented with a non-conforming file, the
behavior is unspecified.

Verification refers to the checking of both CIL and its related metadata to ensure that the CIL code sequences
do not permit any access to memory outside the program’s logical address space. In conjunction with the
validation tests, verification ensures that the program cannot access memory or other resources to which it is
not granted access.

Partition III specifies the rules for both correct and verifiable use of CIL instructions. Partition III also provides
an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit
indirectly, from the specification in this Partition); it also contains a normative description of the verification
algorithm. A mathematical proof of soundness of the underlying type system is possible, and provides the
basis for the verification requirements. Aside from these rules, this standard leaves as unspecified:

e The time at which (if ever) such an algorithm should be performed.
e  What a conforming implementation should do in the event of a verification failure.

The following figure makes this relationship clearer (see next paragraph for a description):

% Syntactically correct CIL
CH) Valid CIL

|| Typesafe CIL
Verifiable CIL

Figure 1: Relationship between correct and verifiable CIL

In the above figure, the outer circle contains all code permitted by the ILAsm syntax. The next inner circle
represents all code that is correct CIL. The striped inner circle represents all type-safe code. Finally, the black
innermost circle contains all code that is verifiable. (The difference between type-safe code and verifiable code
is one of provability: code which passes the VES verification algorithm is, by-definition, verifiable; but that
simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type-safe).
Note that even if a program follows the syntax described in Partition VI, the code might still not be valid,
because valid code shall adhere to restrictions presented in this Partition and in Partition III.

The verification process is very stringent. There are many programs that will pass validation, but will fail
verification. The VES cannot guarantee that these programs do not access memory or resources to which they
are not granted access. Nonetheless, they might have been correctly constructed so that they do not access these
resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs.
Ordinarily, a conforming implementation of the CLI can allow unverifiable code (valid code that does not pass
verification) to be executed, although this can be subject to administrative trust controls that are not part of this
standard. A conforming implementation of the CLI shall allow the execution of verifiable code, although this
can be subject to additional implementation-specified trust controls.



4 Introductory examples

This clause and its subclauses contain only informative text.

4.1 “Hello world!”

To get the general feel of ILAsm, consider the following simple example, which prints the well known “Hello
world!” salutation. The salutation is written by calling writeLine, a static method found in the class
System.Console that is part of the standard assembly mscorlib (see Partition IV). [Example:

.assembly extern mscorlib ({}
.assembly hello {}
.method static public void main() cil managed

{ .entrypoint
.maxstack 1
ldstr "Hello world!"
call void [mscorlib]System.Console::WriteLine (class System.String)
ret

}
end example]

The .assembly extern declaration references an external assembly, mscor1ib, which contains the
definition of system.Console. The .assembly declaration in the second line declares the name of the
assembly for this program. (Assemblies are the deployment unit for executable content for the CLI.) The
.method declaration defines the global method main, the body of which follows, enclosed in braces. The first
line in the body indicates that this method is the entry point for the assembly (.entrypoint ), and the second
line in the body specifies that it requires at most one stack slot (.maxstack ).

Method main contains only three instructions: Idstr, call, and ret. The Idstr instruction pushes the string
constant "Hello world!" onto the stack and the call instruction invokes System.Console: :WriteLine, passing
the string as its only argument. (Note that string literals in CIL are instances of the standard class
System.String.) As shown, call instructions shall include the full signature of the called method. Finally, the
last instruction, ret , returns from main.

4.2 Other examples

This Partition contains integrated examples for most features of the CLI metadata. Many subclauses conclude
with an example showing a typical use of some feature. All these examples are written using the ILAsm
assembly language. In addition, Partition VI contains a longer example of a program written in the ILAsm
assembly language. All examples are, of course, informative only.

End informative text

4 Partition II




5.1

5.2

General syntax

This clause describes aspects of the ILAsm syntax that are common to many parts of the grammar.

General syntax notation

This partition uses a modified form of the BNF syntax notation. The following is a brief summary of this
notation.

Terminals are written in a constant-width font (e.g., .assembly , extern , and float64 ); however,
terminals consisting solely of punctuation characters are enclosed in single quotes (e.g., " , ‘[ ,and ‘(" ).
The names of syntax categories are capitalized and italicized (e.g. ClassDecl) and shall be replaced by actual
instances of the category. Items placed in [ ] brackets (e.g., [Filename] and [Float]), are optional, and any item
followed by * (e.g., HexByte* and ['."  Id]*) can appear zero or more times. The character “|” means that the
items on either side of it are acceptable (e.g., true |false ). The options are sorted in alphabetical order (to
be more specific: in ASCII order, and case-insensitive). If a rule starts with an optional term, the optional term
is not considered for sorting purposes.

ILAsm is a case-sensitive language. All terminals shall be used with the same case as specified in this clause.
[Example: A grammar such as

Top ::==Int32 | float Float | floats [ Float [‘ Float]*] | else QOSTRING

would consider all of the following to be valid:

12

float 3

float -4.3e7

floats

floats 2.4

floats 2.4, 3.7

else "Something \t weird"

but all of the following to be invalid:

else 3

3, 4

float 4.3, 2.4
float else
stuff

end example]
Basic syntax categories

These categories are used to describe syntactic constraints on the input intended to convey logical restrictions
on the information encoded in the metadata.

Int32 is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in
32 bits. [Note: ILAsm has no concept of 8- or 16-bit integer constants. Instead, situations requiring such a
constant (such as int8(...) and int16(...) in §16.2) accept an /nt32 instead, and use only the least-significant
bytes. end note]

Int64 is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in
64 bits.

HexByte is a hexadecimal number that is a pair of characters from the set 09, a—f, and A—F.

RealNumber is any syntactic representation for a floating-point number that is distinct from that for all other
syntax categories. In this partition, a period (.) is used to separate the integer and fractional parts, and “e”

or “E” separates the mantissa from the exponent. Either of the period or the mantissa separator (but not both)
can be omitted.

[Note: A complete assembler might also provide syntax for infinities and NaNs. end note]

Partition II 5
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5.3

OSTRING is a string surrounded by double quote (") marks. Within the quoted string the character “\” can be
used as an escape character, with “\t” representing a tab character, “\n” representing a newline character, and
“\” followed by three octal digits representing a byte with that value. The “+” operator can be used to
concatenate string literals. This way, a long string can be broken across multiple lines by using “+” and a new
string on each line. An alternative is to use “\” as the last character in a line, in which case, that character and
the line break following it are not entered into the generated string. Any white space characters (space, line-
feed, carriage-return, and tab) between the “\” and the first non-white space character on the next line are
ignored. [Note: To include a double quote character in a OSTRING, use an octal escape sequence. end note)

[Example: The following result in strings that are equivalent to "Hello World from CIL!":

ldstr "Hello " + "World " +
"from CIL!"

and

ldstr "Hello World\
\040from CIL!"

end example]

[Note: A complete assembler will need to deal with the full set of issues required to support Unicode
encodings, see Partition I (especially CLS Rule 4). end note]

SOSTRING is just like OSTRING except that the former uses single quote () marks instead of double quote.
[Note: To include a single quote character in an SOSTRING, use an octal escape sequence. end note]

ID is a contiguous string of characters which starts with either an alphabetic character (A-Z, a—z) or one of “ 7,
“$”, “@”, “*” (grave accent), or “?”, and is followed by any number of alphanumeric characters (A-Z, a—z, 0—
9) or the characters “_”, “$”, “@”, “*” (grave accent), and “?”. An ID is used in only two ways:

e Asalabel of a CIL instruction (§5.4).
e Asanld(§5.3).
Identifiers

Identifiers are used to name entities. Simple identifiers are equivalent to an /D. However, the ILAsm syntax
allows the use of any identifier that can be formed using the Unicode character set (see Partition I). To achieve
this, an identifier shall be placed within single quotation marks. This is summarized in the following grammar.

Id 1=

1D

| SOSTRING

A keyword shall only be used as an identifier if that keyword appears in single quotes (see Partition VI for a
list of all keywords).

Several Ids can be combined to form a larger /d, by separating adjacent pairs with a dot (. ). An /d formed in
this way is called a DottedName.

DottedName ::= Id [’ 1d] ~

[Rationale: DottedName is provided for convenience, since “.” can be included in an /d using the SOSTRING

syntax. DottedName is used in the grammar where “. ” is considered a common character (e.g., in fully
qualified type names) end rationale]
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5.4

Implementation Specific (Microsoft)

Names that end with spst followed by a hexadecimal number have a special meaning. The assembler
will automatically truncate the part starting with the spst. This is in support of compiler-controlled
accessibility, see Partition I. Also, the first release of the CLI limits the length of identifiers; see §22
for details.

[Example: The following are simple identifiers:
A Test $Test @Foo? ? X MyType 1
The following are identifiers in single quotes:
'"Weird Identifier’ 'Odd\102Char' 'Embedded\nReturn’
The following are dotted names:
System.Console 'My Project'.'My Component'.'My Name' System.IComparable 1
end example]
Labels and lists of labels

Labels are provided as a programming convenience; they represent a number that is encoded in the metadata.
The value represented by a label is typically an offset in bytes from the beginning of the current method,
although the precise encoding differs depending on where in the logical metadata structure or CIL stream the
label occurs. For details of how labels are encoded in the metadata, see clauses 22 through 25; for their
encoding in CIL instructions see Partition II1.

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an /d. Thus,
labels can be single quoted and can contain Unicode characters.

A list of labels is comma separated, and can be any combination of simple labels.

LabelOrOffset ::= Id

Labels ::= LabelOrOffset [',  LabelOrOffset 1*

[Note: In a real assembler the syntax for LabelOrOffset might allow the direct specification of a number rather
than requiring symbolic labels. end note]

Implementation Specific (Microsoft)
The following syntax is also supported, for round-tripping purposes:

LabelOrOffset ::= Int32 | Label

ILAsm distinguishes between two kinds of labels: code labels and data labels. Code labels are followed by a
colon (“:”) and represent the address of an instruction to be executed. Code labels appear before an instruction
and they represent the address of the instruction that immediately follows the label. A particular code label

name shall not be declared more than once in a method.

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon
character. A data label shall not be used as a code label, and a code label shall not be used as a data label. A
particular data label name shall not be declared more than once in a module.

CodeLabel ::= Id *’

DataLabel ::= Id

[Example: The following defines a code label, 1dstr label, that represents the address of the Idstr
instruction:

ldstr label: 1ldstr "A label"

end example)
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Lists of hex bytes

A list of bytes consists simply of one or more hexbytes.

Bytes ::= HexByte [ HexByte* ]

Floating-point numbers
There are two different ways to specify a floating-point number:
1.  AsaRealNumber.

2. By using the keyword float32  or float64 , followed by an integer in parentheses, where the
integer value is the binary representation of the desired floating-point number. For example,
float32 (1) results in the 4-byte value 1.401298E-45, while f1o0at64 (1) results in the 8-byte
value 4.94065645841247E-324.

Float32 ::=

RealNumber

| float32 ( nt32°)

Float64 : :=

RealNumber

| float64 ‘( Int64 ")

[Example:

5.5

1.1lel0

float64(128) // note: this results in an 8-byte value whose bits are the same
// as those for the integer value 128.

end example)
Source line information

The metadata does not encode information about the lexical scope of variables or the mapping from source line
numbers to CIL instructions. Nonetheless, it is useful to specify an assembler syntax for providing this
information for use in creating alternate encodings of the information.

Implementation Specific (Microsoft)

Source line information is stored in the PDB (Portable Debug) file associated with each module.

line  takes a line number, optionally followed by a column number (preceded by a colon), optionally
followed by a single-quoted string that specifies the name of the file to which the line number is referring:

ExternSourceDecl ::= line  Int32 ['7  Int32][ SOSTRING |

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Implementation Specific (Microsoft)
For compatibility reasons, ilasm allows the following:
ExternSourceDecl ::= ... | #line Int32 QSTRING

Note that this requires the file name, and that that name be double-quoted, not single quoted as with
line

Partition II




EENLVS B\

O 0 N W

11
12
13

14
15
16

17
18
19
20
21
22

23
24

25
26
27
28

5.8

5.9

5.10

File names

[T31)

Some grammar elements require that a file name be supplied. A file name is like any other name where “.” is
considered a normal constituent character. The specific syntax for file names follows the specifications of the
underlying operating system.

Filename : := Clause

DottedName 53

Attributes and metadata

Attributes of types and their members attach descriptive information to their definition. The most common
attributes are predefined and have a specific encoding in the metadata associated with them (§23). In addition,
the metadata provides a way of attaching user-defined attributes to metadata, using several different encodings.

From a syntactic point of view, there are several ways for specifying attributes in ILAsm:

e Using special syntax built into ILAsm. For example, the keyword private  in a ClassAttr
specifies that the visibility attribute on a type shall be set to allow access only within the defining
assembly.

e Using a general-purpose syntax in ILAsm. The non-terminal CustomDecl describes this grammar
(§21). For some attributes, called pseudo-custom attributes, this grammar actually results in setting
special encodings within the metadata (§21.2.1).

e Security attributes are treated specially. There is special syntax in ILAsm that allows the XML
representing security attributes to be described directly (§20). While all other attributes defined
either in the standard library or by user-provided extension are encoded in the metadata using one
common mechanism described in §22.10, security attributes (distinguished by the fact that they
inherit, directly or indirectly from system.Security.Permissions.SecurityAttribute, see
Partition IV) shall be encoded as described in §22.11.

ilasm source files

An input to ilasm is a sequence of top-level declarations, defined as follows:

ILFile ::= Reference

Decl~ 5.10

The complete grammar for a top-level declaration is shown below. The reference subclauses contain details of
the corresponding productions of this grammar. These productions begin with a name having a ‘.’ prefix. Such
a name is referred to as a directive.

Decl ::= Reference
.assembly  DottedName ‘{’ AsmDecl* '} 6.2

| .assembly extern DottedName ‘{’ AsmRefDecl '} 6.3

| .class  ClassHeader {’ ClassMember* '} 10

| .class extern ExportAttr DottedName *‘{’ ExternClassDecl* *} 6.7

| .corflags Int32 6.2

| .custom CustomDecl 21

| .data DataDecl 163.1

| .field FieldDecl 16

| file [ nometadata | Filename .hash =’ “(* Bytes ‘)’ [ .entrypoint ] 6.2.3

Partition II 9
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Decl ::= Reference
| .method MethodHeader ‘{’ MethodBodyltem* '}’ 15

| .module [ Filename ] 6.4

| .module extern Filename 6.5

| .mresource [ public |private 1 DottedName ‘{ ManResDecl* '} 6.2.2

| .subsystem  Int32 6.2

| .vtfixup VTFixupDecl 15.5.1

| ExternSourceDecl 57

| SecurityDecl 20

Implementation Specific (Microsoft)

The grammar for declarations also includes the following. These are described in a separate product
specification.

Implementation Specific (Microsoft)

Decl ::= Reference

file alignment [nt32

| .imagebase Int64

| .language LanguageDecl

| .namespace Id
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6.1

Assemblies, manifests and modules
Assemblies and modules are grouping constructs, each playing a different role in the CLI.

An assembly is a set of one or more files deployed as a unit. An assembly always contains a manifest that
specifies (§6.1):

e Version, name, culture, and security requirements for the assembly.

e Which other files, if any, belong to the assembly, along with a cryptographic hash of each file. The
manifest itself resides in the metadata part of a file, and that file is always part of the assembly.

e The types defined in other files of the assembly that are to be exported from the assembly. Types
defined in the same file as the manifest are exported based on attributes of the type itself.

e Optionally, a digital signature for the manifest itself, and the public key used to compute it.

A module is a single file containing executable content in the format specified here. If the module contains a
manifest then it also specifies the modules (including itself) that constitute the assembly. An assembly shall
contain only one manifest amongst all its constituent files. For an assembly that is to be executed (rather than
simply being dynamically loaded) the manifest shall reside in the module that contains the entry point.

While some programming languages introduce the concept of a namespace, the only support in the CLI for this
concept is as a metadata encoding technique. Type names are always specified by their full name relative to
the assembly in which they are defined.

Overview of modules, assemblies, and files

This subclause contains informative text only.

Consider the following figure:

]

aszenbly Assenhly E

Figure 2: References to Modules and Files

Eight files are shown, each with its name written below it. The six files that each declare a module have an
additional border around them, and their names begin with M. The other two files have a name beginning
with F. These files can be resource files (such as bitmaps) or other files that do not contain CIL code.

Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B,
respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines. For
example, assembly A references M2 and M3, and assembly B references M3 and M5. Thus, both assemblies
reference M3.

Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When
assembly A is loaded at runtime, an instance of M3 will be loaded for it. When assembly B is loaded into the
same application domain, possibly simultaneously with assembly A, M3 will be shared for both assemblies.
Both assemblies also reference F2, for which similar rules apply.

The module M2 references F1, shown by dotted lines. As a consequence, F1 will be loaded as part of
assembly A, when A is executed. Thus, the file reference shall also appear with the assembly declaration.

Partition II 11




1 Similarly, M5 references another module, M6, which becomes part of B when B is executed. It follows that
assembly B shall also have a module reference to M6.

3 | End informative text

4 6.2 Defining an assembly
5 An assembly is specified as a module that contains a manifest in the metadata; see §22.2. The information for
6 the manifest is created from the following portions of the grammar:
Decl ::= Clause
.assembly  DottedName ‘{’ AsmDecl* '} 6.2
| .assembly extern DottedName ‘{’ AsmRefDecl '} 6.3
| .corflags Int32 6.2
| file [ nometadata ] Filename .hash ‘=" ‘( Bytes ')’ [ .entrypoint ] 6.2.3
| .module extern Filename 6.5
| .mresource [ public |private ] DottedName ‘{ ManResDecl* ‘Y 6.2.2
| .subsystem  Int32 6.2
(-
7
8 The .assembly directive declares the manifest and specifies to which assembly the current module belongs.
9 A module shall contain at most one .assembly directive. The DottedName specifies the name of the
10 assembly. [ Note: The standard library assemblies are described in Partition IV. end note])
11 [Note: Since some platforms treat names in a case-insensitive manner, two assemblies that have names that
12 differ only in case should not be declared. end note]
13 The .corflags directive sets a field in the CLI header of the output PE file (see §25.3.3.1). A conforming
14 implementation of the CLI shall expect this field’s value to be 1. For backwards compatibility, the three least-
15 significant bits are reserved. Future versions of this standard might provide definitions for values between 8
16 and 65,535. Experimental and non-standard uses should thus use values greater than 65,535.
17 The .subsystem  directive is used only when the assembly is executed directly (as opposed to its being used
18 as a library for another program). This directive specifies the kind of application environment required for the
19 program, by storing the specified value in the PE file header (see §25.2.2). While any 32-bit integer value can
20 be supplied, a conforming implementation of the CLI need only respect the following two values:
21 e If'the value is 2, the program should be run using whatever conventions are appropriate for an application
22 that has a graphical user interface.
23 e If'the value is 3, the program should be run using whatever conventions are appropriate for an application
24 that has a direct console attached.
5 L Implementation Specific (Microsofty
26 Decl ::= ... | .file alignment [nt32 | .imagebase Int64
27 The .file  alignment directive sets the file alignment field in the PE header of the output file.

28 Valid values are multiples of 512. (Different sections of the PE file are aligned, on disk, at the

29 specified value [in bytes].)

30 | The .imagebase directive sets the imagebase field in the PE header of the output file. This value
31 specifies the virtual address at which this PE file will be loaded into the process.

32 (See§25.232
33

34 [Example:
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.assembly CountDown

{ .hash algorithm 32772
.ver 1:0:0:0

}

.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7

02 BE E7 52 3A CB 17 AF)

end example]

6.2.1 Information about the assembly (AsmDecl)

The following grammar shows the information that can be specified about an assembly:

AsmDecl ::= Description Claus
e

.custom  CustomDecl Custom attributes 21

| .hash algorithm  Int32 Hash algorithm used in the .file  directive | 6.2.1.1

| .culture OSTRING Culture for which this assembly is built 6.2.1.2

| .publickey ‘="*( Bytes ') The originator's public key. 6.2.1.3

| .ver Int32'’ nt32 7’ nt32 ' Int32 Major version, minor version, build, and 6.2.14

revision
| SecurityDecl Permissions needed, desired, or prohibited 20

6.2.1.1 Hash algorithm

AsmDecl ::= .hash algorithm nt32 | ..

When an assembly consists of more than one file (see §6.2.3), the manifest for the assembly specifies both the
name and cryptographic hash of the contents of each file other than its own. The algorithm used to compute the
hash can be specified, and shall be the same for all files included in the assembly. All values are reserved for
future use, and conforming implementations of the CLI shall use the SHA-1 (see FIPS 180-1 in Partition I, 3)
hash function and shall specify this algorithm by using a value of 32772 (0x8004).

[Rationale: SHA-1 was chosen as the best widely available technology at the time of standardization (see

Partition I). A single algorithm was chosen since all conforming implementations of the CLI would be

required to implement all algorithms to ensure portability of executable images.end rationale]

6.2.1.2 Culture

AsmDecl ::= .culture OSTRING | ..

When present, this indicates that the assembly has been customized for a specific culture. The strings that shall
be used here are those specified in Partition IV as acceptable with the class
System.Globalization.CultureInfo. When used for comparison between an assembly reference and an
assembly definition these strings shall be compared in a case-insensitive manner. (See §23.1.3.)

The product version of ilasm and ildasm use .locale

Implementation Specific (Microsoft)

rather than .culture

[Note: The culture names follow the IETF RFC1766 names. The format is “<language>-<country/region>",
where <language> is a lowercase two-letter code in ISO 639-1. <country/region> is an uppercase two-letter

code in ISO 3166. end note]
6.2.1.3Originator’s public key

AsmDecl ::= .publickey ‘=" ‘(" Bytes ')’
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The CLI metadata allows the producer of an assembly to compute a cryptographic hash of that assembly (using
the SHA-1 hash function) and then to encrypt it using the RSA algorithm (see Partition I) and a public/private
key pair of the producer’s choosing. The results of this (an “SHA-1/RSA digital signature”) can then be stored
in the metadata (§25.3.3) along with the public part of the key pair required by the RSA algorithm. The
.publickey directive is used to specify the public key that was used to compute the signature. To calculate
the hash, the signature is zeroed, the hash calculated, and then the result is stored into the signature.

All of the assemblies in the Standard Library (see Partition IV) use the public key 00 00 00 00 00 00 00 00 04
00 00 00 00 00 00 00. This key is known as the Standard Public Key in this standard.

A reference to an assembly (§6.3) captures some of this information at compile time. At runtime, the
information contained in the assembly reference can be combined with the information from the manifest of the
assembly located at runtime to ensure that the same private key was used to create both the assembly seen when
the reference was created (compile time) and when it is resolved (runtime).

The Strong Name (SN) signing process uses standard hash and cipher algorithms for Strong name signing. An
SHA-1 hash over most of the PE file is generated. That hash value is RSA-signed with the SN private key. For
verification purposes the public key is stored into the PE file as well as the signed hash value.

Except for the following, all portions of the PE File are hashed:

o The Authenticode Signature entry: PE files can be authenticode signed. The authenticode signature
is contained in the 8-byte entry at offset 128 of the PE Header Data Directory (“Certificate Table”
in §25.2.3.3) and the contents of the PE File in the range specified by this directory entry. [Note:
In a conforming PE File, this entry shall be zero. end note]

e The Strong Name Blob: The 8-byte entry at offset 32 of the CLI Header (“StrongNameSignature” in
§25.3.3) and the contents of the hash data contained at this RVA in the PE File. If the 8-byte entry
is 0, there is no associated strong name signature.

o The PE Header Checksum: The 4-byte entry at offset 64 of the PE Header Windows NT-Specific
Fields (“File Checksum” in §25.2.3.2). [Note: In a conforming PE File, this entry shall be zero. end
note]

6.2.1.4 Version numbers

14

AsmDecl ::= ver Int32"'7 nt32 "7 nt32"'7 nt32 | .

The version number of an assembly is specified as four 32-bit integers. This version number shall be captured
at compile time and used as part of all references to the assembly within the compiled module.

All standardized assemblies shall have the last two 32-bit integers set to 0. This standard places no other
requirement on the use of the version numbers, although individual implementers are urged to avoid setting
both of the last two 32-bit integers to 0 to avoid a possible collision with future versions of this standard.

Future versions of this standard shall change one or both of the first two 32-bit integers specified for a
standardized assembly if any additional functionality is added or any additional features of the VES are
required to implement it. Furthermore, future versions of this standard shall change one or both of the first two
32-bit integers specified for the mscorlib assembly so that its version number can be used (if desired) to
distinguish between different versions of the Execution Engine required to run programs.

[Note: A conforming implementation can ignore version numbers entirely, or it can require that they match
precisely when binding a reference, or it can exhibit any other behavior deemed appropriate. By convention:

1. The first of these 32-bit integers is considered to be the major version number, and assemblies with the
same name, but different major versions, are not interchangeable. This would be appropriate, for example,
for a major rewrite of a product where backwards compatibility cannot be assumed.

2. The second of these 32-bit integers is considered to be the minor version number, and assemblies with the
same name and major version, but different minor versions, indicate significant enhancements, but with the
intention of being backwards compatible. This would be appropriate, for example, on a “point release” of
a product or a fully backward compatible new version of a product.
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3. The third of these 32-bit integers is considered to be the build number, and assemblies that differ only by

build number are intended to represent a recompilation from the same source. This would be appropriate,
for example, because of processor, platform, or compiler changes.

4. The fourth of these 32-bit integers is considered to be the revision number, and assemblies with the same
name, major and minor version number, but different revisions, are intended to be fully interchangeable.
This would be appropriate, for example, to fix a security hole in a previously released assembly.

end note]

6.2.2 Manifest resources

A manifest resource is simply a named item of data associated with an assembly. A manifest resource is
introduced using the .mresource directive, which adds the manifest resource to the assembly manifest
begun by a preceding .assembly  declaration.

Decl ::=

Clause

.mresource [ public | private

1 DottedName ‘{’ ManResDecl '}

N
—
(-}

If the manifest resource is declared public

, it is exported from the assembly. If it is declared private

,itis

not exported, in which case, it is only available from within the assembly. The DottedName is the name of the

resource.
ManResDecl : := Description Clause
.assembly extern DottedName Manifest resource is in external 6.3
assembly with name DottedName.
| .custom CustomDecl Custom attribute. 21

| file DottedName at  Int32

at byte offset /nt32.

Manifest resource is in file DottedName

6.2.3

For a resource stored in a file that is not a module (for example, an attached text file), the file shall be declared

in the manifest using a separate (top-level) .file
resource that is defined in another assembly is referenced using .assembly extern
the assembly has been defined in a separate (top-level) .assembly extern

Associating files with an assembly

Assemblies can be associated with other files (such as documentation and other files that are used during
execution). The declaration .file  is used to add a reference to such a file to the manifest of the assembly:

(See §22.19)

declaration (see §6.2.3) and the byte offset shall be zero. A
, which requires that
directive (§6.3).

Decl ::=

Clause

file [ nometadata | Filename .hash ‘="‘( Bytes ')’ [ .entrypoint

]

i The .hash component is optional. If it is omitted, the assembler computes it automatically.

Implementation Specific (Microsoft)

The attribute nometadata is specified if the file is not a module according to this specification. Files that are
marked as nometadata can have any format; they are considered pure data files.

The Bytes after the .hash specify a hash value computed for the file. The VES shall recompute this hash value
prior to accessing this file and if the two do not match, the behavior is unspecified. The algorithm used to

calculate this hash value is specified with .

hash algorithm  (§6.2.1.1).
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If specified, the .entrypoint directive indicates that the entrypoint of a multi-module assembly is contained
in this file.

Implementation Specific (Microsoft)

If the hash value is not specified, it will be computed automatically by the assembly linker (al) when an
assembly file is created using that tool. Even though the hash value is optional in the grammar for
ILAsm, it is required at runtime.

Referencing assemblies

Decl ::= Clause
.assembly extern DottedName [ as DottedName ] '{’ AsmRefDecl* '}

| . 5.1

An assembly mediates all accesses to other assemblies from the files that it contains. This is done through the
metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly
referenced by the executing code. A top-level .assembly extern declaration is used for this purpose.
The optional as clause provides an alias, which allows ILAsm to address external assemblies that have the
same name, but differing in version, culture, etc.

The dotted name used in .assembly extern shall exactly match the name of the assembly as declared
with an .assembly directive, in a case-sensitive manner. (So, even though an assembly might be stored
within a file, within a file system that is case-insensitive, the names stored internally within metadata are case-
sensitive, and shall match exactly.)

Implementation Specific (Microsoft)

The assembly mscorlib contains many of the types and methods in the Base Class Library. For

convenience, ilasm automatically inserts a .assembly extern mscorlib declaration if one is
UG,
AsmRefDecl : := Description Clause
.hash ‘=" ‘(’ Bytes ) Hash of referenced assembly 6.2.3
| .custom CustomDecl Custom attributes 21
| .culture OSTRING Culture of the referenced assembly 6.2.1.2

| .publickeytoken ‘=" ‘(" Bytes ')’ The low 8 bytes of the SHA-1 hash of the | 6.3
originator's public key.

| .publickey =" *( Bytes ')’ The originator’s full public key 6.2.1.3
| .ver Int32"'’ nt32*’ nt32 "7 nt32 Major version, minor version, build, and 6.2.14
revision

These declarations are the same as those for .assembly  declarations (§6.2.1), except for the addition of
.publickeytoken . This declaration is used to store the low 8 bytes of the SHA-1 hash of the originator’s
public key in the assembly reference, rather than the full public key.

An assembly reference can store either a full public key or an 8-byte “public key token.” Either can be used to
validate that the same private key used to sign the assembly at compile time also signed the assembly used at
runtime. Neither is required to be present, and while both can be stored, this is not useful.

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it
can refuse to load an assembly for which the validation fails. A conforming implementation of the CLI can
also refuse to permit access to an assembly unless the assembly reference contains either the public key or the
public key token. A conforming implementation of the CLI shall make the same access decision independent
of whether a public key or a token is used.
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6.4

[Rationale: The public key or public key token stored in an assembly reference is used to ensure that the
assembly being referenced and the assembly actually used at runtime were produced by an entity in possession
of the same private key, and can therefore be assumed to have been intended for the same purpose. While the
full public key is cryptographically safer, it requires more storage in the reference. The use of the public key
token reduces the space required to store the reference while only weakening the validation process slightly.

end rationale]

[Note: To validate that an assembly’s contents have not been tampered with since it was created, the full public
key in the assembly’s own identity is used, not the public key or public key token stored in a reference to the

assembly. end note]

[Example:
.assembly extern MyComponents
{ .publickeytoken = (BB AA BB EE 11 22 33 00)
.hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 Al D3 7F 7F A0 9C 24)

.ver 2:10:2002:0
}

end example)

Declaring modules

All CIL files are modules and are referenced by a logical name carried in the metadata rather than by their file

name. See §22.30.

Decl ::=

Clause

| .module Filename

N
—_
(e}

[Example:

.module CountDown.exe

end example]

Implementation Specific (Microsoft)

If the .module directive is missing, ilasm will automatically add a .module directive and set the
module name to be the file name, including its extension in capital letters. e.g., if the file is called foo

and compiled into an exe, the module name will become “Foo.EXE”.

Note that ilasm also generates a required GUID to uniquely identify this instance of the module, and

emits that into the Mvid metadata field: see §22.29.

Referencing modules

When an item is in the current assembly, but is part of a module other than the one containing the manifest, the

defining module shall be declared in the manifest of the assembly using the .module extern directive.
The name used in the .module extern directive of the referencing assembly shall exactly match the name
used in the .module directive (§6.4) of the defining module. See §22.31.

Decl ::= Clause

| .module extern Filename

| 5.10
[Example:

.module extern Counter.dll
end example]
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Declarations inside a module or assembly

Declarations inside a module or assembly are specified by the following grammar. More information on each
option can be found in the corresponding clause or subclause.

Decl ::= Clause
| .class  ClassHeader ‘{’ ClassMember= '} 10

| .custom CustomDecl 21

| .data DataDecl 16.3.1
| .field FieldDecl 16

| .method MethodHeader ‘{’ MethodBodyltem* '}’ 15

| ExternSourceDecl 5.7

| SecurityDecl 20

| .

Exported type definitions

The manifest module, of which there can only be one per assembly, includes the .assembly directive. To
export a type defined in any other module of an assembly requires an entry in the assembly’s manifest. The
following grammar is used to construct such an entry in the manifest:

Decl ::= Clause
.Class extern ExportAttr DottedName ‘{’ ExternClassDecl* '}

.

ExternClassDecl : := Clause

file DottedName

| .class extern DottedName

2

| .custom CustomDecl

The ExportAttr value shall be either public  or nested public and shall match the visibility of the type.

For example, suppose an assembly consists of two modules, A.EXE and B.DLL. A.EXE contains the manifest.
A public class Foo is defined in B.DLL. In order to export it—that is, to make it visible by, and usable from,
other assemblies—a .class extern directive shall be included in A.EXE. Conversely, a public class Bar
defined in A.EXE does not need any .class extern directive.

[Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete
set of types defined by the assembly. Therefore, information from other modules within the assembly is
replicated in the manifest module. By convention, the manifest module is also known as the assembly. end
rationale]

Type forwarders

A type forwarder indicates that a type originally in this assembly is now located in a different assembly, the
VES shall resolve references for the type to the other assembly. The type forwarding information is stored in
the ExportedType table (§22.14). The following grammar is used to construct the entry in the ExportedType
table:

Decl ::= Clause

Partition II




Decl ::=

Clause

.class extern forwarder DottedName

{’.assembly extern

DottedName '}

[Rationale: Type forwarders allow assemblies which reference the original assembly for the type to function

correctly without recompilation if the type is moved to another assembly. end rationale]
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Types and signatures

The metadata provides mechanisms to both define and reference types. §10 describes the metadata associated
with a type definition, regardless of whether the type is an interface, class, or value type. The mechanism used
to reference types is divided into two parts:

e A logical description of user-defined types that are referenced, but (typically) not defined in the current
module. This is stored in a table in the metadata (§22.38).

e A signature that encodes one or more type references, along with a variety of modifiers. The grammar
non-terminal Type describes an individual entry in a signature. The encoding of a signature is specified

in §23.1.16.

Types

The following grammar completely specifies all built-in types (including pointer types) of the CLI system. It

also shows the syntax for user defined types that can be defined in the CLI system:

Type ::= Description Clause
T Int32 Generic parameter in a type definition, | 9.1

accessed by index from 0

| e Int32 Generic parameter in a method 9.2
definition, accessed by index from 0

| bool Boolean 1.2

| char 16-bit Unicode code point 12

| class TypeReference User defined reference type 13

| float32 32-bit floating-point number 1.2

| float64 64-bit floating-point number 7.2

| int8 Signed 8-bit integer 12

| intl6 Signed 16-bit integer 1.2

| int32 Signed 32-bit integer 12

| int64 Signed 64-bit integer 7.2

| method CallConv Type ** Method pointer 145

‘¢ Parameters *)’

| native int 32- or 64-bit signed integer whose size | 7.2
is platform-specific

| native unsigned int 32- or 64-bit unsigned integer whose 7.2
size is platform-specific

| object See system.Object in Partition IV

| string See System.String in Partition IV

| Type ‘& Managed pointer to Type. Type shall 14.4
not be a managed pointer type or
typedref

| Type * Unmanaged pointer to Type 14.4

| Type ‘< Gendrgs > Instantiation of generic type 9.4
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Type ::= Description Clause

| Type'[ [Bound [') Bound1+*]'T Array of Type with optional rank 14.1and 14.2
(number of dimensions) and bounds.

| Type modopt ‘(' TypeReference *)’ Custom modifier that can be ignored 7.1.1
by the caller.

| Type modreq ‘(" TypeReference *)’ Custom modifier that the caller shall 7.1.1
understand.

| Type pinned For local variables only. The garbage | 7.1.2
collector shall not move the referenced
value.

| typedref Typed reference (i.e., a value of type 1.2
System. TypedReference), created by
mkrefany and used by
refanytype  or refanyval

| valuetype  TypeReference (Unboxed) user defined value type 13

| unsigned int8 Unsigned 8-bit integer 1.2

| unsigned int16 Unsigned 16-bit integer 1.2

| unsigned int32 Unsigned 32-bit integer 1.2

| unsigned int64 Unsigned 64-bit integer 1.2

| void No type. Only allowed as a return 1.2

type or as part of void *

In several situations the grammar permits the use of a slightly simpler representation for specifying types; e.g.,
“system.GC” can be used instead of “class system.GC”. Such representations are called type specifications:

TypeSpec ::= Clause
T [ .module ] DottedName ‘| 13

| TypeReference 72

| Type 71

7.1.1

modreq and modopt

Custom modifiers, defined using modreq (“required modifier”) and modopt (“optional modifier”), are
similar to custom attributes (§21) except that modifiers are part of a signature rather than being attached to a
declaration. Each modifer associates a type reference with an item in the signature.

The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only
by the addition of a custom modifier (required or optional) shall not be considered to match. Custom modifiers

have no other effect on the operation of the VES.

[Rationale: The distinction between required and optional modifiers is important to tools other than the CLI
that deal with the metadata, typically compilers and program analysers. A required modifier indicates that
there is a special semantics to the modified item that should not be ignored, while an optional modifier can
simply be ignored.

For example, the const qualifier in the C programming language can be modelled with an optional modifier
since the caller of a method that has a const-qualified parameter need not treat it in any special way. On the
other hand, a parameter that shall be copy-constructed in C++ shall be marked with a required custom attribute

since it is the caller who makes the copy. end rationale]
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7.2

7.3

pinned

The signature encoding for pinned shall appear only in signatures that describe local variables (§15.4.1.3).
While a method with a pinned local variable is executing, the VES shall not relocate the object to which the
local refers. That is, if the implementation of the CLI uses a garbage collector that moves objects, the collector
shall not move objects that are referenced by an active pinned local variable.

[Rationale: 1f unmanaged pointers are used to dereference managed objects, these objects shall be pinned. This
happens, for example, when a managed object is passed to a method designed to operate with unmanaged data.
end rationale]

Built-in types

The CLI built-in types have corresponding value types defined in the Base Class Library. They shall be
referenced in signatures only using their special encodings (i.e., not using the general purpose valuetype
TypeReference syntax). Partition I specifies the built-in types.

References to user-defined types (TypeReference)

User-defined types are referenced either using their full name and a resolution scope or, if one is available in
the same module, a type definition (§10).

A TypeReference 1is used to capture the full name and resolution scope:

TypeReference : :=

[ ResolutionScope | DottedName [ ‘I DottedName ]+

ResolutionScope : :=

‘' .module Filename ']’

| ‘' AssemblyRefName ‘|

AssemblyRefName : := Clause

DottedName 5.1

22

The following resolution scopes are specified for un-nested types:

e Current module (and, hence, assembly). This is the most common case and is the default if no
resolution scope is specified. The type shall be resolved to a definition only if the definition occurs
in the same module as the reference.

[Note: A type reference that refers to a type in the same module and assembly is better represented using a type
definition. Where this is not possible (e.g., when referencing a nested type that has compilercontrolled
accessibility) or convenient (e.g., in some one-pass compilers) a type reference is equivalent and can be used.
end note]

e Different module, current assembly. The resolution scope shall be a module reference
syntactically represented using the notation [.module  Filename] . The type shall be resolved to a
definition only if the referenced module (§6.4) and type (§6.7) have been declared by the current
assembly and hence have entries in the assembly’s manifest. Note that in this case the manifest is
not physically stored with the referencing module.

o Different assembly. The resolution scope shall be an assembly reference syntactically represented
using the notation [ AssemblyRefName] . The referenced assembly shall be declared in the manifest
for the current assembly (§6.3), the type shall be declared in the referenced assembly’s manifest,
and the type shall be marked as exported from that assembly (§6.7 and §10.1.1).

e For nested types, the resolution scope is always the enclosing type. (See §10.6). This is indicated
syntactically by using a slash (“/”) to separate the enclosing type name from the nested type’s
name.
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7.4

[Example: The type system.Console defined in the base class library (found in the assembly named mscorlib):

.assembly extern mscorlib { }
.class [mscorlib]System.Console

A reference to the type named c.p in the module named x in the current assembly:

.module extern x
.class [.module x]C.D

A reference to the type named c nested inside of the type named Foo.Bar in another assembly, named
MyAssembly:

.assembly extern MyAssembly { }
.class [MyAssembly]Foo.Bar/C

end example]
Native data types

Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that
specify data types required to perform certain functions. The metadata allows interaction with these native data
types by specifying how the built-in and user-defined types of the CLI are to be marshalled to and from native
data types. This marshalling information can be specified (using the keyword marshal ) for

e the return type of a method, indicating that a native data type is actually returned and shall be
marshalled back into the specified CLI data type

e a parameter to a method, indicating that the CLI data type provided by the caller shall be
marshalled into the specified native data type. (If the parameter is passed by reference, the updated
value shall be marshalled back from the native data type into the CLI data type when the call is
completed.)

e afield of a user-defined type, indicating that any attempt to pass the object in which it occurs, to
platform methods shall make a copy of the object, replacing the field by the specified native data
type. (If the object is passed by reference, then the updated value shall be marshalled back when
the call is completed.)

The following table lists all native types supported by the CLI, and provides a description for each of them. (A
more complete description can be found in Partition IV in the definition of the enum
System.Runtime.Interopservices.UnmanagedType, which provides the actual values used to encode these
types.) All encoding values in the range 0—63, inclusive, are reserved for backward compatibility with existing
implementations of the CLI. Values in the range 64—127 are reserved for future use in this and related
Standards.

NativeType ::= Description Name in the class
library enum type
UnmanagedType
TT Native array. Type and size are determined at LPArray
runtime from the actual marshaled array.
| bool Boolean. 4-byte integer value where any non- Bool
zero value represents TRUE, and 0 represents
FALSE.
| float32 32-bit floating-point number. R4
| float64 64-bit floating-point number. R8
| [unsigned 1] int Signed or unsigned integer, sized to hold a SysUInt Or SysInt
pointer on the platform
| [unsigned 1] int8 Signed or unsigned 8-bit integer Ul or Il
| [ unsigned ] int16 Signed or unsigned 16-bit integer U2 Or 12
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NativeType : :

Description

Name in the class

library enum type
UnmanagedType

[ unsigned

] int32

Signed or unsigned 32-bit integer

U4 Or 14

[ unsigned

] int64

Signed or unsigned 64-bit integer

U8 or I8

Ipstr

A pointer to a null-terminated array of ANSI
characters. The code page is implementation-
specific.

LPStr

Ipwstr

A pointer to a null-terminated array of Unicode
characters. The character encoding is
implementation-specific.

LPWStr

method

A function pointer.

FunctionPtr

NativeType

T

Array of NativeType. The length is determined
at runtime by the size of the actual marshaled
array.

LPArray

NativeType

T Int32

Array of NativeType of length Int32.

LPArray

gl

NativeType

4 Int32]

Array of NativeType with runtime supplied
element size. The /nt32 specifies a parameter to
the current method (counting from parameter
number 0) that, at runtime, will contain the size
of an element of the array in bytes. Can only be
applied to methods, not fields.

Implementation-specific (Microsoft)

In the case of the Int32, counting is
done from parameter number 1 if the
signature has the PreserveSig bit set.

LPArray

|
T

NativeType
nt32 '+’

Int32

Array of NativeType with runtime supplied
element size. The first Int32 specifies the
number of elements in the array. The second
Int32 specifies which parameter to the current
method (counting from parameter number 0)
will specify the additional number of elements
in the array. Can only be applied to methods,
not fields

Implementation-specific (Microsoft)

i In the case of the second Int32,

i counting is done from parameter
i number 1 if the signature has the
i PreserveSig bit set.

LPArray

Implementation-specific (Microsoft)

The Microsoft implementation supports a richer set of types to describe marshalling between Windows
native types and COM. These additional options are listed in the following table:

Implementation-specific (Microsoft)

NativeType ::=

Description

Name in the class

library enum type
UnmanagedType
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Implementation-specific (Microsoft)

| as any Determines the type of an object at runtime and AsAny
marshals the Object as that type.
| byvalstr A string in a fixed length buffer. VBByRefStr
| custom ‘(" OSTRING, Custom marshaler. The 1% string is the name of | CustomMarshaler
OSTRING ) the marshalling class, using the string
conventions of Reflection.Emit to specify the
assembly and/or module. The 2™ is an arbitrary
string passed to the marshaller at runtime to
identify the form of marshalling required.
| fixed array [ Int32 ] A fixed size array of length /nt32 bytes ByValArray
| fixed sysstring A fixed size system string of length /nf32. This | ByValTStr
[ Int32 ] can only be applied to fields, and a separate
attribute specifies the encoding of the string.
| Ipstruct A pointer to a C-style structure. Used to marshal | LEStruct
managed formatted types.
| Iptstr A pointer to a null-terminated array of platform LPTStr
characters (ANSI or Unicode). The code page
and character encoding are implementation-
specific.
| struct A C-style structure, used to marshal managed Struct
formatted types.
[Example:
.method int32 M1( int32 marshal(int32), bool [] marshal (bool [5]) )

Method M1 takes two arguments: an int32 , and an array of 5 bool s.

.method int32 M2 ( int32 marshal (int32), bool[] marshal (bool[+1]) )

Method M2 takes two arguments: an int32 , and an array of bool s: the number of elements in that array is

given by the value of the first parameter.

.method int32 M3( int32 marshal (int32), bool[] marshal (bool[7+1]) )

Method M3 takes two arguments: an int32

given as 7 plus the value of the first parameter. end example]

Partition II
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Visibility, accessibility and hiding

Partition [ specifies visibility and accessibility. In addition to these attributes, the metadata stores information
about method name hiding. Hiding controls which method names inherited from a base type are available for
compile-time name binding.

Visibility of top-level types and accessibility of nested types

Visibility is attached only to top-level types, and there are only two possibilities: visible to types within the
same assembly, or visible to types regardless of assembly. For nested types (i.e., types that are members of
another type) the nested type has an accessibility that further refines the set of methods that can reference the
type. A nested type can have any of the seven accessibility modes (see Partition I), but has no direct visibility
attribute of its own, using the visibility of its enclosing type instead.

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type
cannot be more visible than the type in which it is nested. That is, if the enclosing type is visible only within an
assembly then a nested type with public  accessibility is still only available within that assembly. By contrast,
a nested type that has assembly accessibility is restricted to use within the assembly even if the enclosing
type is visible outside the assembly.

To make the encoding of all types consistent and compact, the visibility of a top-level type and the accessibility
of a nested type are encoded using the same mechanism in the logical model of §23.1.15.

Accessibility
Accessibility is encoded directly in the metadata (see §22.26 for an example).
Hiding
Hiding is a compile-time concept that applies to individual methods of a type. The CTS specifies two

mechanisms for hiding, specified by a single bit:

e  hide-by-name, meaning that the introduction of a name in a given type hides all inherited members
of the same kind with the same name.

e hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited
member of the same kind, but with precisely the same type (in the case of nested types and fields)
or signature (in the case of methods, properties, and events).

There is no runtime support for hiding. A conforming implementation of the CLI treats all references as though
the names were marked hide-by-name-and-sig. Compilers that desire the effect of hide-by-name can do so by
marking method definitions with the newslot attribute (§15.4.2.3) and correctly choosing the type used to
resolve a method reference (§15.1.3).
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9.1

Generics

As mentioned in Partition I, generics allows a whole family of types and methods to be defined using a pattern,
which includes placeholders called generic parameters. These generic parameters are replaced, as required, by
specific types, to instantiate whichever member of the family is actually required. For example, class
List<T>{}, represents a whole family of possible Lists; List<string>, List<int>and List<Button> are three
possible instantiations; however, as we’ll see below, the CLS-compliant names of these types are really class
List 1<T>{}, List 1<string>, List 1<int>, and List 1<Button>.

A generic type consists of a name followed by a <..>-delimited list of generic parameters, as in c<T>. Two or
more generic types shall not be defined with the same name, but different numbers of generic parameters, in the
same scope. However, to allow such overloading on generic arity at the source language level, CLS Rule 43 is
defined to map generic type names to unique CIL names. That Rule states that the CLS-compliant name of a
type c having one or more generic parameters, shall have a suffix of the form 'n, where n is a decimal integer
constant (without leading zeros) representing the number of generic parameters that c has. For example: the
types c, c<T>, and c<k, v> have CLS-compliant names of c, ¢ 1<T>, and c " 2<k, v>, respectively. [Note: The
names of all standard library types are CLS-compliant; e.g.,

System.Collections.Generic.IEnumerable 1<T>. end note)

Before generics is discussed in detail, here are the definitions of some new terms:
® public class List'1<T> {} is a generic type definition.
e <T>is a generic parameter list, and T is a generic parameter.

e List'1<T> is a generic type; it is sometimes termed a generic type, or open generic type because it
has at least one generic parameter. This partition will use the term open type.

e List'1l<int> is a closed generic type because it has no unbound generic parameters. (It is
sometimes called an instantiated generic type or a generic type instantiation). This partition will
use the term closed type.

e Note that generics includes generic types which are neither strictly open nor strictly closed; e.g.,
the base class B, in: .public class D '1<V> extends B 2<!0,int32> {}, given .public class
B 2<T,U> {(}.

e Ifa distinction need be made between generic types and ordinary types, the latter are referred to as
non-generic types.

e <int>is a generic argument list, and int is a generic argument.

e This standard maintains the distinction between generic parameters and generic arguments. If at all
possible, use the phrase “int is the type used for generic parameter T” when speaking of
List  1<int>. (In Reflection, this is sometimes referred to as “T is bound to int”)

e “(Ccl, ., Cn) T”isa generic parameter constraint on the generic parameter T.
[Note: Conside the following definition:
class C 2<(I1,I2) S, (Base,I3) T> { ..}

This denotes a class called c, with two generic parameters, s and T. s is constrained to implement two
interfaces, 11 and 12. T is constrained to derive from the class Base, and also to implement the interface 13.
end note]

Within a generic type definition, its generic parameters are referred to by their index. Generic parameter zero
is referred to as ! 0, generic parameter one as ! 1, and so on. Similarly, within the body of a generic method
definition, its generic parameters are referred to by their index; generic parameter zero is referred to as ! !0,
generic parameter one as ! ! 1, and so on.

Generic type definitions

A generic type definition is one that includes generic parameters. Each such generic parameter can have a
name and an optional set of constraints—types with which generic arguments shall be assignment-compatible.
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Optional variance notation is also permitted (§10.1.7). (For an explanation of the ! and ! ! notation used below,
see §9.4. ) The generic parameter is in scope in the declarations of:

e its constraints (e.g., .class .. C'1<(class IComparable 1<!0>) T>)

e any base class from which the type-under-definition derives (e.g., .class .. MultiSet 1<T>
extends class Set 1<!0[]>)

e any interfaces that the type-under-definition implements (e.g., .class .. Hashtable 2<K, D>

implements class IDictionary\2<!O,!1>)

e all members (instance and static fields, methods, constructors, properties and events) except nested
classes. [Note: C# allows generic parameters from an enclosing class to be used in a nested class,
but adds any required extra generic parameters to the nested class definition in metadata. end note]

A generic type definition can include static, instance, and virtual methods.
Generic type definitions are subject to the following restrictions:

e A generic parameter, on its own, cannot be used to specify the base class, or any implemented
interfaces. So, for example, .class .. G 1<T> extends !0 is invalid. However, it is valid for the
base class, or interfaces, to use that generic parameter when nested within another generic type.
Forexanuﬂe,.class .. G 1<T> extends class H 1<!0> and .class .. G 1<T> extends class
B2<!0,int32> are valid.

[Rationale: This permits checking that generic types are valid at definition time rather than at
instantiation time. e.g., in .class .. G 1<T> extends !0, we do not know what methods would override
what others because no information is available about the base class; indeed, we do not even know
whether T is a class: it might be an array or an interface. Similarly, for .c1ass .. c*2<(!1)T,U> where
we are in the same situation of knowing nothing about the base class/interface definition. end rationale)

e Varargs methods cannot be members of generic types

[Rationale: Implementing this feature would take considerable effort. Since varargs has very limited use
among languages targetting the CLI, it was decided to exclude varargs methods from generic types. end
rationale]

e  When generic parameters are ignored, there shall be no cycles in the inheritance/interface
hierarchy. To be precise, define a graph whose nodes are possibly-generic (but open) classes and
interfaces, and whose edges are the following:

0 If a (possibly-generic) class or interface D extends or implements a class or interface B,
then add an edge from D to B.

0 If a (possibly-generic) class or interface D extends or implements an instantiated class or
interface B<type-1, ..., type-n>, then add an edge from D to B.

o The graph is valid if it contains no cycles.

[Note: This algorithm is a natural generalization of the rules for non-generic types. See Partition I, §8.9.9
end note]

Generics and recursive inheritance graphs

[Rationale: Although inheritance graphs cannot be directly cyclic, instantiations given in parent classes or
interfaces may introduce either direct or indirect cyclic dependencies, some of which are allowed (e.g.,

C : IComparable<C>), and some of which are disallowed (e.g., class A<T> : B<A<A<T>>> given class B<U>).
end rationale]

Each type definition shall generate a finite instantiation closure. An instantiation closure is defined as follows:

1. Create a set containing a single generic type definition.

2. Form the closure of this set by adding all generic types referenced in the type signatures of
base classes and implemented interfaces of all types in the set. Include nested instantiations in

Partition II



[C BN o) [ N O S

O

—_—— —
N - O

Ju—
w

—_—
(LN

—
N

—_—— —
O 00

N
(=)

N
—_

NN
[O8] 8}

[}
=

NN
AN

N
|

[\
o]

WWN
— O \O

w
[\

w W
NS}

W W
AN D

w
|

bW W
— O O ®©

o
[SSIN S}

b
W

N
[o)}

9.3

this set, so a referenced type stack<List<T>> actually counts as both List<T> and
Stack<List<T>>

3. Construct a graph:

e Whose nodes are the formal type parameters of types in the set. Use alpha-renaming as
needed to avoid name clashes.

e If T appears as the actual type argument to be substituted for U in some referenced
type D<..., U, ...> add a non-expanding (->) edge from T to U.

e If T appears somewhere inside (but not as) the actual type argument to be substituted
for U in referenced type D<..., U, ...> add an expanding (=>) edge from T to U.

An expanding-cycle is a cycle in the instantiation closure that contains at least one expanding-edge
(=>). The instantiation-closure of the system is finite if and only if the graph as constructed above
contains no expanding-cycles.

[Example:

class B<U>
class A<T> : B<A<ALT>>>

generates the edges (using => for expanding-edges and -> for non-expanding-edges)

T -> T (generated by referenced type A<T>)
T => T (generated by referenced type A<A<T>>)
T => U (generated by referenced type BKA<A<T>>>)

This graph does contain an expanding-cycle, so the instantiation closure is infinite. end example]

[Example:

class B<U>
class A<T> : B<A<T>>

generates the edges

T -> T (generated by referenced type A<T>)
T => U (generated by referenced type B<A<T>>)

This graph does not contain an expanding-cycle, so the instantiation closure is finite. end example]
[Example:

class P<T>

class C<U,V> : P<D<V,U>>

class D<W,X> : P<C<W,X>>

generates the edges

U>X V->W U=T V=>T (generated by referenced type D<V,U> and P<D<V,U>>)
W->U X->V W=>T X=>T (generated by referenced type C<W,X> and P<C<W,X>>)

This graph contains non-expanding-cycles (e.g. U -> X -> V -> W -> U), but no expanding-cycle, so
the instantiation closure is finite. end example]
Generic method definitions

A generic method definition is one that includes a generic parameter list. A generic method can be defined
within a non-generic type; or within a generic type, in which case the method’s generic parameter(s) shall be
additional to the generic parameter(s) of the owner. As with generic type definitions, each generic parameter
on a generic method definition has a name and an optional set of constraints.

Generic methods can be static, instance, or virtual. Class or instance constructors (.cctor, or .ctor,
respectively) shall not be generic.

The method generic parameters are in scope in the signature and body of the method, and in the generic
parameter constraints. [Note: The signature includes the method return type. So, in the example:

.method .. !'!0 M 1<T>() { ..}
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the ! 10 is in scope—it’s the generic parameter of M* 1<T> even though it preceeds that parameter in the
declaration.. end note]

Generic instance (virtual and non-virtual) methods can be defined as members of generic types, in which case
the generic parameters of both the generic type and the generic method are in scope in the method signature and
body, and in constraints on method generic parameters.

Instantiating generic types

GenArgs is used to represent a generic argument list:

GenArgs ::=

Type 1Y Type 1~

We say that a type is closed if it contains no generic parameters; otherwise, it is open.
A given generic type definition can be instantiated with generic arguments to produce an instantiated type.

[Example: Given suitable definitions for the generic class MyList and value type pair, we could instantiate
them as follows:

newobj instance void class MyList 1<int32>::.ctor(
initobj valuetype Pair 2<int32, valuetype Pair<string,int32>>

end example]

[Example:
ldtoken !0 // '0 = generic parameter 0 in generic type definition
castclass class List 1<!1> // '1 = generic parameter 1 in generic type definition
box !!1 // '!1 = generic parameter 1 in generic method definition

end example)

The number of generic arguments in an instantiation shall match the number of generic parameters specified in
the type or method definition.

The CLI does not support partial instantiation of generic types. And generic types shall not appear
uninstantiated anywhere in metadata signature blobs.

The following kinds of type cannot be used as arguments in instantiations (of generic types or methods):
e Byreftypes (e.g., System.Generic.Collection.List 1<strings> is invalid)

o Byref-like types, i.e. value types that contain fields that can point into the CIL evaluation stack
(e.g., List<System.RuntimeArgumentHandle> is invalid)

e Typed references (e.g. List<System.TypedReference> is invalid)
e Unmanaged pointers (€.g. List<int32*> is invalid)
e void (e.g., List<System.Void> is invalid)

[Rationale: Byrefs types cannot be used as generic arguments because some, indeed most, instantiations would
be invalid. For example, since byrefs are not allowed as field types or as method return types, in the definition
of List 1<strings>, one could not declare a field of type ! 0, nor a method that returned a type of ! 0. end
rationale)

[Rationale: Unmanaged pointers are disallowed because as currently specified unmanaged pointers are not
technically subclasses of System.Object. This restriction can be lifted, but currently the runtime enforces this
restriction and this spec reflects that. ]

Objects of instantiated types shall carry sufficient information to recover at runtime their exact type (including
the types and number of their generic arguments). [Rationale: This is required to correctly implement casting
and instance-of testing, as well as in reflection capabilities (System.Object: :GetType). end rationale)
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9.5 Generics variance

The CLI supports covariance and contravariance of generic parameters, but only in the signatures of interfaces
and delegate classes.

[T3EL]

The symbol “+” is used in the syntax of §10.1.7 to denote a covariant generic parameter, while “-” is used to

denote a contravariant generic parameter

This block contains only informative text

Suppose we have a generic interface, which is covariant in its one generic parameter; e.g., 1A 1<+1>. Then all
instantiations satisfy 1A 1<GenArgB> := IA1<GenArgA>, SO long as GenArgB := GenArgA using the notion from
assignment compatibility. So, for example, an instance of type 12" 1<string> can be assigned to a local of type
type IA  1<object>.

Generic contravariance operates in the opposite sense: supposing that we have a contravariant interface 18° 1<-
T>, then 18" 1<GenArgB> = IB 1<GenArgA>, SO long as GenArgA = GenArgB.

[Example: (The syntax used is illustrative of a high-level language.)

// Covariant parameters can be used as result types
interface IEnumerator<+T> ({

T Current { get; }

bool MoveNext () ;
}

// Covariant parameters can be used in covariant result types
interface IEnumerable<+T> ({
IEnumerator<T> GetEnumerator () ;

}

// Contravariant parameters can be used as argument types
interface IComparer<-T> ({

bool Compare(T x, T y);
}

// Contravariant parameters can be used in contravariant interface types
interface IKeyComparer<-T> : IComparer<T> {

bool Equals(T x, T vy);

int GetHashCode (T obj);
}

// A contravariant delegate type
delegate void EventHandler<-T>(T argqg);

// No annotation indicates non-variance. Non-variant parameters can be used anywhere.
// The following type shall be non-variant because T appears in as a method argument as
// well as in a covariant interface type
interface ICollection<T> : IEnumerable<T> {

void CopyTo (T[] array, int index);

int Count { get; }
}

end example]

End informative text

9.6 Assignment compatibility of instantiated types
e Assignment compatibility is defined in Partition 1.8.7.
[Example:

Assuming Employee = Manager,

IEnumerable<Manager> eManager =

IEnumerable<Employee> eEmployee = eManager; // Covariance
IComparer<object> objComp = ...

IComparer<string> strComp = objComp; // Contravariance
EventHandler<Employee> employeeHandler =

EventHandler<Manager> managerHandler = employeeHandler; // Contravariance
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end example)

[Example: Given the following:

interface IConverter<-T,+U> {
U Convert (T x);
}

IConverter<string, object> := IConverter<object, string>

Given the following:

delegate U Function<-T,+U>(T arg);
Function<string, object> := Function<object, string>.endewanqﬂe]

[Example:

IComparer<object> objComp =
// Contravariance and interface inheritance
IKeyComparer<string> strKeyComp = objComp;

IEnumerable<string[]> strArrEnum = ..
// Covariance on IEnumerable and covariance on arrays
IEnumerable<object[]> objArrEnum = strArrEnum;

IEnumerable<string>[] strEnumArr = ...
// Covariance on IEnumerable and covariance on arrays
IEnumerable<object>[] objEnumArr = strEnumArr;

IComparer<object[]> objArrComp = ...
// Contravariance on IComparer and covariance on arrays
IComparer<string[]> strArrComp = objArrComp;

IComparer<object>[] objCompArr = ...
// Contravariance on IComparer and covariance on arrays
IComparer<string>[] strCompArr = objCompArr;

end example]

9.7 Validity of member signatures

To achieve type safety, it is necessary to impose additional requirements on the well-formedness of signatures
of members of covariant and contravariant generic types.

This block contains only informative text

29 <

e Covariant parameters can only appear in “producer,” “reader,” or “getter” positions in the type

definition; i.e., in
0 result types of methods
o inherited interfaces

EENNT3

e Contravariant parameters can only appear in “consumer,” “writer,” or “setter” positions in the type

definition; i.e., in
0 argument types of methods

e NonVariant parameters can appear anywhere.

End informative text

We now define formally what it means for a co/contravariant generic type definition to be valid.

Generic type definition: A generic type definition G<var I T 1, ..., var_n T _n> is valid if G is an interface or
delegate type, and each of the following holds, given S = <var I T 1, ..., var_n T_n>, where var_n is +, -, or
nothing:

e Every instance method and virtual method declaration is valid with respect to S (see below)

e Every inherited interface declaration is valid with respect to S
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9.8

e There are no restrictions on static members, instance constructors, or on the type’s own generic
parameter constraints.

Given the annotated generic parameters S = <var I T 1, ..., var_n T _n>, we define what it means for various
components of the type definition to be valid with respect to S. We define a negation operation on annotations,
written —S, to mean “flip negatives to positives, and positives to negatives”.

Think of

e “valid with respect to S” as “behaves covariantly”

e “valid with respect to =S as “behaves contravariantly”

e “valid with respect to S and to —S” as “behaves non-variantly”.

Note that the last of these has the effect of prohibiting covariant and contravariant parameters from a type; i.e.,
all generic parameters appearing shall be non-variant.

Methods. A method signature ¢ meth(t_1,...,t n) is valid with respect to S if

e its result type signature ¢ is valid with respect to S; and

e cach argument type signature ¢ i is valid with respect to —S.

e cach method generic parameter constraint type ¢ j is valid with respect to —S.

[Note: In other words, the result behaves covariantly and the arguments behave contravariantly. Constraints on
generic parameters also behave contravariantly. end note]

Type signatures. A type signature ¢ is valid with respect to S if it is
e anon-generic type (e.g., an ordinary class or value type)

e a generic parameter 7 i for which var i is + or none (i.e., it is a generic parameter that is marked
covariant or non-variant)

e an array type u[] and u is valid with respect to S, i.e., array types behave covariantly

e aclosed generic type G<t_1I,...,t_n> for which each

0 ¢t i1is valid with respect to S, if the i’th parameter of G is declared covariant
0 ¢t i1is valid with respect to =S, if the i’th parameter of G is declared contravariant
o ¢t iis valid with respect to S and with respect to =, if the i’th parameter of G is declared

non-variant.

Signatures and binding

Members (fields and methods) of a generic type are referenced in CIL instructions using a metadata token,
which specifies an entry in the MemberRef table (§22.25). Abstractly, the reference consists of two parts:

1. The type in which the member is declared, in this case, an instantiation of the generic type
definition. For example: IComparer 1<String>.

2. The name and generic (uninstantiated) signature of the member. For example: int32
Compare(!0,!0).

It is possible for distinct members to have identical types when instantiated, but which can be distinguished by
MemberRef.

[Example:

.class public C 2<S,T> {
.field string f
.field !0 £
.method instance void m(!0 x) {...}
.method instance void m('!1l x) {...}
.method instance void m(string x) {...}
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9.9

34

The closed type ¢ 2<string, string> is valid: it has three methods called m, all with the same parameter type;
and two fields called £ with the same type. They are all distinguished through the MemberRef encoding
described above:

string C'2<string, string>::f

!0 C<string, string>::f

void C'2<string, string>::m(!0)
void C'2<string, string>::m(!1)
void C"2<string, string>::m(string)

The way in which a source language might resolve this kind of overloading is left to each individual language.
For example, many might disallow such overloads.
end example)

Inheritance and overriding

Member inheritance is defined in Partition I, in “Member Inheritance”. (Overriding and hiding are also defined
in that partition, in “Hiding, overriding, and layout”.) This definition is extended, in an obvious manner, in the
presence of generics. Specifically, in order to determine whether a member hides (for static or instance
members) or overrides (for virtual methods) a member from a base class or interface, simply substitute each
generic parameter with its generic argument, and compare the resulting member signatures. [Example: The
following illustrates this point:

Suppose the following definitions of a base class B, and a derived class D.

.class B
{ .method public virtual void V(int32 i) { .. } }

.class D extends B
{ .method public virtual void V(int32 i) { .. } }

In class b, p.v overrides the inherited method . v, because their names and signatures match.

How does this simple example extend in the presence of generics, where class p derives from a generic
instantiation? Consider this example:

.class B 1<T>
{ .method public virtual void Vv (!0) { .. } }

.class D extends B 1<int32>
{ .method public virtual void V(int32) { .. } }

.class E extends B l<string>
{ .method public virtual void V(int32) { .. } }

Class p derives from B<int32>. And class B<int32> defines the method:
public virtual void V(int32 t) { .. }

where we have simply substituted B’s generic parameter T, with the specific generic argument int32. This
matches the method p.v (same name and signature). Thus, for the same reasons as in the non-generic example
above, it’s clear that p.v overrides the inherited method B.v.

Contrast this with class g, which derives from B<string>. In this case, substituting 8’s T with string, we see
that B.v has this signature:

public virtual void V(string t) { .. }
This signature differs from method . v, which therefore does not override the base class’s B.v method.
end example)

Type definitions are invalid if, after substituting base class generic arguments, two methods result in the same
name and signature (including return type). The following illustrates this point:

[Example:

.class B 1<T>

{ .method public virtual void V(!0 t) { .}
.method public virtual void V(string x) { ..}

}
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.class D extends B'l<string> { } // Invalid

Class p is invalid, because it will inherit from B<string> two methods with identical signatures:
void V(string)

However, the following version of D is valid:

.class D extends B l<string>
{ .method public virtual void V(string t) { .}
.method public virtual void W(string t)
{ .
.override method instance void class B l<string>::V (!0)

}
}

end example]

When overriding generic methods (that is, methods with their own generic parameters) the number of generic
parameters shall match exactly those of the overridden method. If an overridden generic method has one or
more constraints on its generic arguments then:

e The overriding method can have constraints only on the same generic arguments;

e Any such constraint on a generic argument specified by the overriding method shall be no more
restrictive than the constraint specified by the overridden method for the same generic argument;

[Note: Within the body of an overriding method, only constraints directly specified in its signature apply.
When a method is invoked, it’s the constraints associated with the metadata token in the call or callvirt
instruction that are enforced. end note]

9.10 Explicit method overrides

A type, be it generic or non-generic, can implement particular virtual methods (whether the method was
introduced in an interface or base class) using an explicit override. (See §10.3.2 and §15.1.4.)

The rules governing overrides are extended, in the presence of generics, as follows:

e [f the implementing method is part of a non-generic type or a closed generic type, then the
declaring method shall be part of a base class of that type or an interface implemented by that type.
[Example:

.class interface I 1<T>
{ .method public abstract virtual void M(!0) {}
}

.class C implements class I '1l<string>
{ .override method instance void class I '1l<string>::M(!0) with
method instance void class C::MInC(string)
.method virtual void MInC(string s)
{ ldstr "I.M"
call void [mscorlib]System.Console::WritelLine (string)
ret
}
}

end example]

e [f the implementing method is generic, then the declared method shall also be generic and shall
have the same number of method generic parameters.

Neither the implementing method nor the declared method shall be an instantiated generic method. This
means that an instantiated generic method cannot be used to implement an interface method, and that it is
not possible to provide a special method for instantiating a generic method with specific generic
parameters.

[Example: Given the following
.class interface I

{ .method public abstract virtual void M<T>(!!0) {}
.method public abstract virtual void N() {}

}
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neither of the following .override statements is allowed

.class C implements class I 1l<string>

{ .override class I::M<string> with instance void class C::MInC(string)
.override class I::N with instance void class C::MyFn<string>
.method virtual void MInC(string s) { .. }
.method virtual void MyFn<T>() { .. }

}

end example]

Constraints on generic parameters

A generic parameter declared on a generic class or generic method can be constrained by one or more types
(for encoding, see GenericParamConstraint table in §22.21) and by one or more special constraints (§10.1.7).
Generic parameters can be instantiated only with generic arguments that are assignment compatible (when
boxed) with each of the declared constraints and that satisfy all specified special constraints.

Generic parameter constraints shall have at least the same visibility as the generic type definition or generic
method definition itself.

[Note: There are no other restrictions on generic parameter constraints. In particular, the following uses are
valid: Constraints on generic parameters of generic classes can make recursive reference to the generic
parameters, and even to the class itself.

.class public Set 1< (class IComparable<!0>) T> { .. }

// can only be instantiated by a derived class!
.class public C 1< (class C<!0>) T> {}

.class public D extends C'l<class D> { .. }

Constraints on generic parameters of generic methods can make recursive reference to the generic parameters
of both the generic method and its enclosing class (if generic). The constraints can also reference the enclosing
class itself.

.class public A"1<T> {

.method public void M<(class IDictionary<!0,!!0>) U>() {}
}

Generic parameter constraints can be generic parameters or non-generic types such as arrays.

.class public List 1<T> {
// The constraint on U is T itself
.method public void AddRange<(!0) U>(class IEnumerable 1<!!0> items) { .. }
}
end note]

Generic parameters can have multiple constraints: to inherit from at most one base class (if none is specified,
the CLI defaults to inheriting from system.0Object); and to implement zero or more interfaces. (The syntax for
using constraints with a class or method is defined in §10.1.7.) [Example:

The following declaration shows a generic class OrderedSet<T>, in which the generic parameter 7 is
constrained to inherit both from the class Employee, and to implement the interface /Comparable<T>:

.class OrderedSet 1< (Employee, class [mscorlib]System.IComparable 1<!0>) T> { .. }

end example]

[Note: Constraints on a generic parameter only restrict the types that the generic parameter may be instantiated
with. Verification (see Partition III) requires that a field, property or method that a generic parameter is known
to provide through meeting a constraint, cannot be directly accessed/called via the generic parameter unless it is
first boxed (see Partition I1T) or the callvirt instruction is prefixed with the constrained. prefix instruction (see
Partition III). end note]

This block contains only informative text

36

Partition II




—_

AN B W N

9.12 References to members of generic types

CIL instructions that reference type members are generalized to permit reference to members of instantiated

types.

e The number of generic arguments specified in the reference shall match the number specified in the

definition of the type.

CIL instructions that reference methods are generalized to permit reference to instantiated generic methods.

End informative text
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38

Types (i.e., classes, value types, and interfaces) can be defined at the top-level of a module:

Decl 1=

.class  ClassHeader ‘{’ ClassMember* '}

The logical metadata table created by this declaration is specified in §22.37.

[Rationale: For historical reasons, many of the syntactic categories used for defining types incorrectly use
“class” instead of “type” in their name. All classes are types, but “types” is a broader term encompassing value
types, and interfaces as well. end rationale]

Type header (ClassHeader)
A type header consists of
e any number of type attributes,
e optional generic parameters
e aname (an /d),
e abase type (or base class type), which defaults to [mscorlib]system.0Object, and

e an optional list of interfaces whose contract this type and all its descendent types shall satisfy.

ClassHeader ::=

ClassAttr= Id ['<'  GenPars '>' ] [ extends TypeSpec [implements TypeSpec] [/
TypeSpec ]+ ]

The optional generic parameters are used when defining a generic type (§10.1.7).

The extends keyword specifies the base type of a type. A type shall extend from exactly one other type. If no
type is specified, ilasm will add an extends clause to make the type inherit from system.object.

The implements  keyword specifies the interfaces of a type. By listing an interface here, a type declares that
all of its concrete implementations will support the contract of that interface, including providing
implementations of any virtual methods the interface declares. See also §11 and §12.

[Example: This code declares the class counterTextBox, which extends the class
System.Windows.Forms.TextBox in the assembly System.Windows . Forms, and implements the interface
CountDisplay in the module Counter of the current assembly. The attributes private , auto and autochar
are described in the following subclauses.

.class private auto autochar CounterTextBox
extends [System.Windows.Forms]System.Windows.Forms.TextBox
implements [.module Counter]CountDisplay

{ // body of the class

}

end example]

A type can have any number of custom attributes attached. Custom attributes are attached as described in §21.
The other (predefined) attributes of a type can be grouped into attributes that specify visibility, type layout
information, type semantics information, inheritance rules, interoperation information, and information on
special handling. The following subclauses provide additional information on each group of predefined
attributes.

ClassAttr : := Description Clause

abstract Type is abstract. 10.1.4
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ClassAttr : := Description Clause

| ansi Marshal strings to platform as ANSIL 10.1.5

| auto Layout of fields is provided automatically. 10.1.2

| autochar Marshal strings to platform as ANSI or Unicode 10.1.5

(platform-specific).
| beforefieldinit Need not initialize the type before a static method is 10.1.6
called.

| explicit Layout of fields is provided explicitly. 10.1.2

| interface Declares an interface. 10.1.3

| nested assembly Assembly accessibility for nested type. 10.1.1

| nested famandassem Family and assembly accessibility for nested type. 10.1.1

| nested family Family accessibility for nested type. 10.1.1

| nested famorassem Family or assembly accessibility for nested type. 10.1.1

| nested private Private accessibility for nested type. 10.1.1

| nested public Public accessibility for nested type. 10.1.1

| private Private visibility of top-level type. 10.1.1

| public Public visibility of top-level type. 10.1.1

| rtspecialname Special treatment by runtime. 10.1.6

| sealed The type cannot be derived from. 10.14

| sequential Layout of fields is sequential. 10.1.2

| serializable Reserved (to indicate this type can be serialized). 10.1.6

| specialname Might get special treatment by tools. 10.1.6

| unicode Marshal strings to platform as Unicode. 10.1.5
" Implementation-specific (Microsofty §
The above grammar also includes
ClassAttr ::= import
10 indicate that the type is imported froma COM type library.

10.1.1 Visibility and accessibility attributes

ClassAttr ::= ..

| nested assembly

| nested famandassem

| nested family

| nested famorassem

| nested private

| nested public

| private
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| public

10.1.

See Partition I. A type that is not nested inside another type shall have exactly one visibility (private  or
public ) and shall not have an accessiblity. Nested types shall have no visibility, but instead shall have
exactly one of the accessibility attributes nested assembly , nested famandassem , nested

family , nested famorassem , nested private , or nested public . The default visibility for top-
level types is private . The default accessibility for nested types is nested private

2 Type layout attributes

ClassAttr ::= ..

| auto

| explicit

| sequential

10.1.

The type layout specifies how the fields of an instance of a type are arranged. A given type shall have only one
layout attribute specified. By convention, ilasm supplies auto if no layout attribute is specified. The layout
attributes are:

auto : The layout shall be done by the CLI, with no user-supplied constraints.

explicit  : The layout of the fields is explicitly provided (§10.7). However, a generic type shall not have
explicit layout.

sequential  : The CLI shall lay out the fields in sequential order, based on the order of the fields in the
logical metadata table (§22.15).

[Rationale: The default auto layout should provide the best layout for the platform on which the code is
executing. sequential  layout is intended to instruct the CLI to match layout rules commonly followed by
languages like C and C++ on an individual platform, where this is possible while still guaranteeing verifiable
layout. explicit layout allows the CIL generator to specify the precise layout semantics. end rationale)

3 Type semantics attributes

ClassAttr ::= ..

| interface

40

The type semantic attributes specify whether an interface, class, or value type shall be defined. The

interface attribute specifies an interface. If this attribute is not present and the definition extends (directly
or indirectly) System.valueType, and the definition is not for System.Enum, a value type shall be defined (§13).
Otherwise, a class shall be defined (§11).

[Example:
.class interface public abstract auto ansi ’System.IComparable’ { .. }
System.IComparable is an interface because the interface attribute is present.

.class public sequential ansi serializable sealed beforefieldinit
"System.Double’ extends System.ValueType implements System.IComparable,
R G

System.Double directly extends System.valueType; System.Double is not the type System.Enum; sO
System.Double is a value type.

.class public abstract auto ansi serializable beforefieldinit ’System.Enum’
extends System.ValueType implements System.IComparable, .. { .. }

Although system.Enum directly extends System.valueType, System.Enunm is not a value type, so it is a class.

.class public auto ansi serializable beforefieldinit ’System.Random’
extends System.Object { .. }
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System.Random i a class because it is not an interface or a value type.
end example]

Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes)

Implementation-specific (Microsoft)

The current implementation allows 0x3F0000 bytes, but might be reduced in future.

.4 Inheritance attributes

ClassAttr ::= .

| abstract

| sealed

10.1.

Attributes that specify special semantics are abstract  and sealed . These attributes can be used together.

abstract specifies that this type shall not be instantiated. If a type contains abstract methods, that type
shall be declared as an abstract type.

sealed specifies that a type shall not have derived classes. All value types shall be sealed.

[Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden.
Framework authors should use sealed classes sparingly since they do not provide a convenient building block
for user extensibility. Sealed classes can be necessary when the implementation of a set of virtual methods for
a single class (typically multiple interfaces) becomes interdependent or depends critically on implementation
details not visible to potential derived classes.

A type that is both abstract  and sealed should have only static members, and serves as what some
languages call a “namespace” or “static class”. end rationale]

5 Interoperation attributes

ClassAttr ::= .

| ansi

| autochar

| unicode

10.1

These attributes are for interoperation with unmanaged code. They specify the default behavior to be used
when calling a method (static, instance, or virtual) on the class, that has an argument or return type of
System.String and does not itself specify marshalling behavior. Only one value shall be specified for any
type, and the default value is ansi . The interoperation attributes are:

ansi specifies that marshalling shall be to and from ANSI strings.

autochar specifies marshalling behavior (either ANSI or Unicode), depending on the platform on which the
CLI is running.

unicode specifies that marshalling shall be to and from Unicode strings.

In addition to these three attributes, §23.1.15 specifies an additional set of bit patterns (CustomFormatClass and
CustomStringFormatMask), Which have no standardized meaning. If these bits are set, but an implementation
has no support for them, a System.NotSupportedException is thrown.

.6 Special handling attributes

ClassAttr - := ...

| beforefieldinit

| rtspecialname

Partition II 41




OO0 N W»L bW N—

—_ =
— o

—_—
w N

—_——
(O NN

—_— =
~N

18

19

20
21
22

23
24
25

26
27
28

| serializable

| specialname

10.1.

These attributes can be combined in any way.

beforefieldinit instructs the CLI that it need not initialize the type before a static method is called. See
§10.5.3.

rtspecialname indicates that the name of this item has special significance to the CLI. There are no
currently defined special type names; this is for future use. Any item marked rtspecialname shall also be
marked specialname

serializable Reserved for future use, to indicate that the fields of the type are to be serialized into a data
stream (should such support be provided by the implementation).

Implementation-specific (Microsoft)

Microsoft’s implementation supports serialization. See Partition IV.

specialname indicates that the name of this item can have special significance to tools other than the CLIL.
See, for example, Partition I .

[Rationale: If an item is treated specially by the CLI, then tools should also be made aware of that. The
converse is not true. end rationale]

7 Generic parameters (GenPars)

Generic parameters are included when defining a generic type.

GenPars ::=

GenPar [ ') GenPars |

The GenPar non-terminal has the following production:

GenPar: :=

[ GenParAttribs 1*[ ‘([ GenConstraints 1) | Id

GenParAttribs: : =

Oy

| class

| valuetype

| .ctor

42

+ denotes a covariant generic parameter (§9.5).
- denotes a contravariant generic parameter (§9.5).

class is a special-purpose constraint that constrains /d to being a reference type. [Note: This includes type
parameters which are themselves constrained to be reference types through a class or base type constraint. end
note)

valuetype is a special-purpose constraint that constrains /d to being a value type, except that that type shall
not be system.Nullable<T> or any concrete closed type of System.Nullable<T>. [Note: This includes type
parameters which are themselves constrained to be value types. end note)
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.ctor is a special-purpose constraint that constrains /d to being a concrete reference type (i.e., not abstract)
that has a public constructor taking no arguments (the default constructor), or to being a value type. [Note: This
includes type parameters which are, themselves, constrained either to be concrete reference types, or to being a

value type. end note]

class and valuetype shall not both be specified for the same /d.

[Example:

.class C< + class .ctor (class System.IComparable<!0>) T > { . }

This declares a generic class c<T>, which has a covariant generic parameter named T. T is constrained such that
it must implement system. IComparable<T>, and must be a concrete class with a public default constructor. end

example]

Finally, the GenConstraints non-terminal has the following production:

GenConstraints : :=

Dype [,  GenConstraints |

There shall be no duplicates of /d in the GenPars production.

[Example: Given appropriate definitions for interfaces 11 and 12, and for class Base, the following code defines
a class Dict that has two generic parameters, K and 7, where K is constrained to implement both interfaces 11
and 12, and V is constrained to derive from class Base:

.class Dict 2<(I1,I2)K,

end example]

(Base)V> { ..}

The following table shows the valid combinations of type and special constraints for a representative set of
types. The first set of rows (Type Constraint System.0bject) applies either when no base class constraint is
specified or when the base class constraint is System.object. The symbol v’ means “set”, the symbol * means
“not set”, and the symbol * means “either set or not set” or “don’t care”.

Type Constraint Special Constraint Meaning
class | valuetype | .ctor
(System.Object) x x x Any type
v x x Any reference type
4 x v' | Any reference type having a default
constructor
x v * Any value type except
System.Nullable<T>
x x v' | Any type with a public default
constructor
v v * Invalid
System.ValueType x x v' | Any value type including
System.Nullable<T>
x 4 * Any value type except
System.Nullable<T>
X X x

Any value type and system.valueType,
and System.Enum
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x System.ValueType and System.Enum
only
x Not meaningful: Cannot be
instantiated (no instantiable reference
type can be derived from
System.ValueType)
v Invalid
System.Enum x Any enum type
v
x Any enum type and system.Enum
x System.Enum only
x Not meaningful: Cannot be
instantiated (no instantiable reference
type can be derived from systemn.Enun)
v Invalid
System.INullableValue x Any system.Nullable<T> Or other type
implementing interface
x Any system.Nullable<T> OF other type
implementing interface with default
constructor
x Any reference type implementing
System.INullableValue (note: this
excludes system.Nullable<T>)
x Any reference type implementing
System.INullablevalue With a default
constructor (note: this excludes
System.Nullable<T>)
v Any valuetype implementing
System.INullableValue (note: this
includes System.Nullable<T>)
v Invalid
System.Exception (an x System.Exception, OF any class derived
example of any non-special from system.Exception
reference Type) - -
x Any system.Exception With a public
default constructor
x System.Exception, OF any class derived
from system.Exception. This is exactly
the same result as if the class
constraint was not specified
x Any Exception with a public default
constructor.
v Not meaningful: Cannot be

instantiated (a value type cannot be
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12
13
14

15
16

17
18

derived from a reference type)

4 4 * Invalid
System.Delegate x x x System.Delegate, OF any class derived
ﬁOﬁ]System.Delegate
x x v" | Not meaningful: Cannot be
instantiated (there is no default
constructor)
v x x System.Delegate, OF any class derived

ﬁOﬁ]System.Delegate

v x v' | Any Delegate with a public .ctor.
Invalid for known delegates
(System.Delegate)

x v * Not meaningful: Cannot be
instantiated (a value type cannot be
derived from a reference type)

v v * Invalid
System.Array x x x Any array
* x v" | Not meaningful: Cannot be
instantiated (no default constructor)
v x x Any array
x v * Not meaningful: Cannot be

instantiated (a value type cannot be
derived from a reference type)

v v * Invalid

[Example: The following instantiations are allowed or disallowed, based on the constraint. In all of these
instances, the declaration itself is allowed. Items marked Invalid indicate where the attempt to instantiate the
specified type fails verification, while those marked Valid do not.

.class

.class

.class

public auto ansi beforefieldinit Bar l<valuetype T>

Valid ldtoken class Bar 1<int32>

Invalid 1dtoken class Bar ' 1<class [mscorlib]System.Exception>
Invalid 1dtoken class Bar 1<Nullable '1<int32>>

Invalid 1dtoken class Bar 1<class [mscorlib]System.ValueType>
public auto ansi beforefieldinit 'Bar '1l'<class T>

Invalid 1dtoken class Bar 1<int32>

Valid ldtoken class Bar 1<class [mscorlib]System.Exception>
Invalid 1dtoken class Bar l<valuetype [mscorlib]System.Nullable 1<int32>>
Valid ldtoken class Bar'1<class [mscorlib]System.ValueType>
public auto ansi beforefieldinit Bar 1<(class
[mscorlib]System.ValueType) T>

Valid ldtoken class Bar 1<int32>

Invalid 1dtoken class Bar'l<class [mscorlib]System.Exception>
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11
12
13
14
15
16
17
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19
20
21

22
23
24

Valid
Valid
.class
Invalid
Invalid
Invalid
Invalid
Note:

.class

Invalid
Invalid
Invalid
Invalid

Note:

.class public auto ansi beforefieldinit Bar 1l<.ctor

public auto ansi beforefieldinit Bar 1l<class

ldtoken class Bar l<valuetype [mscorlib]System.Nullable 1<int32>>

ldtoken class Bar ' 1l<class [mscorlib]System.ValueType>

(int32)> T>

ldtoken class Bar 1<int32>

ldtoken class Bar ' 1l<class [mscorlib]System.Exception>

ldtoken class Bar ' l<valuetype [mscorlib]System.Nullable 1<int32>>
ldtoken class Bar l<class [mscorlib]System.ValueType>

This type cannot be instantiated as no reference type can extend int32

public auto ansi beforefieldinit Bar l<valuetype

(class [mscorlib]System.Exception)> T>

ldtoken class Bar 1<int32>

ldtoken class Bar l<class [mscorlib]System.Exception>

ldtoken class Bar ' 1l<valuetype [mscorlib]System.Nullable 1<int32>>
ldtoken class Bar'l<class [mscorlib]System.ValueType>

This type cannot be instantiated as no value type can extend System.Exception

(class Foo) T>

where Foo has no public .ctor, but FooBar, which derives from Foo, has a public .ctor:

Invalid

Valid

end example]

ldtoken class Bar 1l<class Foo>

ldtoken class Bar l<class FooBar>

10.2 Body of a type definition

46

A type can contain any number of further declarations. The directives .event

, .field ,.method , and

.property  are used to declare members of a type. The directive .class inside a type declaration is used to

create a nested type, which is discussed in further detail in §10.6.

ClassMember : := Description Clause

.class  ClassHeader ‘{’ ClassMember* '} Defines a nested type. 10.6

| .custom CustomDecl Custom attribute. 21

| .data DataDecl Defines static data 16.3
associated with the type.

| .event EventHeader '{’ EventMember+ '} Declares an event. 18

| .field FieldDecl Declares a field belonging | 16
to the type.

| .method MethodHeader ‘{ MethodBodyltem~ ‘} Declares a method of the | 15
type.

| .override TypeSpec ‘"’ MethodName with Specifies that the first 10.3.2

CallConv Type TypeSpec ‘..’ MethodName ‘(' method is overridden by

Parameters *)’ the definition of the
second method.

| .pack [Int32 Used for explicit layout of | 10.7
fields.
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ClassMember : := Description Clause

| .param type T Int32 7 Specifies a type parameter | 15.4.1.5
for a generic type; for use
in associating a custom
attribute with that type
parameter.

| .property PropHeader ‘{’ PropMember+ '} Declares a property of the | 17
type.

| .size Int32 Used for explicit layout of | 10.7
fields.

| ExternSourceDecl Source line information. 5.7

| SecurityDecl Declarative security 20
permissions.

10.3

10.3.

10.3.

Introducing and overriding virtual methods

A virtual method of a base type is overridden by providing a direct implementation of the method (using a
method definition, see §15.4) and not specifying it to be newslot (§15.4.2.3). An existing method body can
also be used to implement a given virtual declaration using the .override  directive (§10.3.2).

1 Introducing a virtual method

A virtual method is introduced in the inheritance hierarchy by defining a virtual method (§15.4). The definition
can be marked newslot to always create a new virtual method for the defining class and any classes derived
from it:

e If the definition is marked newslot , the definition always creates a new virtual method, even if a
base class provides a matching virtual method. A reference to the virtual method via the class
containing the method definition, or via a class derived from that class, refers to the new definition
(unless hidden by a newslot definition in a derived class). Any reference to the virtual method
not via the class containing the method definition, nor via its derived classes, refers to the original
definition.

o If the definition is not marked newslot , the definition creates a new virtual method only if there
is not virtual method of the same name and signature inherited from a base class.

It follows that when a virtual method is marked newslot , its introduction will not affect any existing
references to matching virtual methods in its base classes.

2 The .override directive

The .override directive specifies that a virtual method shall be implemented (overridden), in this type, by a
virtual method with a different name, but with the same signature. This directive can be used to provide an
implementation for a virtual method inherited from a base class, or a virtual method specified in an interface
implemented by this type. The .override directive specifies a Method Implementation (MethodImpl) in the
metadata (§15.1.4).

ClassMember : := Clause
.override TypeSpec " MethodName with  CallConv Type TypeSpec ‘::

MethodName ‘(' Parameters *)’
.override method CallConv Type TypeSpec ‘.’ MethodName GenArity ‘(’

Parameters ') with  method CallConv Type TypeSpec ‘:’ MethodName GenArity

‘" Parameters ")’

(- 10.2
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Gendrity ::= [ < 327 > ]

10.3.

Int32 is the number of generic parameters.

The first TypeSpec:: MethodName pair specifies the virtual method that is being overridden, and shall be either
an inherited virtual method or a virtual method on an interface that the current type implements. The remaining
information specifies the virtual method that provides the implementation.

While the syntax specified here (as well as the actual metadata format (§22.27 )) allows any virtual method to
be used to provide an implementation, a conforming program shall provide a virtual method actually
implemented directly on the type containing the .override directive.

[Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the
VES. end rationale]

[Example: The following shows a typical use of the .override  directive. A method implementation is
provided for a method declared in an interface (see §12).

.class interface I
{ .method public virtual abstract void M() cil managed {}

}

.class C implements I

{ .method virtual public void M2 ()
{ // body of M2
}

.override I::M with instance void C::M2 ()

}

The .override  directive specifies that the c: :m2 body shall provide the implementation of be used to
implement 1: :M on objects of class c.

end example)
3 Accessibility and overriding

If the strict flag (§23.1.10) is specified then only accessible virtual methods can be overridden.

If a type overrides an inherited method through means other than a MethodImpl, it can widen, but it shall not
narrow, the accessibility of that method. As a principle, if a client of a type is allowed to access a method of
that type, then it should also be able to access that method (identified by name and signature) in any derived
type. Table 7.1 specifies narrow and widen in this context—a “Yes” denotes that the derived class can apply
that accessibility, a “No” denotes it is invalid.

If a type overrides an inherited method via a MethodImpl, it can widen or narrow the accessibility of that
method.

Table 7.1: Valid Widening of Access to a Virtual Method

Derived Compiler- private family assembly famandassem famorassem public
class\Base type | controlled

Accessibility

Compiler- See note 3 No No No No No No
controlled

private See note 3 Yes No No No No No
family See note 3 Yes Yes No Yes See note 1 No
assembly See note 3 Yes No See note 2 See note 2 No No
famandassem See note 3 Yes No No See note 2 No No

48
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class\Base type | controlled

Accessibility
famorassem See note 3 Yes Yes See note 2 Yes Yes No
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'Yes, provided both are in different assemblies; otherwise, No.

% Yes, provided both are in the same assembly; otherwise, No.

Implementation-specific (Microsoft)

% Yes, provided both are in the same assembly or friend assembly.

3 Yes, provided both are in the same module; otherwise, No.
[Note: A method can be overridden even if it might not be accessed by the derived class.

If a method has assembly accessibility, then it shall have public  accessibility if it is being overridden by a
method in a different assembly. A similar rule applies to famandassem , where also famorassem is allowed
outside the assembly. In both cases assembly or famandassem , respectively, can be used inside the same
assembly. end note]

A special rule applies to famorassem , as shown in the table. This is the only case where the accessibility is
apparently narrowed by the derived class. A famorassem method can be overridden with family
accessibility by a type in another assembly.

[Rationale: Because there is no way to specify “family or specific other assembly” it is not possible to specify
that the accessibility should be unchanged. To avoid narrowing access, it would be necessary to specify an
accessibility of public, which would force widening of access even when it is not desired. As a compromise,
the minor narrowing of “family” alone is permitted. end rationale]

10.3.4 Impact of overrides on derived classes

When a method is overridden in a parent type, the override shall apply to the derived class according to the
following:

e If'the derived class provides an implementation of a virtual method, then that method is not affected
by any overrides of that method in the parent type

e  Otherwise, if the method is overridden in the parent type, the override is inherited, subject to any
overrides in the derived class. [Nofe: This means that if the parent type overrides method A with
method B, and the derived class does not provide an implementation or override of method A, but
provides an overriding implementation of method B, then it is the derived class’ implementation of B
that will override method A in the derived class. It may be useful to think of this as virtual slot
overriding. end Note.]

[Example: Consider the following (excerpted for clarity; all methods are declared public hidebysig virtual
instance):

.class interface |

.method newslot abstract void foo() {...}

.class A implements |

.method newslot void foo() {...}

—

.class B extends A

.method newslot void fool() {.override I::foo ... }

-~ -

.class C extends B

-~

.method void fool() {...}
.method void foo2() {.override A::foo ... }
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.class D extends C

.method newslot void foo() {...}

.method void fool1(){...}
.method void foo2(){...}

For this example, a sampling of the behavior of calls on objects of various types is presented in the following

table:
Type of Method Method Notes
object invocation called
(callvirt)
B I::foo() B::fool Explicit override
C I::foo() C::fool Override of I::foo to virtual function fool is inherited from B
C A::foo() C::foo2 Explicit override
C B::fool() C::fool Virtual override
D I::foo() D::fool Override of I::foo to virtual function fool is inherited
D A::foo() D::foo2 Explicit override of A::foo with virtual C::foo2 (D::foo
doesn’t override this because it is “newslot”
D B::fool() D::fool Virtual override
D C::fool() D::fool Virtual override
.end example]

10.4 Method implementation requirements

A type (concrete or abstract) can provide

e implementations for instance, static, and virtual methods that it introduces

e implementations for methods declared in interfaces that it has specified it will implement, or that
its base type has specified it will implement

e alternative implementations for virtual methods inherited from its base class

e implementations for virtual methods inherited from an abstract base type that did not provide an
implementation

A concrete (i.e., non-abstract) type shall provide, either directly or by inheritance, an implementation for

e all methods declared by the type itself

e all virtual methods of interfaces implemented by the type

e all virtual methods that the type inherits from its base type

10.5 Special members

10.5.

50

There are three special members, all of which are methods that can be defined as part of a type: instance
constructors, instance finalizers, and type initializers.

1 Instance constructor

An instance constructor initializes an instance of a type, and is called when an instance of a type is created by
the newobj instruction (see Partition I1T). An instance constructor shall be an instance (not static or virtual)

method, it shall be named .ctor

, and marked instance

, Itspecialname  , and specialname

(§15.4.2.6). An instance constructor can have parameters, but shall not return a value. An instance constructor
cannot take generic type parameters. An instance constructor can be overloaded (i.e., a type can have several
instance constructors). Each instance constructor for a type shall have a unique signature. Unlike other

methods, instance constructors can write into fields of the type that are marked with the initonly

(§16.1.2).

attribute

[Example: The following shows the definition of an instance constructor that does not take any parameters:
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1 .class X {

2 .method public rtspecialname specialname instance void .ctor() cil managed
3 { .maxstack 1

4 // call super constructor

5 ldarg.0 // load this pointer

6 call instance void [mscorlib]System.Object::.ctor ()

7 // do other initialization work

8 ret

9 }

10 }

11 end example]

12 10.5.2 Instance finalizer

13 The behavior of finalizers is specified in Partition I. The finalize method for a particular type is specified by
14 overriding the virtual method Finalize in System.Object.

15 10.5.3 Type initializer

16 A type (class, interface, or value type) can contain a special method called a #ype initializer, which is used to
17 initialize the type itself. This method shall be static, take no parameters, return no value, be marked with

18 rtspecialname and specialname  (§15.4.2.6), and be named .cctor

19 Like instance constructors, type initializers can write into static fields of their type that are marked with the
20 initonly attribute (§16.1.2).

21 [Example: The following shows the definition of a type initializer:

22 .class public EngineeringData extends [mscorlib]System.Object

23 {

24 .field private static initonly float64[] coefficient

25 .method private specialname rtspecialname static void .cctor() cil managed

26 {

27 .maxstack 1

28 // allocate array of 4 Double

29 ldc.i4.4

30 newarr [mscorlib]System.Double

31 // point initonly field to new array

32 stsfld float64[] EngineeringData::coefficient

33 // code to initialize array elements goes here

34 ret

35 }

36 }

37 end example]

38 [Note: Type initializers are often simple methods that initialize the type’s static fields from stored constants or
39 via simple computations. There are, however, no limitations on what code is permitted in a type initializer. end
40 note]

41 10.5.3.1 Type initialization guarantees

42 The CLI shall provide the following guarantees regarding type initialization (but see also §10.5.3.2 and

43 §10.5.3.3):

44 1. As to when type initializers are executed is specified in Partition I.

45 2. A type initializer shall be executed exactly once for any given type, unless explicitly called by
46 user code.

47 3. No methods other than those called directly or indirectly from the type initializer are able to
48 access members of a type before its initializer completes execution.
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10.5.3.2 Relaxed guarantees

A type can be marked with the attribute beforefieldinit (810.1.6) to indicate that the guarantees
specified in §10.5.3.1 are not necessarily required. In particular, the final requirement above need not be
provided: the type initializer need not be executed before a static method is called or referenced.

[Rationale: When code can be executed in multiple application domains it becomes particularly expensive to
ensure this final guarantee. At the same time, examination of large bodies of managed code have shown that
this final guarantee is rarely required, since type initializers are almost always simple methods for initializing
static fields. Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether
this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees.
end rationale]

10.5.3.3 Races and deadlocks

52

In addition to the type initialization guarantees specified in §10.5.3.1, the CLI shall ensure two further
guarantees for code that is called from a type initializer:

1. Static variables of a type are in a known state prior to any access whatsoever.

2. Type initialization alone shall not create a deadlock unless some code called from a type
initializer (directly or indirectly) explicitly invokes blocking operations.

[Rationale: Consider the following two class definitions:

.class public A extends [mscorlib]System.Object
{ .field static public class A a
field static public class B b
.method public static rtspecialname specialname void .cctor ()
{ 1ldnull // b=null
stsfld class B A::
ldsfld class A B::
stsfld class A A::
ret

// a=B.a

(VNN ENeR

}

.class public B extends [mscorlib]System.Object
{ .field static public class A a
.field static public class B b
.method public static rtspecialname specialname void .cctor ()
{ ldnull // a=null
stsfld class A B::
ldsfld class B A::
stsfld class B B::
ret
}
}

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type
initializer for each of A and B requires that the type initializer of the other be invoked first. Requiring that no
access to a type be permitted until its initializer has completed would create a deadlock situation. Instead, the
CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But
this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to
guarantee repeatable results.

// b=A.Db

o oo

There are similar, but more complex, problems when type initialization takes place in a multi-threaded system.
In these cases, for example, two separate threads might start attempting to access static variables of separate
types (A and B) and then each would have to wait for the other to complete initialization.

A rough outline of an algorithm to ensure points 1 and 2 above is as follows:
1. At class load-time (hence prior to initialization time) store zero or null into all static fields of the type.
2. If the type is initialized, you are done.

2.1. If the type is not yet initialized, try to take an initialization lock.
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39
40
41
42

43
44
45

2.2. If successful, record this thread as responsible for initializing the type and proceed to step 2.3.

2.2.1. If not successful, see whether this thread or any thread waiting for this thread to complete already holds
the lock.

2.2.2. If so, return since blocking would create a deadlock. This thread will now see an incompletely initialized
state for the type, but no deadlock will arise.

2.2.3 If not, block until the type is initialized then return.
2.3 Initialize the base class type and then all interfaces implemented by this type.
2.4 Execute the type initialization code for this type.

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be
initialized, and return.

end rationale)

10.6 Nested types

Nested types are specified in Partition I. For information about the logical tables associated with nested types,
see §22.32.

[Note: A nested type is not associated with an instance of its enclosing type. The nested type has its own base
type, and can be instantiated independently of its enclosing type. This means that the instance members of the
enclosing type are not accessible using the this  pointer of the nested type.

A nested type can access any members of its enclosing type, including private members, as long as those
members are static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested
types, a type can give access to its private members to another type.

On the other hand, the enclosing type cannot access any private or family members of the nested type. Only
members with assembly , famorassem , or public  accessibility can be accessed by the enclosing type.
end note]

[Example: The following shows a class declared inside another class. Each class declares a field. The nested
class can access both fields, while the enclosing class does not have access to the enclosed class’s field b.

.class public auto ansi X
{ .field static private int32 a
.class auto ansi nested public Y
{ .field static private int32 b
/]
}
}

end example]

10.7 Controlling instance layout

The CLI supports both sequential and explicit layout control, see § 10.1.2. For explicit layout it is also
necessary to specify the precise layout of an instance; see also §22.18 and §22.16.

FieldDecl : :=

[T In327 1 FieldAttr= Type Id

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the
beginning of the instance of the type. (For a given type ¢, this beginning refers to the start of the set of members
explicitly defined in type ¢, excluding all members defined in any types from which type ¢ directly or indirectly
inherits.) This form of explicit layout control shall not be used with global fields specified using the at
notation §16.3.2).

Offset values shall be non-negative. It is possible to overlap fields in this way, though offsets occupied by an
object reference shall not overlap with offsets occupied by a built-in value type or a part of another object
reference. While one object reference can completely overlap another, this is unverifiable.
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Fields can be accessed using pointer arithmetic and Idind to load the field indirectly or stind to store the field
indirectly (see Partition IIT). See §22.16 and §22.18 for encoding of this information. For explicit layout, every
field shall be assigned an offset.

The .pack directive specifies that fields should be placed within the runtime object at byte addresses which
are a multiple of the specified number, or at natural alignment for that field type, whichever is smaller. For
example, .pack 2 would allow 32-bit-wide fields to be started on even addresses, whereas without any
.pack directive, they would be naturally aligned; that is, placed on addresses that are a multiple of 4. The
integer following .pack shall be one of the following: 0, 1, 2, 4, 8, 16, 32, 64, or 128. (A value of zero
indicates that the pack size used should match the default for the current platform.) The .pack directive shall
not be supplied for any type with explicit layout control.

The .size directive indicates a minimum size, and is intended to allow for padding. Therefore, the amount of
memory allocated is the maximum of the size calculated from the layout and the .Size  directive. Note that if
this directive applies to a value type, then the size shall be less than 1 MByte.

[Note: Metadata that controls instance layout is not a “hint,” it is an integral part of the VES that shall be
supported by all conforming implementations of the CLI. end note]

[Example: The following class uses sequential layout of its fields:

.class sequential public SequentialClass

{ .field public int32 a // store at offset 0 bytes
.field public int32 b // store at offset 4 bytes

}

The following class uses explicit layout of its fields:

.class explicit public ExplicitClass

{ .field [0] public int32 a // store at offset 0 bytes
.field [6] public int32 b // store at offset 6 bytes

}

The following value type uses .pack to pack its fields together:

.class value sealed public MyClass extends [mscorlib]System.ValueType
{ .pack 2

.field public int8 a // store at offset 0 bytes

.field public int32 b // store at offset 2 bytes (not 4)
}

The following class specifies a contiguous block of 16 bytes:

.class public BlobClass
{ .size 16

}

end example]

10.8 Global fields and methods

54

In addition to types with static members, many languages have the notion of data and methods that are not part
of a type at all. These are referred to as global fields and methods.

The simplest way to understand global fields and methods in the CLI is to imagine that they are simply
members of an invisible abstract  public class. In fact, the CLI defines such a special class, named
<Module>, that does not have a base type and does not implement any interfaces. (This class is a top-level class;
i.e., it is not nested.) The only noticeable difference is in how definitions of this special class are treated when
multiple modules are combined together, as is done by a class loader. This process is known as metadata
merging.

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition
on the assumption they are equivalent, and that any anomaly will be discovered when the type is used. For the
special class that holds global members, however, members are unioned across all modules at merge time. If

the same name appears to be defined for cross-module use in multiple modules then there is an error. In detail:
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e If no member of the same kind (field or method), name, and signature exists, then add this member
to the output class.

e If there are duplicates and no more than one has an accessibility other than
compilercontrolled , then add them all to the output class.

o If there are duplicates and two or more have an accessibility other than compilercontrolled
an error has occurred.

>

[Note: Strictly speaking, the CLI does not support global statics, even though global fields and methods might
be thought of as such. All global fields and methods in a module are owned by the manufactured class
"<Module>". However, each module has its own "<Module>" class. There's no way to even refer, early-bound,
to such a global field or method in another module. (You can, however, "reach" them, late-bound, via
Reflection.) end note]
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Semantics of classes

Classes, as specified in Partition I, define types in an inheritance hierarchy. A class (except for the built-in
class system.object and the special class <Module>) shall declare exactly one base class. A class shall declare
zero or more interfaces that it implements (§12). A concrete class can be instantiated to create an object, but an
abstract  class (§10.1.4) shall not be instantiated. A class can define fields (static or instance), methods
(static, instance, or virtual), events, properties, and nested types (classes, value types, or interfaces).

Instances of a class (i.e., objects) are created only by explicitly using the newobj instruction (see Partition IIT).
When a variable or field that has a class as its type is created (for example, by calling a method that has a local
variable of a class type), the value shall initially be null, a special value that := with all class types even though
it is not an instance of any particular class.
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12.1

12.2

Semantics of interfaces

Interfaces, as specified in Partition I, each define a contract that other types can implement. Interfaces can have
static fields and methods, but they shall not have instance fields or methods. Interfaces can define virtual
methods, but only if those methods are abstract  (see Partition I and §15.4.2.4).

[Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple
inheritance of base types: in the presence of dynamic loading of data types there is no known implementation
technique that is both efficient when used and has no cost when not used. By contrast, providing static fields

and methods need not affect the layout of instances and therefore does not raise these issues. end rationale]

Interfaces can be nested inside any type (interface, class, or value type).

Implementing interfaces

Classes and value types shall implement zero or more interfaces. Implementing an interface implies that all
concrete instances of the class or value type shall provide an implementation for each abstract  virtual
method declared in the interface. In order to implement an interface, a class or value type shall either
explicitly declare that it does so (using the implements  attribute in its type definition, see §10.1) or shall be
derived from a base class that implements the interface.

[Note: An abstract  class (since it cannot be instantiated) need not provide implementations of the virtual
methods of interfaces it implements, but any concrete class derived from it shall provide the implementation.

Merely providing implementations for all of the abstract  methods of an interface is not sufficient to have a
type implement that interface. Conceptually, this represents the fact that an interface represents a contract that
can have more requirements than are captured in the set of abstract  methods. From an implementation
point of view, this allows the layout of types to be constrained only by those interfaces that are explicitly
declared. end note]

Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface,
A, declares that it requires the implementation of another interface, B, then A implicitly declares that it requires
the implementation of all interfaces required by B. If a class or value type declares that it implements A, then
all concrete instances shall provide implementations of the virtual methods declared in A and all of the
interfaces A requires. [Note: The class need not explicitly declare that it implements the interfaces required

by A. end note)

[Example: The following class implements the interface 1startStopEventSource defined in the module

Counter.

.class private auto autochar StartStopButton
extends [System.Windows.Forms]System.Windows.Forms.Button
implements [.module Counter]IstartStopEventSource

{ // body of class

}

end example]

Implementing virtual methods on interfaces

Classes that implement an interface (§12.1) are required to provide implementations for the abstract  virtual
methods defined by that interface. There are three mechanisms for providing this implementation:

e Directly specifying an implementation, using the same name and signature as appears in the
interface.

e Inheritance of an existing implementation from the base type.
e Use of an explicit MethodImpl (§15.1.4).

The VES shall use the following algorithm to determine the appropriate implementation of an interface's virtual
abstract methods:

e Ifthe base class implements the interface, start with the same virtual methods that it provides;
otherwise, create an interface that has empty slots for all virtual functions.
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o If this class explicitly specifies that it implements the interface (i.e., the interfaces that appear in
this class’s Interfacelmpl table, §22.23)

0 If the class defines any public virtual newslot methods whose name and signature
match a virtual method on the interface, then use these new virtual methods to implement
the corresponding interface method.

e If there are any virtual methods in the interface that still have empty slots, see if there are any
public virtual methods, but not public virtual newslot methods, available on this
class (directly or inherited) having the same name and signature, then use these to implement the
corresponding methods on the interface.

e Apply all MethodImpls that are specified for this class, thereby placing explicitly specified virtual
methods into the interface in preference to those inherited or chosen by name matching.

e If the current class is not abstract  and there are any interface methods that still have empty
slots, then the program is invalid.

[Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be
implemented by any class that implements the interface. The class specifies a mapping from its own virtual
methods to those of the interface. Thus it is virtual methods, not specific implementations of those methods
that are associated with interfaces. Overriding a virtual method on a class with a specific implementation will
thus affect not only the virtual method named in the class but also any interface virtual methods to which that
same virtual method has been mapped. end rationale]
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Semantics of value types

In contrast to reference types, value types (see Partition I) are not accessed by using a reference, but are stored
directly in the location of that type.

[Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as
opposed to pointers to struct) types in C++. Compared to reference types, value types are accessed faster since
there is no additional indirection involved. As elements of arrays they do not require allocating memory for the
pointers as well as for the data itself. Typical value types are complex numbers, geometric points, and dates.
end rationale)

Like other types, value types can have fields (static or instance), methods (static, instance, or virtual),
properties, events, and nested types. A value of some value type can be converted into an instance of a
corresponding reference type (its boxed form, a class automatically created for this purpose by the VES when a
value type is defined) by a process called boxing. A boxed value type can be converted back into its value type
representation, the unboxed form, by a process called unboxing. Value types shall be sealed, and they shall
have a base type of either system.valueType Or System.Enum (see Partition IV). Value types shall implement
zero or more interfaces, but this has meaning only in their boxed form (§13.3).

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst instruction
(see Partition IIT) on unboxed value types. The isinst instruction can be used for boxed value types, however.
Unboxed value types shall not be assigned the value null and they shall not be compared to null.

Value types support layout control in the same way as do reference types (§10.7). This is especially important
when values are imported from native code.

Since ValueTypes represent direct layout of data, recursive struct definitions such as (in C#) struct s {S x;
s y;} are not permitted. A struct shall have an acyclic finite flattening graph:

For a value type S, define the flattening graph G of S to be the smallest directed graph such that:

e SisinG.

e Whenever T is in G and T has an instance field of value type X then X is in G and there is an edge from T
to X.

e Whenever T is in G and T has a static field of value type Y then Y is in G.

[Example:
class C<U> { }

struct S1I<Vv> {
S1<V> x5
}

struct S2<V> {
static S2<V> x;
}

struct S3<V> {
static S3<KC<V>> x;

}

struct S4<V> {

S4<CV>>[] x;
}

Struct type s1 has a finite but cyclic flattening graph and is invalid; s2 has a finite acyclic flattening graph and
is valid; s3 has an infinite acyclic flattening graph and is invalid; s4 has a finite acyclic flattening graph and is
valid because field sa<c<v>>.x has reference type, not value type.

The c<u> type is not strictly necessary for the examples, but if it were not used, it might be unclear whether
something like the following

struct S3<V> {
static S3<S3<V>> x;
}
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1 is problematic due to the inner or the outer occurrence of s3<. . .> in the field type. end example]
2 13.1 Referencing value types
3 The unboxed form of a value type shall be referred to by using the valuetype  keyword followed by a type
4 reference. The boxed form of a value type shall be referred to by using the boxed keyword followed by a
5 type reference.
ValueTypeReference : :=
boxed TypeReference
| valuetype  TypeReference
O
7 Implementation-specific (Microsoft)
8 For historical reasons value class can be used instead of valuetype although the latter is
9 » preferred. V1 of the CLI does not support direct references to boxed value types; they should be treated
10 i as object instead.

11 13.2 Initializing value types

12 Like classes, value types can have both instance constructors (§10.5.1) and type initializers (§10.5.3). Unlike
13 classes, whose fields are automatically initialized to null, the following rules constitute the only guarantee

14 about the initilization of (unboxed) value types:

15 e Static variables shall be initialized to zero when a type is loaded (§10.5.3.3), hence statics whose
16 type is a value type are zero-initialized when the type is loaded.

17 e Local variables shall be initialized to zero if the localsinit bit in the method header (§25.4.4)
18 is set.

19 e Arrays shall be zero-initialized.

20 e Instances of classes (i.e., objects) shall be zero-initialized prior to calling their instance constructor.
21 [Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive,

22 especially on platforms that support thread-local storage and that allow threads to be created outside of the CLI
23 and then passed to the CLI for management. end rationale]

24

25 [Note: Boxed value types are classes and follow the rules for classes. end note]

26 The instruction initobj (see Partition III) performs zero-initialization under program control. If a value type has
27 a constructor, an instance of its unboxed type can be created as is done with classes. The newobj instruction
28 (see Partition IIT) is used along with the initializer and its parameters to allocate and initialize the instance. The
29 instance of the value type will be allocated on the stack. The Base Class Library provides the method

30 System.Array.Initialize (see Partition IV) to zero all instances in an array of unboxed value types.

31 [Example: The following code declares and initializes three value type variables. The first variable is zero-

32 initialized, the second is initialized by calling an instance constructor, and the third by creating the object on the
33 stack and storing it into the local.

34 .assembly Test { }

35 .assembly extern System.Drawing {

36 .ver 1:0:3102:0

37 .publickeytoken = (b03f5f7£11d50a3a)

38 }

39 .method public static void Start()

40 { .maxstack 3

41 .entrypoint

42 .locals init (valuetype [System.Drawing]System.Drawing.Size Zero,

43 valuetype [System.Drawing]System.Drawing.Size Init,

44 valuetype [System.Drawing]System.Drawing.Size Store)
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// Zero initialize the local named Zero
ldloca Zero // load address of local variable
initobj valuetype [System.Drawing]System.Drawing.Size

// Call the initializer on the local named Init

ldloca Init // load address of local variable
ldc.i4 425 // load argument 1 (width)
ldc.i4 300 // load argument 2 (height)

call instance void [System.Drawing]System.Drawing.Size::.Ctor (int32, int32)

// Create a new instance on the stack and store into Store. Note that

// stobj is used here - but one could equally well wuse stloc, stfld, etc.
ldloca Store

ldc.i4 425 // load argument 1 (width)

ldc.i4 300 // load argument 2 (height)

newobj instance void [System.Drawing]System.Drawing.Size::.CtOr (int32, int32)
stobj valuetype [System.Drawing]System.Drawing.Size

ret

}

end example]

13.3 Methods of value types

Value types can have static, instance and virtual methods. Static methods of value types are defined and called

the same way as static methods of class types. As with classes, both instance and virtual methods of a boxed
unboxed value type can be called using the call instruction. The callvirt instruction shall not be used with
unboxed value types (see Partition I), but it can be used on boxed value types.

Instance and virtual methods of classes shall be coded to expect a reference to an instance of the class as the
this pointer. By contrast, instance and virtual methods of value types shall be coded to expect a managed
pointer (see Partition I) to an unboxed instance of the value type. The CLI shall convert a boxed value type
into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a
virtual method whose implementation is provided by the unboxed value type.

[Note: This operation is the same as unboxing the instance, since the unbox instruction (see Partition IIT) is
defined to return a managed pointer to the value type that shares memory with the original boxed instance.

The following diagrams are intended to help the reader understand the relationship between the boxed and
unboxed representations of a value type.

Heap: 1.5 l pointer
3
I reference
Heap or [1.5
Jtack: 3
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end note]

[Rationale: An important use of instance methods on value types is to change internal state of the instance.
This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be
operating on a copy of the value, not the original value: unboxed value types are copied when they are passed
as arguments.

Virtual methods are used to allow multiple types to share implementation code, and this requires that all classes
that implement the virtual method share a common representation defined by the class that first introduces the
method. Since value types can (and in the Base Class Library do) implement interfaces and virtual methods
defined on system.Object, it is important that the virtual method be callable using a boxed value type so it
can be manipulated as would any other type that implements the interface. This leads to the requirement that
the EE automatically unbox value types on virtual calls. end rationale]

Table 1: Type of this given the CIL instruction and the declaring type of instance method.

Value Type (Boxed or Unboxed) Interface Object Type
call managed pointer to value type invalid object reference
callvirt managed pointer to value type object reference object reference

[Example: The following converts an integer of the value type int32 into a string. Recall that int32
corresponds to the unboxed value type system.Int32 defined in the Base Class Library. Suppose the integer is
declared as:

.locals init (int32 x)
Then the call is made as shown below:

ldloca x // load managed pointer to local variable
call instance string valuetype [mscorlib]System.Int32::ToString()

However, if system.object (a class) is used as the type reference rather than system.1nt32 (a value type), the
value of x shall be boxed before the call is made and the code becomes:

ldloc x
box valuetype [mscorlib]System.Int32
callvirt instance string [mscorlib]System.Object::ToString()

end example]
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1 14 Semantics of special types

2 Special types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies
3 the definitions automatically based on information available from the reference.
4 14.1 Vectors
Type ::= ..
| Type T'T
5
6 Vectors are single-dimension arrays with a zero lower bound. They have direct support in CIL instructions
7 (newarr, Idelem, stelem, and Idelema, see Partition III). The CIL Framework also provides methods that
8 deal with multidimensional arrays and single-dimension arrays with a non-zero lower bound (§14.2). Two
9 vectors have the same type if their element types are the same, regardless of their actual upper bounds.
10 Vectors have a fixed size and element type, determined when they are created. All CIL instructions shall
11 respect these values. That is, they shall reliably detect attempts to do the following: index beyond the end of
12 the vector, store the incorrect type of data into an element of a vector, and take the address of elements of a
13 vector with an incorrect data type. See Partition III.
14 [Example: Declare a vector of Strings:
15 .field string[] errorStrings
16 Declare a vector of function pointers:
17 .field method instance void* (int32) [] myVec
18 Create a vector of 4 strings, and store it into the field errorstrings. The 4 strings lie at errorStrings[0]
19 through errorStrings[3]:
20 ldc.i4.4
21 newarr string
22 stfld string[] CountDownForm::errorStrings
23 Store the string "First" into errorStrings[0]:
24 1dfld string[] CountDownForm::errorStrings
25 1dc.14.0
26 ldstr "First"
27 stelem
28 end example]
29 Vectors are subtypes of system.Array, an abstract class pre-defined by the CLI. It provides several methods
30 that can be applied to all vectors. See Partition IV.
31 14.2 Arrays
32 While vectors (§14.1) have direct support through CIL instructions, all other arrays are supported by the VES
33 by creating subtypes of the abstract class system.array (see Partition V)
Type ::= ..
| Type [ [ Bound [ ') Bound 1+1
34
35 The rank of an array is the number of dimensions. The CLI does not support arrays with rank 0. The type of
36 an array (other than a vector) shall be determined by the type of its elements and the number of dimensions.
Bound ::= Description
Lower and upper bounds unspecified. In the case of
multi-dimensional arrays, the ellipsis can be omitted
| Int32 Zero lower bound, /n¢32 upper bound
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| Int32 .0 Lower bound only specified

| Int32 ~..  Int32 Both bounds specified

The class that the VES creates for arrays contains several methods whose implementation is supplied by the
VES:

A constructor that takes a sequence of int32 arguments, one for each dimension of the array, that specify
the number of elements in each dimension beginning with the first dimension. A lower bound of zero is
assumed.

A constructor that takes twice as many int32 arguments as there are dimensions of the array. These
arguments occur in pairs—one pair per dimension—with the first argument of each pair specifying the
lower bound for that dimension, and the second argument specifying the total number of elements in that
dimension. Note that vectors are not created with this constructor, since a zero lower bound is assumed for
vectors.

A cet method that takes a sequence of int32 arguments, one for each dimension of the array, and returns
a value whose type is the element type of the array. This method is used to access a specific element of the
array where the arguments specify the index into each dimension, beginning with the first, of the element
to be returned.

A set method that takes a sequence of int32 arguments, one for each dimension of the array, followed by
a value whose type is the element type of the array. The return type of set is void. This method is used to
set a specific element of the array where the arguments specify the index into each dimension, beginning
with the first, of the element to be set and the final argument specifies the value to be stored into the target
element.

An address method that takes a sequence of int32 arguments, one for each dimension of the array, and
has a return type that is a managed pointer to the array’s element type. This method is used to return a
managed pointer to a specific element of the array where the arguments specify the index into each
dimension, beginning with the first, of the element whose address is to be returned.

[Example: The following creates an array, MyArray, of strings with two dimensions, with indexes 5..10 and
3..7. Tt then stores the string "one" into MyArray[5, 31, retrieves it and prints it out. Then it computes the
address of Mmyarray[5, 4], stores "Test" into it, retrieves it, and prints it out.

.assembly Test { }
.assembly extern mscorlib { }

.method public static void Start ()
{ .maxstack 5
.entrypoint
.locals (class [mscorlib]System.String[,] myArray)

1dc.i4.5 // load lower bound for dim 1
ldc.i4.6 // load (upper bound - lower bound + 1) for dim 1
1dc.14.3 // load lower bound for dim 2
ldc.i4.5 // load (upper bound - lower bound + 1) for dim 2

newobj instance void string[,]::.Ctor (int32, int32, int32, int32)
stloc myArray

ldloc myArray

ldc.i4.5

ldc.i4.3

ldstr "One"

call instance void string[,]::Set(int32, int32, string)

ldloc myArray

ldc.i4.5

ldc.i4.3

call instance string string[,]::Get(int32, int32)
call void [mscorlib]System.Console::WriteLine (string)
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ldloc myArray

ldc.i4.5

ldc.i4.4

call instance string & string[,]::Address(int32, int32)
ldstr "Test"

stind.ref

ldloc myArray

ldc.i4.5

ldc.i4.4

call instance string string[,]::Get(int32, int32)
call void [mscorlib]System.Console::WritelLine (string)
ret

}

end example]

The following text is informative

Whilst the elements of multi-dimensional arrays can be thought of as laid out in contiguous memory, arrays of
arrays are different — each dimension (except the last) holds an array reference. The following picture
illustrates the difference:

FAEIRNEIENEL

]

On the left is a [6, 10] rectangular array. On the right is not one, but a total of five arrays. The vertical array is
an array of arrays, and references the four horizontal arrays. Note how the first and second elements of the
vertical array both reference the same horizontal array.

Note that all dimensions of a multi-dimensional array shall have the same size. But in an array of arrays, it is
possible to reference arrays of different sizes. For example, the figure on the right shows the vertical array
referencing arrays of lengths 8, 8, 3, null (i.e., no array), 6 and 1, respectively.

There is no special support for these so-called jagged arrays in either the CIL instruction set or the VES. They
are simply vectors whose elements reference other (recursively) jagged arrays.

End of informative text

14.3 Enums

An enum (short for enumeration) defines a set of symbols that all have the same type. A type shall be an enum
if and only if it has an immediate base type of system.Enum. Since system.Enum itself has an immediate base
type of system.valueType, (see Partition V) enums are value types (§13) The symbols of an enum are
represented by an underlying integer type: one of { bool, char, int8, unsigned int8, int16, unsigned int16,

int32, unsigned int32, int64, unsigned int64, native int, unsigned native int}

[Note: Unlike Pascal, the CLI does not provide a guarantee that values of the enum type are integers
corresponding to one of the symbols. In fact, the CLS (see Partition I, CLS) defines a convention for using
enums to represent bit flags which can be combined to form integral value that are not named by the enum type
itself. end note)

Enums obey additional restrictions beyond those on other value types. Enums shall contain only fields as
members (they shall not even define type initializers or instance constructors); they shall not implement any
interfaces; they shall have auto field layout (§10.1.2); they shall have exactly one instance field and it shall be
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of the underlying type of the enum; all other fields shall be static and literal (§16.1); and they shall not be
initialized with the initobj instruction.

[Rationale: These restrictions allow a very efficient implementation of enums. end rationale]

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an
enum declare the mapping of the symbols of the enum to the underlying values. All of these fields shall have
the type of the enum and shall have field init metadata that assigns them a value (§16.2).

For binding purposes (e.g., for locating a method definition from the method reference used to call it) enums
shall be distinct from their underlying type. For all other purposes, including verification and execution of
code, an unboxed enum freely interconverts with its underlying type. Enums can be boxed (§13) to a
corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so
boxing does not lose the original type of the enum.

[Example: Declare an enum type and then create a local variable of that type. Store a constant of the
underlying type into the enum (showing automatic coersion from the underlying type to the enum type). Load
the enum back and print it as the underlying type (showing automatic coersion back). Finally, load the address
of the enum and extract the contents of the instance field and print that out as well.

.assembly Test { }
.assembly extern mscorlib { }

.class sealed public ErrorCodes extends [mscorlib]System.Enum

{ .field public unsigned int8 MyValue
.field public static literal valuetype ErrorCodes no_error = int8(0)
.field public static literal valuetype ErrorCodes format error = int8(1)
.field public static literal valuetype ErrorCodes overflow error = int8(2)
.field public static literal valuetype ErrorCodes nonpositive error = int8(3)

}

.method public static void Start ()
{ .maxstack 5
.entrypoint
.locals init (valuetype ErrorCodes errorCode)

ldc.id.1 // load 1 (= format error)

stloc errorCode // store in local, note conversion to enum
ldloc errorCode

call void [mscorlib]System.Console::WriteLine (int32)

ldloca errorCode // address of enum

1dfld unsigned int8 valuetype ErrorCodes::MyValue

call void [mscorlib]System.Console::WriteLine (int32)

ret

}

end example]

14.4 Pointer types

66

Type ::= .. Clause
| Type ‘& 14.4.2
| Type ™ 14.4.1

A pointer type shall be defined by specifying a signature that includes the type of the location at which it
points. A pointer can be managed (reported to the CLI garbage collector, denoted by s, see §14.4.2) or
unmanaged (not reported, denoted by *, see §14.4.1)

Pointers can contain the address of a field (of an object or value type) or of an element of an array. Pointers
differ from object references in that they do not point to an entire type instance, but, rather, to the interior of an
instance. The CLI provides two type-safe operations on pointers:

e Loading the value from the location referenced by the pointer.
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e Storing an assignment-compatible value into the location referenced by the pointer.
For pointers into the same array or object (see Partition I) the following arithmetic operations are supported:

e Adding an integer value to a pointer (where that value is interpreted as a number of bytes), which
results in a pointer of the same kind

e Subtracting an integer value from a pointer (where that value is interpreted as a number of bytes),
which results in a pointer of the same kind. Note that subtracting a pointer from an integer value is
not permitted.

e Two pointers, regardless of kind, can be subtracted from one another, producing an integer value
that specifies the number of bytes between the addresses they reference.

The following is informative text

Pointers are compatible with unsigned int32 on 32-bit architectures, and with unsigned int64 on
64-bit architectures. They are best considered as unsigned int , whose size varies depending upon the
runtime machine architecture.

The CIL instruction set (see Partition III) contains instructions to compute addresses of fields, local variables,
arguments, and elements of vectors:

Instruction Description

ldarga Load address of argument
ldelema Load address of vector element
Idflda Load address of field

Idloca Load address of local variable
Idsflda Load address of static field

14.4.

Once a pointer is loaded onto the stack, the Idind class of instructions can be used to load the data item to
which it points. Similarly, the stind family of instructions can be used to store data into the location.

Note that the CLI will throw an InvalidoperationException for an ldflda instruction if the address is not
within the current application domain. This situation arises typically only from the use of objects with a base
type of System.MarshalByRefObject (see Partition IV).

1 Unmanaged pointers

Unmanaged pointers () are the traditional pointers used in languages like C and C++. There are no restrictions
on their use, although, for the most part, they result in code that cannot be verified. While it is perfectly valid to
mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how
they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data.
This is done by using *in a signature for a return value, local variable, or an argument, or by using a pointer
type for a field or array element.

e Unmanaged pointers are not reported to the garbage collector and can be used in any way that an
integer can be used.

e Verifiable code cannot dereference unmanaged pointers.

e Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is
safe only if one of the following is true:

a. The unmanaged pointer refers to memory that is not in memory used by the CLI for
storing instances of objects (“garbage-collected memory” or “managed memory”).

b. The unmanaged pointer contains the address of a field within an object.

c. The unmanaged pointer contains the address of an element within an array.
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14.4.

d. The unmanaged pointer contains the address where the element following the last
element in an array would be located.

Implementation Specific (Microsoft)

PEverify will show an error when declaring an unmanaged pointer. The rational is if a dereferenced
pointer cannot be used, it is not valuable. This also insures that any API that uses pointers cannot be
verifiable.

2 Managed pointers

Managed pointers (&) can point to an instance of a value type, a field of an object, a field of a value type, an
element of an array, or the address where an element just past the end of an array would be stored (for pointer
indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage
collector even if they do not point to managed memory.

Managed pointers are specified by using « in a signature for a return value, local variable or an argument, or by
using a byref type for a field or array element.

e Managed pointers can be passed as arguments, stored in local variables, and returned as values.
e If a parameter is passed by reference, the corresponding argument is a managed pointer.

e Managed pointers cannot be stored in static variables, array elements, or fields of objects or value
types.

e Managed pointers are not interchangeable with object references.

e A managed pointer cannot point to another managed pointer, but it can point to an object reference
or a value type.

e A managed pointer can point to a local variable, or a method argument

e Managed pointers that do not point to managed memory can be converted (using conv.u or
conv.ovf.u) into unmanaged pointers, but this is not verifiable.

e Unverified code that erroneously converts a managed pointer into an unmanaged pointer can
seriously compromise the integrity of the CLI. See Partition III (Managed Pointers) for more
details.

End

informative text

14.5

Method pointers

Type ::= ..

| method CallConv Type * ‘(’ Parameters *)'

68

Variables of type method pointer shall store the address of the entry point to a method with compatible
signature. A pointer to a static or instance method is obtained with the Idftn instruction, while a pointer to a
virtual method is obtained with the Idvirtftn instruction. A method can be called by using a method pointer
with the calli instruction. See Partition III for the specification of these instructions.

[Note: Like other pointers, method pointers are compatible with unsigned int64 on 64-bit architectures,
and with unsigned int32 and on 32-bit architectures. The preferred usage, however, is unsigned
native int , which works on both 32- and 64-bit architectures. end note]

[Example: Call a method using a pointer. The method MakeDecision: : Decide returns a method pointer to
either addone or Negate, alternating on each call. The main program calls MakeDecision: : Decide three times,
and after each call uses a calli instruction to call the method specified. The output printed is "-1 2 -1
indicating successful alternating calls.

.assembly Test { }
.assembly extern mscorlib { }
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.method public static int32 AddOne (int32 Input)
{ .maxstack 5

ldarg Input

ldc.i4.1

add

ret

}

.method public static int32 Negate (int32 Input)
{ .maxstack 5

ldarg Input

neg

ret

}

.class value sealed public MakeDecision extends
[mscorlib]System.ValueType
{ .field static bool Oscillate
.method public static method int32 *(int32) Decide ()
{ 1ldsfld bool valuetype MakeDecision::0scillate
dup
not
stsfld bool valuetype MakeDecision::0Oscillate
brfalse Negatelt
1ldftn int32 AddOne (int32)
ret

NegateIt:
l1dftn int32 Negate (int32)
ret

}

.method public static void Start ()
{ .maxstack 2
.entrypoint

ldc.i4d.1

call method int32 *(int32) valuetype MakeDecision::Decide ()
calli int32(int32)

call wvoid [mscorlib]System.Console::WriteLine (int32)

ldc.i4.1

call method int32 *(int32) valuetype MakeDecision::Decide ()
calli int32(int32)

call wvoid [mscorlib]System.Console::WriteLine (int32)

ldc.i4d.1

call method int32 *(int32) valuetype MakeDecision::Decide ()
calli int32(int32)

call wvoid [mscorlib]System.Console::WriteLine (int32)

ret

}

end example]

14.6 Delegates

Delegates (see Partition I) are the object-oriented equivalent of function pointers. Unlike function pointers,

delegates are object-oriented, type-safe, and secure. Delegates are reference types, and are declared in the form

of classes. Delegates shall have a base type of system.Delegate (see Partition [V).

Implementation-Specific (Microsoft)

Delegates have an immediate base type of System.MulticastDelegate, Which, in turn, has an
immediate base type of System.Delegate. (This is an extension, permitted by Partition IV.)
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Delegates shall be declared sealed, and the only members a delegate shall have are either the first two or all
four methods as specified here. These methods shall be declared runtime  and managed (§15.4.3). They
shall not have a body, since that body shall be created automatically by the VES. Other methods available on
delegates are inherited from the class system.Delegate in the Base Class Library (see Partition IV). The
delegate methods are:

e The instance constructor (named .ctor —and marked specialname and rtspecialname
see §10.5.1) shall take exactly two parameters, the first having type system.object, and the second having
type System.IntPtr. When actually called (via a newobj instruction, see Partition III), the first argument
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shall be an instance of the class (or one of its derived classes) that defines the target method, and the
second argument shall be a method pointer to the method to be called.

The 1nvoke method shall be virtual and its signature constrains the target method to which it can be
bound; see §14.6.1. The verifier treats calls to the Tnvoke method on a delegate just like it treats calls to
any other method.

The BeginInvoke method (§14.6.3.1), if present, shall be virtual and have a signature related to, but
not the same as, that of the Tnvoke method. There are two differences in the signature. First, the return
type shall be system.Tasyncresult (see Partition IV). Second, there shall be two additional parameters
that follow those of Tnvoke: the first of type System.AsyncCallback and the second of type
System.Object.

The Endinvoke method (§14.6.3) shall be virtual and have the same return type as the I1nvoke method.

It shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order

they occur in the signature for Invoke. In addition, there shall be an additional parameter of type
System.IAsyncResult.

Unless stated otherwise, a standard delegate type shall provide the two optional asynchronous methods,
BeginInvoke and EndInvoke.

[Example: The following declares a Delegate used to call functions that take a single integer and return
nothing. It provides all four methods so it can be called either synchronously or asynchronously. Because no
parameters are passed by reference (i.e., as managed pointers) there are no additional arguments to EndInvoke.

.assembly Test { }
.assembly extern mscorlib { }

.class private sealed StartStopEventHandler extends [mscorlib]System.Delegate

{ .method public specialname rtspecialname instance void .ClOr (object Instance,
native int Method) runtime managed {}
.method public virtual void Invoke (int32 action) runtime managed {}
.method public virtual class [mscorlib]System.IAsyncResult
BeginInvoke (int32 action, class [mscorlib]System.AsyncCallback callback,
object Instance) runtime managed {}
.method public virtual void EndInvoke (class
[mscorlib]System.IAsyncResult result) runtime managed {}

end example]

As with any class, an instance is created using the newobj instruction in conjunction with the instance
constructor. The first argument to the constructor shall be the object on which the method is to be called, or it
shall be null if the method is a static method. The second argument shall be a method pointer to a method on
the corresponding class and with a signature that matches that of the delegate class being instantiated.

Implementation-Specific (Microsoft)

The Microsoft implementation of the CLI allows the programmer to add more methods to a delegate, on
the condition that they provide an implementation for those methods (i.e., they cannot be marked
runtime ). Note that such use makes the resulting assembly non-portable.
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14.6.1 Delegate signature compatibility

Delegates can only be bound to target methods where the signatures of the delegate and the target method are
compatible. Compatibility is defined in terms of assignment compatibility (see Partition I), which is determined
by examining the parameter types, return type and calling convention. A delegate with method signature D can
be bound to a target method with method signature T if and only if their signatures satisfy the relationship D =
T. (Custom modifiers are not considered significant and do not impact compatibility.)

14.6.2 Synchronous calls to delegates

The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the
virtual method named 1nvoke on the delegate. The delegate itself is the first argument to this call (it serves as
the this pointer), followed by the other arguments as specified in the signature. When this call is made, the
caller shall block until the called method returns. The called method shall be executed on the same thread as the
caller.

[Example: Continuing the previous example, define a class Test that declares a method, onstartstop,
appropriate for use as the target for the delegate.

.class public Test
{ .field public int32 MyData
.method public void onStartStop(int32 action)
{ ret // put your code here
}
.method public specialname rtspecialname
instance void .CtOr (int32 Data)
{ ret // call base class constructor, store state, etc.
}
}

Then define a main program. This one constructs an instance of Test and then a delegate that targets the
onstartsStop method of that instance. Finally, call the delegate.

.method public static void Start ()
{ .maxstack 3
.entrypoint
.locals (class StartStopEventHandler DelegateOne,
class Test InstanceOne)
// Create instance of Test class
ldc.i4.1
newobj instance void Test::.CtOr (int32)
stloc InstanceOne

// Create delegate to onStartStop method of that class

ldloc InstanceOne

1ldftn instance void Test::onStartStop (int32)

newobj void StartStopEventHandler::.CtOr (object, native int)
stloc DelegateOne

// Invoke the delegate, passing 100 as an argument

ldloc DelegateOne

ldc.i4 100

callvirt instance void StartStopEventHandler::Invoke (int32)
ret

}

Note that the example above creates a delegate to a non-virtual function. If onstartstop had been a virtual
function, use the following code sequence instead:
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ldloc InstanceOne

dup
ldvirtftn instance void Test::onStartStop (int32)
newobj void StartStopEventHandler::.ctor (object, native int)

stloc DelegateOne
// Invoke the delegate, passing 100 as an argument
ldloc DelegateOne

end example)

[Note: The code sequence above shall use dup —not Idloc InstanceoOne twice. The dup code sequence is
easily recognized as type-safe, whereas alternatives would require more complex analysis. Verifiability of
code is discussed in Partition III end note]

14.6.3 Asynchronous calls to delegates

In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the
method to return. The called method shall be executed on a separate thread.

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used.

Note: if the caller thread terminates before the callee completes, the callee thread is unaffected. The callee
thread continues execution and terminates silently

Note: the callee can throw exceptions. Any unhandled exception propagates to the caller via the EndInvoke
method.

14.6.3.1 The Beginlnvoke method

An asynchronous call to a delegate shall begin by making a virtual call to the BeginInvoke method.
BeginInvoke is similar to the 1nvoke method (§14.6.1), but has two differences:

e [t has two additional parameters, appended to the list, of type System.AsyncCallback, and
System.Object.

e The return type of the method is system.IAsyncResult.

Although the BeginInvoke method therefore includes parameters that represent return values, these values are
not updated by this method. The results instead are obtained from the Endinvoke method (see below).

Unlike a synchronous call, an asynchronous call shall provide a way for the caller to determine when the call
has been completed. The CLI provides two such mechanisms. The first is through the result returned from the
call. This object, an instance of the interface system. TAsyncrResult, can be used to wait for the result to be
computed, it can be queried for the current status of the method call, and it contains the system.object value
that was passed to the call to BeginInvoke. See Partition IV.

The second mechanism is through the system.AsyncCallback delegate passed to BeginInvoke. The VES
shall call this delegate when the value is computed or an exception has been raised indicating that the result will
not be available. The value passed to this callback is the same value passed to the call to BeginInvoke. A
value of null can be passed for System.Asynccallback to indicate that the VES need not provide the callback.

[Rationale: This model supports both a polling approach (by checking the status of the returned
System. IAsyncResult) and an event-driven approach (by supplying a system.AsyncCallback) to
asynchronous calls. end rationale]

A synchronous call returns information both through its return value and through output parameters. Output
parameters are represented in the CLI as parameters with managed pointer type. Both the returned value and
the values of the output parameters are not available until the VES signals that the asynchronous call has
completed successfully. They are retrieved by calling the Endinvoke method on the delegate that began the
asynchronous call.

14.6.3.2 The EndInvoke method

The Endinvoke method can be called at any time after BeginInvoke. It shall suspend the thread that calls it
until the asynchronous call completes. If the call completes successfully, Endinvoke will return the value that
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would have been returned had the call been made synchronously, and its managed pointer arguments will point
to values that would have been returned to the out parameters of the synchronous call.

EndInvoke requires as parameters the value returned by the originating call to BeginInvoke (so that different
calls to the same delegate can be distinguished, since they can execute concurrently) as well as any managed
pointers that were passed as arguments (so their return values can be provided).
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15

Defining, referencing, and calling methods

Methods can be defined at the global level (outside of any type):

Decl i=

| .method MethodHeader ‘{’ MethodBodyltem* '}

as well as inside a type:

ClassMember : := ..

| .method MethodHeader ‘{’ MethodBodyltem* '}

15.1

15.1.

15.1.

15.1.

15.1.

15.2

74

Method descriptors

There are four constructs in ILAsm connected with methods. These correspond with different metadata
constructs, as described in §23.

1 Method declarations

A MethodDecl, or method declaration, supplies the method name and signature (parameter and return types),
but not its body. That is, a method declaration provides a MethodHeader but no MethodBodyltems. These are
used at call sites to specify the call target (call or callvirt instructions, see Partition III) or to declare an abstract
method. A MethodDecl has no direct logical couterpart in the metadata; it can be either a Method or a
MethodRef.

2 Method definitions

A Method, or method definition, supplies the method name, attributes, signature, and body. That is, a method
definition provides a MethodHeader as well as one or more MethodBodyltems. The body includes the method's
CIL instructions, exception handlers, local variable information, and additional runtime or custom metadata
about the method. See §10.

3 Method references

A MethodRef, or method reference, is a reference to a method. It is used when a method is called and that
method’s definition lies in another module or assembly. A MethodRef shall be resolved by the VES into a
Method before the method is called at runtime. If a matching Method cannot be found, the VES shall throw a
System.MissingMethodException. See §@

4 Method implementations

A MethodImpl, or method implementation, supplies the executable body for an existing virtual method. It
associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method). A
MethodImpl is used to provide an implementation for an inherited virtual method or a virtual method from an
interface when the default mechanism (matching by name and signature) would not provide the correct result.
See §22.27.

Static, instance, and virtual methods
Static methods are methods that are associated with a type, not with its instances.

Instance methods are associated with an instance of a type: within the body of an instance method it is possible
to reference the particular instance on which the method is operating (via the this pointer). It follows that
instance methods shall only be defined in classes or value types, but not in interfaces or outside of a type (i.e.,
globally). However, notice

1.  Instance methods on classes (including boxed value types), have a this pointer that is by default
an object reference to the class on which the method is defined.

2. Instance methods on (unboxed) value types, have a this pointer that is by default a managed
pointer to an instance of the type on which the method is defined.
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3. There is a special encoding (denoted by the syntactic item explicit in the calling convention,
see §15.3) to specify the type of the this pointer, overriding the default values specified here.

4.  The this pointer can be null.

Virtual methods are associated with an instance of a type in much the same way as for instance methods.
However, unlike instance methods, it is possible to call a virtual method in such a way that the implementation
of the method shall be chosen at runtime by the VES depending upon the type of object used for the this
pointer. The particular Method that implements a virtual method is determined dynamically at runtime (a
virtual call) when invoked via the callvirt instruction; whilst the binding is decided at compile time when
invoked via the call instruction (see Partition IITI).

With virtual calls (only), the notion of inheritance becomes important. A derived class can override a virtual
method inherited from its base classes, providing a new implementation of the method. The method attribute
newslot specifies that the CLI shall not override the virtual method definition of the base type, but shall treat
the new definition as an independent virtual method definition.

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with
a callvirt instruction. Similarly, the address of an abstract virtual method shall be computed with the Idvirtftn
instruction, and the Idftn instruction shall not be used.

[Rationale: With a concrete virtual method there is always an implementation available from the class that
contains the definition, thus there is no need at runtime to have an instance of a class available. Abstract virtual
methods, however, receive their implementation only from a subtype or a class that implements the appropriate
interface, hence an instance of a class that actually implements the method is required. end rationale]

15.3 Calling convention

CallConv ::= [instance [ explicit 11 [ CallKind ]

A calling convention specifies how a method expects its arguments to be passed from the caller to the called
method. It consists of two parts: the first deals with the existence and type of the tkis pointer, while the second
relates to the mechanism for transporting the arguments.

If the attribute instance s present, it indicates that a this pointer shall be passed to the method. This
attribute shall be used for both instance and virtual methods.

Implementation-specific (Microsoft)

For simplicity, the assembler automatically sets or clears the instance  bit in the calling convention
for a method definition based on the method attributes static  and virtual . In a method reference,
however, the instance  bit shall be specified directly since the information about static  or

virtual is not captured in a reference.

Normally, a parameter list (which always follows the calling convention) does not provide information about
the type of the this pointer, since this can be deduced from other information. When the combination

instance explicit is specified, however, the first type in the subsequent parameter list specifies the type
of the this pointer and subsequent entries specify the types of the parameters themselves.

CallKind ::=

default

| unmanaged cdecl

unmanaged fastcall

| unmanaged stdcall

| unmanaged thiscall

| vararg

Managed code shall have only the default  or vararg calling kind. default  shall be used in all cases
except when a method accepts an arbitrary number of arguments, in which case vararg shall be used.
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When dealing with methods implemented outside the CLI it is important to be able to specify the calling
convention required. For this reason there are 16 possible encodings of the calling kind. Two are used for the
managed calling kinds. Four are reserved with defined meaning across many platforms, as follows:

e unmanaged cdecl is the calling convention used by Standard C

e unmanaged stdcall specifies a standard C++ call
e unmanaged fastcall is a special optimized C++ calling convention
e unmanaged thiscall is a C++ call that passes a this pointer to the method

Four more are reserved for existing calling conventions, but their use is not maximally portable. Four more are
reserved for future standardization, and two are available for non-standard experimental use.

(In this context, "portable" means a feature that is available on all conforming implementations of the CLI.)

15.4 Defining methods

76

MethodHeader : :=

MethAttr= [ CallConv ] Type
[ marshal ‘(' [ NativeType 1) ]
MethodName [ ‘<’ GenPars'> 1°( Parameters *)’ ImplAttr+

Implementation-specific (Microsoft)
o gl reenletilon pemiils Paerapdas ] beresn (Cellonl ane lpe. ___________________
The method head (see also §10) consists of
e the calling convention (CallConv, see §15.3)
e any number of predefined method attributes (MethAttr, see §15.4.1.5)
e areturn type with optional attributes
e optional marshalling information (§7.4)
e a method name
e optional generic parameters (when defining generic methods, see §10.1.7)
e asignature
e and any number of implementation attributes (ImplAttr, see §15.4.3)

Methods that do not have a return value shall use void as the return type.

MethodName : :=

.cctor

| .ctor

| DottedName

Method names are either simple names or the special names used for instance constructors and type initializers.

Parameters ::= [ Param [‘,  Param ]+ |
Param ::=
| [ ParamAttr=] Type [ marshal ‘(" [ NativeType 1) 1[1d]
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The 1d, if present, is the name of the parameter. A parameter can be referenced either by using its name or the

zero-based index of the parameter. In CIL instructions it is always encoded using the zero-based index (the

name is for ease of use in ILAsm).

Note that, in contrast to calling a vararg method, the definition of a vararg method does not include any

ellipsis (“...”)

ParamAttr : :=

T T

| ToptT

| Tout?

Implementation-specific (Microsoft)

The implementation provides a fourth option for ParamAttr, namely, an Int32. This integer is a 16-bit
set of flags, whose meaning is unspecified.

15.4.

The parameter attributes shall be attached to the parameters (§22.33) and hence are not part of a method

signature.

[Note: Unlike parameter attributes, custom modifiers (modopt and modreq ) are part of the signature. Thus,
modifiers form part of the method’s contract while parameter attributes do not. end note]

in and out shall only be attached to parameters of pointer (managed or unmanaged) type. They specify

whether the parameter is intended to supply input to the method, return a value from the method, or both. If
neither is specified in is assumed. The CLI itself does not enforce the semantics of these bits, although they

can be used to optimize performance, especially in scenarios where the call site and the method are in different

application domains, processes, or computers.

opt specifies that this parameter is intended to be optional from an end-user point of view. The value to be

supplied is stored using the .param syntax (§15.4.1.4).

1 Method body

The method body shall contain the instructions of a program. However, it can also contain labels, additional

syntactic forms and many directives that provide additional information to i/asm and are helpful in the

compilation of methods of some languages.

MethodBodyltem - := Description Clause
.custom  CustomDecl Definition of custom attributes. 21

| .data  DataDecl Emits data to the data section 16.3

| .emitbyte Int32 Emits an unsigned byte to the code section | 15.4.1.1
of the method.

| .entrypoint Specifies that this method is the entry point | 15.4.1.2
to the application (only one such method is
allowed).

| .locals [init ] Defines a set of local variables for this 15.4.1.3

thod.
‘¢ LocalsSignature ')’ fetho

| .maxstack Int32 The int32 specifies the maximum number 154.1
of elements on the evaluation stack during
the execution of the method.

| .override TypeSpec “::' MethodName Use current method as the implementation | 10.3.2

for the method specified.
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MethodBodyltem : := Description Clause
| .override method CallConv Type Use current method as the implementation | 10.3.2
TypeSpec ‘' MethodName GenArity ‘(' for the method specified.
Parameters ‘)’
| .param Int327 [ ‘=" Fieldlnit 1 | Store a constant Fieldlnit value for 15.4.1.4
parameter /nt32
| .param type ‘[’ Int327 Specifies a type parameter for a generic 15.4.1.5
method
| ExternSourceDecl line  or#line 5.7
| Instr An instruction Partition VI
| Id"”’ A label 54
| ScopeBlock Lexical scope of local variables 15.4.4
| SecurityDecl .permission  or .permissionset 20
| SEHBlock An exception block 19

15.4.

1.1 The .emitbyte directive

MethodBodyltem : := ..

| .emitbyte Int32

15.4.

This directive causes an unsigned 8-bit value to be emitted directly into the CIL stream of the method, at the
point at which the directive appears.

[Note: The .emitbyte  directive is used for generating tests. It is not required in generating regular
programs. end note]

1.2 The .entrypoint directive
MethodBodyltem : := ..
| .entrypoint

78

The .entrypoint directive marks the current method, which shall be static, as the entry point to an
application. The VES shall call this method to start the application. An executable shall have exactly one entry
point method. This entry point method can be a global method or it can appear inside a type. (The effect of the
directive is to place the metadata token for this method into the CLI header of the PE file)

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings,
the strings shall represent the arguments to the executable, with index 0 containing the first argument. The
mechanism for specifying these arguments is platform-specific and is not specified here.

The return type of the entry point method shall be void , int32 , or unsigned int32 .Ifanint32 or
unsigned int32 is returned, the executable can return an exit code to the host environment. A value of 0
shall indicate that the application terminated ordinarily.

The accessibility of the entry point method shall not prevent its use in starting execution. Once started the VES
shall treat the entry point as it would any other method.

The entry point method cannot be defined in a generic class.

[Example: The following prints the first argument and returns successfully to the operating system:
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.method public static int32 MyEntry(string[] s) cil managed
{ .entrypoint
.maxstack 2

ldarg.0 // load and print the first argument
1dc.i4.0

ldelem.ref

call void [mscorlib]System.Console::WritelLine (string)
1dc.i4.0 // return success

ret

}

end example]

Implementation-specific (Microsoft)

Entrypoint methods for library assemblies are supported, but deprecated, and the signature of the
method does not conform to that for an application. For further details see Microsoft’s documentation.

.1.3 The .locals directive

The .locals  statement declares one or more local variables (see Partition I) for the current method.

MethodBodyltem ::= ..
| .locals [init 1°C LocalsSignature *)'
LocalsSignature ::= Local ['  Local ]+

Local ::= Type [ 1d]

15.4.

If present, the /d is the name of the corresponding local variable.

Ifinit  is specified, the variables are initialized to their default values according to their type: reference types
are initialized to nu/l and value types are zeroed out.

[Note: Verifiable methods shall include the init  keyword. See Partition III. end note]

Implementation-specific (Microsoft)

ilasm allows nested local variable scopes to be provided and allows locals in nested scopes to share the
same location as those in the outer scope. The information about local names, scoping, and overlapping
of scoped locals is persisted to the PDB (debugger symbol) file rather than the PE file itself.

Local ::= ['[[ Int32°17 ] Typelld]

The integer in brackets that precedes the Type, if present, specifies the local number (starting with 0)
being described. This allows nested locals to reuse the same location as a local in the outer scope. It is
not valid to overlap two local variables unless they have the same type. When no explicit index is
specified, the next unused index is chosen. That is, two locals never share an index unless the index is
given explicitly.

If init  is used, all local variables will be initialized to their default values, even variables in another
Jlocals  directive in the same method, which does not have the init  directive.

[Example: The following declares 4 local variables, each of which is to be initialized to its default value:
.locals init ( int32 i, int32 j, float32 f, int64[] vect)
end example]

1.4 The .param directive

MethodBodyltem ::= ..

| .param [ 327 ['=" Fieldlnit]
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This directive stores in the metadata a constant value associated with method parameter number /nt32,

see §22.9. While the CLI requires that a value be supplied for the parameter, some tools can use the presence
of this attribute to indicate that the tool rather than the user is intended to supply the value of the parameter.
Unlike CIL instructions, .param uses index 0 to specify the return value of the method, index 1 to specify the
first parameter of the method, index 2 to specify the second parameter of the method, and so on.

[Note: The CLI attaches no semantic whatsoever to these values—it is entirely up to compilers to implement
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15.4.

any semantic they wish (e.g., so-called default argument values). end note]

1.5 The .param type directive

MethodBodyltem : := ..

| .param type T 327

This directive allows type parameters for a generic type or method to be specified. /nt32 is the 1-based ordinal
of the type or method parameter to which the directive applies. [ Note: This directive is used in conjunction with

a .custom directive to associate a custom attribute with a type parameter. end note]

When a .param type directive is used within class scope, it refers to a type parameter of that class. When the

directive is used within method scope inside a class definition, it refers to a type parameter of that method.

Otherwise, the program is ill-formed.

[Example:
.class public G<T,U> {
.param type [1] // refers to T
.custom instance void TypeParamAttribute::.ctor() = (01 00 ... )
.method public void Foo<M>(!!0 m) {
.param type [1] // refers to M
.custom instance void AnotherTypeParamAttribute::.ctor () = (01 00 )
}
}
end example]
15.4.2 Predefined attributes on methods
MethAttr : := Description Clause
abstract The method is abstract  (shall also be 15.4.2.4
virtual).
| assembly Assembly accessibility 15.4.2.1
| compilercontrolled Compiler-controlled accessibility. 154.2.1
| famandassem Family and Assembly accessibility 15.4.2.1
| family Family accessibility 154.2.1
| famorassem Family or Assembly accessibility 15.4.2.1
| final This virtual method cannot be overridden by | 15.4.2.2
derived classes.
| hidebysig Hide by signature. Ignored by the runtime. 15.42.2
| newslot Specifies that this method shall get a new slot | 15.4.2.3
in the virtual method table.
| pinvokeimpl ‘(’ Method is actually implemented in native 15.4.2.5
OSTRING [ as QSTRING ] code on the underlying platform
PinvAttr= ')

80

Partition II




MethAttr : := Description Clause

| private Private accessibility 154.2.1
| public Public accessibility. 15.4.2.1
| rtspecialname The method name needs to be treated in a 154.2.6
special way by the runtime.
| specialname The method name needs to be treated in a 15.4.2.6
special way by some tool.
| static Method is static. 15.4.2.2
| virtual Method is virtual. 15.4.2.2
| strict Check accessibility on override 15.4.2.2
1 L -
2 Implementation-specific (Microsoft)
3 i The following syntax is supported:
4 MethAttr ::= .. | unmanagedexp | regsecobj
5 unmanagedexp indicates that the method is exported to unmanaged code using COM interop;
6 i regsecobj indicates that the method calls another method with security attributes.
7 ' Note that ilasm does not recognize the compilercontrolled keyword. Instead, use
9 The following combinations of predefined attributes are invalid:
10 e static combined with any of final , newslot , or virtual
11 e abstract combined with any of final  or pinvokeimpl
12 e compilercontrolled combined with any of final , rtspecialname , specialname , or
13 virtual
14 15.4.2.1 Accessibility information
MethAttr ::= .
| assembly
| compilercontrolled
| famandassem
| family
| famorassem
| private
| public
15
16 Only one of these attributes shall be applied to a given method. See Partition I.

17 15.4.2.2 Method contract attributes

MethAttr ::= ..

| final

| hidebysig

| static
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| virtual

| strict

15.4.

These attributes can be combined, except a method shall not be both static ~ and virtual ; only virtual
methods shall be final  or strict  ; and abstract methods shall not be final

final  methods shall not be overridden by derived classes of this type.

hidebysig is supplied for the use of tools and is ignored by the VES. It specifies that the declared method
hides all methods of the base class types that have a matching method signature; when omitted, the method
should hide all methods of the same name, regardless of the signature.

[Rationale: Some languages (such as C++) use a hide-by-name semantics while others (such as C#, Java™) use
a hide-by-name-and-signature semantics. end rationale]

static  and virtual are described in §15.2.

strict  virtual  methods can only be overridden if they are also accessible. See §23.1.10.

2.3 Overriding behavior
MethAttr ::= .
| newslot

15.4.

newslot shall only be used with virtual ~ methods. See 10.3.

2.4 Method attributes
MethAttr ::= ..
| abstract

15.4.

abstract  shall only be used with virtual methods that are not final . It specifies that an implementation
of the method is not provided but shall be provided by a derived class. abstract methods shall only appear
in abstract  types (§10.1.4).

2.5 Interoperation attributes
MethAttr ::= ..
| pinvokeimpl ‘(’ OSTRING [ as QSTRING | PinvAttr+ ")’

15.4.

See §15.5.2and §22.20.
2.6 Special handling attributes

MethAttr - := ..

| rtspecialname

| specialname

15.4.

The attribute rtspecialname specifies that the method name shall be treated in a special way by the
runtime. Examples of special names are .Ctor ~ (object constructor) and .cctor  (type initializer).

specialname indicates that the name of this method has special meaning to some tools.

3 Implementation attributes of methods

ImplAttr - := Description Clause

cil The method contains standard CIL code. 15.4.3.1

82
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ImplAttr - := Description Clause

| forwardref The body of this method is not specified 154.3.3
with this declaration.

| internalcall Denotes the method body is provided by 15433
the CLI itself

| managed The method is a managed method. 15.43.2

| native The method contains native code. 15.4.3.1

| noinlining The runtime shall not expand the method 154.3.3
inline.

| nooptimization The runtime shall not optimize the method | 15.4.3.3
when generating native code.

| runtime The body of the method is not defined, but | 15.4.3.1
is produced by the runtime.

| synchronized The method shall be executed in a single 15433
threaded fashion.

| unmanaged Specifies that the method is unmanaged. 15.4.3.2

Implementation-specific (Microsoft)
The following syntax is accepted:
ImplAttr ::= .. | preservesig

preservesig specifies the method signature is mangled to return HRESULT, with the return value
as a parameter.

.3.1 Code implementation attributes
ImplAttr - := ..

| cil

| native

| runtime

15.4.

These attributes are mutually exclusive; they specify the type of code the method contains.

cil specifies that the method body consists of cil code. Unless the method is declared abstract , the body of
the method shall be provided if cil s used.

native specifies that a method was implemented using native code, tied to a specific processor for which it
was generated. native  methods shall not have a body but instead refer to a native method that declares the
body. Typically, the PInvoke functionality (§15.5.2) of the CLI is used to refer to a native method.

runtime specifies that the implementation of the method is automatically provided by the runtime and is
primarily used for the methods of delegates (§14.6).

3.2 Managed or unmanaged
ImplAttr - := ..

| managed

| unmanaged

These shall not be combined. Methods implemented using CIL are managed. unmanaged is used primarily
with PInvoke (§15.5.2).
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1 15.4.3.3 Implementation information

ImplAttr - := ..

forwardref

internalcall

noinlining

nooptimization

| synchronized

These attributes can be combined.

forwardref  specifies that the body of the method is provided elsewhere. This attribute shall not be present
when an assembly is loaded by the VES. It is used for tools (like a static linker) that will combine separately
compiled modules and resolve the forward reference.

internalcall specifies that the method body is provided by this CLI (and is typically used by low-level
methods in a system library). It shall not be applied to methods that are intended for use across
implementations of the CLI.

Implementation-specific (Microsoft)

O 0 J ONWn bk W

—_
- O

internalcall allows the lowest level parts of the Base Class Library to wrap unmanaged code built
into the CLI.

—_ =
w N

noinlining specifies that the body of this method should not be included into the code of any caller
methods, by a CIL-to-native-code compiler; it shall be kept as a separate routine.

—_— =
W B

nooptimization specifies that a CIL-to-native-code compiler should not perform code optimizations.

—_
N

[Rationale: specifying that a method not be inlined ensures that it remains 'visible' for debugging (e.g.,
displaying stack traces) and profiling. It also provides a mechanism for the programmer to override the default
heuristics a CIL-to-native-code compiler uses for inlining. end rationale)

—_ =
[c BN

—_
O

synchronized  specifies that the whole body of the method shall be single-threaded. If this method is an
instance or virtual method, a lock on the object shall be obtained before the method is entered. If this method is
a static method, a lock on the closed type shall be obtained before the method is entered. If a lock cannot be
obtained, the requesting thread shall not proceed until it is granted the lock. This can cause deadlocks. The lock
is released when the method exits, either through a normal return or an exception. Exiting a synchronized
method using a tail. call shall be implemented as though the tail. had not been specified. noinlining

specifies that the runtime shall not inline this method. Inlining refers to the process of replacing the call
instruction with the body of the called method. This can be done by the runtime for optimization purposes.

15.4.4 Scope blocks

NS OIS \C T (O R (S 2 (S
AN B~ W —=O

\]
N

ScopeBlock ::="{"  MethodBodyltem* '}

28 A ScopeBlock is used to group elements of a method body together. For example, it is used to designate the
29 code sequence that constitutes the body of an exception handler.

30 Implementation-specific (Microsoft)

31
32

33
34
35
36

Scope blocks are syntactic sugar and primarily serve for readability and debugging purposes.
ScopeBlock ::='{" MethodBodyltem* '}’

A scope block defines the scope in which a local variable is accessible by its name. Scope blocks might
be nested, such that a reference of a local variable will first be resolved in the innermost scope block,
then at the next level, and so on until the top-most level of the method, is reached. A declaration in an
inner scope block hides declarations in the outer layers.
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If duplicate declarations are used, the reference will be resolved to the first occurrence. Even though
correct CIL, duplicate declarations are not recommended.

. Scoping does not affect the lifetime of a local variable. All local variables are created (and if specified
! initialized) when the method is entered. They stay alive until the execution of the method is completed.

variables are accessible from anywhere within the method by their index.

! The index is assigned to a local variable in the order of declaration. Scoping is ignored for indexing

i purposes. Thus, each local variable is assigned the next available index starting at the top of the

i method. This behavior can be altered by specifying an explicit index, as described by a LocalsSignature
as shown in §15.4.1.3.

L R a

The scoping does not affect the accessibility of a local variable by its zero based index. All local

15.4.5 vararg methods

vararg methods accept a variable number of arguments. They shall use the vararg calling convention
(§15.3).

At each call site, a method reference shall be used to describe the types of the fixed and variable arguments that
are passed. The fixed part of the argument list shall be separated from the additional arguments with an ellipsis
(see Partition I). [Note: The method reference is represented by either a MethodRef (§22.25) or MethodDef
(§22.26). A MethodRef might be needed even if the method is defined in the same assembly, because the
MethodDef only describes the fixed part of the argument list. If the call site does not pass any additional
arguments, then it can use the MethodDef for vararg methods defined in the same assembly. end note]

The vararg arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction
arglist (see Partition III). The handle can be used to create an instance of the value type System.ArgIterator
which provides a type-safe mechanism for accessing the arguments (see Partition [V).

[Example: The following example shows how a vararg method is declared and how the first vararg
argument is accessed, assuming that at least one additional argument was passed to the method:

.method public static vararg void MyMethod (int32 required) {
.maxstack 3
.locals init (valuetype [mscorlib]System.ArgIterator it, int32 x)

ldloca it // initialize the iterator

initobj valuetype [mscorlib]System.ArglIterator

ldloca it

arglist // obtain the argument handle

call instance void [mscorlib]System.ArgIterator::.CtOr (valuetype
[mscorlib]System.RuntimeArgumentHandle) // call constructor of iterator

/* argument value will be stored in x when retrieved, so load
address of x */

ldloca X

ldloca it

// retrieve the argument, the argument for required does not matter

call instance typedref [mscorlib]System.Arglterator::GetNextArg/()

call object [mscorlib]System.TypedReference: :ToObject (typedref) /* retrieve

the
object */
castclass [mscorlib]System.Int32 // cast and unbox
unbox int32
cpobj int32 // copy the value into x
// first vararg argument 1is stored in x
ret

}

end example]
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15.5 Unmanaged methods

15.5.

In addition to supporting managed code and managed data, the CLI provides facilities for accessing pre-
existing native code from the underlying platform, known as unmanaged code. These facilities are, by
necessity, platform-specific and hence are only partially specified here.

This Standard specifies:

e A mechanism in the file format for providing function pointers to managed code that can be called
from unmanaged code (§15.5.1).

e A mechanism for marking certain method definitions as being implemented in unmanaged code
(called platform invoke, see §15.5.2).

e A mechanism for marking call sites used with method pointers to indicate that the call is to an
unmanaged method (§15.5.3).

e A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on all
implementations of the CLI (§15.5.5). The set of types is extensible through the use of custom
attributes and modifiers, but these extensions are platform-specific.

1 Method transition thunks

[Note: As this mechanism is not part of the Kernel Profile, it might not be present in all conforming
implementations of the CLI. See Partition IV. end note]

In order to call managed code from unmanaged code, some platforms require a specific transition sequence to
be performed. In addition, some platforms require that the representation of data types be converted (data
marshaling). Both of these problems are solved by the .vtfixup directive. This directive can appear several
times, but only at the top level of a CIL assembly file, as shown by the following grammar:

Decl ::= Clause

Jvitfixup VTFixupDecl

N
—
(-]

The .vtfixup directive declares that at a certain memory location there is a table that contains metadata
tokens referring to methods that shall be converted into method pointers. The CLI will do this conversion
automatically when the file containing the .vtfixup directive is loaded into memory for execution. The
declaration specifies the number of entries in the table, the kind of method pointer that is required, the width of
an entry in the table, and the location of the table:

VTFixupDecl ::=

[ Int32 ] VTFixupAttr= at DataLabel

VTFixupAttr ::=

fromunmanaged

| int32

| int64

86

The attributes int32 and int64  are mutually exclusive, with int32  being the default. These attributes
specify the width of each slot in the table. Each slot contains a 32-bit metadata token (zero-padded if the table
has 64-bit slots), and the CLI converts it into a method pointer of the same width as the slot.

If fromunmanaged is specified, the CLI will generate a thunk that will convert the unmanaged method call
to a managed call, call the method, and return the result to the unmanaged environment. The thunk will also
perform data marshalling in the platform-specific manner described for platform invoke.
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Implementation-specific (Microsoft)
The following syntax is also supported:
VTFixupAttr ::= .. | retainappdomain

retainappdomain indicates that the generated unmanaged-to-managed thunk will ensure method
calls execute in the same application domain that the caller thread was last in, or in the default domain
if this is the first time the caller thread has entered managed code.

15.5.

The ILAsm syntax does not specify a mechanism for creating the table of tokens, but a compiler can simply
emit the tokens as byte literals into a block specified using the .data directive.

2 Platform invoke

Methods defined in native code can be invoked using the platform invoke (also know as PInvoke or p/invoke)
functionality of the CLI. Platform invoke will switch from managed to unmanaged state and back, and also
handle necessary data marshalling. Methods that need to be called using PInvoke are marked as

pinvokeimpl . In addition, the methods shall have the implementation attributes native  and unmanaged
(§15.4.2.4).

MethAttr : := Description Clause

pinvokeimpl ‘(" OSTRING [ as QSTRING ] Implemented in native code
PinvAttr+*)’

| . 15.4.1.5

The first quoted string is a platform-specific description indicating where the implementation of the method is
located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the
method). The second (optional) string is the name of the method as it exists on that platform, since the
platform can use name-mangling rules that force the name as it appears to a managed program to differ from
the name as seen in the native implementation (this is common, for example, when the native code is generated
by a C++ compiler).

Only static methods, defined at global scope (i.e., outside of any type), can be marked pinvokeimpl . A
method declared with pinvokeimpl  shall not have a body specified as part of the definition.

PinvAttr - := Description (platform-specific, suggestion only)
ansi ANSI character set.

| autochar Determine character set automatically.

| cdecl Standard C style call

| fastcall C style fastcall.

| stdcall Standard C++ style call.

| thiscall The method accepts an implicit this pointer.

| unicode Unicode character set.

| platformapi Use call convention appropriate to target platform.

Implementation-specific (Microsoft)

platformapi is not recognized by ilasm. Instead use winapi . If none of cdecl , fastcall |
stdcall thiscall or winapi are specified, the calling convention will default to winapi

The attributes ansi , autochar , and unicode are mutually exclusive. They govern how strings will be
marshaled for calls to this method: ansi indicates that the native code will receive (and possibly return) a
platform-specific representation that corresponds to a string encoded in the ANSI character set (typically this
would match the representation of a C or C++ string constant); autochar indicates a platform-specific
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representation that is “natural” for the underlying platform; and unicode indicates a platform-specific
representation that corresponds to a string encoded for use with Unicode methods on that platform.

The attributes cdecl , fastcall , stdcall , thiscall , and platformapi are mutually exclusive.
They are platform-specific and specify the calling conventions for native code.

Implementation-specific (Microsoft)

In addition, the Microsoft implementation of the CLI on Microsoft Windows™ supports the following
attributes:

lasterr  to indicate that the native method supports C style last error querying.

nomangle to indicate that the name in the DLL should be used precisely as specified, rather than
attempting to add A (for ascii) or W (widechar) to find platform-specific variants based on the type of
string marshalling requested.

[Example: The following shows the declaration of the method MessageBeep located in the Microsoft
Windows™ DLL user32.dll:

.method public static pinvokeimpl ("user32.d1l1l" stdcall) int8
MessageBeep (unsigned int32) native unmanaged {}

end example]
3 Method calls via function pointers

Unmanaged methods can also be called via function pointers. There is no difference between calling managed
or unmanaged methods with pointers. However, the unmanaged method needs to be declared with
pinvokeimpl  as described in §15.5.2. Calling managed methods with function pointers is described

in §14.5.

.4 COM interop

Implementation-specific (Microsoft)

Unmanaged COM operates primarily by publishing uniquely identified interfaces and then sharing them
between implementers (traditionally called “servers”) and users (traditionally called “clients”) of a
given interface. It supports a rich set of types for use across the interface, and the interface itself can
supply named constants and static methods, but it does not supply instance fields, instance methods, or
virtual methods.

The CLI provides mechanisms useful to both implementers and users of existing classical COM
interfaces. The goal is to permit programmers to deal with managed data types (thus eliminating the
need for explicit memory management) while at the same time allowing interoperability with existing
unmanaged servers and clients. COM Interop does not support the use of global functions (i.e., methods
that are not part of a managed type), static functions, or parameterized constructors.

Given an existing classical COM interface definition as a type library, the tlbimp tool produces a file
that contains the metadata describing that interface. The types it exposes in the metadata are managed
counterparts of the unmanaged types in the original interface.

Implementers of an existing classical COM interface can import the metadata produced by tlbimp and
then write managed types that provide the implementation of the methods required by that interface.
The metadata specifies the use of managed data types in many places, and the CLI provides automatic
marshaling (i.e., copying with reformatting) of data between the managed and unmanaged data types.

Implementers of a new service can simply write a managed program whose publicly visible types
adhere to a simple set of rules. They can then run the #/bexp tool to produce a type library for classical
COM users. This set of rules guarantees that the data types exposed to the classical COM user are
unmanaged types that can be marshaled automatically by the CLI.

Implementers need to run the RegAsm tool to register their implementation with classical COM for
location and activation purposes — if they wish to expose managed services to unmanaged code
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Users of existing classical COM interfaces simply import the metadata produced by t/bimp. They can
then reference the (managed) types defined there and the CLI uses the assembly mechanism and
activation information to locate and instantiate instances of objects implementing the interface. Their
code is the same whether the implementation of the interfaces is provided using classical COM
(unmanaged) code or the CLI (managed) code: the interfaces they see use managed data types, and
hence do not need explicit memory management.

For some existing classical COM interfaces, the CLI provides an implementation of the interface. In
some cases the EE allows the user to specify all or parts of the implementation; for others it provides
the entire implementation.

.5 Data type marshaling

While data type marshaling is necessarily platform-specific, this Standard specifies a minimum set of data
types that shall be supported by all conforming implementations of the CLI. Additional data types can be
supported in a platform-specific manner, using custom attributes and/or custom modifiers to specify any special
handling required on the particular implementation.

The following data types shall be marshaled by all conforming implementations of the CLI; the native data type
to which they conform is implementation-specific:

e All integer data types (int8 ,intl6 , unsigned int8 , bool , char , etc.) including the
native integer types.

e Enumerations, as their underlying data type.

o All floating-point data types (float32  and float64 ), if they are supported by the CLI
implementation for managed code.

e The type string
e Unmanaged pointers to any of the above types.

In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but
need not be supported in the reverse direction (i.e., as return types when calling unmanaged methods or as
parameters when calling from unmanaged methods into managed methods):

e  One-dimensional zero-based arrays of any of the above

e Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it
should not be assumed that marshaling a delegate will produce a function pointer that can be used
directly from unmanaged code).

Finally, the type system.Runtime.InteropServices.GCHandle can be used to marshal an object to unmanaged
code. The unmanaged code receives a platform-specific data type that can be used as an “opaque handle” to a
specific object. See Partition IV.

.6 Managed native calling conventions (x86)

Implementation Specific (Microsoft)

This subclause is intended for an advanced audience. It describes the details of a native method call
from managed code on the x86 architecture. The information provided in this subclause can be
important for optimization purposes. This subclause is not important for the further understanding of
the CLI and can be skipped.

There are two managed native calling conventions used on the x86. They are described here for
completeness and because knowledge of these conventions allows an unsafe mechanism for bypassing
the overhead of a managed to unmanaged code transition.

Methods of generic types, or generic methods, can share code between various instantiations. A certain
category of such methods receive a hidden argument as the last argument. This argument can be used by
the shared code to access instantiation-specific values.
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15.5.6.1 Standard 80x86 calling convention

Implementation Specific (Microsoft)

The standard native calling convention is a variation on the fastcall convention used by VC. It differs
primarily in the order in which arguments are pushed on the stack.

The only values that can be passed in registers are managed and unmanaged pointers, object references,
and the built-in integer types int8, unsigned int8, int16, unsigned int16, int32, unsigned it32, native int,
i native unsigned int, and enums and value types with only one primitive-type field. Enums are passed as
i their underlying type. All floating-point values and 8-byte integer values are passed on the stack. When
i the return type is a value type that cannot be passed in a register, the caller shall create a buffer to hold
i the result and pass the address of this buffer as a hidden parameter.

Arguments are passed in left-to-right order, starting with the tAis pointer (for instance and virtual
 methods), followed by the return buffer pointer if needed, followed by the user-specified argument
+ values. The first of these that can be placed in a register is put into ECX, the next in EDX, and all

subsequent ones are passed on the stack.

The return value is handled as follows:
1) Floating-point values are returned on the top of the hardware FP stack.
I 2) Integers up to 32 bits long are returned in EAX.

; 3) 64-bit integers are passed with EAX holding the least significant 32 bits and EDX holding the most
significant 32 bits.

4) All other cases require the use of a return buffer, through which the value is returned.

! In addition, there is a guarantee that if a return buffer is used a value is stored there only upon ordinary
exit from the method. The buffer is not allowed to be used for temporary storage within the method and
its contents will be unaltered if an exception occurs while executing the method.

[Example:
static System.Int32 f(int32 x)

static float64 f(int32 x, int32 y, int32 z)

x is passed in ECX, y in EDX, z on the top of stack; the return value is on the top of the floating-point
(FP) stack

static float64 f(int32 x, float64 y, int32 z)

x is passed in ECX, y on the top of the stack (not FP stack), z in EDX; the return value is on the top of
the FP stack

virtual float64 f(int32 x, int64 y, int64 z)

this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is top of the
stack); the return value is on the top of the FP stack

virtual int64 f(int32 x, float64 y, float64 z)

this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is on top of
the stack); the return value is in EDX/EAX

virtual [mscorlib]System.Guid f(int32 x, float64 y, float64 z)

Since system.Guid is a value type the this pointer is passed in ECX, a pointer to the return buffer is
passed in EDX, x is pushed, then y, and then z (hence z is on top the of stack); the return value is stored
i in the return buffer. end example]

The incoming argument (x) is placed in ECX; the return value is in EAX
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.6.2 Vararg x86 calling convention

Implementation Specific (Microsoft)

All user-specified arguments are passed on the stack, pushed in left-to-right order. Following the last
argument (hence on top of the stack upon entry to the method body) a special opaque “handle to
argument type data” is passed which provides information about the types of the arguments that have
been pushed. The caller is responsible for popping off the arguments.

As with the standard calling convention, the tAis pointer and a return buffer (if either is needed) are
passed in ECX and/or EDX.

Values are returned in the same way as for the standard calling convention.

.6.3 Fast calls to unmanaged code

Implementation Specific (Microsoft)

Transitions from managed to unmanaged code require a small amount of overhead to allow exceptions
and garbage collection to correctly determine the execution context. On an x86 processor, under the
best circumstances, these transitions take approximately 5 instructions per call/return from managed to
unmanaged code. In addition, any method that includes calls with transitions incurs an 8 instruction
overhead spread across the calling method’s prolog and epilog.

This overhead can become a factor in performance of certain applications. For use in unverifiable code
only, there is a mechanism to call from managed code to unmanaged code without the overhead of a
transition. A “fast native call” is accomplished by the use of a calli instruction which indicates that the
destination is managed even though the code address to which it refers is unmanaged. This can be
arranged, for example, by initializing a variable of type function pointer in unmanaged code.

Clearly, this mechanism shall be tightly constrained since the transition is essential if there is any
possibility of a garbage collection or exception occurring while in the unmanaged code. The following
restrictions apply to the use of this mechanism:

1) The unmanaged code shall follow one of the two managed calling conventions (regular and vararg)
that are specified below. In V1, only the regular calling convention is supported for fast native calls.

2) The unmanaged code shall not execute for any extended time, since garbage collection cannot begin
while executing this code. It is wise to keep this under 100 instructions under all control flow paths.

3) The unmanaged code shall not throw an exception (managed or unmanaged), including access
violations, etc. Page faults are not considered an exception for this purpose.

4) The unmanaged code shall not call back into managed code.

5) The unmanaged code shall not trigger a garbage collection (this usually follows from the restriction
on calling back to managed code).

6) The unmanaged code shall not block. That is, it shall not call any OS-provided routine that might
block the thread (synchronous I/0O, explicitly acquiring locks, etc.) Again, page faults are not a
problem for this purpose.

7) The managed code that calls the unmanaged method shall not have a long, tight loop in which it
makes the call. The total time for the loop to execute should remain under 100 instructions or the loop
should include at least one call to a managed method. More technically, the method including the call
shall produce “fully interruptible native code.” In future versions, there can be a way to indicate this as
a requirement on a method.

Restrictions 2 through 6 apply not only to the unmanaged code called directly, but to anything it can
call.
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16 Defining and referencing fields

Fields are typed memory locations that store the data of a program. The CLI allows the declaration of both
instance and static fields. While static fields are associated with a type, and are shared across all instances of
that type, instance fields are associated with a particular instance of that type. Once instantiated, an instance
has its own copy of each instance field.

The CLI also supports global fields, which are fields declared outside of any type definition. Global fields shall

0 NN kW

be static.
A field is defined by the .field  directive: (§22.15)
Field ::= field FieldDecl
FieldDecl ::=
[T 1Int32 1 ] FieldAttr- Type Id[ ‘=" Fieldlnit | at DataLabel ]

16.1

The FieldDecl has the following parts:

Global fields shall have a data label associated with them. This specifies where, in the PE file, the data for that

An optional integer specifying the byte offset of the field within an instance (§10.7). If present, the
type containing this field shall have the explicit

for global or static fields.

Any number of field attributes (§16.2).

Type.

Name.

Optionally, either a Fieldlnit clause (§16.2) or a DataLabel (§5.4) clause.

field is located. Static fields of a type can, but need not, be assigned a data label.

[Example:

.field private class

[.module Counter.dll]Counter counter

.field public static initonly int32 pointCount

.field private int32 xOrigin

.field public static int32 count at D 0001B040

end example]

Attributes of fields

layout attribute. An offset shall not be supplied

Attributes of a field specify information about accessibility, contract information, interoperation attributes, as

well as information on special handling.

The following subclauses contain additional information on each group of predefined attributes of a field.

FieldAttr : := Description Clause
assembly Assembly accessibility. 16.1.1

| famandassem Family and Assembly accessibility. 16.1.1

| family Family accessibility. 16.1.1

| famorassem Family or Assembly accessibility. 16.1.1

| initonly Marks a constant field. 16.1.2

| literal Specifies metadata field. No memory is allocated | 16.1.2

at runtime for this field.
| marshal ‘(' NativeType *)' Marshaling information. 16.1.3

92
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FieldAttr - := Description Clause
| notserialized Reserved (indicates this field is not to be 16.1.2
serialized).
| private Private accessibility. 16.1.1
| compilercontrolled Compiler controlled accessibility. 16.1.1
| public Public accessibility. 16.1.1
| rtspecialname Special treatment by runtime. 16.14
| specialname Special name for other tools. 16.14
| static Static field. 16.1.2

16.1

16.1.

16.1.

.1 Accessibility information

The accessibility attributes are assembly , famandassem , family , famorassem , private
compilercontrolled ,and public . These attributes are mutually exclusive.

Accessibility attributes are described in §8.2.

2 Field contract attributes

Field contract attributes are initonly |, literal , Static  and notserialized . These attributes can be
combined; however, only static  fields shall be literal . The default is an instance field that can be
serialized.

static  specifies that the field is associated with the type itself rather than with an instance of the type. Static
fields can be accessed without having an instance of a type, e.g., by static methods. As a consequence, within
an application domain, a static field is shared between all instances of a type, and any modification of this field
will affect all instances. If static  is not specified, an instance field is created.

initonly marks fields which are constant after they are initialized. These fields shall only be mutated inside
a constructor. If the field is a static field, then it shall be mutated only inside the type initializer of the type in
which it was declared. If it is an instance field, then it shall be mutated only in one of the instance constructors
of the type in which it was defined. It shall not be mutated in any other method or in any other constructor,
including constructors of derived classes.

[Note: The use of Idflda or Idsflda on an initonly field makes code unverifiable. In unverifiable code, the
VES need not check whether initonly fields are mutated outside the constructors. The VES need not report
any errors if a method changes the value of a constant. However, such code is not valid. end note]

Implementation Specific (Microsoft)

notserialized specifies that this field is not serialized when an instance of this type is serialized
(§10.1.6). It has no meaning on global or static fields, or if the type does not have the serializable
attribute.

literal specifies that this field represents a constant value; such fields shall be assigned a value. In contrast
to initonly fields, literal fields do not exist at runtime. There is no memory allocated for them.
literal fields become part of the metadata, but cannot be accessed by the code. literal fields are

assigned a value by using the FieldInit syntax (§16.2).

[Note: 1t is the responsibility of tools generating CIL to replace source code references to the literal with its
actual value. Hence changing the value of a literal requires recompilation of any code that references the
literal. Literal values are, thus, not version-resilient. end note]

3 Interoperation attributes

There is one attribute for interoperation with pre-existing native applications; it is platform-specific and shall
not be used in code intended to run on multiple implementations of the CLI. The attribute is marshal and
specifies that the field’s contents should be converted to and from a specified native data type when passed to
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16.1.

unmanaged code. Every conforming implementation of the CLI will have default marshaling rules as well as
restrictions on what automatic conversions can be specified using the marshal attribute. See also §15.5.5.

[Note: Marshaling of user-defined types is not required of all implementations of the CLI. It is specified in this
standard so that implementations which choose to provide it will allow control over its behavior in a consistent
manner. While this is not sufficient to guarantee portability of code that uses this feature, it does increase the
likelihood that such code will be portable. end note]

4 Other attributes
The attribute rtspecialname indicates that the field name shall be treated in a special way by the runtime.

[Rationale: There are currently no field names that are required to be marked with rtspecialname . 1Itis
provided for extensions, future standardization, and to increase consistency between the declaration of fields
and methods (instance and type initializer methods shall be marked with this attribute). By convention, the
single instance field of an enumeration is named “value ” and marked with rtspecialname . end
rationale]

The attribute specialname indicates that the field name has special meaning to tools other than the runtime,
typically because it marks a name that has meaning for the CLS (see Partition I).

16.2 Field init metadata

The Fieldlnit metadata can optionally be added to a field declaration. The use of this feature shall not be
combined with a data label.

The FieldInit information is stored in metadata and this information can be queried from metadata. But the CLI
does not use this information to automatically initialize the corresponding fields. The field initializer is
typically used with literal fields (§16.1.2) or parameters with default values. See §22.9.

The following table lists the options for a field initializer. Note that while both the type and the field initializer
are stored in metadata there is no requirement that they match. (Any importing compiler is responsible for
coercing the stored value to the target field type). The description column in the table below provides
additional information.

Fieldlnit ::= Description
bool ‘(' true | false’) Boolean value, encoded as true or false
| bytearray ‘(’ Bytes ')’ String of bytes, stored without conversion. Can be

padded with one zero byte to make the total byte-count
an even number

| char‘( Int32) 16-bit unsigned integer (Unicode character)

| float32 ‘(" Float64 ') 32-bit floating-point number, with the floating-point
number specified in parentheses.

| float32 ‘(" Int32') Int32 is binary representation of float

| float64 ‘(" Float64 ') 64-bit floating-point number, with the floating-point
number specified in parentheses.

| float64 ‘(" Int64 ") Int64 is binary representation of double

| [unsigned 1] int8°‘( Int32y 8-bit integer with the value specified in parentheses.

| [unsigned 1] intl6 ‘( Int32') 16-bit integer with the value specified in parentheses.

| [unsigned ] int32‘( Int32') 32-bit integer with the value specified in parentheses.

| [unsigned ] int64 ‘( Int64 ') 64-bit integer with the value specified in parentheses.

| OSTRING String. OSTRING is stored as Unicode

| nullref Null object reference
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Implementation Specific (Microsoft)

ilasm does not recognize the optional unsigned modifier before the int8 ,intl6 ,int32 or
inté4 keywords

[Example: The following shows a typical use of this:
.field public static literal valuetype ErrorCodes no error = int8(0)

The field named no_error  is a literal of type ErrorCodes  (a value type) for which no memory is
allocated. Tools and compilers can look up the value and detect that it is intended to be an 8-bit signed integer
whose value is 0. end example]

16.3 Embedding data in a PE file

There are several ways to declare a data field that is stored in a PE file. In all cases, the .data directive is
used.

Data can be embedded in a PE file by using the .data directive at the top-level.

Decl ::= Clause

.data  DataDecl

| 6.6
Data can also be declared as part of a type:
ClassMember : := Clause
.data DataDecl
| .. 10.2
Yet another alternative is to declare data inside a method:
MethodBodyltem - := Clause
.data DataDecl
| 154.1

16.3

.1 Data declaration

A .data directive contains an optional data label and the body which defines the actual data. A data label
shall be used if the data is to be accessed by the code.

DataDecl ::= [ DataLabel ‘=" ] DdBody

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an
array.

DdBOdy HE

DdlItem

| { DdltemList '}

A list of items consists of any number of items:

DdltemList ::= Ddltem [‘,  DdltemList ]

The list can be used to declare multiple data items associated with one label. The items will be laid out in the
order declared. The first data item is accessible directly through the label. To access the other items, pointer
arithmetic is used, adding the size of each data item to get to the next one in the list. The use of pointer
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arithmetic will make the application non-verifiable. (Each data item shall have a DataLabel if it is to be
referenced afterwards; missing a DataLabel is useful in order to insert alignment padding between data items)

A data item declares the type of the data and provides the data in parentheses. If a list of data items contains
items of the same type and initial value, the grammar below can be used as a short cut for some of the types:
the number of times the item shall be replicated is put in brackets after the declaration.

Ddltem : := Description
‘& "y Address of label

| bytearray ‘(’ Bytes )’ Array of bytes

| char ™ *( OSTRING *)’ Array of (Unicode) characters

| float32 [‘C Float64") 1[ [ Im327T ] ii;ﬁzaiigating—point number, can be

| floaté4 [ (' Float64 'Y ][ [ Im32 7T ] ii;ﬁzaigating—point number, can be

| int8 [ C Int32Y 1[‘[ Int32 7 ] 8-bit integer, can be replicated

| intl6 [ “C Im32°y [ ‘[ 327 ] 16-bit integer, can be replicated

| int32 [ “(C Int32) 1[‘[ 327 ] 32-bit integer, can be replicated

| int6d [ C Int64 ") [ ‘[ Int32 7 ] 64-bit integer, can be replicated

[Example:

The following declares a 32-bit signed integer with value 123:
.data theInt = int32(123)

The following declares 10 replications of an 8-bit unsigned integer with value 3:
.data theBytes = int8 (3) [10]

end example]

16.3.2 Accessing data from the PE file

The data stored in a PE File using the .data directive can be accessed through a static  variable, either
global or a member of a type, declared at a particular position of the data:

FieldDecl ::= FieldAttr= Type Id at DataLabel

The data is then accessed by a program as it would access any other static variable, using instructions such as
ldsfld ,Idsflda ,and so on (see Partition III).

The ability to access data from within the PE File can be subject to platform-specific rules, typically related to
section access permissions within the PE File format itself.

[Example: The following accesses the data declared in the example of §16.3.1. First a static variable needs to
be declared for the data, e.g., a global static variable:

.field public static int32 myInt at thelInt
Then the static variable can be used to load the data:

1ldsfld int32 myInt
// data on stack

end example]

16.3.3 Unmanaged thread-local storage
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Each PE file has a particular section whose initial contents are copied whenever a new thread is created.
This section is called unmanaged thread local storage. The Microsoft implementation of ilasm allows
the creation of this unmanaged thread local storage by extending the data declaration to include an
option attribute, tls

DataDecl ::= [tls ][ DataLabel ‘=" | DdBody

The CLI provides two mechanisms for dealing with thread-local storage (tls ): an unmanaged
mechanism and a managed mechanism. The unmanaged mechanism has a number of restrictions which
are carried forward directly from the underlying platform into the CLI. For example, the amount of
thread local storage is determined when the PE file is loaded and cannot be expanded. The amount is
computed based on the static dependencies of the PE file, DLLs that are loaded as a program executes
cannot create their own thread local storage through this mechanism. The managed mechanism, which
does not have these restrictions, is part of the Base Class Library.

For unmanaged tls there is a particular native code sequence that can be used to locate the start of this
section for the current thread. The CLI respects this mechanism. That is, when a reference is made to a
static variable with a fixed RV A in the PE file and that RV A is in the thread-local section of the PE, the
native code generated from the CIL will use the thread-local access sequence.

This has two important consequences:

A static variable with a specified RV A shall reside entirely in a single section of the PE file. The RVA
specifies where the data begins and the type of the variable specifies how large the data area is.

When a new thread is created it is only the data from the PE file that is used to initialize the new copy
of the variable. There is no opportunity to run the type initializer. For this reason it is probably wise to
restrict the use of unmanaged thread local storage to the primitive numeric types and value types with

explicit layout that have a fixed initial value and no type initializer.

16.4 Initialization of non-literal static data

This subclause and its subclauses contain only informative text.

Many languages that support static data provide for a means to initialize that data before the program begins
execution. There are three common mechanisms for doing this, and each is supported in the CLI.

16.4.1 Data known at link time

When the correct value to be stored into the static data is known at the time the program is linked (or compiled
for those languages with no linker step), the actual value can be stored directly into the PE file, typically into
the data area (§16.3). References to the variable are made directly to the location where this data has been
placed in memory, using the OS-supplied fix-up mechanism to adjust any references to this area if the file loads
at an address other than the one assumed by the linker.

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric types or is
a value type with explicit type layout and no embedded references to managed objects. In this case the data is
laid out in the data area as usual and the static variable is assigned a particular RVA (i.e., offset from the start
of the PE file) by using a data label with the field declaration (using the at syntax).

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition I).
An application domain is intended to isolate two applications running in the same OS process from one another
by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data
accessed via this mechanism is visible to all application domains in the process, thus violating the application
domain isolation boundary.

16.5 Data known at load time

When the correct value is not known until the PE file is loaded (for example, if it contains values computed
based on the load addresses of several PE files) it can be possible to supply arbitrary code to run as the PE file
is loaded, but this mechanism is platform-specific and might not be available in all conforming
implementations of the CLL
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Implementation Specific (Microsoft)

i process-wide loader lock, and the restrictions imposed by the underlying operating system make this a
fragile mechanism. The details are provided in §25.3.3.3.

! While this mechanism is available in the CLI, its use is strongly discouraged. The code runs under the

16.5.1 Data known at run time

When the correct value cannot be determined until type layout is computed, the user shall supply code as part
of a type initializer to initialize the static data. The guarantees about type initialization are covered in §10.5.3.1.
As will be explained below, global statics are modeled in the CLI as though they belonged to a type, so the
same guarantees apply to both global and type statics.

Because the layout of managed types need not occur until a type is first referenced, it is not possible to
statically initialize managed types by simply laying out the data in the PE file. Instead, there is a type
initialization process that proceeds in the following steps:

1. All static variables are zeroed.
2. The user-supplied type initialization procedure, if any, is invoked as described in §10.5.3.
Within a type initialization procedure there are several techniques:

e Generate explicit code that stores constants into the appropriate fields of the static variables. For
small data structures this can be efficient, but it requires that the initializer be converted to native
code, which can prove to be both a code space and an execution time problem.

e Box value types. When the static variable is simply a boxed version of a primitive numeric type or a
value type with explicit layout, introduce an additional static variable with known RV A that holds
the unboxed instance and then simply use the box instruction to create the boxed copy.

e Create a managed array from a static native array of data. This can be done by marshaling the
native array to a managed array. The specific marshaler to be used depends on the native array.
e.g., it can be a safearray.

o Default initialize a managed array of a value type. The Base Class Library provides a method that
zeroes the storage for every element of an array of unboxed value types

(System.Runtime.CompilerServices.InitializeArray)

Implementation Specific (Microsoft)

Use Base Class Library deserialization. The Base Class Library provides serialization and
deserialization services. These services can be found in the System.Runtime.Serialization
namespace. An object can be converted to a serialized form, stored in the data section and accessed
using a static variable with known RV A of type unsigned int8[]. The corresponding deserialization
mechanism can then be used in the type initializer.

End informative text
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Defining properties

A Property is declared by the using the .property  directive. Properties shall only be declared inside of
types (i.e., global properties are not supported).

ClassMember : :=

.property PropHeader '{'  PropMember* '}

See §22.34 and §22.35 for how property information is stored in metadata.

PropHeader ::=

[ specialname ][ rtspecialname ] CallConv Type Id‘(  Parameters ")

The .property  directive specifies a calling convention (§15.3), type, name, and parameters in parentheses.
specialname  marks the property as special to other tools, while rtspecialname  marks the property as
special to the CLI. The signature for the property (i.e., the PropHeader production) shall match the signature
of the property's .get method (see below)

[Rationale: There are currently no property names that are required to be marked with rtspecialname . Itis
provided for extensions, future standardization, and to increase consistency between the declaration of
properties and methods (instance and type initializer methods shall be marked with this attribute). end
rationale]

While the CLI places no constraints on the methods that make up a property, the CLS (see Partition I) specifies
a set of consistency constraints.

A property can contain any number of methods in its body. The following table shows how these methods are
identified, and provides short descriptions of each kind of item:

PropMember : := Description Clause
| .custom CustomDecl Custom attribute. 21
| .get CallConv Type [ TypeSpec ' ]| MethodName Specifies the getter for the
‘" Parameters ‘)’ property.
| .other  CallConv Type [ TypeSpec i’ ] Specifies a method for the
MethodName ‘(' Parameters ‘)’ property other than the getter or
setter.
| .set CallConv Type [ TypeSpec ' ]| MethodName Specifies the setter for the
‘ Parameters ") property.
| ExternSourceDecl line  or #line 5.7

.get specifies the getter for this property. The TypeSpec defaults to the current type. Only one getter can be
specified for a property. To be CLS-compliant, the definition of getter shall be marked specialname

.set specifies the setter for this property. The TypeSpec defaults to the current type. Only one setfer can be
specified for a property. To be CLS-compliant, the definition of setter shall be marked specialname

.other is used to specify any other methods that this property comprises.
In addition, custom attributes (§21) or source line declarations can be specified.
[Example: This shows the declaration of the property called count.

.class public auto autochar MyCount extends [mscorlib]System.Object {
.method virtual hidebysig public specialname instance int32 get Count () {
// body of getter
}
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.method virtual hidebysig public specialname instance void set Count (
int32 newCount) {

// body of setter

}

.method virtual hidebysig public instance void reset Count () {
// body of refresh method
}

// the declaration of the property
.property int32 Count () {
.get instance int32 MyCount::get Count ()
.set instance void MyCount::set Count (int32)
.other instance void MyCount::reset Count ()
}
}

end example)
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18 Defining events

Events are declared inside types, using the .event directive; there are no global events.

ClassMember : := Clause

.event  EventHeader '{"  EventMember+ '}’

[N=)

See §22.13 and §22.11

EventHeader : :=

[ specialname ][ rtspecialname 1[ TypeSpec ] Id

In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed
to the event’s fire method.

The event head can contain the keywords specialname  or rtspecialname . specialname  marks the
name of the property for other tools, while rtspecialname marks the name of the event as special for the
runtime.

[Rationale: There are currently no event names that are required to be marked with rtspecialname . Itis
provided for extensions, future standardization, and to increase consistency between the declaration of events
and methods (instance and type initializer methods shall be marked with this attribute). end rationale]

EventMember : := Description Clause
.addon CallConv Type [ TypeSpec ' ]| MethodName Add method for event.

‘C Parameters ")

| .custom CustomDecl Custom attribute. 21

| fire  CallConv Type[ TypeSpec ‘' | MethodName ‘(' Fire method for event.

Parameters ‘)’

| .other  CallConv Type[ TypeSpec "' ]| MethodName Other method.

‘" Parameters ‘)’

| .removeon CallConv Type|[ TypeSpec “:' | MethodName | Remove method for event.

‘" Parameters ‘)’

| ExternSourceDecl dine  or#line 5.7

The .addon directive specifies the add method, and the TypeSpec defaults to the same type as the event. The
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the
add method be marked with specialname

The .removeon directive specifies the remove method, and the TypeSpec defaults to the same type as the
event. The CLS specifies naming conventions and consistency constraints for events, and requires that the
definition of the remove method be marked with specialname

The .fire  directive specifies the fire method, and the TypeSpec defaults to the same type as the event. The
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the
fire method be marked with specialname

An event can contain any number of other methods specified with the .other  directive. From the point of
view of the CLI, these methods are only associated with each other through the event. If they have special
semantics, this needs to be documented by the implementer.

Events can also have custom attributes (§21) associated with them and they can declare source line information.
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[Example: This shows the declaration of an event, its corresponding delegate, and typical implementations of
the add, remove, and fire method of the event. The event and the methods are declared in a class called

Counter.

// the delegate
.class private sealed auto autochar TimeUpEventHandler extends
[mscorlib]System.Delegate {
.method public hidebysig specialname rtspecialname instance void .CtOr (object
'object', native int 'method') runtime managed {}

.method public hidebysig virtual instance void Invoke () runtime managed {}

.method public hidebysig newslot virtual instance class
[mscorlib]System.IAsyncResult BeginInvoke (class
mscorlib]System.AsyncCallback callback, object 'object') runtime managed {}

.method public hidebysig newslot virtual instance void EndInvoke (class
[mscorlib]System.IAsyncResult result) runtime managed {}

// the class that declares the event
.class public auto autochar Counter extends [mscorlib]System.Object {
// field to store the handlers, initialized to null
.field private class TimeUpEventHandler timeUpEventHandler
// the event declaration
.event TimeUpEventHandler startStopEvent {
.addon instance void Counter::add TimeUp(class TimeUpEventHandler 'handler')
.removeon instance void Counter::remove TimeUp(class TimeUpEventHandler
'handler")
.fire instance void Counter::fire TimeUpEvent ()
}
// the add method, combines the handler with existing delegates
.method public hidebysig virtual specialname instance void add TimeUp (class
TimeUpEventHandler 'handler') ({
.maxstack 4

ldarg.0

dup

1dfld class TimeUpEventHandler Counter::TimeUpEventHandler
ldarg 'handler’

call class[mscorlib]System.Delegate

[mscorlib]System.Delegate: :Combine (class [mscorlib]System.Delegate, class
[mscorlib]System.Delegate)

castclass TimeUpEventHandler

stfld class TimeUpEventHandler Counter::timeUpEventHandler

ret

}

// the remove method, removes the handler from the delegate
.method virtual public specialname void remove TimeUp (class TimeUpEventHandler
'handler') {
.maxstack 4

ldarg.o0

dup

1dfld class TimeUpEventHandler Counter::timeUpEventHandler
ldarg 'handler'

call class[mscorlib]System.Delegate

[mscorlib]System.Delegate: :Remove (class
[mscorlib]System.Delegate, class [mscorlib]System.Delegate)
castclass TimeUpEventHandler
stfld class TimeUpEventHandler Counter::timeUpEventHandler
ret
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}

// the fire method

.method virtual family specialname void fire TimeUpEvent () {
.maxstack 3
ldarg.0
1dfld class TimeUpEventHandler Counter::timeUpEventHandler

callvirt instance void TimeUpEventHandler::Invoke ()
ret

// end of class Counter

end example)
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19.1

104

Exception handling

In the CLI, a method can define a range of CIL instructions that are said to be protected. This is called a try
block. Tt can then associate one or more handlers with that try block. If an exception occurs during execution
anywhere within the try block, an exception object is created that describes the problem. The CLI then takes
over, transferring control from the point at which the exception was thrown, to the block of code that is willing
to handle that exception. See Partition I.

No two handlers (fault, filter, catch, or finally) can have the same starting address. When an exception occurs it
is necessary to convert the execution address to the correct most lexically nested try block in which the
exception occurred.

SEHBZOC]C 1=

TryBlock SEHClause [ SEHClause* |

The next few subclauses expand upon this simple description, by describing the five kinds of code block that
take part in exception processing: try , catch |, filter  ,finally ,andfault . (Note that there are
restrictions upon how many, and what kinds of SEHClause a given TryBlock can have; see Partition I for
details.)

The remaining syntax items are described in detail below; they are collected here for reference.

TryBlock ::=

Description

Ary  Label t0 Label

Protect region from first label to prior to second

| .try  ScopeBlock

ScopeBlock is protected

SEHClause ::=

Description

catch  TypeReference HandlerBlock

Catch all objects of the specified type

| fault  HandlerBlock Handle all exceptions but not normal exit
| filter Label HandlerBlock Enter handler only if filter succeeds
| finally HandlerBlock Handle all exceptions and normal exit
HandlerBlock: := Description
handler Labelto Label Handler range is from first label to prior to second
| ScopeBlock ScopeBlock is the handler block

Protected blocks

A try, or protected, or guarded, block is declared with the .try  directive.

TryBlock ::= Descriptions

Ary  Label t0 Label Protect region from first label to prior to second.

| .try  ScopeBlock ScopeBlock is protected

In the first case, the protected block is delimited by two labels. The first label is the first instruction to be
protected, while the second label is the instruction just beyond the last one to be protected. Both labels shall be
defined prior to this point.

The second case uses a scope block (§15.4.4) after the .try  directive—the instructions within that scope are
the ones to be protected.
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1 19.2 Handler blocks

HandlerBlock : := Description
| handler Label to Label Handler range is from first label to prior to second
| ScopeBlock ScopeBlock is the handler block

In the first case, the labels enclose the instructions of the handler block, the first label being the first instruction
of the handler while the second is the instruction immediately after the handler. In the second case, the handler
block is just a scope block.

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Implementation Specific (Microsoft)

! ilasm requires labels used to specify any exceptions blocks to be defined beforehand in the source. !
' ilasm supports the following additional syntax for use in round-tripping: :

HandlerBlock ::= handler Int32to Int32

O o3 & WA WN

10 19.3 Catch blocks

11 A catch block is declared using the catch keyword. This specifies the type of exception object the clause is
12 designed to handle, and the handler code itself.

SEHClause : :=

catch  TypeReference HandlerBlock

13
14 [Example:
15 ctry |
16 // protected instructions
17 leave exitSEH // normal exit
18 } catch [mscorlib]System.FormatException {
19 // handle the exception
20 pop // pop the exception object
21 leave exitSEH // leave catch handler
22 }
23 exitSEH: // continue here
24 end example]
25 19.4 Filter blocks
26 A filter block is declared using the filter keyword.

SEHClause ::= ..

| filter Label HandlerBlock

| filter Scope HandlerBlock
27
28 The filter code begins at the specified label and ends at the first instruction of the handler block. (Note that the
29 CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler
30 block.)
31 [Example:
32 .method public static void m () {
33 try {
34 // protected instructions
35 leave exitSEH // normal exit
36 }
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filter {
- // decide whether to handle
pop // pop exception object
ldc.i4.1 // EXCEPTION EXECUTE HANDLER
endfilter // return answer to CLI
}
{
. // handle the exception
pop // pop the exception object
leave exitSEH // leave filter handler
}
exitSEH:
}
end example]

19.5 Finally blocks

A finally block is declared using the finally keyword. This specifies the handler code, with this grammar:

SEHClause ::= ..

| finally HandlerBlock

The last possible CIL instruction that can be executed in a finally handler shall be endfinally

[Example:

.try {
- // protected instructions
leave exitTry // shall use leave

} finally {
. // finally handler
endfinally

}

exitTry: // back to normal

19.6 Fault handlers

106

end example]

A fault block is declared using the fault keyword. This specifies the handler code, with this grammar:

SEHClause ::= ..

| fault  HandlerBlock

The last possible CIL instruction that can be executed in a fault handler shall be endfault

[Example:
.method public static void m() {
startTry:
. // protected instructions
leave exitSEH // shall use leave
endTry:
startFault:
. // fault handler instructions
endfault
endFault:
.try startTry to endTry fault handler startFault to endFault
exitSEH: // back to normal

}
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20 Declarative security

Many languages that target the CLI use attribute syntax to attach declarative security attributes to items in the

metadata. This information is actually converted by the compiler into an XML-based representation that is

stored in the metadata, see §22.11. By contrast, ilasm requires the conversion information to be represented in

its input.

SecurityDecl : :=

.permissionset SecAction = *(’ Bytes ')

| .permission SecAction TypeReference ‘('

NameValPairs *)'

NameValPairs ::= NameValPair ']  NameValPair ]*

NameValPair ::= SQSTRING ‘=" SQOSTRING

In .permission , TypeReference specifies the permission class and NameValPairs specifies the settings.

See §22.11

In .permissionset the bytes specify the encoded version of the security settings:

SecAction ::= Description
assert Assert permission so that callers do not need it.
| demand Demand permission of all callers.
| deny Deny permission so checks will fail.
| inheritcheck Demand permission of a derived class.
| linkcheck Demand permission of caller.
| permitonly Reduce permissions so check will fail.
| reqopt Request optional additional permissions.
| regrefuse Refuse to be granted these permissions.
| request Hint that permission might be required.

Implementation Specific (Microsoft)

The following security action is Microsoft-specific. A conforming implementation of the CLI can
ignore this security action if present in an assembly

Implementation Specific (Microsoft)

SecAction ::=

Description

| prejitgrant

Persisted denied set at prejit time.
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21.1

Custom attributes

Custom attributes add user-defined annotations to the metadata. Custom attributes allow an instance of a type
to be stored with any element of the metadata. This mechanism can be used to store application-specific
information at compile time, and to access it either at runtime or when another tool reads the metadata. While
any user-defined type can be used as an attribute, CLS compliance requires that attributes will be instances of
types whose base class is system.attribute. The CLI predefines some attribute types and uses them to control
runtime behavior. Some languages predefine attribute types to represent language features not directly
represented in the CTS. Users or other tools are welcome to define and use additional attribute types.

Custom attributes are declared using the directive .custom , followed by the method declaration for a type
constructor, optionally followed by a Bytes in parentheses:

CustomDecl : :=

Ctor ['=""( Bytes ')’ ]

The Ctor item represents a method declaration (§15.4), specific for the case where the method's name is
.ctor . [Example:

.custom instance void myAttribute::.ctor(bool, bool )=(0100 00 0100
00)

end example]

Custom attributes can be attached to any item in metadata, except a custom attribute itself. Commonly, custom
attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties,
generic parameters, and events (the custom attribute is attached to the immediately preceding declaration)

The Bytes item is not required if the constructor takes no arguments. In such cases, all that matters is the
presence of the custom attribute.

If the constructor takes parameters, their values shall be specified in the Byfes item. The format for this ‘blob’
is defined in §23.3.

[Example: The following shows a class that is marked with the attribute called
System.CLSCompliantAttribute and a method that is marked with the attribute called
System.ObsoleteAttribute.

.class public MyClass extends [mscorlib]System.Object

{ .custom instance void [mscorlib]System.CLSCompliantAttribute::.ctor (bool) =
( 01 00 01 00 00 )
.method public static void CalculateTotals() cil managed
{ .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor() =
( 01 00 00 00 )
ret
}

end example]
CLS conventions: custom attribute usage

CLS imposes certain conventions upon the use of custom attributes in order to improve cross-language
operation. See Partition I for details.

21.2 Attributes used by the CLI

There are two kinds of custom attributes, called genuine custom attributes, and pseudo custom attributes.
Custom attributes and pseudo custom attributes are treated differently, at the time they are defined, as follows:

e A custom attribute is stored directly into the metadata; the‘blob’ which holds its defining data is
stored as-is. That ‘blob’ can be retrieved later.
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e A pseudo custom attribute is recognized because its name is one of a short list. Rather than store
its ‘blob’ directly in metadata, that ‘blob’ is parsed, and the information it contains is used to set
bits and/or fields within metadata tables. The ‘blob’ is then discarded; it cannot be retrieved later.

Pseudo custom attributes therefore serve to capture user directives, using the same familiar syntax the compiler
provides for genuine custom attributes, but these user directives are then stored into the more space-efficient
form of metadata tables. Tables are also faster to check at runtime than are genuine custom attributes.

Many custom attributes are invented by higher layers of software. They are stored and returned by the CLI,
without its knowing or caring what they ‘mean’. But all pseudo custom attributes, plus a collection of genuine
custom attributes, are of special interest to compilers and to the CLI. An example of such custom attributes is
System.Reflection.DefaultMemberAttribute. This is stored in metadata as a genuine custom attribute
‘blob’, but reflection uses this custom attribute when called to invoke the default member (property) for a type.

The following subclauses list all of the pseudo custom attributes and distinguished custom attributes, where
distinguished means that the CLI and/or compilers pay direct attention to them, and their behavior is affected in
some way.

In order to prevent name collisions into the future, all custom attributes in the system namespace are reserved
for standardization.

21.2.1 Pseudo custom attributes

110

The following table lists the CLI pseudo custom attributes. (Not all of these attributes are specified in this
Standard, but all of their names are reserved and shall not be used for other purposes. For details on these
attributes, see the documentation for the corresponding class in Partition IV.) They are defined in the
namespaces system.Reflection, System.Runtime.CompilerServices, and
System.Runtime.InteropServices namespaces.

Attribute Description

AssemblyAlgorithmIDAttribute | Records the ID of the hash algorithm used (reserved only)

AssemblyFlagsAttribute Records the flags for this assembly (reserved only)

DllImportAttribute Provides information about code implemented within an unmanaged
library

FieldOffsetAttribute Specifies the byte offset of fields within their enclosing class or value type

InAttribute Indicates that a method parameter is an [in] argument

MarshalAsAttribute Specifies how a data item should be marshalled between managed and

unmanaged code (see §23.4).

MethodImplAttribute Specifies details of how a method is implemented
OutAttribute Indicates that a method parameter is an [out] argument
StructLayoutAttribute Allows the caller to control how the fields of a class or value type are laid

out in managed memory

These attributes affect bits and fields in metadata, as follows:
AssemblyAlgorithmIDAttribute: sets the Assembly. HashAlgld field.
AssemblyFlagsAttribute: sets the Assembly.Flags field.

D1lTmportAttribute: sets the Method.Flags.Pinvokelmpl bit for the attributed method; also, adds a new row
into the ImpIMap table (setting MappingFlags, MemberForwarded, ImportName and ImportScope columns).

FieldoffsetAttribute: sets the FieldLayout.OffSet value for the attributed field.

InAttribute: sets the Param.Flags.In bit for the attributed parameter.
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MarshalAsAttribute: sets the Field Flags.HasFieldMarshal bit for the attributed field (or the
Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters a new row into the FieldMarshal
table for both Parent and NativeType columns.

MethodImplAttribute: sets the Method.ImplFlags field of the attributed method.
outAttribute: sets the Param.Flags.Out bit for the attributed parameter.

StructLayoutAttribute: sets the TypeDef.Flags.LayoutMask sub-field for the attributed type, and, optionally,
the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout. PackingSize,and ClassLayout.ClassSize fields
for that type.

Implementation Specific (Microsoft)

Use of the following pseudo custom attributes renders the assembly that contains them non-portable; a
conforming implementation of the CLI can reject such an assembly when it is loaded, or throw an
exception at runtime if any attempt is made to access the metadata items set by those attributes.

Implementation Specific (Microsoft)

Attribute Description

ComImportAttribute Provides information about native code reached as a COM component
OptionalAttribute Marks a method parameter as optional

NonSerializedAttribute Indicates that a field should not be serialized

PreserveSigAttribute Specifies HRESULT or retval signature transformation
SerializableAttribute Indicates that a type can be serialized

Implementation Specific (Microsoft)
The pseudo custom attributes above affect bits and fields in metadata, as follows:
ComImportAttribute: sets the TypeDef . Flags.Import bit for the attributed type.
OptionalAttribute: sets the Param.Flags.Optional bit for the attributed parameter.
NonSerializedAttribute: sets the Field.Flags.NotSerialized bit for the attributed field.
PreserveSigAttribute: sets the Method. ImplFlags. PreserveSig bit of the attributed method.

SerializableAttribute: sets the TypeDef . Flags.Serializable bit for the attributed type.

.2 Custom attributes defined by the CLS

The CLS specifies certain Custom Attributes and requires that conformant languages support them. These
attributes are located under system.

Attribute Description

AttributeUsageAttribute Used to specify how an attribute is intended to be used.

ObsoleteAttribute Indicates that an element is not to be used.

CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant
through an instance field on the attribute object.

.3 Custom attributes for CIL-to-native-code compiler and debugger

Implementation Specific (Microsoft)

The following custom attributes control the runtime behavior of a CIL-to-native-code compiler and a
runtime debugger; they are defined in the system.Diagnostics namespace. Their use renders the
assembly that contains them non-portable; a conforming implementation of the CLI can reject such an
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assembly when it is loaded, or throw an exception at runtime if any attempt is made to access those
attributes.

Implementation Specific (Microsoft)

Attribute Description

DebuggableAttribute Controls a CIL-to-native-code compiler to produce code that is
easier to debug

DebuggerHiddenAttribute Specifies a debugger should step over the attributed method or
property

DebuggerStepThroughAttribute Specifies a debugger should step through the attributed method or

property (it might step into a method called by this one)

21.2.4 Custom attributes for remoting

Implementation Specific (Microsoft)

i The following custom attributes are used to control the behavior of remoting; they are defined in the
! System.Runtime.Remoting namespace. Their use renders the assembly that contains them non-

i portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or
: throw an exception at runtime if any attempt is made to access those custom attributes.

Implementation Specific (Microsoft)
Attribute Description
ContextAttribute Root for all context attributes.
OneWayAttribute Marks a method as “fire and forget”
SynchronizationAttribute Specifies the synchronization options for a class
ThreadAffinityAttribute Refinement of Synchronized Context.

21.2.5 Custom attributes for security

112

' Implementation Specific (Microsoft)

The following custom attributes affect the security checks performed upon method invocations at
runtime. They are defined in the system.security namespace.

Implementation Specific (Microsoft)

Attribute Description

DynamicSecurityMethodAttribute Indicates to the CLI that the method requires space to be

allocated for a security object

SuppressUnmanagedCodeSecurityAttribute Indicates the target method, implemented as unmanaged
code, should skip per-call checks

Implementation Specific (Microsoft)

System.Security.Permissions namespaces. Note that these are all base classes; the actual instances

i The following custom attributes are defined in the system.Security and
i of security attributes found in assemblies will be sub-classes of these.

Implementation Specific (Microsoft)

Attribute Description
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Implementation Specific (Microsoft)

Attribute

Description

SiteIdentityPermissionAttribute

Custom attribute class for declarative security with
SiteldentityPermission.

StrongNameIdentityPermissionAttribute

Custom attribute class for declarative security with
StrongNameldentityPermission.

The following custom attributes are defined in the System.Net and System.Security.Permissions
namespaces. Note that these are all base classes; the actual instances of security attributes found in assemblies

will be sub-classes of these.

Attribute

Description

CodeAccessSecurityAttribute

This is the base attribute class for declarative security using
custom attributes.

DnsPermissionAttribute

Custom attribute class for declarative security with
DnsPermission

EnvironmentPermissionAttribute

Custom attribute class for declarative security with
EnvironmentPermission.

FileIOPermissionAttribute

Custom attribute class for declarative security with
FileIOPermission.

ReflectionPermissionAttribute

Custom attribute class for declarative security with
ReflectionPermission.

SecurityAttribute

This is the base attribute class for declarative security from
which CodeAccessSecurityAttribute is derived.

SecurityPermissionAttribute

Indicates whether the attributed method can affect security
settings

SocketPermissionAttribute

Custom attribute class for declarative security with
SocketPermission.

WebPermissionAttribute

Custom attribute class for declarative security with
WebPermission.

Note that any other security-related custom attributes (i.e., any custom attributes that derive from
System.Security.Permissions.SecurityAttribute) included into an assembly, can cause a conforming
implementaion of the CLI to reject such an assembly when it is loaded, or throw an exception at runtime if any
attempt is made to access those security-related custom attributes. (This statement holds true for any custom
attributes that cannot be resolved; security-related custom attributes are just one particular case)

Implementation Specific (Microsoft)

The following security-related custom attributes are defined in the System.Security.Permissions
namespace. Their use renders the assembly that contains them non-portable; a conforming
implementation of the CLI can reject such an assembly when it is loaded, or throw an exception at
runtime if any attempt is made to access those custom attributes.

Implementation Specific (Microsoft)

Attribute

Description

RegistryPermissionAttribute

Indicates whether the attributed method can access the
Registry
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UIPermissionAttribute

Custom attribute class for declarative security with
UIPermission.

ZoneldentityPermissionAttribute

Custom attribute class for declarative security with
ZoneldentityPermission.

21.2.6 Custom attributes for TLS

A custom attribute that denotes a TLS (thread-local storage, see §16.3.3) field is defined in the System

namespace.

Attribute

Description

ThreadStaticAttribute

Provides for type member fields that are relative for the thread.

21.2.7 Pseudo custom attributes for the assembly linker

114

Implementation Specific (Microsoft)

| The following pseudo custom attributes are used by the a/ tool to transfer information between modules
and assemblies (they are temporarily attached to a TypeRef to a class called

defined in the system.Reflection namespace. Their use renders the assembly that contains them non-
portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or

! AssemblyAttributesGoHere) then merged by a/ and attached to the assembly. These attributes are

throw an exception at runtime if any attempt is made to access those Pseudo Custom Attributes.

Implementation Specific (Microsoft)

Attribute

Description

AssemblyCultureAttribute

Specifies which culture an assembly supports

AssemblyVersionAttribute

String holding version of assembly (in the format
major.minor.build.revision)

Implementation Specific (Microsoft)

The pseudo custom attributes above affect bits and fields in metadata, as follows:

AssemblyVersionAttribute: sets the Assembly. MajorVersion, MinorVersion, BuildNumber and

RevisionNumber

! AssemblyCultureAttribute: sets the Assembly. Culture field

Implementation Specific (Microsoft)

The following custom attributes are used to control the interoperation with COM 1.x and classical

information can also be found in the Partition IV. Their use renders the assembly that contains them

' non-portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or

 COM. These attributes are located in the namespace System.Runtime.InteropServices. More

throw an exception at runtime if any attempt is made to access those custom attributes.

Implementation Specific (Microsoft)

Attribute

Description

ClassInterfaceAttribute

Specifies how the class is exported to COM (as Displnterface, as a
Dual Interface, or not at all)

ComAliasNameAttribute

Applied to a parameter or field to indicate the COM alias for the
parameter or field type.
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Implementation Specific (Microsoft)

Attribute

Description

ComConversionLossAttribute

Indicates that information was lost about a class or interface when
it was imported from a type library to an assembly

ComEmulateAttribute

Used on a type to indicate that it is an emulator type for a different
type.

ComRegisterFunctionAttribute

Used on a method to indicate that the method should be called
when the assembly is registered for use from COM.

ComSourcelInterfacesAttribute

Identifies the list of interfaces that are sources of events for the
type.

ComUnregisterFunctionAttribute

Used on a method to indicate that the method should be called
when the assembly is unregistered for use from COM.

ComVisibleAttribute Can be applied to an individual type or to an entire assembly to
control COM visibility.

DispIdAttribute Custom attribute to specify the COM DISPID of a Method or Field.

GuidAttribute

Used to supply the GUID of a type, interface or an entire type
library.

HasDefaultInterfaceAttribute

Used to specify that a class has a COM default interface.

IdispatchImplAttribute

Indicates which IDispatch implementation the CLI uses when
exposing dual interfaces and dispinterfaces to COM

ImportedFromTypeLibAttribute

Custom attribute to specify that a module is imported from a COM
type library.

InterfaceTypeAttribute

Indicates whether a managed interface is dual, IDispatch or
IUnknown when exposed to COM

NoComRegistrationAttribute

Used to indicate that an otherwise public, COM-creatable type
should not be registered for use form COM applications.

NoIDispatchAttribute This attribute is used to control how the class responds to queries
for an IDispatch Interface.

ProgIdAttribute Custom attribute that allows the user to specify the prog ID of a
class.

TypeLibFuncAttribute Contains the FUNCFLAGS that were originally imported for this
function from the COM type library.

TypeLibTypeAttribute Contains the TYPEFLAGS that were originally imported for this
type from the COM type library.

TypeLibVarAttribute Contains the VARFLAGS that were originally imported for this
variable from the COM type library.

21.2.9 Custom attributes, various

The following custom attributes control various aspects of the CLI:

Attribute

Namespace Description
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Attribute Namespace Description

ConditionalAttribute System.Diagnostics Used to mark methods as callable,
based on some compile-time condition.
If the condition is false, the method will
not be called

DecimalConstantAttribute System.Runtime.CompilerServices Stores the value of a decimal constant

in metadata

DefaultMemberAttribute

System

.Reflection

Defines the member of a type that is the
default member used by reflection’s
InvokeMember.

FaultModeAttribute

System

.Runtime.CompilerServices

Indicates whether exceptions from
instruction checks are precise or
imprecise.

FlagsAttribute

System

Custom attribute indicating an
enumeration should be treated as a
bitfield; that is, a set of flags

IndexerNameAttribute

System

.Runtime.CompilerServices

Indicates the name by which a property
having one or more parameters will be
known in programming languages that
do not support such a facility directly

ParamArrayAttribute

System

Indicates that the method will allow a
variable number of arguments in its
invocation
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Metadata logical format: tables

This clause defines the structures that describe metadata, and how they are cross-indexed. This corresponds to
how metadata is laid out, after being read into memory from a PE file. (For a description of metadata layout
inside the PE file itself, see §24)

Metadata is stored in two kinds of structure: tables (arrays of records) and heaps. There are four heaps in any
module: String, Blob, Userstring, and Guid. The first three are byte arrays (so valid indexes into these heaps
might be 0, 23, 25, 39, etc). The Guid heap is an array of GUIDs, each 16 bytes wide. Its first element is
numbered 1, its second 2, and so on.

Each entry in each column of each table is either a constant or an index.

Constants are either literal values (e.g., ALG_SID SHA1 = 4, stored in the HashAlgld column of the Assembly
table), or, more commonly, bitmasks. Most bitmasks (they are almost all called Flags) are 2 bytes wide (e.g.,
the Flags column in the Field table), but there are a few that are 4 bytes (e.g., the Flags column in the TypeDef
table).

Each index is either 2 or 4 bytes wide. The index points into the same or another table, or into one of the four
heaps. The size of each index column in a table is only made 4 bytes if it needs to be for that particular
module. So, if a particular column indexes a table, or tables, whose highest row number fits in a 2-byte value,
the indexer column need only be 2 bytes wide. Conversely, for tables containing 64K or more rows, an indexer
of that table will be 4 bytes wide.

Indexes to tables begin at 1, so index 1 means the first row in any given metadata table. (An index value of
zero denotes that it does not index a row at all; that is, it behaves like a null reference.)

There are two kinds of columns that index a metadata table. (For details of the physical representation of these
tables, see §24.2.6):

e Simple — such a column indexes one, and only one, table. For example, the FieldList column in the
TypeDef table always indexes the Field table. So all values in that column are simple integers,
giving the row number in the target table

e Coded — such a column indexes any of several tables. For example, the Extends column in the
TypeDef table can index into the TypeDef or TypeRef table. A few bits of that index value are
reserved to define which table it targets. For the most part, this specification talks of index values
after being decoded into row numbers within the target table. However, the specification includes a
description of these coded indexes in the section that describes the physical layout of
Metadata (§24).

Metadata preserves name strings, as created by a compiler or code generator, unchanged. Essentially, it treats
each string as an opaque blob. In particular, it preserves case. The CLI imposes no limit on the length of
names stored in metadata and subsequently processed by the CLI

Implementation Specific (Microsoft)

For the first release, strings are limited in length. Depending on its purpose, a string can be no larger
than Max_crass NaME (defined as 1024) or max _paTH NaME (defined as 260). These values refer to the
maximum number of bytes that the string, after being converted into UTF8 format, can occupy; that
includes a terminating null character. It is intended that this limitation be removed in a future release.
Within this partition, the above restrictions are abbreviated to the phrase: “... is limited to

MAX CLASS NAME” or “... is limited to MAX PATH NAME”.

Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed
case-blind (see Partition I). However, all other name matches (type, field, method, property, event) shall be
exact — so that this level of resolution is the same across all platforms, whether their OS is case-sensitive or not.

Tables are given both a name (e.g., "Assembly") and a number (e.g., 0x20). The number for each table is listed
immediately with its title in the following subclauses. The table numbers indicate the order in which their
corresponding table shall appear in the PE file, and there is a set of bits (§24.2.6) saying whether a given table
exists or not. The number of a table is the position within that set of bits.
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22.1

A few of the tables represent extensions to regular CLI files. Specifically, ENCLog and ENCMap, which occur
in temporary images, generated during "Edit and Continue" or "incremental compilation" scenarios, whilst
debugging. Both table types are reserved for future use.

References to the methods or fields of a type are stored together in a metadata table called the MemberRef
table. However, sometimes, for clearer explanation, this standard distinguishes between these two kinds of
reference, calling them “MethodRef” and “FieldRef”.

Certain tables are required to be sorted by a primary key, as follows:

Table Primary Key Column
ClassLayout Parent

Constant Parent
CustomAttribute Parent
DeclSecurity Parent

FieldLayout Field

FieldMarshal Parent

FieldRVA Field
GenericParam Owner
GenericParamConstraint Owner

ImplMap MemberForwarded
Interfacelmpl Class

MethodImpl Class
MethodSemantics Association
NestedClass NestedClass

Furthermore, the Interfacelmpl table is sorted using the Interface column as a secondary key, and the
GenericParam table is sorted using the Number column as a secondary key.

Finally, the TypeDef table has a special ordering constraint: the definition of an enclosing class shall precede
the definition of all classes it encloses.

Metadata items (records in the metadata tables) are addressed by metadata tokens. Uncoded metadata tokens
are 4-byte unsigned integers, which contain the metadata table index in the most significant byte and a 1-based
record index in the three least-significant bytes. Metadata tables and their respective indexes are described in
§22.2 and later subclauses.

Coded metadata tokens also contain table and record indexes, but in a different format. For details on the
encoding, see §24.2.6.

Metadata validation rules

This contains informative text only

118

The subclauses that follow describe the schema for each kind of metadata table, and explain the detailed rules
that guarantee metadata emitted into any PE file is valid. Checking that metadata is valid ensures that later
processing (such as checking the CIL instruction stream for type safety, building method tables, CIL-to-native-
code compilation, and data marshalling) will not cause the CLI to crash or behave in an insecure fashion.
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In addition, some of the rules are used to check compliance with the CLS requirements (see Partition I) even
though these are not related to valid Metadata. These are marked with a trailing [CLS] tag.

The rules for valid metadata refer to an individual module. A module is any collection of metadata that could
typically be saved to a disk file. This includes the output of compilers and linkers, or the output of script
compilers (where the metadata is often held only in memory, but never actually saved to a file on disk).

The rules address intra-module validation only. As such, software that checks conformance with this standard
need not resolve references or walk type hierarchies defined in other modules. However, even if two modules,
A and B, analyzed separately, contain only valid metadata, they can still be in error when viewed together (e.g.,
a call from Module A, to a method defined in module B, might specify a call site signature that does not match
the signatures defined for that method in B).

All checks are categorized as ERROR, WARNING, or CLS.

e An ERROR check reports something that might cause a CLI to crash or hang, it might run but
produce wrong answers; or it might be entirely benign. Conforming implementations of the CLI
can exist that will not accept metadata that violates an ERROR rule, and therefore such metadata is
invalid and is not portable.

e A WARNING check reports something, not actually wrong, but possibly a slip on the part of the
compiler. Normally, it indicates a case where a compiler could have encoded the same information
in a more compact fashion or where the metadata represents a construct that can have no actual use
at runtime. All conforming implementations shall support metadata that violate only WARNING
rules; hence such metadata is both valid and portable.

e A CLS check reports lack of compliance with the Common Language Specification (see
Partition I). Such metadata is both valid and portable, but programming languages might exist that
cannot process it, even though all conforming implementations of the CLI support the constructs.

Validation rules fall into the following broad categories:

e Number of Rows: A few tables are allowed only one row (e.g., Module table). Most have no such
restriction.

e Unique Rows: No table shall contain duplicate rows, where “duplicate” is defined in terms of its
key column, or combination of columns.

e Valid Indexes: Columns which are indexes shall point somewhere sensible, as follows:

o Every index into the String, Blob, or Userstring heaps shall point info that heap, neither
before its start (offset 0), nor after its end.

o Every index into the Guid heap shall lie between 1 and the maximum element number in
this module, inclusive.

o Every index (row number) into another metadata table shall lie between 0 and that table’s
row count + 1 (for some tables, the index can point just past the end of any target table,
meaning it indexes nothing).

e Valid Bitmasks: Columns which are bitmasks shall have only valid permutations of bits set.

e Valid RVAs: There are restrictions upon fields and methods that are assigned RVAs (Relative
Virtual Addresses, which are byte offsets, expressed from the address at which the corresponding
PE file is loaded into memory).

Note that some of the rules listed below really don’t say anything—for example, some rules state that a
particular table is allowed zero or more rows—in which case, there is no way that the check can fail. This is
done simply for completeness, to record that such details have indeed been addressed, rather than overlooked.

End informative text

The CLI imposes no limit on the length of names stored in metadata, and subsequently processed by a CLI
implementation.
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22.2 Assembly : 0x20
The Assembly table has the following columns:
e HashAlgld (a 4-byte constant of type AssemblyHashAlgorithm, §23.1.1)
e MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants)
e Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2)
o PublicKey (an index into the Blob heap)
e Name (an index into the String heap)
e  Culture (an index into the String heap)

The Assembly table is defined using the .assembly directive (§6.2); its columns are obtained from the
respective .hash algorithm ,.ver ,.publickey ,and.culture  (§6.2.1). (For an example, see §6.2.)

This contains informative text only

1. The Assembly table shall contain zero or one row [ERROR]
2. HashAlgld shall be one of the specified values [ERROR]

Implementation Specific (Microsoft)

The Microsoft implementation treats this as a WARNING rather than an error, using numbers
based on the Crypto APIs. This means that the Microsoft implementation can handle additional
algorithms based on the constants of type a1 _crass_Hash in WinCrypt.h as well as those
dynamically discovered at runtime.

MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value
Flags shall have only those values set that are specified [ERROR]

PublicKey can be null or non-null

Name shall index a non-empty string in the String heap [ERROR]

The string indexed by Name can be of unlimited length

Culture can be null or non-null

¥ 0 N o B oW

If Culture is non-null, it shall index a single string from the list specified (§23.1.3) [ERROR]

[Note: Name is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-
compliant systems, Name contains no colon, no forward-slash, no backslash, and no period. end note]

End informative text

22.3 AssemblyOS : 0x22
The AssemblyOS table has the following columns:
e  OSPlatformID (a 4-byte constant)
o OSMajorVersion (a 4-byte constant)
o  OSMinorVersion (a 4-byte constant)

This record should not be emitted into any PE file. However, if present in a PE file, it shall be treated as if all
its fields were zero. It shall be ignored by the CLIL.

22.4 AssemblyProcessor : 0x21
The AssemblyProcessor table has the following column:

e Processor (a 4-byte constant)
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This record should not be emitted into any PE file. However, if present in a PE file, it should be treated as if its
field were zero. It should be ignored by the CLI.

22.5 AssemblyRef : 0x23
The AssemblyRef table has the following columns:

MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants)
Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2)

PublicKeyOrToken (an index into the Blob heap, indicating the public key or token that identifies
the author of this Assembly)

Name (an index into the String heap)
Culture (an index into the String heap)
HashValue (an index into the Blob heap)

The table is defined by the .assembly extern directive (§6.3). Its columns are filled using directives
similar to those of the Assembly table except for the PublicKeyOrToken column, which is defined using the
.publickeytoken directive. (For an example, see §6.3.)

This contains informative text only

1.
2.

A AR U

MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value

Flags shall have only one bit set, the PublicKey  bit (§23.1.2). All other bits shall be zero.
[ERROR]

PublicKeyOrToken can be null, or non-null (note that the Flags.PublicKey  bit specifies
whether the 'blob' is a full public key, or the short hashed token)

If non-null, then PublicKeyOrToken shall index a valid offset in the Blob heap [ERROR]

Name shall index a non-empty string, in the String heap (there is no limit to its length) [ERROR]
Culture can be null or non-null.

If non-null, it shall index a single string from the list specified (§23.1.3) [ERROR]

HashValue can be null or non-null

If non-null, then HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]

The AssemblyRef table shall contain no duplicates (where duplicate rows are deemd to be those
having the same MajorVersion, MinorVersion, BuildNumber, RevisionNumber,
PublicKeyOrToken, Name, and Culture) [WARNING]

[Note: Name is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-
compliant systems Name contains no colon, no forward-slash, no backslash, and no period. end note]

End informative text

22.6 AssemblyRefOS : 0x25
The AssemblyRefOS table has the following columns:

OSPlatformld (a 4-byte constant)

OSMajorVersion (a 4-byte constant)
OSMinorVersion (a 4-byte constant)

AssemblyRef (an index into the AssemblyRef table)

These records should not be emitted into any PE file. However, if present in a PE file, they should be treated
as-if their fields were zero. They should be ignored by the CLI.
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22.7 AssemblyRefProcessor : 0x24
The AssemblyRefProcessor table has the following columns:
e  Processor (a 4-byte constant)
o AssemblyRef (an index into the AssemblyRef table)

These records should not be emitted into any PE file. However, if present in a PE file, they should be treated
as-if their fields were zero. They should be ignored by the CLIL

22.8 ClassLayout : 0x0F

The ClassLayout table is used to define how the fields of a class or value type shall be laid out by the CLI.
(Normally, the CLI is free to reorder and/or insert gaps between the fields defined for a class or value type.)

[Rationale: This feature is used to lay out a managed value type in exactly the same way as an unmanaged
C struct, allowing a managed value type to be handed to unmanaged code, which then accesses the fields
exactly as if that block of memory had been laid out by unmanaged code. end rationale)

The information held in the ClassLayout table depends upon the Flags value for {AutoLayout,
SequentialLayout, ExplicitLayout} in the owner class or value type.

A type has layout if it is marked SequentialLayout or ExplicitLayout. If any type within an inheritance chain
has layout, then so shall all its base classes, up to the one that descends immediately from system.valueType
(if it exists in the type’s hierarchy); otherwise, from System.oObject.

This contains informative text only

Layout cannot begin part way down the chain. But it is valid to stop “having layout” at any point down the
chain.

For example, in the diagrams below, Class A derives from system.o0bject; class B derives from A; class C
derives from B. system.oObject has no layout. But A, B and C are all defined with layout, and that is valid.

Walid Walid

| System Object (no layout) | | System Object {no layout) |

A (layout) E (layout)

B (layout) F {layaut)

C (layout) G (no layout)

The situation with classes E, F, and G is similar. G has no layout, and this too is valid. The following picture
shows two invalid setups:
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Invalid Invalid

| System Object (no layout) | | System Object (no layout) |

H (no layout)

K (layout)

L {no layout)

| (layout)

J (layout) I {layout)

On the left, the “chain with layout” does not start at the ‘highest’ class. And on the right, there is a ‘hole’ in the
“chain with layout”

Layout information for a class or value type is held in two tables (ClassLayout and FieldLayout), as shown in
the following diagram:

Typelef Table

Field_ayout Table

Field Table

hiyClazs [, ClassLayout Table

AN

Al

In this example, row 3 of the ClassLayout table points to row 2 in the TypeDef table (the definition for a Class,
called “MyClass”). Rows 46 of the FieldLayout table point to corresponding rows in the Field table. This
illustrates how the CLI stores the explicit offsets for the three fields that are defined in “MyClass” (there is
always one row in the FieldLayout table for each field in the owning class or value type) So, the ClassLayout
table acts as an extension to those rows of the TypeDef table that have layout info; since many classes do not
have layout info, overall, this design saves space.

End informative text

The ClassLayout table has the following columns:
e  PackingSize (a 2-byte constant)

e ClassSize (a 4-byte constant)

e Parent (an index into the TypeDef table)

The rows of the ClassLayout table are defined by placing .pack and .size directives on the body of the type
declaration in which this type is declared (§10.2). When either of these directives is omitted, its corresponding
value is zero. (See §10.7.)

ClassSize of zero does not mean the class has zero size. It means that no .size directive was specified at
definition time, in which case, the actual size is calculated from the field types, taking account of packing size
(default or specified) and natural alignment on the target, runtime platform.

This contains informative text only

1. A ClassLayout table can contain zero or more rows

2. Parent shall index a valid row in the TypeDef table, corresponding to a Class or ValueType (but
not to an Interface) [ERROR]




— o O O3 ANn A W~

—_
[\S}

—_——
W

—_ =
AN W

—_ =
[c BN

N —
[=>Ne}

[\SJN\S]
N —

23

24
25
26

27
28
29

30
31

32

33
34
35
36
37

38
39

40

41
42

3. The Class or ValueType indexed by Parent shall be SequentialLayout or ExplicitLayout
(§23.1.15). (That is, AutoLayout types shall not own any rows in the ClassLayout table.)
[ERROR]

4. If Parent indexes a SequentialLayout type, then:

0 PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128}. (0 means use the default pack size
for the platform on which the application is running.) [ERROR]

0 If Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes).
[ERROR]

Implementation Specific (Microsoft)

The current implementation of desktop CLI allows 0x3F0000 bytes, but that might be
i reduced in the future.

5. If Parent indexes an ExplicitLayout type, then

0 if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes)
[ERROR]

0 PackingSize shall be 0. (It makes no sense to provide explicit offsets for each field, as well
as a packing size.) [ERROR]

6.  Note that an ExplicitLayout type might result in a verifiable type, provided the layout does not
create a type whose fields overlap.

7.  Layout along the length of an inheritance chain shall follow the rules specified above (starting at
‘highest” Type, with no ‘holes’, etc.) [ERROR]

End informative text

22.9 Constant : 0x0B
The Constant table is used to store compile-time, constant values for fields, parameters, and properties.
The Constant table has the following columns:

e Type (a 1-byte constant, followed by a 1-byte padding zero); see §23.1.16 . The encoding of Type
for the nullref value for FieldInit in ilasm (§16.2) is ELEMENT TYPE cLASS with a Value of a 4-byte
zero. Unlike uses of ELEMENT TYPE CLASS in signatures, this one is not followed by a type token.

e  Parent (an index into the Param, Field, or Property table; more precisely, a HasConstant (§24.2.6)
coded index)

e Value (an index into the Blob heap)

Note that Constant information does not directly influence runtime behavior, although it is visible via
Reflection (and hence can be used to implement functionality such as that provided by
System.Enum.ToString). Compilers inspect this information, at compile time, when importing metadata, but
the value of the constant itself, if used, becomes embedded into the CIL stream the compiler emits. There are
no CIL instructions to access the Constant table at runtime.

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent.
(For an example, see §16.2. )

This contains informative text only

1. Type shall be exactly one of: ELEMENT TYPE BOOLEAN, ELEMENT TYPE CHAR, ELEMENT TYPE T1,
ELEMENT TYPE U1, ELEMENT TYPE I2, ELEMENT TYPE U2, ELEMENT TYPE T4, ELEMENT TYPE U4,
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ELEMENT TYPE I8, ELEMENT TYPE U8, ELEMENT TYPE R4, ELEMENT TYPE R8, OF
ELEMENT TYPE STRING; Of ELEMENT TYPE CLASS with a Value of zero (§23.1.16) [ERROR]

Type shall not be any of: ELEMENT TYPE 11, ELEMENT TYPE U2, ELEMENT TYPE_U4, OF
ELEMENT TYPE U8 (§23.1.16) [CLS]

Parent shall index a valid row in the Field, Property, or Param table. [ERROR]
There shall be no duplicate rows, based upon Parent [ERROR]

Type shall match exactly the declared type of the Param, Field, or Property identified by Parent
(in the case where the parent is an enum, it shall match exactly the underlying type of that enum).
[CLS]

End informative text

22.10 CustomAttribute : 0x0C

The CustomAttribute table has the following columns:

Parent (an index into any metadata table, except the CustomAttribute table itself; more precisely, a
HasCustomAttribute (§24.2.6) coded index)

Type (an index into the MethodDef or MemberRef table; more precisely, a CustomAttributeType
(§24.2.6) coded index)

Value (an index into the Blob heap)

The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an
object of the specified Custom Attribute class) at runtime. The column called Type is slightly misleading—it
actually indexes a constructor method—the owner of that constructor method is the Type of the Custom
Attribute.

A row in the CustomAttribute table for a parent is created by the .custom attribute, which gives the value of
the Type column and optionally that of the Value column (§21).

This contains informative text only

All binary values are stored in little-endian format (except for PackedLen items, which are used only as a count
for the number of bytes to follow in a UTFS string).

1.
2.
3.

No CustomAttribute is required; that is, Value is permitted to be null.
Parent can be an index into any metadata table, except the CustomAttribute table itself [ERROR]

Type shall index a valid row in the Method or MemberRef table. That row shall be a constructor
method (for the class of which this information forms an instance) [ERROR]

Value can be null or non-null.

If Value is non-null, it shall index a 'blob' in the Blob heap [ERROR]

The following rules apply to the overall structure of the Value 'blob' (§23.3):
o Prolog shall be 0x0001 [ERROR]

0 There shall be as many occurrences of FixedArg as are declared in the Constructor method
[ERROR]
0 NumNamed can be zero or more

0 There shall be exactly NumNamed occurrences of NamedArg [ERROR]

o Each NamedArg shall be accessible by the caller [ERROR]

o If NumNamed = 0 then there shall be no further items in the CustomAttrib [ERROR]
The following rules apply to the structure of FixedArg (§23.3):
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0o

0o

0o

If this item is not for a vector (a single-dimension array with lower bound of 0), then there
shall be exactly one Elem [ERROR]

If this item is for a vector, then:
NumElem shall be 1 or more [ERROR]
This shall be followed by NumElem occurrences of Elem [ERROR]

8. The following rules apply to the structure of Elem (§23.3):

0o

If this is a simple type or an enum (see §23.3 for how this is defined), then Elem consists
simply of its value [ERROR]

If this is a string or a Type, then Elem consists of a SerString — PackedLen count of bytes,
followed by the UTFS8 characters [ERROR]

If this is a boxed simple value type (bool, char, float32, float64, int8, int16, int32,
int64, unsigned int8, unsigned intl6, unsigned int32, Or unsigned int64), then Elem
consists of the corresponding type denoter (ELEMENT TYPE BOOLEAN, ELEMENT TYPE CHAR,
ELEMENT TYPE Il, ELEMENT TYPE Ul, ELEMENT TYPE I2, ELEMENT TYPE U2,

ELEMENT TYPE I4, ELEMENT TYPE U4, ELEMENT TYPE I8, ELEMENT TYPE U8,

ELEMENT TYPE R4, Or ELEMENT TYPE R8), followed by its value. [ERROR]

9. The following rules apply to the structure of NamedArg (§23.3):

0o

o

o

The single byte r1ELD (0x53) or prOPERTY (0x54) [ERROR]

The type of the Field or Property is one of ELEMENT TYPE BOOLEAN, ELEMENT TYPE CHAR,
ELEMENT TYPE I1, ELEMENT TYPE Ul, ELEMENT TYPE I2, ELEMENT TYPE U2,

ELEMENT TYPE I4, ELEMENT TYPE U4, ELEMENT TYPE I8, ELEMENT TYPE US,

ELEMENT TYPE R4, ELEMENT TYPE RS, ELEMENT TYPE STRING, or the constant 0x50 (for an
argument of type system.Type) [ERROR]

The name of the Field or Property, respectively with the previous item, as a SerString —
PackedLen count of bytes, followed by the UTF8 characters of the name [ERROR]

A FixedArg (see above) [ERROR]

End informative text

22.11 DeclSecurity : 0x0E

Security attributes, which derive from System.Security.Permissions.SecurityAttribute (see Partition [V),
can be attached to a TypeDef, a Method, or an Assembly. All constructors of this class shall take a
System.Security.Permissions.SecurityAction value as their first parameter, describing what should be
done with the permission on the type, method or assembly to which it is attached. Code access security
attributes, which derive from System.Security.Permissions. CodeAccessSecurityAttribute, can have any
of the security actions.

These different security actions are encoded in the DeclSecurity table as a 2-byte enum (see below). All
security custom attributes for a given security action on a method, type, or assembly shall be gathered together,
and one system.Security.PermissionSet instance shall be created, stored in the Blob heap, and referenced
from the DeclSecurity table.

[Note: The general flow from a compiler’s point of view is as follows. The user specifies a custom attribute
through some language-specific syntax that encodes a call to the attribute’s constructor. If the attribute’s type is
derived (directly or indirectly) from System.Security.Permissions.SecurityAttribute then it is a security
custom attribute and requires special treatment, as follows (other custom attributes are handled by simply
recording the constructor in the metadata as described in §22.10). The attribute object is constructed, and
provides a method (createpermission) to convert it into a security permission object (an object derived from
System.Security.Permission). All the permission objects attached to a given metadata item with the same
security action are combined together into a System. Security.PermissionSet. This permission set is
converted into a form that is ready to be stored in XML using its Toxur, method to create a

126

Partition II




o] RN AN D ESS [SS I S

P—
N = O O

13
14
15

16
17

18
19

20

System.Security.SecurityElement. Finally, the XML that is required for the metadata is created using the
Tostring method on the security element. end note]

The DeclSecurity table has the following columns:
e Action (a 2-byte value)

e Parent (an index into the TypeDef, MethodDef, or Assembly table; more precisely, a
HasDeclSecurity (§24.2.6) coded index)

e PermissionSet (an index into the Blob heap)

Action is a 2-byte representation of Security Actions (see System.Security.SecurityAction in Partition IV).
The values 0—-0xFF are reserved for future standards use. Values 0x20—-0x7F and 0x100—-0x07FF are for uses
where the action can be ignored if it is not understood or supported. Values 0x80—0xFF and 0x0800—0xFFFF
are for uses where the action shall be implemented for secure operation; in implementations where the action is
not available, no access to the assembly, type, or method shall be permitted.

Security Action Note Explanation of behavior Valid Scope

Assert 1 Without further checks, satisfy Demand for the Method, Type
specified permission.

Demand 1 Check that all callers in the call chain have been Method, Type
granted specified permission, throw
SecurityException (see Partition IV) on failure.

Deny 1 Without further checks refuse Demand for the Method, Type
specified permission.

InheritanceDemand 1 The specified permission shall be granted in order | Method, Type
to inherit from class or override virtual method.

LinkDemand 1 Check that the immediate caller has been granted | Method, Type
the specified permission; throw
SecurityException (see Partition [V) on failure.

NonCasDemand 2 Check that the current assembly has been granted | Method, Type
the specified permission; throw
SecurityException (see Partition IV) otherwise.

NonCasLinkDemand | 2 Check that the immediate caller has been granted | Method, Type
the specified permission; throw
SecurityException (see Partition [V) otherwise.

PrejitGrant Reserved for implementation-specific use. Assembly

PermitOnly 1 Without further checks, refuse Demand for all Method, Type
permissions other than those specified.

RequestMinimum Specify the minimum permissions required to run. | Assembly

RequestOptional Specify the optional permissions to grant. Assembly

RequestRefuse Specify the permissions not to be granted. Assembly

Note 1: The speciﬁed attribute shall derive from System.Security.Permissions.CodeAccess—
SecurityAttribute

Note 2: The attribute shall derive from System.Security.Permissions.SecurityAttribute, but shall not
derive from System.Security.Permissions.CodeAccessSecurityAttribute

Parent is a metadata token that identifies the Method, Type, or Assembly on which security custom attributes
encoded in PermissionSet was defined.

PermissionSet is a 'blob' having the following format:
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e A byte containing a period (.).
e A compressed int32 containing the number of attributes encoded in the blob.
e An array of attributes each containing the following:

0 A String, which is the fully-qualified type name of the attribute. (Strings are encoded as a
compressed int to indicate the size followed by an array of UTFS8 characters.)

0 A set of properties, encoded as the named arguments to a custom attribute would be (as in
§23.3, beginning with NumNamed).

The permission set contains the permissions that were requested with an Action on a specific Method, Type, or
Assembly (see Parent). In other words, the blob will contain an encoding of all the attributes on the Parent with
that particular Action.

[Note: The first edition of this standard specified an XML encoding of a permission set. Implementations
should continue supporting this encoding for backward compatibility. end note]

The rows of the DeclSecurity table are filled by attaching a .permission  or .permissionset directive
that specifies the Action and PermissionSet on a parent assembly (§6.6) or parent type or method (§10.2).

This contains informative text only

1. Action shall have only those values set that are specified [ERROR]

2. Parent shall be one of TypeDef, MethodDef, or Assembly. That is, it shall index a valid row in
the TypeDef table, the MethodDef table, or the Assembly table. [ERROR]

3. If Parent indexes a row in the TypeDef table, that row should not define an Interface. The
security system ignores any such parent; compilers should not emit such permissions sets.
[WARNING]

If Parent indexes a TypeDef, then its TypeDef.Flags. HasSecurity bit shall be set [ERROR]
If Parent indexes a MethodDef, then its MethodDef.Flags. HasSecurity bit shall be set [ERROR]
PermissionSet shall index a 'blob' in the Blob heap [ERROR]

R

The format of the 'blob' indexed by PermissionSet shall represent a valid, encoded CLI object
graph. (The encoded form of all standardized permissions is specified in Partition IV.) [ERROR]

End informative text

22.12 EventMap : 0x12

The EventMap table has the following columns:
e  Parent (an index into the TypeDef table)

e FEventList (an index into the Event table). It marks the first of a contiguous run of Events owned by
this Type. That run continues to the smaller of:

0 the last row of the Event table

o the next run of Events, found by inspecting the EventList of the next row in the EventMap
table

Note that EventMap info does not directly influence runtime behavior; what counts is the information stored for
each method that the event comprises.

The EventMap and Event tables result from putting the .event directive on a class (§18).

This contains informative text only
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1.  EventMap table can contain zero or more rows
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2. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the
start of its event list) [ERROR]

3. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the
Event table) [ERROR]

End informative text

22.13 Event : 0x14

Events are treated within metadata much like Properties; that is, as a way to associate a collection of methods
defined on a given class. There are two required methods (add and remove ) plus an optional one (raise );
others are permitted. All of the methods gathered together as an Event shall be defined on the class.

The association between a row in the TypeDef table and the collection of methods that make up a given Event
is held in three separate tables (exactly analogous to the approach used for Properties), as follows:

TypaDefl Table

MyClass EvertMap Table

add_DocChanged Event Table

remove_DocChanged

add_TimedOut

‘\Melhﬂdsnamatics Table

DocChanged
TimedOut

remove_TimedOut

Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4
of the Event table on the right (the row for an Event called DocChanged). This setup establishes that MyClass
has an Event called DocChanged. But what methods in the MethodDef table are gathered together as
‘belonging’ to event DocChanged? That association is contained in the MethodSemantics table — its row 2
indexes event DocChanged to the right, and row 2 in the MethodDef table to the left (a method called
add_DocChanged). Also, row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in
the MethodDef table to the left (a method called remove _DocChanged). As the shading suggests, MyClass has
another event, called TimedOut, with two methods, add_TimedOut and remove _TimedOut.

Event tables do a little more than group together existing rows from other tables. The Event table has columns
for EventFlags, Name (e.g., DocChanged and TimedOut in the example here), and EventType. In addition, the
MethodSemantics table has a column to record whether the method it indexes is an add_, a remove_, a raise_,
or other function.

The Event table has the following columns:
e FEventFlags (a 2-byte bitmask of type EventAttributes, §23.1.4)
e Name (an index into the String heap)

e FEventType (an index into a TypeDef, a TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef
(§24.2.6) coded index) (This corresponds to the Type of the Event; it is not the Type that owns this
event.)

Note that Event information does not directly influence runtime behavior; what counts is the information stored
for each method that the event comprises.

The EventMap and Event tables result from putting the .event directive on a class (§18).
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This contains informative text only

1.

2
3.
4

12.

The Event table can contain zero or more rows

Each row shall have one, and only one, owner row in the EventMap table [ERROR]

EventFlags shall have only those values set that are specified (all combinations valid) [ERROR]
Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

» This string is limited to MAX CLASS NAME.

The Name string shall be a valid CLS identifier [CLS]
EventType can be null or non-null

If EventType is non-null, then it shall index a valid row in the TypeDef or TypeRef table
[ERROR]

If EventType is non-null, then the row in the TypeDef, TypeRef, or TypeSpec table that it indexes
shall be a Class (not an Interface or a ValueType) [ERROR]

For each row, there shall be one add_and one remove_row in the MethodSemantics table
[ERROR]

For each row, there can be zero or one raise_ row, as well as zero or more other rows in the
MethodSemantics table [ERROR]

Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based
upon Name [ERROR]

There shall be no duplicate rows based upon Name, where Name fields are compared using CLS
conflicting-identifier-rules [CLS]

End informative text

22.14 ExportedType : 0x27
The ExportedType table holds a row for each type:

130

a. Defined within other modules of this Assembly; that is exported out of this Assembly. In essence, it
stores TypeDef row numbers of all types that are marked public in other modules that this Assembly
comprises.

The actual target row in a TypeDef table is given by the combination of TypeDefId (in effect, row
number) and /mplementation (in effect, the module that holds the target 7ypeDef table). Note that this
is the only occurrence in metadata of foreign tokens; that is, token values that have a meaning in
another module. (A regular token value is an index into a table in the current module); OR

b. Originally defined in this Assembly but now moved to another Assembly. Flags must have
IsTypeForwarder set and Implementation is an AssemblyRef indicating the Assembly the type may
now be found in.

The full name of the type need not be stored directly. Instead, it can be split into two parts at any included “.”

[T3 1) [T3 1)

(although typically this is done at the last “.” in the full name). The part preceding the “.” is stored as the

[T [T3 1)

TypeNamespace and that following the “.” is stored as the TypeName. If there is no “.” in the full name, then
the TypeNamespace shall be the index of the empty string.

The ExportedType table has the following columns:

Flags (a 4-byte bitmask of type Typedttributes, §23.1.15)

TypeDefld (a 4-byte index into a TypeDef table of another module in this Assembly). This column
is used as a hint only. If the entry in the target TypeDef table matches the TypeName and
TypeNamespace entries in this table, resolution has succeeded. But if there is a mismatch, the CLI
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shall fall back to a search of the target TypeDef table. Ignored and should be zero if Flags has
IsTypeForwarder set

TypeName (an index into the String heap)
TypeNamespace (an index into the String heap)

Implementation. This is an index (more precisely, an Implementation (§24.2.6) coded index) into
either of the following tables:

0 File table, where that entry says which module in the current assembly holds the TypeDef
0 ExportedType table, where that entry is the enclosing Type of the current nested Type

0 AssemblyRef table, where that entry says in which assembly the type may now be found
(Flags must have the IsTypeForwarder flag set).

The rows in the ExportedType table are the result of the .class extern directive (§6.7).

This contains informative text only

The term “FullName” refers to the string created as follows: if the TypeNamespace is null, then use the

TypeName, otherwise use the concatenation of Typenamespace, “.”, and TypeName.

1. The ExportedType table can contain zero or more rows

2. There shall be no entries in the ExportedType table for Types that are defined in the current
module—ijust for Types defined in other modules within the Assembly [ERROR]

3. Flags shall have only those values set that are specified [ERROR]

4.  If Implementation indexes the File table, then Flags. VisibilityMask shall be public (§23.1.15)
[ERROR]

5. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be
NestedPublic (§23.1.15) [ERROR]

6. If non-null, TypeDefld should index a valid row in a TypeDef table in a module somewhere within
this Assembly (but not this module), and the row so indexed should have its Flags. Public = 1
(§23.1.15) [WARNING]

7. TypeName shall index a non-empty string in the String heap [ERROR]
LT Implementation Specific (Microsofty
| This string is limited to MAX CLASS NAME

8. TypeNamespace can be null, or non-null

9. If TypeNamespace is non-null, then it shall index a non-empty string in the String heap [ERROR]
T Implementation Specific (Microsofty
This string is limited to Max crass NaME. Also, the FullName (concatenated TypeNamespace +
o el Sl g2 [Gs e tese GhRSE BT,

10.  FullName shall be a valid CLS identifier [CLS]

11. Ifthis is a nested Type, then TypeNamespace should be null, and TypeName should represent the
unmangled, simple name of the nested Type [ERROR]

12.  Implementation shall be a valid index into either of the following: [ERROR]

o the File table; that file shall hold a definition of the target Type in its TypeDef table

0 a different row in the current ExportedType table—this identifies the enclosing Type of the
current, nested Type
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13.  FullName shall match exactly the corresponding FullName for the row in the TypeDef table
indexed by TypeDefld [ERROR]

14. Ignoring nested Types, there shall be no duplicate rows, based upon FullName [ERROR]

15. For nested Types, there shall be no duplicate rows, based upon TypeName and enclosing Type
[ERROR]

16. The complete list of Types exported from the current Assembly is given as the catenation of the
ExportedType table with all public Types in the current TypeDef table, where “public” means a
Flags.VisibilityMask of either Public or NestedPublic. There shall be no duplicate rows, in this
concatenated table, based upon FullName (add Enclosing Type into the duplicates check if this is
a nested Type) [ERROR]

End informative text

22.15 Field : 0x04

The Field table has the following columns:

e Flags (a 2-byte bitmask of type FieldAttributes, §23.1.5)
e Name (an index into the String heap)
e Signature (an index into the Blob heap)

Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However,
the owner of any row in the Field table is not stored anywhere in the Field table itself. There is merely a
‘forward-pointer’ from each row in the TypeDef table (the FieldList column), as shown in the following
illustration.

TypeDef Table
Field Table

S

LA P =

R B P =

!

FieldList Column

The TypeDef table has rows 1-4. The first row in the TypeDef table corresponds to a pseudo type, inserted
automatically by the CLI. It is used to denote those rows in the Field table corresponding to global variables.
The Field table has rows 1-6. Type 1 (pseudo type for ‘module’) owns rows 1 and 2 in the Field table. Type 2
owns no rows in the Field table, even though its FieldList indexes row 3 in the Field table. Type 3 owns

rows 3-5 in the Field table. Type 4 owns row 6 in the Field table. So, in the Field table, rows 1 and 2 belong
to Type 1 (global variables); rows 3—5 belong to Type 3; row 6 belongs to Type 4.

Each row in the Field table results from a top-level .field  directive (§3.10), or a .field  directive inside a
Type (§10.2). (For an example, see §14.5.)

This contains informative text only

132

1. The Field table can contain zero or more rows

2 Each row shall have one, and only one, owner row in the TypeDef table [ERROR]
3 The owner row in the TypeDef table shall not be an Interface [CLS]

4. Flags shall have only those values set that are specified [ERROR]
5

The FieldAccessMask subfield of Flags shall contain precisely one of compilerControlled,
Private, FamANDAssem, Assembly, Family, FamORAssem, Of Public (§2341.5) [ERROR]

6.  Flags can set either or neither of Literal or Initonly, but not both (§23.1.5) [ERROR]
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7. If Flags.Literal = 1 then Flags.Static shall also be 1 (§23.1.5) [ERROR]
8. If Flags.RTSpecialName = 1, then Flags.SpecialName shall also be 1 (§23.1.5) [ERROR]

9. If Flags.HasFieldMarshal = 1, then this row shall ‘own’ exactly one row in the FieldMarshal
table (§23.1.5) [ERROR]

10. If Flags.HasDefault = 1, then this row shall ‘own’ exactly one row in the Constant table
(§23.1.5) [ERROR]

11. If Flags.HasFieldRVA = 1, then this row shall ‘own’ exactly one row in the Field’s RVA table
(§23.1.5) [ERROR]

12.  Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

i This string is limited to MAX CLASS NAME

13.  The Name string shall be a valid CLS identifier [CLS]
14. Signature shall index a valid field signature in the Blob heap [ERROR]

15. If Flags.CompilerControlled = 1 (§23.1.5), then this row is ignored completely in duplicate
checking.

16. If the owner of this field is the internally-generated type called <Module>, it denotes that this field

is defined at module scope (commonly called a global variable). In this case:
o Flags.Static shall be 1 [ERROR]

0 Flags. MemberAccessMask subfield shall be one of public, CompilerControlled, Or
private (§23.1.5) [ERROR]

0 module-scope fields are not allowed [CLS]

17. There shall be no duplicate rows in the Field table, based upon ownert+Name+Signature (where

owner is the owning row in the TypeDef table, as described above) (Note however that if
Flags.CompilerControlled = 1, then this row is completely excluded from duplicate checking)
[ERROR]

18. There shall be no duplicate rows in the Field table, based upon owner+Name, where Name fields

are compared using CLS conflicting-identifier-rules. So, for example,"int i" and "float i"

would be considered CLS duplicates. (Note however that if Flags. CompilerControlled = 1, then

this row is completely excluded from duplicate checking, as noted above) [CLS]
19. Ifthis is a field of an Enum then:

a—RTFSpeecialName-shall be - ERROR]

b. owner row in TypeDef table shall derive directly from system.Enum [ERROR]

c. the owner row in TypeDef table shall have no other instance fields [CLS]

d.  its Signature shall be one of ELEMENT TYPE Ul, ELEMENT TYPE I2, ELEMENT TYPE I4, Of
ELEMENT TYPE 18 (§23.1.16): [CLS]

20. its Signature shall be an integral type. [ERROR]

End informative text

22.16 FieldLayout : 0x10
The FieldLayout table has the following columns:
e Offset (a 4-byte constant)
e Field (an index into the Field table)
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Note that each Field in any Type is defined by its Signature. When a Type instance (i.e., an object) is laid out
by the CLI, each Field is one of four kinds:

e Scalar: for any member of built-in type, such as int32. The size of the field is given by the size of
that intrinsic, which varies between 1 and 8 bytes

e ObjectRef: for ELEMENT TYPE CLASS, ELEMENT TYPE STRING, ELEMENT TYPE OBJECT,
ELEMENT TYPE ARRAY, ELEMENT TYPE SZARRAY

e Pointer: for ELEMENT TYPE PTR, ELEMENT TYPE FNPTR

e ValueType: for ELEMENT TYPE VALUETYPE. The instance of that ValueType is actually laid out in
this object, so the size of the field is the size of that ValueType

Note that metadata specifying explicit structure layout can be valid for use on one platform but not on another,
since some of the rules specified here are dependent on platform-specific alignment rules.

A row in the FieldLayout table is created if the .field directive for the parent field has specified a field
offset (§16).

This contains informative text only

1. A FieldLayout table can contain zero or more or rows

2. The Type whose Fields are described by each row of the FieldLayout table shall have
Flags.ExplicitLayout (§23.1.15) set [ERROR]

3. Offset shall be zero or more [ERROR]
4. Field shall index a valid row in the Field table [ERROR]

5. Flags.Static for the row in the Field table indexed by Field shall be non-static (i.e., zero 0)
[ERROR]

6.  Among the rows owned by a given Type there shall be no duplicates, based upon Field. Thatis, a
given Field of a Type cannot be given two offsets. [ERROR]

7.  Each Field of kind ObjectRef shall be naturally aligned within the Type [ERROR]

8. Among the rows owned by a given Type it is perfectly valid for several rows to have the same
value of Offset. ObjectRef and a valuetype cannot have the same offset [ERROR]

9. Every Field of an ExplicitLayout Type shall be given an offset; that is, it shall have a row in the
FieldLayout table [ERROR]

Implementation Specific (Microsoft)

Note that the rules above specify whether metadata is valid or invalid. However, there is a finer
distinction that can be drawn—what layouts permit type-safe access by code? For example, a class that
overlaps two ValueTypes constitutes valid metadata, but accesses to that class can result in code that is
not provably type-safe. At runtime, it is the Class loader that will perform these type-safety checks.
Version 1 takes a simple approach—if the type has any explicit layout, it is not type-safe. [This might
be refined in future versions.]

End informative text

22.17 FieldMarshal : 0x0D

The FieldMarshal table has two columns. It ‘links’ an existing row in the Field or Param table, to information
in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as
parameter number 0) shall be marshalled when calling to or from unmanaged code via PInvoke dispatch.

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code.
In order to execute such paths, the caller, on most platforms, would be installed with elevated security
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permission. Once it invokes unmanaged code, it lies outside the regime that the CLI can check—it is simply
trusted not to violate the type system.

The FieldMarshal table has the following columns:

e Parent (an index into Field or Param table; more precisely, a HasFieldMarshal (§24.2.6) coded
index)

e NativeType (an index into the Blob heap)
For the detailed format of the 'blob’, see §23.4

A row in the FieldMarshal table is created if the .field  directive for the parent field has specified a
marshal attribute (§16.1).

This contains informative text only

1. A FieldMarshal table can contain zero or more rows

2. Parent shall index a valid row in the Field or Param table (Parent values are encoded to say
which of these two tables each refers to) [ERROR]

3. NativeType shall index a non-null 'blob' in the Blob heap [ERROR]

4. No two rows shall point to the same parent. In other words, after the Parent values have been
decoded to determine whether they refer to the Field or the Param table, no two rows can point to
the same row in the Field table or in the Param table [ERROR]

5. The following checks apply to the MarshalSpec 'blob' (§23.4):

a. Nativelntrinsic shall be exactly one of the constant values in its production (§23.4)
[ERROR]

b. If aArrAY, then ArrayElemType shall be exactly one of the constant values in its production
[ERROR]

If ARRAY, then ParamNum can be zero
d. If arrAY, then ParamNum cannot be <0 [ERROR]

e. If arraY, and ParamNum > 0, then Parent shall point to a row in the Param table, not in the
Field table [ERROR]

f. If arrayY, and ParamNum > 0, then ParamNum cannot exceed the number of parameters
supplied to the MethodDef (or MethodRef if a varaRG call) of which the parent Param is a
member [ERROR]

g. If aArrAY, then ElemMult shall be >=1 [ERROR]
h.  If array and ElemMult != 1 issue a warning, because it is probably a mistake [WARNING]
i If arrAY and ParamNum = 0, then NumElem shall be >= 1 [ERROR]

j- If arraY and ParamNum != 0 and NumElem != 0 then issue a warning, because it is
probably a mistake [WARNING]

Implementation Specific (Microsoft)

The following rules apply to Microsoft-specific features:

format GUID. Its length, when expanded from UTF8, shall be exactly 38 characters, to include

! a. If cusToMMARSHALLER, then Guid shall be an in-place, counted-UTFS string, that represents a string
! leading { and trailing } [ERROR]

b. If cusToMMARSHALLER, then UnmanagedType shall be a non-empty, counted-UTFS string [ERROR]
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c. If cusToMMARSHALLER, then ManagedType shall be a non-empty, counted-UTFS8 string, that represents
the fully-qualified namespace+"."+name of a Class or ValueType defined somewhere within the current
Assembly [ERROR]

d. If cusToMMARSHALLER, then the Cookie shall be a counted-UTFS string - its size can legitimately be
zero [ERROR]

e. If sarEarRRAY, then SafeArrayElemType shall be exactly one of the constant values in its production
[ERROR]

f. If Nativelntrinsic has the value BYVALSTR, then Parent shall point to a row in the Field table, not the
Param table [ERROR]

g. If FIxEDARRAY, then Parent shall point to a row in the Field table, not the Param table [ERROR]
h. If FIxEDARRAY, then NumElem shall be 1 or more [ERROR]

i. If FIxEDARRAY, then ArrayElemType shall be exactly one of the constant values in its production
[ERROR]

End informative text

22.18 FieldRVA : 0x1D
The FieldRVA table has the following columns:
e RVA (a 4-byte constant)
e Field (an index into Field table)

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records
the RVA (Relative Virtual Address) within the image file at which this field’s initial value is stored.

A row in the FieldRVA table is created for each static parent field that has specified the optional data
label §16). The RVA column is the relative virtual address of the data in the PE file (§16.3).

This contains informative text only

1.  RVA shall be non-zero [ERROR]

2 RVA shall point into the current module’s data area (not its metadata area) [ERROR]
3. Field shall index a valid row in the Field table [ERROR]
4

Any field with an RV A shall be a ValueType (not a Class or an Interface). Moreover, it shall not
have any private fields (and likewise for any of its fields that are themselves ValueTypes). (If
any of these conditions were breached, code could overlay that global static and access its private
fields.) Moreover, no fields of that ValueType can be Object References (into the GC heap)
[ERROR]

5. So long as two RV A-based fields comply with the previous conditions, the ranges of memory
spanned by the two ValueTypes can overlap, with no further constraints. This is not actually an
additional rule; it simply clarifies the position with regard to overlapped RV A-based fields

End informative text

22.19 File : 0x26
The File table has the following columns:
e Flags (a 4-byte bitmask of type FileAttributes, §23.1.6)
e Name (an index into the String heap)

e  HashValue (an index into the Blob heap)
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The rows of the File table result from .file  directives in an Assembly (§6.2.3)

This contains informative text only

1. Flags shall have only those values set that are specified (all combinations valid) [ERROR]

2. Name shall index a non-empty string in the String heap. It shall be in the format
<filename>.<extension> (e.g., “foo.dll”, but not “c:\utils\foo.d11”) [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX PATH NAME

! Also, the following values for Name are invalid (since these represent device, rather than file,
| names):
S [N] [[C]*] where:

| S = con | aux | Ipt | prn | null | com (case-blind)
N ::=anumber 0 .. 9
C:=8§|:

[1 denotes optional, * denotes Kleene closure, | denotes alternatives [ERROR]
name by the user

3. HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]

4, There shall be no duplicate rows; that is, rows with the same Name value [ERROR]

5. If this module contains a row in the Assembly table (that is, if this module “holds the manifest”)
then there shall not be any row in the File table for this module; i.e., no self-reference [ERROR]

6.  If the File table is empty, then this, by definition, is a single-file assembly. In this case, the
ExportedType table should be empty [WARNING]

The CLI also checks dynamically against opening a device, which can be assigned an arbitrary

End informative text

22.20 GenericParam : 0x2A
The GenericParam table has the following columns:
e Number (the 2-byte index of the generic parameter, numbered left-to-right, from zero)

e  Flags (a 2-byte bitmask of type GenericParamAttributes, §23.1.7)

e  Owner (an index into the TypeDef or MethodDef table, specifying the Type or Method to which this

generic parameter applies; more precisely, a TypeOrMethodDef (§24.2.6) coded index)

e Name (a non-null index into the String heap, giving the name for the generic parameter. This is

purely descriptive and is used only by source language compilers and by Reflection)

The GenericParam table stores the generic parameters used in generic type definitions and generic method
definitions. These generic parameters can be constrained (i.e., generic arguments shall extend some class
and/or implement certain interfaces) or unconstrained. (Such constraints are stored in the
GenericParamConstraint table.)

Conceptually, each row in the GenericParam table is owned by one, and only one, row in either the TypeDef or

MethodDef tables.
[Example:

.class Dict 2<([mscorlib]System.IComparable) K, V>

The generic parameter K of class Dict is constrained to implement System. IComparable.
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.method static void ReverseArray<T>(!!0[] 'array')
There is no constraint on the generic parameter 7 of the generic method Reversearray.

end example)

Implementation Specific (Microsoft)

The following additional restrictions apply:

e  Owner cannot be a non-nested enumeration type; and

e If Owner is a nested enumeration type then Number must be less than or equal to the number of
generic parameters of the enclosing class.

Generic enumeration types serve little purpose and usually only exist to meet CLR Rule 42. These
additional restrictions limit the genericty of enumeration types while allowing CLS Rule 42 to be met.

This contains informative text only

1. GenericParam table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the TypeDef or MethodDef table (i.e., no
row sharing) [ERROR]

3. Every generic type shall own one row in the GenericParam table for each of its generic
parameters [ERROR]

4.  Every generic method shall own one row in the GenericParam table for each of its generic
parameters [ERROR]

Flags:

e Can hold the value Covariant or Contravariant, but only if the owner row corresponds to a generic
interface, or a generic delegate class. [ERROR]

e Otherwise, shall hold the value None indicating nonvariant (i.e., where the parameter is nonvariant
or the owner is a non delegate class, a value-type, or a generic method) [ERROR]

If Flags == Covariant then the corresponding generic parameter can appear in a type definition only as
[ERROR]:

e The result type of a method
e A generic parameter to an inherited interface

If Flags == Contravariant then the corresponding generic parameter can appear in a type definition only
as the argument to a method [ERROR]

Number shall have a value >= 0 and < the number of generic parameters in owner type or method.
[ERROR]

Successive rows of the GenericParam table that are owned by the same method shall be ordered by
increasing Number value; there shall be no gaps in the Number sequence [ERROR]

Name shall be non-null and index a string in the String heap [ERROR]
[Rationale: Otherwise, Reflection output is not fully usable. end rationale]

There shall be no duplicate rows based upon Owner+Name [ERROR] [Rationale: Otherwise, code
using Reflection cannot disambiguate the different generic parameters. end rationale)

There shall be no duplicate rows based upon Owner+Number [ERROR]

End informative text
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22.21 GenericParamConstraint : 0x2C

The GenericParamConstraint table has the following columns:

e Owner (an index into the GenericParam table, specifying to which generic parameter this row
refers)

e Constraint (an index into the TypeDef, TypeRef, or TypeSpec tables, specifying from which class
this generic parameter is constrained to derive; or which interface this generic parameter is
constrained to implement; more precisely, a TypeDefOrRef (§24.2.6) coded index)

The GenericParamConstraint table records the constraints for each generic parameter. Each generic parameter
can be constrained to derive from zero or one class. Each generic parameter can be constrained to implement
zero or more interfaces.

Conceptually, each row in the GenericParamConstraint table is ‘owned’ by a row in the GenericParam table.
All rows in the GenericParamConstraint table for a given Owner shall refer to distinct constraints.

Note that if Constraint is a TypeRef to System.vValueType, then it means the constraint type shall be
System.ValueType, or one of its sub types. However, since system.valueType itself is a reference type, this
particular mechanism does not guarantee that the type is a non-reference type.

This contains informative text only

1. The GenericParamConstraint table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the GenericParam table (i.e., no row sharing)
[ERROR]

3. Each row in the GenericParam table shall ‘own’ a separate row in the GenericParamConstraint
table for each constraint that generic parameter has [ERROR]

4. All of the rows in the GenericParamConstraint table that are owned by a given row in the
GenericParam table shall form a contiguous range (of rows) [ERROR]

5. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or one
row in the GenericParamConstraint table corresponding to a class constraint. [ERROR]

6. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or more
rows in the GenericParamConstraint table corresponding to an interface constraint. [ERROR]

7. There shall be no duplicate rows based upon Owner+Constraint [ERROR]

8. Constraint shall not reference system.void. [ERROR]

End informative text

22.22 ImplMap : 0x1C

The ImplMap table holds information about unmanaged methods that can be reached from managed code,
using PInvoke dispatch.

Each row of the ImpIMap table associates a row in the MethodDef table (MemberForwarded) with the name of
a routine (ImportName) in some unmanaged DLL (ImportScope).

[Note: A typical example would be: associate the managed Method stored in row N of the Method table (so
MemberForwarded would have the value N) with the routine called “GetEnvironmentVariable” (the string
indexed by ImportName) in the DLL called “kernel32” (the string in the ModuleRef table indexed by
ImportScope). The CLI intercepts calls to managed Method number N, and instead forwards them as calls to
the unmanaged routine called “GetEnvironmentVariable” in “kernel32.d11” (including marshalling any
arguments, as required)

The CLI does not support this mechanism to access fields that are exported from a DLL, only methods. end
note]
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The ImplMap table has the following columns:

MappingFlags (a 2-byte bitmask of type PlnvokeAttributes, §23.1.7)

MemberForwarded (an index into the Field or MethodDef table; more precisely, a
MemberForwarded (§24.2.6) coded index). However, it only ever indexes the MethodDef table,
since Field export is not supported.

ImportName (an index into the String heap)

ImportScope (an index into the ModuleRef table)

A row is entered in the ImpIMap table for each parent Method (§15.5) that is defined with a .pinvokeimpl
interoperation attribute specifying the MappingFlags, ImportName, and ImportScope.

This contains informative text only

1.

2
3.
4

ImplIMap can contain zero or more rows
MappingFlags shall have only those values set that are specified [ERROR]
MemberForwarded shall index a valid row in the MethodDef table [ERROR]

The MappingFlags. CharSetMask (§23.1.7) in the row of the MethodDef table indexed by
MemberForwarded shall have at most one of the following bits set: charSetAnsi,
CharSetUnicode, Or CharSetAuto (if none is set, the default is charsetNotSpec) [ERROR]

Implementation Specific (Microsoft)

The MappingFlags.CallConvMask in the row of the Method table indexed by MemberForwarded
shall have at most one of the following values: callconvWinapi, CallConvCdecl,
CallConvStdcall. It cannot have the value callconvFastcall Or CallConvThiscall. [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX CLASS NAME

ImportScope shall index a valid row in the ModuleRef table [ERROR]

The row indexed in the MethodDef table by MemberForwarded shall have its Flags.Pinvokelmp!
=1, and Flags.Static =1 [ERROR]

End informative text

22.23 InterfaceImpl : 0x09

The Interfacelmpl table has the following columns:

Class (an index into the TypeDef table)

Interface (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef
(§24.2.6) coded index)

The Interfacelmpl table records the interfaces a type implements explicitly. Conceptually, each row in the
Interfacelmpl table indicates that Class implements Interface.

This contains informative text only

1.
2.

140

The Interfacelmpl table can contain zero or more rows

Class shall be non-null [ERROR]
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If Class = null this row should be treated as if it does not exist. In incremental compilation
scenarios, this is used to mark a class as being deleted, without physically deleting its metadata.

3. If Class is non-null, then:
a. Class shall index a valid row in the TypeDef table [ERROR]
b.  Interface shall index a valid row in the TypeDef or TypeRef table [ERROR]

c. The row in the TypeDef, TypeRef, or TypeSpec table indexed by Interface shall be an
interface (Flags.Interface = 1), not a Class or ValueType [ERROR]

4.  There should be no duplicates in the Interfacelmpl table, based upon non-null Class and Interface
values [WARNING]

5. There can be many rows with the same value for Class (since a class can implement many
interfaces)

6.  There can be many rows with the same value for Interface (since many classes can implement the

same interface)

End informative text

22.24 ManifestResource : 0x28
The ManifestResource table has the following columns:
e Offset (a 4-byte constant)
e Flags (a 4-byte bitmask of type ManifestResourceAttributes, §23.1.9)
e Name (an index into the String heap)

e [mplementation (an index into a File table, a AssemblyRef table, or null; more precisely, an
Implementation (§24.2.6) coded index)

The Offset specifies the byte offset within the referenced file at which this resource record begins. The
Implementation specifies which file holds this resource. The rows in the table result from .mresource
directives on the Assembly (§6.2.2).

This contains informative text only

1. The ManifestResource table can contain zero or more rows

2. Offset shall be a valid offset into the target file, starting from the Resource entry in the CLI
header [ERROR]

3. Flags shall have only those values set that are specified [ERROR]
4.  The VisibilityMask (§23.1.9) subfield of Flags shall be one of public or private [ERROR]
5. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX CLASS_ NAME.

6.  Implementation can be null or non-null (if null, it means the resource is stored in the current file)

7. If Implementation is null, then Offset shall be a valid offset in the current file, starting from the
Resource entry in the CLI header [ERROR]

8. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table
[ERROR]

9.  There shall be no duplicate rows, based upon Name [ERROR]
10. If the resource is an index into the File table, Offset shall be zero [ERROR]
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End informative text

22.25 MemberRef : 0x0A

The MemberRef table combines two sorts of references, to Methods and to Fields of a class, known as
‘MethodRef” and ‘FieldRef’, respectively. The MemberRef table has the following columns:

e (Class (an index into the MethodDef, ModuleRef,TypeDef, TypeRef, or TypeSpec tables; more
precisely, a MemberRefParent (§24.2.6) coded index)

e Name (an index into the String heap)
e Signature (an index into the Blob heap)

An entry is made into the MemberRef table whenever a reference is made in the CIL code to a method or field
which is defined in another module or assembly. (Also, an entry is made for a call to a method with a vararc
signature, even when it is defined in the same module as the call site.)

This contains informative text only

142

1. Class shall be one of the following: [ERROR]

a. a TypeRef token, if the class that defines the member is defined in another module. (Note
that it is unusual, but valid, to use a TypeRef token when the member is defined in this same
module, in which case, its TypeDef token can be used instead.)

b. a ModuleRef token, if the member is defined, in another module of the same assembly, as a
global function or variable.

c. a MethodDef token, when used to supply a call-site signature for a vararg method that is
defined in this module. The Name shall match the Name in the corresponding MethodDef
row. The Signature shall match the Signature in the target method definition [ERROR]

d. a TypeSpec token, if the member is a member of a generic type

2. Class shall not be null (as this would indicate an unresolved reference to a global function or
variable) [ERROR]

3. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX CLASS NAME

4. The Name string shall be a valid CLS identifier [CLS]

5. Signature shall index a valid field or method signature in the Blob heap. In particular, it shall
embed exactly one of the following ‘calling conventions’: [ERROR]

a. pDEFAULT (0x0)
b.  vararc (0x5)
c. FIELD (0x6)

d. GENERIC (0x10)

Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK using the prefix
| IMAGE CEE_CS_CALLCONV_

6. The MemberRef table shall contain no duplicates, where duplicate rows have the same Class,
Name, and Signature [WARNING]

7. Signature shall not have the vararc (0x5) calling convention [CLS]
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8. There shall be no duplicate rows, where Name fields are compared using CLS conflicting-
identifier-rules. (In particular, note that the return type and whether parameters are marked
ELEMENT TYPE BYREF (§23.1.16) are ignored in the CLS. For example, .method int32 M()and
.method floaté64 M() result in duplicate rows by CLS rules. Similarly, .method void
N(int32 i)and .method void N(int32s i)also result in duplicate rows by CLS rules.) [CLS]

Implementation Specific (Microsoft)

dummies, used to pad entries in the vtable that CLI generates for COM interop. Such methods
cannot be called from managed or unmanaged code [ERROR]

Name shall not be of the form _VtblGapSequenceNumber< CountOfSlots>—such methods are

9. If Class and Name resolve to a field, then that field shall not have a value of compilerControlled
(§23.1.5) in its Flags.FieldAccessMask subfield [ERROR]

10. If Class and Name resolve to a method, then that method shall not have a value of
CompilerControlled in its Flags.MemberAccessMask (§23.1.10) subfield [ERROR]

11. The type containing the definition of a MemberRef shall be a TypeSpec representing an
instantiated type.

End informative text

22.26 MethodDef : 0x06
The MethodDef table has the following columns:
e RVA (a 4-byte constant)
e [mplFlags (a 2-byte bitmask of type MethodImplAttributes, §23.1.10)
e Flags (a 2-byte bitmask of type MethodAttributes, §23.1.10)

e Name (an index into the String heap)
e Signature (an index into the Blob heap)

e ParamlList (an index into the Param table). It marks the first of a contiguous run of Parameters
owned by this method. The run continues to the smaller of:

0 the last row of the Param table

0 the next run of Parameters, found by inspecting the ParamList of the next row in the
MethodDef table

Conceptually, every row in the MethodDef table is owned by one, and only one, row in the TypeDef table.

The rows in the MethodDef table result from .method directives (§15). The RVA column is computed when
the image for the PE file is emitted and points to the cor 11METHOD structure for the body of the method
(825.4)

[Note: If Signature is ceNerIC (0x10), the generic arguments are described in the GenericParam table (§22.20).
end note]

This contains informative text only

1.  The MethodDef table can contain zero or more rows

Each row shall have one, and only one, owner row in the TypeDef table [ERROR]
ImplFlags shall have only those values set that are specified [ERROR]

Flags shall have only those values set that are specified [ERROR]

AN

If Name is .ctor and the method is marked specialName, there shall not be a row in the
GenericParam table which has this MethodDef as its owner. [ERROR]
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10.

11.

12.

13.

14.

18.
19.

The MemberAccessMask (§23.1.10) subfield of Flags shall contain precisely one of
CompilerControlled, Private, FamANDAssem, Assem, Family, FamORAssem, Of Public UERR()R]

The following combined bit settings in Flags are invalid [ERROR]

a. Static | Final

b. Static | Virtual

C. Static | NewSlot

d. Final | Abstract

€. Abstract | PinvokeImpl

f. CompilerControlled | SpecialName
g. CompilerControlled | RTSpecialName

An abstract method shall be virtual. So, if Flags.Abstract = 1 then Flags.Virtual shall also be 1
[ERROR]

If Flags.RTSpecialName = 1 then Flags.SpecialName shall also be 1 [ERROR]
Implementation Specific (Microsoft)

An abstract method cannot have Forwardref (§23.1.11) set, and vice versa. So:

if Flags.Abstract = 1 then ImplFlags. ForwardRef shall be 0 [ERROR]

if ImplFlags.ForwardRef = 1 then Flags.Abstract shall be 0 [ERROR]

The Forwardref bit shall be set only in an OBJ file (used by managed extensions for C++). By
the time a method executes, its Forwardref shall be 0. [ERROR]

If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]
0 this Method owns at least row in the DeclSecurity table
0 this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute

If this Method owns one (or more) rows in the DeclSecurity table then Flags. HasSecurity shall
be 1 [ERROR]

If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then
Flags.HasSecurity shall be 1 [ERROR]

A Method can have a custom attribute called DynamicSecurityMethodAttribute, but this has no
effect whatsoever upon the value of its Flags. HasSecurity

Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX CLASS NAME

Interfaces cannot have instance constructors. So, if this Method is owned by an Interface, then its
Name cannot be .ctor [ERROR]

The Name string shall be a valid CLS identifier (unless Flags.RTSpecialName is set - for
example, .cctor is valid) [CLS]

Signature shall index a valid method signature in the Blob heap [ERROR]

If Flags.CompilerControlled = 1, then this row is ignored completely in duplicate checking
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20.

21.

22.

23.

24.
25.
26.

27.

28.

29.

If the owner of this method is the internally-generated type called <Module>, it denotes that this
method is defined at module scope. [ Note: In C++, the method is called global and can be
referenced only within its compiland, from its point of declaration forwards. end note] In this
case:

a Flags.Static shall be 1 [ERROR]
b.  Flags.Abstract shall be 0 [ERROR]
c. Flags.Virtual shall be 0 [ERROR]

d. Flags.MemberAccessMask subfield shall be one of compilerControlled, Public, Or
Private [ERROR]

e. module-scope methods are not allowed [CLS]

It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless
they are boxed). So, if the owner of this method is a ValueType then the method cannot be
synchronized. That is, ImplFlags.Synchronized shall be 0 [ERROR]

There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature
(where owner is the owning row in the TypeDef table). (Note that the Signature encodes whether
or not the method is generic, and for generic methods, it encodes the number of generic
parameters.) (Note, however, that if Flags. CompilerControlled = 1, then this row is excluded
from duplicate checking) [ERROR]

There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature,
where Name fields are compared using CLS conflicting-identifier-rules; also, the Type defined in
the signatures shall be different. So, for example, "int i" and "f1loat i" would be considered
CLS duplicates; also, the return type of the method is ignored (Note, however, that if
Flags.CompilerControlled = 1, this row is excluded from duplicate checking as explained above.)
[CLS]

If Final, NewSlot, or strict are set in Flags, then Flags.Virtual shall also be set [ERROR]
If Flags.PInvokelmpl is set, then Flags. Virtual shall be 0 [ERROR]

If Flags.Abstract != 1 then exactly one of the following shall also be true: [ERROR]

0 RVA =0

o Flags.PInvokelmpl = 1

0 ImplFlags.Runtime = 1

Implementation Specific (Microsoft)

There is an additional mutually exclusive possibility related to COM Interop: the owner of
' this method is marked Import = 1

If the method is compilerControlled, then the RVA shall be non-zero or marked with
PinvokeImpl =1 [ERROR]

Signature shall have exactly one of the following managed calling conventions [ERROR]
a. pDEFAULT (0x0)
b.  vararc (0x5)

c. GENERIC (0x10)

Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK, using a prefix
of “IMAGE CEE_CS_CALLCONV_”

Signature shall have the calling convention peraurT (0x0) or ceEner1C (0x10). [CLS]
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30.

31.

32.

33.

34.

35.

36.

37.

146

Signature: 1f and only if the method is not static then the calling convention byte in Signature
has its HasTHIS (0x20) bit set [ERROR]

Signature: If the method is static, then the HasTHIS (0x20) bit in the calling convention shall
be 0 [ERROR]

If exprnicITTHIS (0%40) in the signature is set, then sasTaIS (0x20) shall also be set (note that if
EXPLICITTHIS is set, then the code is not verifiable) [ERROR]

The expr1cITTHIS (0X40) bit can be set only in signatures for function pointers: signatures whose
MethodDefSig is preceded by rnpTr (0x1B) [ERROR]

If RVA = 0, then either: [ERROR]
0 Flags.Abstract = 1, or
0 ImplFlags.Runtime = 1, or

0 Flags.PinvokeImpl = 1, or

Implementation Specific (Microsoft)
There are two additional mutually exclusive possibilities:
ImplFlags.InternalCall = 1, or

owner row in TypeDef table has Flags.Import = 1

If RVA != 0, then: [ERROR]
a.  Flags.Abstract shall be 0, and

b.  ImplFlags.CodeTypeMask shall have exactly one of the following values: Native, CIL, Oor
Runtime, and

c. RVA shall point into the CIL code stream in this file

Implementation Specific (Microsoft)
There are two additional requirements:
ImplFlags.InternalCall = 0, and
the owner row in TypeDef table has Flags.tdImport = 0

If Flags.PinvokeImpl = 1 then [ERROR]
0 RVA = 0 and the method owns a row in the ImplMap table

Implementation Specific (Microsoft)

For IJW thunks there is an additional possibility, where the method is actually a managed
i method in the current module:

RVA != 0 and the method does not own a row in the Imp/Map table and the method signature
includes a custom modifier that specifies the native calling convention

If Flags.RTSpecialName = 1 then Name shall be one of: [ERROR]
a. .ctor (an object constructor method)

b. .cctor  (a class constructor method)

Implementation Specific (Microsoft)
For COM Interop, an additional class of method names are permitted:
_VtblGap<SequenceNumber> <CountOfSlots>

where <SequenceNumber> and <CountOfSlots> are decimal numbers
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38. Conversely, if Name is any of the above special names then Flags.RTSpecialName shall be set
[ERROR]

39. If Name = .ctor (an object constructor method) then:
a return type in Signature shall be ELEMENT TYPE voID (§23.1.16) [ERROR]
b.  Flags.Static shall be 0 [ERROR]
c. Flags.Abstract shall be 0 [ERROR]
d. Flags.Virtual shall be 0 [ERROR]

e. ‘Owner’ type shall be a valid Class or ValueType (not <Module> and not an Interface) in the
TypeDef table [ERROR]

f. there can be zero or more .ctors  for any given ‘owner’
40. If Name = .cctor (a class constructor method) then:
a the return type in Signature shall be eLEMENT TYPE vo1D (§23.1.16) [ERROR]
b. Signature shall have peravrT (0x0) for its calling convention [ERROR]
c. there shall be no parameters supplied in Signature [ERROR]
d. Flags.Static shall be set [ERROR]
e. Flags.Virtual shall be clear [ERROR]
f. Flags.Abstract shall be clear [ERROR]

41. Among the set of methods owned by any given row in the TypeDef table there can only be 0 or 1
methods named .cctor [ERROR]

End informative text

22.27 MethodImpl : 0x19

MethodImpl tables let a compiler override the default inheritance rules provided by the CLI. Their original use
was to allow a class c, that inherited method ™ from both interfaces 1 and J, to provide implementations for
both methods (rather than have only one slot for u in its vtable). However, MethodImpls can be used for other
reasons too, limited only by the compiler writer’s ingenuity within the constraints defined in the Validation
rules below.

In the example above, Class specifies c, MethodDeclaration specifies 1: :M, MethodBody specifies the method
which provides the implementation for 1: :m (either a method body within c, or a method body implemented by
a base class of ¢).

The MethodImpl table has the following columns:
e (Class (an index into the TypeDef table)

e MethodBody (an index into the MethodDef or MemberRef table; more precisely, a MethodDefOrRef
(§24.2.6) coded index)

e MethodDeclaration (an index into the MethodDef or MemberRef table; more precisely, a
MethodDefOrRef (§24.2.6) coded index)

ILAsm uses the .override  directive to specify the rows of the MethodImp! table (§10.3.2 and §15.4.1).

This contains informative text only

1. The MethodImpl table can contain zero or more rows
2. Class shall index a valid row in the TypeDef table [ERROR]
3. MethodBody shall index a valid row in the MethodDef or MemberRef table [ERROR]
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10.

11.

12.

13.

The method indexed by MethodDeclaration shall have Flags.Virtual set [ERROR]

The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 0
[ERROR]

The method indexed by MethodBody shall be a member of Class or some base class of Class
(MethodImpls do not allow compilers to ‘hook’ arbitrary method bodies) [ERROR]

The method indexed by MethodBody shall be virtual [ERROR]

The method indexed by MethodBody shall have its Method.RVA != 0 (cannot be an unmanaged
method reached via PInvoke, for example) [ERROR]

MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends
chain) or in the interface tree of Class (reached via its Interfacelmpl entries) [ERROR]

The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0)
[ERROR]

If MethodDeclaration has the Strict flag set, the method indexed by MethodDeclaration shall be
accessible to Class. [ERROR]

The method signature defined by MethodBody shall match those defined by MethodDeclaration
[ERROR]

There shall be no duplicate rows, based upon Class+MethodDeclaration [ERROR]

End informative text

22.28

MethodSemantics : 0x18

The MethodSemantics table has the following columns:

Semantics (a 2-byte bitmask of type MethodSemanticsAttributes, §23.1.12)
Method (an index into the MethodDef table)

Association (an index into the Event or Property table; more precisely, a HasSemantics (§24.2.6)
coded index)

The rows of the MethodSemantics table are filled by .property  (§17) and .event directives (§18).
(See §22.13 for more information.)

This contains informative text only

1.
2.
3.

148

MethodSemantics table can contain zero or more rows
Semantics shall have only those values set that are specified [ERROR]

Method shall index a valid row in the MethodDef table, and that row shall be for a method defined
on the same class as the Property or Event this row describes [ERROR]

All methods for a given Property or Event shall have the same accessibility (ie the
MemberAccessMask subfield of their Flags row) and cannot be compilercControlled [CLS]

Semantics.: constrained as follows:

0 If this row is for a Property, then exactly one of setter, Getter, or other shall be set
[ERROR]

0 If this row is for an Event, then exactly one of Addon, RemoveOn, Fire, or other shall be set
[ERROR]

If this row is for an Event, and its Semantics is Addon or RemoveOn, then the row in the MethodDef
table indexed by Method shall take a Delegate as a parameter, and return void [ERROR]

If this row is for an Event, and its Semantics is Fire, then the row indexed in the MethodDef table
by Method can return any type
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10.
11.

12.

13.
14.

15.

16.

17.
18.

19.

20.

Implementation Specific (Microsoft)
The return type of the Fire method shall be void
For each property, there shall be a setter, or a getter, or both [CLS]
Any getter method for a property whose Name is xxx shall be called get_xxx [CLS]
Any setter method for a property whose Name is xxx shall be called set_xxx [CLS]

If a property provides both getter and setter methods, then these methods shall have the same
value in the Flags. MemberAccessMask subfield [CLS]

If a property provides both getter and setter methods, then these methods shall have the same
value for their Method.Flags.Virtual [CLS]

Any getter and setter methods shall have Method. Flags.SpecialName = 1 [CLS]

Any getter method shall have a return type which matches the signature indexed by the
Property. Type field [CLS]

The last parameter for any setter method shall have a type which matches the signature indexed
by the Property.Type field [CLS]

Any setter method shall have return type ELEMENT TyPE vOID (§23.1.16) in Method.Signature
[CLS]

If the property is indexed, the indexes for getter and setter shall agree in number and type [CLS]

Any AddOn method for an event whose Name is xxx shall have the signature: void add_xxx
(< DelegateType> handler) [CLS]

Any RemoveOn method for an event whose Name is xxx shall have the signature: void
remove_xxx(< DelegateType> handler) [CLS]

Any Fire method for an event whose Name is xxx shall have the signature: void
raise_xxx(Event e) [CLS]

End informative text

22.29 MethodSpec : 0x2B
The MethodSpec table has the following columns:

Method (an index into the MethodDef or MemberRef table, specifying to which generic method this
row refers; that is, which generic method this row is an instantiation of; more precisely, a
MethodDefOrRef (§24.2.6) coded index)

Instantiation (an index into the Blob heap (§23.2.15), holding the signature of this instantiation)

The MethodSpec table records the signature of an instantiated generic method.

Each unique instantiation of a generic method (i.e., a combination of Method and Instantiation) shall be
represented by a single row in the table.

This contains informative text only

1.
2.

The MethodSpec table can contain zero or more rows

One or more rows can refer to the same row in the MethodDef or MemberRef table. (There can be
multiple instantiations of the same generic method.)

The signature stored at Instantiation shall be a valid instantiation of the signature of the generic
method stored at Method [ERROR]

There shall be no duplicate rows based upon Method+Instantiation [ERROR]
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End informative text

22.30 Module : 0x00

The Module table has the following columns:
e  Generation (a 2-byte value, reserved, shall be zero)
e Name (an index into the String heap)

e  Mvid (an index into the Guid heap; simply a Guid used to distinguish between two versions of the
same module)

e FEncld (an index into the Guid heap; reserved, shall be zero)
e FEncBaseld (an index into the Guid heap; reserved, shall be zero)

The Mvid column shall index a unique GUID in the GUID heap (§24.2.5) that identifies this instance of the
module. The Mvid can be ignored on read by conforming implementations of the CLI. The Mvid should be
newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or another
compatible algorithm.

[Note: The term GUID stands for Globally Unique IDentifier, a 16-byte long number typically displayed using
its hexadecimal encoding. A GUID can be generated by several well-known algorithms including those used
for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, as well as CLSIDs, GUIDs, and IIDs in
COM. end note]

[Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside
the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another. end
rationale)

The Generation, Encld, and EncBaseld columns can be written as zero, and can be ignored by conforming
implementations of the CLI. The rows in the Module table result from .module directives in the Assembly

(§6.4).

This contains informative text only

1. The Module table shall contain one and only one row [ERROR]

2. Name shall index a non-empty string. This string should match exactly any corresponding
ModuleRef Name string that resolves to this module. [ERROR]

Implementation Specific (Microsoft)
Name is limited to MAX PATH NAME

The format of Name is <file name>.<file extension> with no path or drive letter; on POSIX-
compliant systems Name contains no colon, no forward-slash, no backslash.

3. Mvid shall index a non-null GUID in the Guid heap [ERROR]

End informative text

22.31 ModuleRef : 0x1A

The ModuleRef table has the following column:
e Name (an index into the String heap)

The rows in the ModuleRef table result from .module extern directives in the Assembly (§6.5).

This contains informative text only

150

1.  Name shall index a non-empty string in the String heap. This string shall enable the CLI to locate
the target module (typically, it might name the file used to hold the module) [ERROR]
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Implementation Specific (Microsoft)
Name is limited to MAX PATH NAME

The format of Name is <filename>.<extension> (eg, “Foo.DLL” - no drive letter, no path); on
POSIX-compliant systems Name contains no colon, no forward-slash, no backslash.

2. There should be no duplicate rows [WARNING]

3. Name should match an entry in the Name column of the File table. Moreover, that entry shall
enable the CLI to locate the target module (typically it might name the file used to hold the
module) [ERROR]

End informative text

22.32 NestedClass : 0x29
The NestedClass table has the following columns:
e NestedClass (an index into the TypeDef table)
o FEnclosingClass (an index into the TypeDef table)

NestedClass is defined as lexically ‘inside’ the text of its enclosing Type.

This contains informative text only

The NestedClass table records which Type definitions are nested within which other Type definition. In a
typical high-level language, the nested class is defined as lexically ‘inside’ the text of its enclosing Type

1. The NestedClass table can contain zero or more rows

2. NestedClass shall index a valid row in the TypeDef table [ERROR]

3. EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to

index the TypeRef table) [ERROR]

4.  There should be no duplicate rows (ie same values for NestedClass and EnclosingClass)
[WARNING]
5. A given Type can only be nested by one encloser. So, there cannot be two rows with the same

value for NestedClass, but different value for EnclosingClass [ERROR]

6. A given Type can ‘own’ several different nested Types, so it is perfectly valid to have two or
more rows with the same value for EnclosingClass but different values for NestedClass

End informative text

22.33 Param : 0x08
The Param table has the following columns:
e Flags (a 2-byte bitmask of type ParamAttributes, §23.1.13)
e Sequence (a 2-byte constant)
e Name (an index into the String heap)

Conceptually, every row in the Param table is owned by one, and only one, row in the MethodDef table

The rows in the Param table result from the parameters in a method declaration (§15.4), or from a .param
attribute attached to a method (§15.4.1).

This contains informative text only

1. Param table can contain zero or more rows
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2. Each row shall have one, and only one, owner row in the MethodDef table [ERROR]
3. Flags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Sequence shall have a value >= 0 and <= number of parameters in owner method. A Sequence
value of 0 refers to the owner method’s return type; its parameters are then numbered from 1
onwards [ERROR]

5. Successive rows of the Param table that are owned by the same method shall be ordered by
increasing Sequence value - although gaps in the sequence are allowed [WARNING]

6. If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table [ERROR]

7. If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row
[ERROR]

8. parameters cannot be given default values, so Flags. HasDefault shall be 0 [CLS]

9. if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table
[ERROR]

10. Name can be null or non-null

11. If Name is non-null, then it shall index a non-empty string in the String heap [WARNING]

Implementation Specific (Microsoft)

This string is limited to MAX CLASS NAME

End informative text

22.34 Property : 0x17

Properties within metadata are best viewed as a means to gather together collections of methods defined on a
class, give them a name, and not much else. The methods are typically get and set methods, already defined
on the class, and inserted like any other methods into the MethodDef table. The association is held together by
three separate tables, as shown below:

Typealef Table
MyClass Propertylap Table
MethodDef Table
get_Foo Froperty Table
set_Foo MethodSemantics Table
get_Bar \ | Foo
set Bar Bar

Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing
row 4 of the Property table on the right — the row for a property called Foo. This setup establishes that
MyClass has a property called Foo. But what methods in the MethodDef table are gathered together as
‘belonging’ to property Foo? That association is contained in the MethodSemantics table — its row 2 indexes
property Foo to the right, and row 2 in the MethodDef table to the left (a method called get Foo). Also, row 3
of the MethodSemantics table indexes Foo to the right, and row 3 in the MethodDeftable to the left (a method
called set_Foo). As the shading suggests, MyClass has another property, called Bar, with two methods,
get_Bar and set_Bar.
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Property tables do a little more than group together existing rows from other tables. The Property table has

columns for Flags, Name (eg Foo and Bar in the example here) and Type. In addition, the MethodSemantics
table has a column to record whether the method it points at is a set , a get or other.

[Note: The CLS (see Partition I) refers to instance, virtual, and static properties. The signature of a property

(from the Type column) can be used to distinguish a static property, since instance and virtual properties will
have the “HASTHIS” bit set in the signature (§23.2.1) while a static property will not. The distinction between

an instance and a virtual property depends on the signature of the getter and setter methods, which the CLS
requires to be either both virtual or both instance. end note]

The Property ( 0x17 ) table has the following columns:

e Flags (a 2-byte bitmask of type PropertyAttributes, §23.1.14)

e Name (an index into the String heap)

e Type (an index into the Blob heap) (The name of this column is misleading. It does not index a
TypeDef or TypeRef table—instead it indexes the signature in the Blob heap of the Property)

This contains informative text only

1. Property table can contain zero or more rows
2. Each row shall have one, and only one, owner row in the PropertyMap table (as described above)
[ERROR]

3. PropFlags shall have only those values set that are specified (all combinations valid) [ERROR]

4.  Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX CLASS NAME

5. The Name string shall be a valid CLS identifier [CLS]

6. Type shall index a non-null signature in the Blob heap [ERROR]

7. The signature indexed by Type shall be a valid signature for a property (ie, low nibble of leading

byte is 0x8). Apart from this leading byte, the signature is the same as the property’s get  method

[ERROR]

8. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based

upon Name+Type [ERROR]

9.  There shall be no duplicate rows based upon Name, where Name fields are compared using CLS
conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type — a class
cannot have two properties, "int Foo" and "String Foo", for example) [CLS]

End informative text

22.35 PropertyMap : 0x15

The PropertyMap table has the following columns:

e Parent (an index into the TypeDef table)

e  PropertyList (an index into the Property table). It marks the first of a contiguous run of Properties

owned by Parent. The run continues to the smaller of:

o the last row of the Property table

0 the next run of Properties, found by inspecting the PropertyList of the next row in this

PropertyMap table

The PropertyMap and Property tables result from putting the .property

Partition II
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This contains informative text only

1.
2.

PropertyMap table can contain zero or more rows

There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the
start of its property list) [ERROR]

There shall be no duplicate rows, based upon PropertyList (different classes cannot share rows in
the Property table) [ERROR]

End informative text

22.36 StandAloneSig : 0x11

Signatures are stored in the metadata Blob heap. In most cases, they are indexed by a column in some table—
Field Signature, Method.Signature, MemberRef.Signature, etc. However, there are two cases that require a
metadata token for a signature that is not indexed by any metadata table. The StandAloneSig table fulfils this
need. It has just one column, which points to a Signature in the Blob heap.

The signature shall describe either:

a method — code generators create a row in the StandAloneSig table for each occurrence of a calli
CIL instruction. That row indexes the call-site signature for the function pointer operand of the
calli instruction

local variables — code generators create one row in the StandAloneSig table for each method, to
describe all of its local variables. The .locals  directive (§15.4.1) in ILAsm generates a row in
the StandAloneSig table.

TheStandAloneSig table has the following column:

Signature (an index into the Blob heap)

[Example:

// On encountering the calli instruction, ilasm generates a signature
// in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Paraml = int32),
// indexed by the StandAloneSig table:
.assembly Test {}
.method static int32 AddTen (int32)
{ ldarg.o0
ldc.i4 10
add
ret

}

.class Test
{ .method static void main ()
{ .entrypoint
ldc.i4d.1
ldftn int32 AddTen (int32)
calli int32(int32)
pop
ret
}
}

end example]

This contains informative text only
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1.
2.
3.

The StandAloneSig table can contain zero or more rows
Signature shall index a valid signature in the Blob heap [ERROR]

The signature 'blob' indexed by Signature shall be a valid METHOD or LocaLs signature [ERROR]
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4.  Duplicate rows are allowed

End informative text

22.37 TypeDef : 0x02
The TypeDef table has the following columns:
e Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15)

e TypeName (an index into the String heap)
e TypeNamespace (an index into the String heap)

e  FExtends (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef
(§24.2.6) coded index)

e FieldList (an index into the Field table; it marks the first of a contiguous run of Fields owned by
this Type). The run continues to the smaller of:

0 the last row of the Field table

o the next run of Fields, found by inspecting the FieldList of the next row in this TypeDef
table

e MethodList (an index into the MethodDef table; it marks the first of a continguous run of Methods
owned by this Type). The run continues to the smaller of:

o the last row of the MethodDef table

0 the next run of Methods, found by inspecting the MethodList of the next row in this TypeDef
table

The first row of the TypeDef table represents the pseudo class that acts as parent for functions and variables
defined at module scope.

Note that any #ype shall be one, and only one, of

e Class (Flags.Interface = 0, and derives ultimately from system.object)
e Interface (Flags.Interface = 1)

e Value type, derived ultimately from system.valueType

For any given type, there are two separate and distinct chains of pointers to other types (the pointers are
actually implemented as indexes into metadata tables). The two chains are:

e Extension chain — defined via the Extends column of the TypeDef table. Typically, a derived Class
extends a base Class (always one, and only one, base Class)

e Interface chains — defined via the Interfacelmpl table. Typically, a Class implements zero, one or
more [nterfaces

These two chains (extension and interface) are always kept separate in metadata. The Extends chain represents
one-to-one relations—that is, one Class extends (or ‘derives from’) exactly one other Class (called its
immediate base class). The Interface chains can represent one-to-many relations—that is, one Class might well
implement two or more Interfaces.

An interface can also implement one or more other interfaces—metadata stores those links via the
Interfacelmpl table (the nomenclature is a little inappropriate here—there is no “implementation” involved;
perhaps a clearer name might have been Interface table, or Interfacelnherit table)

Another slightly specialized type is a nested type which is declared in ILAsm as lexically nested within an
enclosing type declaration. Whether a type is nested can be determined by the value of its Flags. Visibility sub-
field — it shall be one of the set {NestedPublic, NestedPrivate, NestedFamily, NestedAssembly,
NestedFamANDAssem, NestedFamORAssem} .
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If a type is generic, its parameters are defined in the GenericParam table (§22.20). Entries in the
GenericParam table reference entries in the TypeDef table; there is no reference from the TypeDef table to the
GenericParam table.

This contains informative text only

The roots of the inheritance hierarchies look like this:

‘ Systemn ValueType | | Systemn.Delegate |
Interface
I__.-"'" I\\._

Systemn.Object

_-“"--
r"-.l %

| \".
Class ¥
Interfacs \
'-.\\
Y
ﬂq
Class ValuaType

There is one system-defined root, system.object. All Classes and ValueTypes shall derive, ultimately, from
system.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth
required. This Extends inheritance chain is shown with heavy arrows.

System Enum

(See below for details of the system.Delegate Class)

Interfaces do not inherit from one another; however, they can have zero or more required interfaces, which
shall be implemented. The Interface requirement chain is shown as light, dashed arrows. This includes links
between Interfaces and Classes/ValueTypes — where the latter are said to implement that interface or interfaces.

Regular ValueTypes (i.e., excluding Enums — see later) are defined as deriving directly from
System.ValueType. Regular ValueTypes cannot be derived to a depth of more than one. (Another way to state
this is that user-defined ValueTypes shall be sealed.) User-defined Enums shall derive directly from
System.Enum. Enums cannot be derived to a depth of more than one below System.Enum. (Another way to
state this is that user-defined Enums shall be sealed.) System.Enum derives directly from System.ValueType.

User-defined delegates derive from system.Delegate. Delegates cannot be derived to a depth of more than
one.

Implementation-Specific (Microsoft)

The hierarchy below System.Delegate is as follows:

System. Delegate

[ System, MulticastDelegate |

!

[
| MulticasiDelagate u

________________________________________________________________________________________________________________________
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For the directives to declare types see §9.

1.
2.

10.

.

A TypeDef table can contain one or more rows.

Flags:

a.

-

Flags shall have only those values set that are specified [ERROR]

can set 0 or 1 of sequentiallayout and ExplicitLayout (if none set, then defaults to
AutoLayout) [ERROR]

can set 0 or 1 of Unicodeclass and AutocClass (if none set, then defaults to ansiclass)
[ERROR]

___________________________________________________________________________________________________________

Implementation Specific (Microsoft)

if RTspecialName is set, then this Type is regarded as deleted (used in Edit&Continue and
incremental compilation scenarios) Perform no checks on this Type or any of its members
(the information is not physically deleted; it is just ‘flagged’ as logically deleted) Note: this
situation can only be seen on in-memory metadata—it is not persisted to disk, and therefore
irrelevant to checks done by an offline tool

if Import is set (denotes a Type defined via the TlbImp tool), then all the methods owned by
this Type shall have their Method.RVA =0 [ERROR]

If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:
[ERROR]

this Type owns at least one row in the DeclSecurity table
this Type has a custom attribute called suppressUnmanagedCodeSecurityAttribute

If this Type owns one (or more) rows in the DeclSecurity table then Flags. HasSecurity shall
be 1 [ERROR]

If this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then
Flags.HasSecurity shall be 1 [ERROR]

Note that it is valid for an Interface to have HasSecurity set. However, the security system
ignores any permission requests attached to that Interface

Name shall index a non-empty string in the String heap [ERROR]

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————

___________________________________________________________________________________________________________

The TypeName string shall be a valid CLS identifier [CLS]

TypeNamespace can be null or non-null

If non-null, then TypeNamespace shall index a non-empty string in the String heap [ERROR]

This string is limited to Mmax _crass NaMe. Also, the concatenated TypeNamespace + "." +
TypeName shall be less than MAX CLASS NAME

Implementation Specific (Microsoft)

If non-null, TypeNamespace’s string shall be a valid CLS Identifier [CLS]

Every Class (with the exception of system.object and the special class <Module>) shall extend

one,

and only one, other Class - so Extends for a Class shall be non-null [ERROR]

System.Object shall have an Extends value of null [ERROR]

System.ValueType shall have an Extends value of System.Object [ERROR]
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11.

12.

13.

14.

15.
16.

17.

18.
19.
20.

21.

22.

23.
24.
25.

26.

27.
28.

29.

30.

31.

With the exception of system.0Object and the special class <Module>, for any Class, Extends shall
index a valid row in the TypeDef, TypeRef, or TypeSpec table, where valid means 1 <= row <=
rowcount. In addition, that row itself shall be a Class (not an Interface or ValueType) In
addition, that base Class shall not be sealed (its Flags.Sealed shall be 0) [ERROR]

A Class cannot extend itself, or any of its children (i.e., its derived Classes), since this would
introduce loops in the hierarchy tree [ERROR] (For generic types, see §9.1 and §9.2.)

An Interface never extends another Type - so Extends shall be null (Interfaces do implement other
Interfaces, but recall that this relationship is captured via the Interfacelmpl table, rather than the
Extends column) [ERROR]

FieldList can be null or non-null
A Class or Interface can ‘own’ zero or more fields

A ValueType shall have a non-zero size - either by defining at least one field, or by providing a
non-zero ClassSize [ERROR]

If FieldList is non-null, it shall index a valid row in the Field table, where valid means 1 <= row
<=rowcount+1 [ERROR]

MethodList can be null or non-null
A Type can ‘own’ zero or more methods

The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes) [ERROR]

Implementation Specific (Microsoft)

Current implementation actually allows 0x3F0000 bytes, but might be reduced in future

If MethodList is non-null, it shall index a valid row in the MethodDef table, where valid means 1
<=row <=rowcount+1 [ERROR]

A Class which has one or more abstract methods cannot be instantiated, and shall have

Flags. Abstract = 1. Note that the methods owned by the class include all of those inherited from
its base class and interfaces it implements, plus those defined via its MethodList. (The CLI shall
analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but
has Flags.Abstract = 0, it will throw an exception) [ERROR]

An Interface shall have Flags.Abstract = 1 [ERROR]
It is valid for an abstract Type to have a constructor method (ie, a method named .ctor )

Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every
method its contract requires. Its methods can be inherited from its base class, from the interfaces
it implements, or defined by itself. The implementations can be inherited from its base class, or

defined by itself [ERROR]

An Interface (Flags.Interface = 1) can own static fields (Field.Static = 1) but cannot own instance
fields (Field.Static = 0) [ERROR]

An Interface cannot be sealed (if Flags.Interface = 1, then Flags.Sealed shall be 0) [ERROR]

All of the methods owned by an Interface (Flags.Interface = 1) shall be abstract (Flags.Abstract
=1) [ERROR]

There shall be no duplicate rows in the TypeDef table, based on TypeNamespace+TypeName
(unless this is a nested type - see below) [ERROR]

If this is a nested type, there shall be no duplicate row in the TypeDef table, based upon
TypeNamespace+ TypeName+OwnerRowInNestedClassTable [ERROR]

There shall be no duplicate rows, where TypeNamespace+TypeName fields are compared using
CLS conflicting-identifier-rules (unless this is a nested type - see below) [CLS]
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32. If this is a nested type, there shall be no duplicate rows, based upon
TypeNamespace+TypeName+OwnerRowInNestedClassTable and where
TypeNamespace+ TypeName fields are compared using CLS conflicting-identifier-rules [CLS]

33. If Extends = system.Enum (i.e., type is a user-defined Enum) then:

&

R

J-

shall be sealed (sealed = 1) [ERROR]
shall not have any methods of its own (MethodList chain shall be zero length) [ERROR]

shall not implement any interfaces (no entries in Interfacelmpl table for this type)
[ERROR]

shall not have any properties [ERROR]

shall not have any events [ERROR]

any static fields shall be literal (have Flags.Literal = 1) [ERROR]

shall have one or more static, literal fields, each of which has the type of the Enum [CLS]
shall be exactly one instance field, of built-in integer type [ERROR]

the Name string of the instance field shall be "value ", the field shall be marked

RTSpecialName, and that field shall have one of the CLS integer types [CLS]
shall not have any static fields unless they are literal [ERROR]

34. A Nested type (defined above) shall own exactly one row in the NestedClass table, where ‘owns’
means a row in that NestedClass table whose NestedClass column holds the TypeDef token for
this type definition [ERROR]

35. A ValueType shall be sealed [ERROR]

End informative text

22.38 TypeRef : 0x01
The TypeRef table has the following columns:

e ResolutionScope (an index into a Module, ModuleRef, AssemblyRef or TypeRef table, or null; more
precisely, a ResolutionScope (§24.2.6) coded index)

e TypeName (an index into the String heap)

e TypeNamespace (an index into the String heap)

This contains informative text only

1. ResolutionScope shall be exactly one of:

a.

null - in this case, there shall be a row in the ExportedType table for this Type - its
Implementation field shall contain a File token or an AssemblyRef token that says where the
type is defined [ERROR]

a TypeRef token, if this is a nested type (which can be determined by, for example,
inspecting the Flags column in its TypeDef table - the accessibility subfield is one of the
tdNestedxxx set) [ERROR]

a ModuleRef token, if the target type is defined in another module within the same
Assembly as this one [ERROR]

a Module token, if the target type is defined in the current module - this should not occur in
a CLI (“compressed metadata”) module [WARNING]

an AssemblyRef token, if the target type is defined in a different Assembly from the current
module [ERROR]

Partition II 159




—_

—_ = = =
W = O O 03 N W BN w N

—
~

16
17
18

19
20

21
22
23

24

25
26
27

28

2. TypeName shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX CLASS NAME

3. TypeNamespace can be null, or non-null

4.  If non-null, TypeNamespace shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to Mmax_crass NaMe. Also, the concatenated TypeNamespace + "." +
TypeName shall be less than MAX CLASS NAME

5. The TypeName string shall be a valid CLS identifier [CLS]

6.  There shall be no duplicate rows, where a duplicate has the same ResolutionScope, TypeName and
TypeNamespace [ERROR]

7. There shall be no duplicate rows, where TypeName and TypeNamespace fields are compared
using CLS conflicting-identifier-rules [CLS]

End informative text

22.39 TypeSpec : 0x1B

The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap.
This provides a metadata token for that Type (rather than simply an index into the Blob heap). This is required,
typically, for array operations, such as creating, or calling methods on the array class.

The TypeSpec table has the following column:
e Signature (index into the Blob heap, where the blob is formatted as specified in §23.2.14)

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token;
specifically, castclass, cpobj, initobj, isinst, Idelema, Idobj, mkrefany, newarr, refanyval, sizeof, stobj,
box, and unbox.

This contains informative text only

1. The TypeSpec table can contain zero or more rows
2. Signature shall index a valid Type specification in the Blob heap [ERROR]
3. There shall be no duplicate rows, based upon Signature [ERROR]

End informative text
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23 Metadata logical format: other structures
23.1 Bitmasks and flags

This subclause explains the flags and bitmasks used in the metadata tables. When a conforming implementation
encounters a metadata structure (such as a flag) that is not specified in this standard, the behavior of the
implementation is unspecified.

23.1.1 Values for AssemblyHashAlgorithm

Algorithm Value

None 0x0000
Reserved (MD5) 0x8003
SHAL 0x8004

23.1.2 Values for AssemblyFlags

Flag Value Description

PublicKey 0x0001 The assembly reference holds the full (unhashed)
public key.

<reserved> 0xCOF0 Reserved: all bits shall be zero

Retargetable 0x0100 The implementation of this assembly used at runtime is
not expected to match the version seen at compile time.
(See the text following this table.)

In portable programs, the Retargetable (0x100) bit shall be set on all references to assemblies specified in this

Standard.
23.1.3 Values for Culture
ar-SA ar-IQ ar-EG ar-LY
ar-DZ ar-MA ar—-TN ar-OM
ar-YE ar-SY ar—-Jo ar-LB
ar—-Kw ar-AE ar—-BH ar—-QA
bg-BG ca-ES zh-TW zh-CN
zh-HK zh-SG zh-MO cs-CZ
da-DK de-DE de-CH de-AT
de-LU de-LI el-GR en-US
en-GB en-AU en-CA en-NZ
en-1IE en-zZA en-JM en-CB
en-BZ en-TT en-z2W en-PH
es-ES-Ts es-MX es-ES-TIs es-GT
es-CR es-PA es-DO es-VE
es-CO es-PE es-AR es-EC
es-CL es-UY es-PY es-BO
es-SV es-HN es-NI es-PR
fi-FI fr-FR fr-BE fr-CA
fr-CH fr-LU fr-MC he-IL
hu-HU is-IS it-IT it-CH

Partition II 161



O 001NN W

10
11

ja-Jp ko-KR nl-NL nl-BE
nb-NO nn-NO pl-PL pt-BR
pt-PT ro-RO ru-RU hr-HR
lt-sr-SP cy-sr-SP sk-SK sgq-AL
sv-SE sv-FI th-TH tr-TR
ur-PK id-ID uk-UA be-BY
s1-SI et-EE 1lv-LV 1t-LT
fa-IR vi-VN hy-AM lt-az-AZ
cy-az-AZ eu-ES mk-MK af-ZA
ka-GE fo-FO hi-IN ms—-MY
ms—-BN kk-KzZ ky-KZzZ sw-KE
lt-uz-UZ cy-uz-UZ tt-TA pa-IN
gu-IN ta-IN te-IN kn-IN
mr—-IN sa-IN mn-MN gl-ES
kok-IN syr-SY div-MV

23.1.

Note on RFC 1766, Locale names: a typical string would be “en-US”. The first part (“en” in the example) uses
ISO 639 characters (“Latin-alphabet characters in lowercase. No diacritical marks of modified characters are
used”). The second part (“US” in the example) uses ISO 3166 characters (similar to ISO 639, but uppercase);
that is, the familiar ASCII characters a—z and A—Z, respectively. However, whilst RFC 1766 recommends the
first part be lowercase and the second part be uppercase, it allows mixed case. Therefore, the validation rule
checks only that Culture is one of the strings in the list above—but the check is totally case-blind—where case-
blind is the familiar fold on values less than U+0080

4 Flags for events [EventAttributes]

Flag Value Description

SpecialName 0x0200 Event is Special.

RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the
event

23.1.

5 Flags for fields [FieldAttributes]

Flag Value Description

FieldAccessMask 0x0007 These 3 bits contain one of the following values:

CompilerControlled 0x0000 Member not referenceable

Private 0x0001 Accessible only by the parent type

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly

Assembly 0x0003 Accessibly by anyone in the Assembly

Family 0x0004 Accessible only by type and sub-types

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly

Public 0x0006 Accessibly by anyone who has visibility to this scope field
contract attributes

Static 0x0010 Defined on type, else per instance

InitOnly 0x0020 Field can only be initialized, not written to after init

162
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Literal 0x0040 Value is compile time constant

NotSerialized 0x0080 Reserved (to indicate this field should not be serialized when
type is remoted)

SpecialName 0x0200 Field is special

Interop Attributes

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke.

Additional flags

RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the
field

HasFieldMarshal 0x1000 Field has marshalling information

HasDefault 0x8000 Field has default

HasFieldRVA 0x0100 Field has RVA

23.1.6 Flags for files [FileAttributes]

Flag Value Description

ContainsMetaData 0x0000 This is not a resource file

ContainsNoMetaData 0x0001 This is a resource file or other non-metadata-containing file

23.1.7 Flags for Generic Parameters [GenericParamAttributes]

Flag Value Description

VarianceMask 0x0003 These 2 bits contain one of the following values:

None 020000 The generic parameter is non-variant and has no special
constraints

Covariant 0x0001 The generic parameter is covariant

Contravariant 0x0002 The generic parameter is contravariant

SpecialConstraintMask 0x001C These 3 bits contain one of the following values:

ReferenceTypeConstraint 0x0004 The generic parameter has the class special constraint

NotNullableValueTypeConstraint | 0x0008 The generic parameter has the valuetype special
constraint

DefaultConstructorConstraint 0x0010 The generic parameter has the . ctor special constraint

23.1.8 Flags for ImplMap [PInvokeAttributes]

Flag Value Description

NoMangle 0x0001 PInvoke is to use the member name as specified

Character set

CharSetMask 020006 This is a resource file or other non-metadata-containing file.
These 2 bits contain one of the following values:

CharSetNotSpec 0x0000

CharSetAnsi 0x0002
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CharSetUnicode 0x0004

CharSetAuto 0x0006

SupportsLastError 0x0040 Information about target function. Not relevant for fields
Calling convention

CallConvMask 0x0700 These 3 bits contain one of the following values:
CallConvWinapi 0x0100

CallConvCdecl 0x0200

CallConvStdcall 0x0300

CallConvThiscall 0x0400

CallConvFastcall 0x0500

23.1

.9 Flags for ManifestResource [ManifestResourceAttributes]
Flag Value Description
VisibilityMask 0x0007 These 3 bits contain one of the following values:
Public 0x0001 The Resource is exported from the Assembly
Private 0x0002

The Resource is private to the Assembly

23.1.10 Flags for methods [MethodAttributes]

Flag Value Description

MemberAccessMask 0x0007 These 3 bits contain one of the following values:

CompilerControlled 0x0000 Member not referenceable

Private 0x0001 Accessible only by the parent type

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly

Assem 0x0003 Accessibly by anyone in the Assembly

Family 0x0004 Accessible only by type and sub-types

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly

Public 0x0006 Accessibly by anyone who has visibility to this scope

Static 0x0010 Defined on type, else per instance

Final 0x0020 Method cannot be overridden

Virtual 0x0040 Method is virtual

HideBySig 0x0080 Method hides by name+sig, else just by name

VtableLayoutMask 0x0100 Use this mask to retrieve vtable attributes. This bit contains
one of the following values:

ReuseSlot 0x0000 Method reuses existing slot in vtable

NewSlot 0x0100 Method always gets a new slot in the vtable

Strict 0x0200 Method can only be overriden if also accessible

Abstract 0x0400 Method does not provide an implementation
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SpecialName 0x0800 Method is special

Interop attributes

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke

UnmanagedExport 0x0008 Reserved: shall be zero for conforming implementations

Additional flags

RTSpecialName 0x1000 CLI provides 'special' behavior, depending upon the name of
the method

HasSecurity 0x4000 Method has security associate with it

RequireSecObject 0x8000 Method calls another method containing security code.

Implementation Specific (Microsoft)

UnmanagedExport indicates a managed method exported via thunk to unmanaged code. :

Strict is referred to as CheckAccessOnOverride.

23.1.11 Flags for methods [MethodImplAttributes]

Flag Value Description

CodeTypeMask 0x0003 These 2 bits contain one of the following values:

I 0x0000 Method impl is CIL

Native 0x0001 Method impl is native

OPTIL 0x0002 Reserved: shall be zero in conforming implementations

Runtime 0x0003 Method impl is provided by the runtime

ManagedMask 020004 Flags specifying whether the code is managed or unmanaged.
This bit contains one of the following values:

Unmanaged 0x0004 Method impl is unmanaged, otherwise managed

Managed 0x0000 Method impl is managed

Implementation info and interop

ForwardRef 0x0010 Indicates method is defined; used primarily in merge
scenarios

PreserveSig 0x0080 Reserved: conforming implementations can ignore

InternalCall 0x1000 Reserved: shall be zero in conforming implementations

Synchronized 0x0020 Method is single threaded through the body

NoInlining 0x0008 Method cannot be inlined

MaxMethodImplVal Oxffff Range check value

Implementation Specific (Microsoft)

PreserveSig method signature is not to be mangled to do HRESULT conversion. InternalCall indicates
the method body is provided by the CLI itself.

23.1.12 Flags for MethodSemantics [MethodSemanticsAttributes]

Flag Value Description

Setter 0x0001 Setter for property
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Getter 0x0002 Getter for property

Other 0x0004 Other method for property or event
AddOn 0x0008 AddOn method for event

RemoveOn 0x0010 RemoveOn method for event

Fire 0x0020 Fire method for event

13 Flags for params [ParamAttributes]

Flag Value Description

In 0x0001 Param is [In]

out 0x0002 Param is [out]

Optional 0x0010 Param is optional

HasDefault 0x1000 Param has default value
HasFieldMarshal 0x2000 Param has FieldMarshal

Unused Oxcfel Reserved: shall be zero in a conforming implementation

23.1.14 Flags for properties [PropertyAttributes]

Flag Value Description

SpecialName 0x0200 Property is special

RTSpecialName 0x0400 Runtime(metadata internal APIs) should check name

encoding
HasDefault 0x1000 Property has default
Unused Oxe9ff Reserved: shall be zero in a conforming implementation
23.1.15 Flags for types [TypeAttributes]

Flag Value Description

Visibility attributes

VisibilityMask 0x00000007 Use this mask to retrieve visibility information.
These 3 bits contain one of the following
values:

NotPublic 0x00000000 Class has no public scope

Public 0x00000001 Class has public scope

NestedPublic 0x00000002 Class is nested with public visibility

NestedPrivate 0x00000003 Class is nested with private visibility

NestedFamily 0x00000004 Class is nested with family visibility

NestedAssembly 0x00000005 Class is nested with assembly visibility

NestedFamANDAssem 0x00000006 Class is nested with family and assembly
visibility

NestedFamORAssem 0x00000007 Class is nested with family or assembly
visibility
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Class layout attributes

LayoutMask 0x00000018 Use this mask to retrieve class layout
information. These 2 bits contain one of the
following values:

AutoLayout 0x00000000 Class fields are auto-laid out

Sequentiallayout 0x00000008 Class fields are laid out sequentially

ExplicitLayout 0x00000010 Layout is supplied explicitly

Class semantics attributes

ClassSemanticsMask 0x00000020 Use this mask to retrive class semantics
information. This bit contains one of the
following values:

Class 0x00000000 Type is a class

Interface 0x00000020 Type is an interface

Special semantics in addition to class semantics

Abstract 0x00000080 Class is abstract

Sealed 0x00000100 Class cannot be extended

SpecialName 0x00000400 Class name is special

Implementation Attributes

Import 0x00001000 Class/Interface is imported

Serializable 0x00002000 Reserved (Class is serializable)

String formatting Attributes

StringFormatMask 0x00030000 Use this mask to retrieve string information for
native interop. These 2 bits contain one of the
following values:

AnsiClass 0x00000000 LPSTR is interpreted as ANSI

UnicodeClass 0x00010000 LPSTR is interpreted as Unicode

AutoClass 0x00020000 LPSTR is interpreted automatically

CustomFormatClass 0x00030000 A non-standard encoding specified by
CustomStringFormatMask

CustomStringFormatMask 0x00C00000 Use this mask to retrieve non-standard
encoding information for native interop. The
meaning of the values of these 2 bits is
unspecified.

Class Initialization Attributes

BeforeFieldInit 0x00100000 Initialize the class before first static field
access

Additional Flags

RTSpecialName 0x00000800 CLI provides 'special' behavior, depending
upon the name of the Type

HasSecurity 0x00040000 Type has security associate with it
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168

IsTypeForwarder

0x00200000

This ExportedType entry is a type forwarder

16 Element types used in signatures

The following table lists the values for ELEMENT TYPE constants. These are used extensively in metadata

signature blobs — see §23.2

Implementation Specific (Microsoft)

B R K |
Name Value Remarks
ELEMENT TYPE_END 0x00 Marks end of a list
ELEMENT TYPE VOID 0x01
ELEMENT TYPE_ BOOLEAN 0x02
ELEMENT TYPE CHAR 0x03
ELEMENT TYPE Il 0x04
ELEMENT TYPE Ul 0x05
ELEMENT TYPE I2 0x06
ELEMENT TYPE U2 0x07
ELEMENT TYPE I4 0x08
ELEMENT TYPE U4 0x09
ELEMENT TYPE IS8 0x0a
ELEMENT TYPE U8 0x0b
ELEMENT TYPE R4 0x0c
ELEMENT TYPE R8 0x0d
ELEMENT TYPE STRING 0x0e
ELEMENT TYPE_PTR 0x0f Followed by type
ELEMENT TYPE BYREF 0x10 Followed by type
ELEMENT_TYPE_VALUETYPE 0x11 Followed by TypeDef or TypeRef token
ELEMENT TYPE CLASS 0x12 Followed by TypeDef or TypeRef token
ELEMENT TYPE VAR 0x13 Generic parameter in a generic type definition,
represented as number (compressed unsigned
integer)
ELEMENT TYPE ARRAY 0x14 type rank boundsCount boundl ... loCount lol ...
ELEMENT TYPE_GENERICINST 0x15 Generic type instantiation. Followed by #ype type-
arg-count type-1 ... type-n
ELEMENT TYPE TYPEDBYREF 0x16
ELEMENT TYPE I 0x18 System.IntPtr
ELEMENT TYPE U 0x19 System.UIntPtr
ELEMENT_TYPE_FNPTR 0x1b | Followed by full method signature
ELEMENT TYPE OBJECT Oxlc System.Object
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ELEMENT TYPE SZARRAY

Ox1d

Single-dim array with 0 lower bound

ELEMENT_TYPE_MVAR Oxle Generic parameter in a generic method definition,
represented as number (compressed unsigned
integer)

ELEMENT_TYPE_CMOD_REQD Ox1f Required modifier : followed by a TypeDef or
TypeRef token

ELEMENT TYPE CMOD_OPT 0x20 Optional modifier : followed by a TypeDef or
TypeRef token

ELEMENT TYPE INTERNAL 0x21 Implemented within the CLI

ELEMENT_TYPE_MODIFIER 0x40 Or’d with following element types

ELEMENT TYPE SENTINEL 0x41 Sentinel for vararg method signature

ELEMENT_TYPE_PINNED 0x45 Denotes a local variable that points at a pinned
object

0x50 Indicates an argument of type System.Type.

0x51 Used in custom attributes to specify a boxed object
(§23.3).

0x52 Reserved

0x53 Used in custom attributes to indicate a FIELD
(§22.10, 23.3).

0x54 Used in custom attributes to indicate a PROPERTY
(§22.10, 23.3).

0x55 Used in custom attributes to specify an enum

(§23.3).

23.2 Blobs and signatures

The word signature is conventionally used to describe the type info for a function or method; that is, the type of
each of its parameters, and the type of its return value. Within metadata, the word signature is also used to
describe the type info for fields, properties, and local variables. Each Signature is stored as a (counted) byte
array in the Blob heap. There are several kinds of Signature, as follows:

e MethodRefSig (differs from a MethodDefSig only for VARARG calls)

e  MethodDefSig
e FieldSig

e PropertySig

e LocalVarSig

e TypeSpec

e  MethodSpec

The value of the first byte of a Signature 'blob' indicates what kind of Signature it is. Its lowest 4 bits hold one
of the following: c, DEFAULT, FASTCALL, STDCALL, THISCALL, Or VARARG (Whose values are defined in §23.2.3),
which qualify method signatures; F1£LD, which denotes a field signature (whose value is defined in §23.2.4); or
PROPERTY, which denotes a property signature (whose value is defined in §23.2.5). This subclause defines the
binary 'blob' format for each kind of Signature. In the syntax diagrams that accompany many of the definitions,
shading is used to combine into a single diagram what would otherwise be multiple diagrams; the

accompanying text describes the use of shading.
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Signatures are compressed before being stored into the Blob heap (described below) by compressing the integers
embedded in the signature. The maximum encodable unsigned integer is 29 bits long, Ox1FFFFFFF. For signed
integers, as occur in ArrayShape (§23.2.13), the range is -2** (0xF0000000) to 2**-1 (0xOFFFFFFF). The compression
algorithm used is as follows (bit 0 is the least significant bit):

170

For unsigned integers:

0o

If the value lies between 0 (0x00) and 127 (0x7F), inclusive, encode as a one-byte integer
(bit 7 is clear, value held in bits 6 through 0)

If the value lies between 2° (0x80) and 2'* — 1 (0x3FFF), inclusive, encode as a 2-byte
integer with bit 15 set, bit 14 clear (value held in bits 13 through 0)

Otherwise, encode as a 4-byte integer, with bit 31 set, bit 30 set, bit 29 clear (value held in
bits 28 through 0)

For signed integers:

(0]

If the value lies between -64 (0OxFFFFFFCO0) and 63 (0x3F), inclusive, encode as a one-byte
integer: bit 7 clear, value bits 5 through 0 held in bits 6 through 1, sign bit (value bit 31) in
bit 0.

If the value lies between -8192 (0OxFFFFE000) and 8191 (0x1FFF), inclusive, encode as a
two-byte integer: 15 set, bit 14 clear, value bits 12 through 0 held in bits 13 through 1, sign
bit (value bit 31) in bit 0.

If the value lies between -268435456 (0xF000000) and 268435455 (0xOFFFFFFF),
inclusive, encode as a four-byte integer: 31 set, 30 set, bit 29 clear, value bits 27 through 0
held in bits 28 through 1, sign bit (value bit 31) in bit 0.

[Note: When uncompressing the sign bit is used to fill all the missing bits. end note]

A null string should be represented with the reserved single byte 0xFF, and no following data

[Note: The tables below show several examples. The first column gives a value, expressed in familiar (C-like)

Signed examples:

hex notation. The second column shows the corresponding, compressed result, as it would appear in a PE file,
with successive bytes of the result lying at successively higher byte offsets within the file. (This is the opposite
order from how regular binary integers are laid out in a PE file.)

Unsigned examples:

Original Value Compressed Representation
0x03 03

0x7F 7F (7 bits set)

0x80 8080

0x2ES57 AES7

0x3FFF BFFF

0x4000 C000 4000

0x1FFF FFFF DFFF FFFF

Original Value Compressed Representation
3 06

-3 7B

64 8080

-64 01
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23.2.

8192 C000 4000

-8192 8001
268435455 DFFF FFFE
-268435456 C000 0001

end note]

The most significant bits (the first ones encountered in a PE file) of a “compressed” field, can reveal whether it
occupies 1, 2, or 4 bytes, as well as its value. For this to work, the “compressed” value, as explained above, is
stored in big-endian order; i.e., with the most significant byte at the smallest offset within the file.

Signatures make extensive use of constant values called ELEMENT TYPE xxx —see §23.1.16. In particular,
signatures include two modifiers called:

ELEMENT TYPE BYREF — this element is a managed pointer (see Partition I). This modifier can only occur in the
definition of LocalVarSig (§23.2.6), Param (§23.2.10) or RetType (§23.2.11). It shall not occur within the
definition of a Field (§23.2.4)

ELEMENT TYPE_PTR — this element is an unmanaged pointer (see Partition I). This modifier can occur in the
definition of LocalVarSig (§23.2.6), Param (§23.2.10), RetType (§23.2.11) or Field (§23.2.4)

1 MethodDefSig

A MethodDefSig is indexed by the Method.Signature column. It captures the signature of a method or global
function. The syntax diagram for a MethodDefSig is:

MethodDefSig

| HASTHIS |~ EXPLICITTHIS | >|DEFAU|_T -
,I VARARG -

.[GENEFNC >| GenParamCount |—m-

A

—>I ParamCount }—»I Re{Typa

This diagram uses the following abbreviations:

HASTHTS = 0x20, used to encode the keyword instance  in the calling convention, see §15.3
EXPLICITTHTS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3
perFAULT = 0x0, used to encode the keyword default  in the calling convention, see §15.3

VvARARG = 0x5, used to encode the keyword vararg in the calling convention, see §15.3
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GeNerIC = 0x10, used to indicate that the method has one or more generic parameters.

Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK, using a prefix of
“IMAGE_CEE_CS_CALLCONV_”

The first byte of the Signature holds bits for HaAsTHIS, ExPLICITTHIS and calling convention (DEFAULT, VARARG,
or GENERIC). These are ORed together.

GenParamCount is the number of generic parameters for the method. This is a compressed unsigned integer.
[Note: For generic methods, both MethodDef and MemberRef shall include the GenerIC calling convention,
together with GenParamCount; these are significant for binding—they enable the CLI to overload on generic
methods by the number of generic parameters they include. end note]

ParamCount is an unsigned integer that holds the number of parameters (0 or more). It can be any number
between 0 and Ox1FFFFFFF. The compiler compresses it too (see Partition II Metadata Validation) — before
storing into the 'blob' (ParamCount counts just the method parameters — it does not include the method’s return
type)

The RetType item describes the type of the method’s return value (§23.2.11)

The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances
of the Param item (§23.2.10).

23.2.2 MethodRefSig

172

A MethodRefSig is indexed by the MemberRref.Signature column. This provides the call site Signature for a
method. Normally, this call site Signature shall match exactly the Signature specified in the definition of the
target method. For example, if a method Foo is defined that takes two unsigned int32s and returns void; then
any call site shall index a signature that takes exactly two unsigned int32s and returns void. In this case, the
syntax diagram for a MethodRefSig is identical with that for a MethodDefSig — see §23.2.1

The Signature at a call site differs from that at its definition, only for a method with the VARARG calling
convention. In this case, the call site Signature is extended to include info about the extra VARARG arguments

w9

(for example, corresponding to the “...” in C syntax). The syntax diagram for this case is:

MethodRefSig (in case where it differs from MethodDefSig)

This diagram uses the following abbreviations:
HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3
EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3
VARARG = 0x5, used to encode the keyword vararg in the calling convention, see 15.3

SENTINEL = 0x41 (§23.1.16), used to encode “...” in the parameter list, see §15.3
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The above names are defined in the file inc\CorHdr.h as part of the SDK, using a prefix of

13 2

IMAGE CEE_CS_CALLCONV_”.

e The first byte of the Signature holds bits for sasTHIS, ExPLICITTHIS, and the calling convention
vARARG. These are ORed together.

e ParamCount is an unsigned integer that holds the number of parameters (0 or more). It can be any
number between 0 and Ox1FFFFFFF The compiler compresses it (see Partition II Metadata
Validation) — before storing into the 'blob' (ParamCount counts just the method parameters — it
does not include the method’s return type)

e The RetType item describes the type of the method’s return value (§23.2.11)

e The Param item describes the type of each of the method’s parameters. There shall be
ParamCount instances of the Param item (§23.2.10).

The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances
of the Param item.This starts just like the MethodDefSig for a vararc method (§23.2.1). But then a SENTINEL
token is appended, followed by extra Param items to describe the extra vaARARG arguments. Note that the
ParamCount item shall indicate the total number of Param items in the Signature — before and after the
SENTINEL byte (0x41).

In the unusual case that a call site supplies no extra arguments, the signature shall not include a senTINEL (this
is the route shown by the lower arrow that bypasses seNTINEL and goes to the end of the MethodRefSig
definition).

23.2.3 StandAloneMethodSig

A StandAloneMethodSig is indexed by the standalonesig.Signature column. It is typically created as
preparation for executing a calli instruction. It is similar to a MethodRefSig, in that it represents a call site
signature, but its calling convention can specify an unmanaged target (the calli instruction invokes either
managed, or unmanaged code). Its syntax diagram is:

StandAloneMethodSig

HASTHIS EXPLICITTHIS

5 =
= &

THISCALL

FASTCALL

RetType - . Param k SENTINEL

B

Iy *

! ,
A Y

This diagram uses the following abbreviations (§15.3):
uasTHIS for 0x20

EXPLICITTHIS for 0x40
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pErFAULT  for 0x0
VARARG for 0x5
c for Ox1
stpcaLL for 0x2
THISCALL for 0x3
FasTcALL for 0x4
seNTINEL for 0x41 (§23.1.16 and §15.3)
Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK, using a prefix of

“IMAGE CEE CS CALLCONV ~
e The first byte of the Signature holds bits for HasTHIS, ExPLICcITTHIS and calling convention —
DEFAULT, VARARG, C, STDCALL, THISCALL, or FASTCALL. These are OR’d together.

e ParamCount is an unsigned integer that holds the number of non-vararg and vararg parameters,
combined. It can be any number between 0 and Ox IFFFFFFF The compiler compresses it (see
Partition IT Metadata Validation) — before storing into the blob (ParamCount counts just the
method parameters — it does not include the method’s return type)

e The RetType item describes the type of the method’s return value (§23.2.11)

e The first Param item describes the type of each of the method’s non-vararg parameters. The
(optional) second Param item describes the type of each of the method’s vararg parameters. There
shall be ParamCount instances of Param (§23.2.10).

This is the most complex of the various method signatures. Two separate diagrams have been combined into
one in this diagram, using shading to distinguish between them. Thus, for the following calling conventions:
DEFAULT (managed), sSTDCALL, THISCALL and FASTCALL (unmanaged), the signature ends just before the
SENTINEL item (these are all non vararg signatures). However, for the managed and unmanaged vararg calling
conventions:

VARARG (managed) and ¢ (unmanaged), the signature can include the senTINEL and final Param items (they are
not required, however). These options are indicated by the shading of boxes in the syntax diagram.

In the unusual case that a call site supplies no extra arguments, the signature shall not include a senTINEL (this
is the route shown by the lower arrow that bypasses sENTINEL and goes to the end of the StandAloneMethodSig
definition).

4 FieldSig

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case
where it specifies a reference to a field, not a method, of course). The Signature captures the field’s definition.
The field can be a static or instance field in a class, or it can be a global variable. The syntax diagram for a
FieldSig looks like this:

FieldSig

FIELL *; Custermbdad \ = Type —

-

This diagram uses the following abbreviations:

FIELD for 0x6
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23.2

CustomMod is defined in §23.2.7. Type is defined in §23.2.12
.5 PropertySig

A PropertySig is indexed by the Property.Type column. It captures the type information for a Property —
essentially, the signature of its getter method:

the number of parameters supplied to its getfer method

the base type of the Property (the type returned by its getter method)

type information for each parameter in the getfer method (that is, the index parameters)
Note that the signatures of getter and setter are related precisely as follows:

e The types of a getter’s paramCount parameters are exactly the same as the first paramCount
parameters of the setter

e The return type of a getter is exactly the same as the type of the last parameter supplied to the
setter

The syntax diagram for a PropertySig looks like this:

PropertySig
\I‘"
HASTHIS ParamCount |1—s| CustomMod Type 3 w p
"“-.HHH /z ‘-.\\

Implementation Specific (Microsoft)

IMAGE_CEE_CS_CALLCONV_PROPERTY is defined in the file inc\CorHdr.h as part of the SDK.

The first byte of the Signature holds bits for sHasTHIs and proPERTY. These are OR’d together.

Type specifies the type returned by the Getter method for this property. Type is defined in §23.2.12. Param is
defined in §23.2.10.

ParamCount is a compressed unsigned integer that holds the number of index parameters in the getter methods
(0 or more). (§23.2.1) (ParamCount counts just the method parameters — it does not include the method’s base
type of the Property)

23.2.6 LocalVarSig

A LocalVarSig is indexed by the StandAloneSig.Signature column. It captures the type of all the local
variables in a method. Its syntax diagram is:

LocalVarSig

LOCAL SIG count |-Y 4 »| CustomMod Constraint _»| BYREF Type
_ | ‘ \ F !
\

- TYPEDBYREF

— -

ﬁ

This diagram uses the following abbreviations:

tocar_sic for 0x7, used for the .locals  directive, see§15.4.1.3
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BYREF for ELEMENT TYPE BYREF (§23.1.16)
Constraint is defined in §23.2.9.
Type is defined in §23.2.12

Count is acompressed unsigned integer that holds the number of local variables. It can be any number between
1 and OxFFFE.

There shall be Count instances of the Type in the LocalVarSig
7 CustomMod

The CustomMod (custom modifier) item in Signatures has a syntax diagram like this:

CustomMod

ZMOL_OFT

= TypelefEncoded

CMOD_REID

—>| TypeRefEncoded

This diagram uses the following abbreviations:
cMob_OPT for ELEMENT TYPE cMOD OPT (§23.1.16)

cMob _REQD for ELEMENT TYPE CMOD REQD (§23.1.16)

The cvop_opT or cMop_REQD value is compressed, see §23.2.

The cvop_opT or cmop_REQD is followed by a metadata token that indexes a row in the TypeDef table or the
TypeRef table. However, these tokens are encoded and compressed — see §23.2.8 for details

If the CustomModifier is tagged cvop oprT, then any importing compiler can freely ignore it entirely.
Conversely, if the CustomModifier is tagged cMop_REQD, any importing compiler shall ‘understand’ the
semantic implied by this CustomModifier in order to reference the surrounding Signature.

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

.8 TypeDefOrRefEncoded

Implementation Specific (Microsoft)

A typical use for a CustomModifier is for VISUAL C++ .NET to denote a method parameter as const.
It does this using a cMop_opt, followed by a TypeRef to Microsoft.VisualC.IsConstModifier (defined in
Microsoft.Visual C.DLL)

VISUAL C++ .NET also uses a CustomModifier (embedded within a RetType — see §23.2.11) to mark
the native calling convention of a function. Of course, if that routine is implemented as managed code,
this info is not used. But if it turns out to be implemented as unmanaged code, it becomes crucial, so
that automatically generated thunks marshal the arguments correctly. This technique is used in I[JW (“It
Just Works”) scenarios. Strictly speaking, such a custom modifier does not apply only to the RetType,
it really applies to the whole function. In these cases, the TypeRef following the cvop oPT is to one of
CallConvCdecl, CallConvStdcall, CallConvThiscall or CallConvFastcall.

These items are compact ways to store a TypeDef, TypeRef, or TypeSpec token in a Signature (§23.2.12).

Consider a regular TypeRef token, such as 0x01000012. The top byte of 0x01 indicates that this is a TypeRef
token (see Partition VI for a list of the supported metadata token types). The lower 3 bytes (0x000012) index
row number 0x12 in the TypeRef table.

The encoded version of this TypeRef token is made up as follows:
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1. encode the table that this token indexes as the least significant 2 bits. The bit values to use are 0,
1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively

2. shift the 3-byte row index (0x000012 in this example) left by 2 bits and OR into the 2-bit
encoding from step 1

3. compress the resulting value (§23.2). This example yields the following encoded value:
a) encoded = value for TypeRef table = 0x01 (from 1. above)
b) encoded = ( 0x000012 << 2 ) | 0x01

= 0x48 | 0x01
= 0x49

c) encoded = Compress (0x49)

0x49

23.2.

23.2.

23.2.

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the
Signature 'blob', this TypeRef token is encoded as a single byte.

9 Constraint

The Constraint item in Signatures currently has only one possible value, ELEMENT TYyPE PINNED (§23.1.16),
which specifies that the target type is pinned in the runtime heap, and will not be moved by the actions of
garbage collection.

A Constraint can only be applied within a LocalVarSig (not a FieldSig). The Type of the local variable shall
either be a reference type (in other words, it points to the actual variable — for example, an Object, or a String);
or it shall include the ByrReF item. The reason is that local variables are allocated on the runtime stack — they
are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC
heap, pinning makes no sense.

10 Param

The Param (parameter) item in Signatures has this syntax diagram:

Param

Custombdod u w BYREF L= Type
TA/’ AT A

| T MEDBE"REF ‘—

¥

This diagram uses the following abbreviations:
BYREF for 0x10 (§23.1.16)
TYPEDBYREF for 0x16 (§23.1.16)
CustomMod is defined in §23.2.7. Type is defined in §23.2.12
11 RetType
The RetType (return type) item in Signatures has this syntax diagram:




RetType

/

= TvPEDBEYREF ‘—

o= WoID -
1
2 RetType is identical to Param except for one extra possibility, that it can include the type VOID. This diagram
3 uses the following abbreviations:
4 BYREF for ELEMENT TYPE BYREF (§23.1.16)
5 TYPEDBYREF for ELEMENT TYPE TYPEDBYREF (§23.1.16)
6 VvOID for ELEMENT TYPE VOID (§23.1.16)
7 23.2.12 Type
8 Type is encoded in signatures as follows (I1 is an abbreviation for ELEMENT TYPE 11, Ul is an abbreviation for
9 ELEMENT TYPE U1, and so on; see 23.1.16):
10 Type ::=
11 BOOLEAN | CHAR | I1 | Ul | I2 | U2 | 14 | U4 | I8 | U8 | R4 | R8 | I | U
12 | ARRAY Type ArrayShape (general array, see §23.2.13)
13 | CLASS TypeDefOrRefEncoded
14 | FNPTR MethodDefSig
15 | FNPTR MethodRefSig
16 | GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type *
17 | MVAR number
18 | OBJECT
19 | PTR CustomMod* Type
20 | PTR CustomMod* VOID
21 | STRING
22 | SZARRAY CustomMod* Type (single dimensional, zero-based array i.e., vector)
23 | VALUETYPE TypeDefOrRefEncoded
24 | VAR number
25 The GenArgCount non-terminal is an int32 value (compressed) specifying the number of generic arguments in
26 this signature. The number non-terminal following MVAR or VAR is an unsigned integer value (compressed).

27 23.2.13 ArrayShape
28 An ArrayShape has the following syntax diagram:
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ArrayShape

_.| Hank |—.| Humsizes m’{ HumLoHounds m

Rank is an unsigned integer (stored in compressed form, see §23.2) that specifies the number of dimensions in
the array (shall be 1 or more). NumSizes is a compressed unsigned integer that says how many dimensions
have specified sizes (it shall be 0 or more). Size is a compressed unsigned integer specifying the size of that
dimension — the sequence starts at the first dimension, and goes on for a total of NumSizes items. Similarly,
NumLoBounds is a compressed unsigned integer that says how many dimensions have specified lower bounds
(it shall be 0 or more). And LoBound is a compressed signed integer specifying the lower bound of that
dimension — the sequence starts at the first dimension, and goes on for a total of NumLoBounds items. None of
the dimensions in these two sequences can be skipped, but the number of specified dimensions can be less than
Rank.

Here are a few examples, all for element type int32:

Type Rank NumSizes Size NumLoBounds LoBound
[0...2] 14 1 1 3 0
Lrvrres]d 14 7 0 0
[0...3, 0...2,,,,] 14 6 2 4 3 2 0 0
[1...2, 6...8] 14 2 2 2 3 2 1 6
(5, 3...5, , | 14 4 2 5 3 2 0 3

23.2.

23.2.

[Note: definitions can nest, since the Type can itself be an array. end note]
14 TypeSpec
The signature in the Blob heap indexed by a TypeSpec token has the following format —

TypeSpecBlob ::=
PTR CustomMod* VOID
| PTR CustomMod* Type
| FNPTR MethodDefSig
| FNPTR MethodRefSig
| ARRAY Type ArrayShape
| SZARRAY CustomMod* Type
| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type Type*

For compactness, the ELEMENT TYPE prefixes have been omitted from this list. So, for example, “PTR” is
shorthand for ELEMENT TYPE PTR. (§23.1.16) Note that a TypeSpecBlob does not begin with a calling-
convention byte, so it differs from the various other signatures that are stored into Metadata.

15 MethodSpec
The signature in the Blob heap indexed by a MethodSpec token has the following format —
MethodSpecBlob ::=
GENRICINST GenArgCount Type Type*

GENRICINST has the value 0x0A. [Note: This value is known as IMAGE CEE_CS CALLCONV_GENERICINST in
the Microsoft CLR implementation. end note] The GenArgCount is a compressed unsigned integer indicating
the number of generic arguments in the method. The blob then specifies the instantiated type, repeating a total
of GenArgCount times.




1 23.2.16 Short form signatures

2 The general specification for signatures leaves some leeway in how to encode certain items. For example, it
3 appears valid to encode a String as either
4 long-form: (ELEMENT TYPE cLAss, TypeRef-to-System.String )
5 short-form: ELEMENT TYPE STRING
6 Only the short form is valid. The following table shows which short-forms should be used in place of each
7 long-form item. (As usual, for compactness, the ELEMENT TYPE prefix have been omitted here — so VALUETYPE
8 is short for ELEMENT TYPE VALUETYPE)
Long Form Short Form
Prefix TypeRef to:
CLASS System.String STRING
CLASS System.Object OBJECT
VALUETYPE System.Void VOID
VALUETYPE System.Boolean BOOLEAN
VALUETYPE System.Char CHAR
VALUETYPE System.Byte Ul
VALUETYPE System.Sbyte I1
VALUETYPE System.Intl6 12
VALUETYPE System.UInt16 U2
VALUETYPE System.Int32 14
VALUETYPE System.UInt32 U4
VALUETYPE System.Int64 I8
VALUETYPE System.UInt64 U8
VALUETYPE System.IntPtr I
VALUETYPE System.UIntPtr U
VALUETYPE System.TypedReference TYPEDBYREF
9
10 [Note: arrays shall be encoded in signatures using one of ELEMENT TYPE ARRAY OF ELEMENT TYPE SZARRAY.
11 There is no long form involving a TypeRef to System.Array. end note]

12 23.3 Custom attributes
13 A Custom Attribute has the following syntax diagram:

Customdaittrib

Fi<edArg

MamedArg —T.

14

15 All binary values are stored in little-endian format (except PackedLen items, which are used only as counts for
16 the number of bytes to follow in a UTFS string). If there are no fields, parameters, or properties specified the
17 entire attribute is represented as an empty blob.

18 CustomAttrib starts with a Prolog — an unsigned int16, with value 0x0001.

19 Next comes a description of the fixed arguments for the constructor method. Their number and type is found

20 by examining that constructor’s row in the MethodDef table; this information is not repeated in the
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CustomAttrib itself. As the syntax diagram shows, there can be zero or more FixedArgs. (Note that vARARG
constructor methods are not allowed in the definition of Custom Attributes.)

Next is a description of the optional “named” fields and properties. This starts with NumNamed — an unsigned
int16 giving the number of “named” properties or fields that follow. Note that NumNamed shall always be
present. A value of zero indicates that there are no “named” properties or fields to follow (and of course, in this
case, the CustomAttrib shall end immediately after NumNamed). In the case where NumNamed is non-zero, it
is followed by NumNamed repeats of NamedArgs.

FizedAry
- Bem —j+
if not SZARRAY — i
MumElem y Bem S

if SEARRLY

The format for each FixedArg depends upon whether that argument is an szaRrAY or not — this is shown in the
lower and upper paths, respectively, of the syntax diagram. So each FixedArg is either a single Elem, or
NumElem repeats of Elem.

(szarray is the single byte 0x1D, and denotes a vector — a single-dimension array with a lower bound of zero.)

NumElem is an unsigned int32 specifying the number of elements in the szarray, or OXFFFFFFFF to indicate
that the value is null.

Elem

simple or enum
Wal e

string or type
hoxed valuetype

FieldOrPropTypea “Wal

An Elem takes one of the forms in this diagram, as follows:

Y

e If the parameter kind is simple (first line in the above diagram) (bool , char , float32 ,
float64 ,int8 ,intl6 ,int32 ,int64 ,unsigned int8 ,unsigned intl16 , unsigned
int32 or unsigned int64 ) then the 'blob' contains its binary value (Val). (A bool is a single
byte with value 0 (false) or 1 (true); char is a two-byte Unicode character; and the others have their
obvious meaning.) This pattern is also used if the parameter kind is an enum -- simply store the
value of the enum's underlying integer type.

e If the parameter kind is string, (middle line in above diagram) then the blob contains a SerString —
a PackedLen count of bytes, followed by the UTFS8 characters. If the string is null, its PackedLen
has the value OxFF (with no following characters). If the string is empty (“”), then PackedLen has
the value 0x00 (with no following characters).
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e If the parameter kind is System.Type, (also, the middle line in above diagram) its value is stored as
a SerString (as defined in the previous paragraph), representing its canonical name. The canonical
name is its full type name, followed optionally by the assembly where it is defined, its version,
culture and public-key-token. If the assembly name is omitted, the CLI looks first in the current
assembly, and then in the system library (mscorlib); in these two special cases, it is permitted to
omit the assembly-name, version, culture and public-key-token.

e If the parameter kind is System.Object, (third line in the above diagram) the value stored represents
the “boxed” instance of that value-type. In this case, the blob contains the actual type's
FieldOrPropType (see below), followed by the argument’s unboxed value. [Note: it is not possible
to pass a value of null in this case. end note]

e If the type is a boxed simple value type (bool , char , float32 , float64 ,int8 ,intl6 ,
int32 , int64 , unsigned int8 , unsigned int16 , unsigned int32 or unsigned
int64 ) then FieldOrPropType is immediately preceded by a byte containing the value 0x51 .

The FieldOrPropType shall be exactly one of: ELEMENT TYPE BOOLEAN, ELEMENT TYPE CHAR,
ELEMENT TYPE I1, ELEMENT TYPE Ul, ELEMENT TYPE 12, ELEMENT TYPE U2, ELEMENT TYPE 14,
ELEMENT TYPE U4, ELEMENT TYPE I8, ELEMENT TYPE U8, ELEMENT TYPE R4, ELEMENT TYPE RS,

ELEMENT TYPE STRING. A single-dimensional, zero-based array is specified as a single byte 0x1D
followed by the FieldOrPropType of the element type. (See §23.1.16) An enum is specified as a
single byte 0x55 followed by a SerString.

NamedArg

FieldOrPropType H FieldOrPropName H FixedArg I—»

PROPERTY

A NamedArg is simply a FixedArg (discussed above) preceded by information to identify which field or
property it represents. [Note: Recall that the CLI allows fields and properties to have the same name; so we
require a means to disambiguate such situations. end note)

FIELD is the single byte 0x53.
PROPERTY is the single byte 0x54.
The FieldOrPropName is the name of the field or property, stored as a SerString (defined above).

A number of examples involving custom attributes are contained in Annex B of Partition VI.

23.4 Marshalling descriptors

182

A Marshalling Descriptor is like a signature — it’s a 'blob' of binary data. It describes how a field or parameter
(which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or
from unmanaged code via PInvoke dispatch. The ILAsm syntax marshal can be used to create a marshalling
descriptor, as can the pseudo custom attribute MarshalAsAttribute — see §21.2.1)

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier
—see §15.5.5.

Marshalling descriptors make use of constants named NATIVE TYPE xxx. Their names and values are listed
in the following table:

Name Value
NATIVE TYPE BOOLEAN 0x02
NATIVE TYPE Il 0x03

Partition II
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NATIVE TYPE Ul 0x04
NATIVE TYPE 12 0x05
NATIVE TYPE U2 0x06
NATIVE TYPE 14 0x07
NATIVE TYPE U4 0x08
NATIVE TYPE 18 0x09
NATIVE TYPE U8 0x0a
NATIVE TYPE R4 0x0b
NATIVE_TYPE RS 0x0c
NATIVE_TYPE LPSTR 0x14
NATIVE_TYPE LPWSTR 0x15
NATIVE_TYPE INT Ox1f
NATIVE TYPE UINT 0x20
NATIVE TYPE FUNC 0x26
NATIVE TYPE_ARRAY 0x2a

Implementation Specific (Microsoft)

The Microsoft implementation supports a richer set of types to describe marshalling between Windows

native types and COM. These additional options are listed in the following table:

Implementation Specific (Microsoft)

Name Value Remarks

NATIVE TYPE CURRENCY 0x0f

NATIVE TYPE BSTR 0x13

NATIVE TYPE LPTSTR 0x16

NATIVE TYPE FIXEDSYSSTRING 0x17

NATIVE_TYPE_IUNKNOWN 0x19

NATIVE_TYPE IDISPATCH Oxla

NATIVE TYPE_STRUCT 0x1b

NATIVE TYPE INTF Oxlc

NATIVE TYPE SAFEARRAY 0x1d

NATIVE TYPE FIXEDARRAY Oxle

NATIVE TYPE BYVALSTR 0x22

NATIVE TYPE ANSIBSTR 0x23

NATIVE TYPE TBSTR 0x24 Selects BSTR or ANSIBSTR depending on
platform

NATIVE_TYPE_ VARIANTBOOL 0x25 2-byte Boolean value: false = 0; true = -1

NATIVE TYPE_ASANY 0x28

NATIVE TYPE LPSTRUCT 0x2b
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NATIVE TYPE CUSTOMMARSHALER

0x2¢

Custom marshaler native type. Shall be followed
by a string in the format: "Native type
name/0Custom marshaler type name/0Optional
cookie/0" OR //"{Native type GUID }/0Custom
marshaler type name/0Optional cookie/0"

NATIVE TYPE ERROR

0x2d

This native type coupled with
ELEMENT TYPE_I4 will map to
VT HRESULT

NATIVE TYPE MAX

0x50

Used to indicate “no info”

The 'blob' has the following format —

MarshalSpec ::=
NativelIntrinsic

| ARRAY ArrayElemType

| ARRAY ArrayElemType ParamNum

| ARRAY ArrayElemType ParamNum NumElem

Implementation Specific (Microsoft)

MarshalSpec ::=
Nativelntrinsic
arRrRAY ArrayElemType
aRrRAY ArrayElemType ParamNum

rFIXEDARRAY NumElem ArrayElemType
sarEARRAY SafeArrayElemType

NativeIntrinsic ::=
BOOLEAN | I1 | Ul | I2 | U2 |
| LPSTR | LPSTR | INT | UINT |

|

|

| array ArrayElemType ParamNum NumElem

| cusToMMaRSHALLER Guid UnmanagedType ManagedType Cookie
|

|

I4 | U4 |

FUNC

The Microsoft implementation supports a wider range of options:

I8 | U8 | R4 | R8

For compactness, the NaTIVE TYPE prefixes have been omitted in the above lists; for example, “ARRAY” is
p > _ _p ; ple,

shorthand for NATIVE TYPE ARRAY.

NativeIntrinsic ::= ..
| CURRENCY | BSTR | LPTSTR
| FIXEDSYSSTRING | STRUCT | INTF |

ArrayElemType ::=
NativeIntrinsic

FIXEDARRAY

| TBSTR | VARIANTBOOL | ASANY | LPSTRUCT | ERROR

Guid is a counted-UTFS string — e.g., “{90883F05-3D28-11D2-8F17-00A0C9A6186D}” — it shall
include leading { and trailing } and be exactly 38 characters long

UnmanagedType is a counted-UTF8 string — e.g., “Point”

Partition II

Implementation Specific (Microsoft)

| BYVALSTR | ANSIBSTR

ManagedType is a counted-UTF8 string — e.g., “System.Util. MyGeometry” — it shall be the fully-
qualified name (namespace and name) of a managed Type defined within the current assembly (that
Type shall implement [CustomMarshaller, and provides a “to” and “from” marshalling method)

Cookie is a counted-UTF8 string — e.g., “123” — an empty string is allowed
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ArrayElemType ::= ...
| MAX

The value MAX is used to indicate “no info”

The following information and table are specific to the Microsoft implementation of the CLI:

SafeArrayElemType ::=
I2 | I4 | R4 | R8 | CY | DATE | BSTR | DISPATCH | ERROR | BOOL | VARIANT | UNKNOWN
| DECIMAL | 11 | UIl | UI2 | UI4 | INT | UINT

where each is prefixed by vr . The values for the vT_xxx constants are given in the following table:

Implementation Specific (Microsoft)

Constant Value
VT I2 =2,
VT 14 =3,
VT R4 =4,
VT R8 =5,
VT_CY =6,
VT DATE =7,
VT_BSTR =8,
VT DISPATCH =9,
VT_ERROR =10,
VT BOOL =11,
VT _VARIANT =12,
VT UNKNOWN =13,
VT DECIMAL - 14,
VT 11 =16,
VT UI1 =17,
VT_UI2 =18,
VT UI4 =19,
VT _INT =22,
VT UINT =23,

ParamNum is an unsigned integer (compressed as described in §23.2) specifying the parameter in the method
call that provides the number of elements in the array — see below.

NumElem is an unsigned integer (compressed as described in §23.2) specifying the number of elements or
additional elements — see below.

[Note: For example, in the method declaration:
.method void M(int32[] arl, int32 sizel, unsigned int8[] ar2, int32 size2) { ..}

The ar1 parameter might own a row in the FieldMarshal table, which indexes a MarshalSpec in the Blob heap
with the format:

ARRAY MAX 2 1

This says the parameter is marshalled to a NaTTVE_TYPE ARRAY. There is no additional info about the type of
each element (signified by that naT1vE TYPE MAX). The value of ParamNum is 2, which indicates that
parameter number 2 in the method (the one called size1) will specify the number of elements in the actual
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array — let’s suppose its value on a particular call is 42. The value of NumFElem is 0. The calculated total size,
in bytes, of the array is given by the formula:

if ParamNum = 0

SizeInBytes = NumElem * sizeof (elem)
else

SizeInBytes = ( Q@ParamNum + NumElem ) * sizeof (elem)
endif

The syntax “@ParamNum” is used here to denote the value passed in for parameter number ParamNum — it
would be 42 in this example. The size of each element is calculated from the metadata for the ar1 parameter in
Foo’s signature — an ELEMENT TYPE_ T4 (§23.1.16) of size 4 bytes. end note]
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24.1

Metadata physical layout

The physical on-disk representation of metadata is a direct reflection of the logical representation described

in §22 and §23. That is, data is stored in streams representating the metadata tables and heaps. The main
complication is that, where the logical representation is abstracted from the number of bytes needed for
indexing into tables and columns, the physical representation has to take care of that explicitly by defining how
to map logical metadata heaps and tables into their physical representations.

Unless stated otherwise, all binary values are stored in little-endian format.
Fixed fields

Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable
Executable (PE) File Format (§25). Because of this heritage, some of the fields in the physical representation
of metadata have fixed values. When writing these fields it is best that they be set to the value indicated, on
reading they should be ignored.

24.2 File headers

24.2.1

Metadata root

The root of the physical metadata starts with a magic signature, several bytes of version and other
miscellaneous information, followed by a count and an array of stream headers, one for each stream that is
present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of
headers.

Offset Size Field Description

0 4 Signature Magic signature for physical metadata : 0x424A5342.

4 2 MajorVersion Major version, 1 (ignore on read)

6 2 MinorVersion Minor version, 1 (ignore on read)

8 4 Reserved Reserved, always 0 (§24.1).

12 4 Length Number of bytes allocated to hold version string (including
null terminator), call this x.
Call the length of the string (including the terminator) m (we
require m <= 255); the length x is m rounded up to a multiple
of four.

16 m Version UTF8-encoded null-terminated version string of length m
(see below)

lo+m x-m Padding to next 4 byte boundary.

L6x 2 Flags Reserved, always 0 (§24.1).

Lotx+2 2 Streams Number of streams, say n.

Lohx+d StreamHeaders | Array of n StreamHdr structures.

The Version string shall be “Standard CLI 2005” for any file that is intended to be executed on any conforming
implementation of the CLI, and all conforming implementations of the CLI shall accept files that use this
version string. Other strings shall be used when the file is restricted to a vendor-specific implementation of the
CLI. Future versions of this standard shall specify different strings, but they shall begin “Standard CLI”. Other
standards that specify additional functionality shall specify their own specific version strings beginning with
“Standardo”, where “0” represents a single space. Vendors that provide implementation-specific extensions
shall provide a version string that does not begin with “Standardo”. (For the first version of this Standard, the

Version string was “Standard CLI 2002”.)
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24.2.

2 Stream header

A stream header gives the names, and the position and length of a particular table or heap. Note that the length
of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-
terminated string).

Offset Size Field Description

0 4 Offset Memory offset to start of this stream from start of the
metadata root (§24.2.1)

4 4 Size Size of this stream in bytes, shall be a multiple of 4.

8 Name Name of the stream as null-terminated variable length array

of ASCII characters, padded to the next 4-byte boundary
with \O characters. The name is limited to 32 characters.

24.2.

24.2.

188

Both logical tables and heaps are stored in streams. There are five possible kinds of streams. A stream header
with name “#Strings” that points to the physical representation of the string heap where identifier strings are
stored; a stream header with name “#US” that points to the physical representation of the user string heap; a
stream header with name “#Blob” that points to the physical representation of the blob heap, a stream header
with name “#GUID” that points to the physical representation of the GUID heap; and a stream header with
name “#~ that points to the physical representation of a set of tables.

Implementation Specific (Microsoft Only)

Some compilers store metadata in a #- stream, which holds an uncompressed, or non-optimized,
representation of metadata tables; this includes extra metadata “pointer” tables. Such PE files do not

form part of this International standard

Each kind of stream shall occur at most once, that is, a meta-data file shall not contain two “#US” streams, or
five “#Blob” streams. Streams need not be there if they are empty.

The next subclauses describe the structure of each kind of stream in more detail.

3 #Strings heap

The stream of bytes pointed to by a “#Strings” header is the physical representation of the logical string heap.
The physical heap can contain garbage, that is, it can contain parts that are unreachable from any of the tables,
but parts that are reachable from a table shall contain a valid null-terminated UTF8 string. When the #String
heap is present, the first entry is always the empty string (i.e., \0).

4 #US and #Blob heaps

The stream of bytes pointed to by a “#US” or “#Blob” header are the physical representation of logical
Userstring and 'blob' heaps respectively. Both these heaps can contain garbage, as long as any part that is
reachable from any of the tables contains a valid 'blob'. Individual blobs are stored with their length encoded in
the first few bytes:

e If the first one byte of the 'blob' is 0bbbbbbb,, then the rest of the 'blob' contains the bbbbbbb,

bytes of actual data.

o Ifthe first two bytes of the 'blob' are 10bbbbbb, and x, then the rest of the 'blob' contains the

(bbbbbb, << 8 + x) bytes of actual data.

o If the first four bytes of the 'blob' are 110bbbbb,, x, y, and z, then the rest of the 'blob' contains the
(bbbbby << 24 + x << 16 + y << 8 + z) bytes of actual data.

The first entry in both these heaps is the empty 'blob' that consists of the single byte 0x00.

Strings in the #US (user string) heap are encoded using 16-bit Unicode encodings. The count on each string is
the number of bytes (not characters) in the string. Furthermore, there is an additional terminal byte (so all byte
counts are odd, not even). This final byte holds the value 1 if and only if any UTF 16 character within the string
has any bit set in its top byte, or its low byte is any of the following: 0x01-0x08, 0xOE-0x1F, 0x27, 0x2D,
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24.2.

0x7F. Otherwise, it holds 0. The 1 signifies Unicode characters that require handling beyond that normally
provided for 8-bit encoding sets.

5 #GUID heap

The “#GUID” header points to a sequence of 128-bit GUIDs. There might be unreachable GUIDs stored in the

stream.

6 #~ stream

The “#~” streams contain the actual physical representations of the logical metadata tables (§22). A “#~”
stream has the following top-level structure:

Offset Size Field Description

0 4 Reserved Reserved, always 0 (§24.1).

4 1 MajorVersion | Major version of table schemata; shall be 2 (§24.1).

> 1 MinorVersion | Minor version of table schemata; shall be 0 (§24.1).

6 1 HeapSizes Bit vector for heap sizes.

7 1 Reserved Reserved, always 1 (§24.1).

8 8 Valid Bit vector of present tables, let n be the number of bits that
are 1.

16 8 Sorted Bit vector of sorted tables.

24 4*n Rows Array of n 4-byte unsigned integers indicating the number of
rows for each present table.

24+4*n Tables The sequence of physical tables.

The HeapSizes field is a bitvector that encodes the width of indexes into the various heaps. If bit 0 is set,
indexes into the “#String” heap are 4 bytes wide; if bit 1 is set, indexes into the “#GUID” heap are 4 bytes
wide; if bit 2 is set, indexes into the “#Blob” heap are 4 bytes wide. Conversely, if the HeapSize bit for a
particular heap is not set, indexes into that heap are 2 bytes wide.

Heap size flag Description

0x01 Size of “#String” stream >=2'°.
0x02 Size of “#GUID” stream >= 2'°.
0204 Size of “#Blob” stream >= 2.

The Valid field is a 64-bit bitvector that has a specific bit set for each table that is stored in the stream; the
mapping of tables to indexes is given at the start of §22. For example when the DeclSecurity table is present in
the logical metadata, bit 0x0e should be set in the Valid vector. It is invalid to include non-existent tables in
Valid, so all bits above 0x2c shall be zero.

The Rows array contains the number of rows for each of the tables that are present. When decoding physical
metadata to logical metadata, the number of 1’s in Valid indicates the number of elements in the Rows array.

A crucial aspect in the encoding of a logical table is its schema. The schema for each table is given in §22. For
example, the table with assigned index 0x02 is a TypeDef table, which, according to its specification in §22.37,
has the following columns: a 4-byte-wide flags, an index into the String heap, another index into the String
heap, an index into TypeDef', TypeRef , or TypeSpec table, an index into Field table, and an index into
MethodDef table.

The physical representation of a table with n columns and m rows with schema (C,...,C,.;) consists of the
concatenation of the physical representation of each of its rows. The physical representation of a row with
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schema (Cy,..., ,.1) is the concatenation of the physical representation of each of its elements. The physical
representation of a row cell e at a column with type C is defined as follows:

If e is a constant, it is stored using the number of bytes as specified for its column type C (i.e., a 2-
bit mask of type PropertyAttributes)

If e is an index into the GUID heap, 'blob', or String heap, it is stored using the number of bytes as
defined in the HeapSizes field.

If e is a simple index into a table with index i, it is stored using 2 bytes if table i has less than 2'°
rows, otherwise it is stored using 4 bytes.

If e is a coded index that points into table #; out of n possible tables ¢, ...7,.;, then it is stored as e
<< (logn) | tag{ ty, ...t,.;}[ t;] using 2 bytes if the maximum number of rows of tables ¢, ...t, ,, is
less than 2('¢ ~1°¢™) and using 4 bytes otherwise. The family of finite maps tag{ f,, ...t,.;} is
defined below. Note that decoding a physical row requires the inverse of this mapping. [For
example, the Parent column of the Constant table indexes a row in the Field, Param, or Property
tables. The actual table is encoded into the low 2 bits of the number, using the values: 0 => Field,
1 => Param, 2 => Property.The remaining bits hold the actual row number being indexed. For
example, a value of 0x321, indexes row number 0xC8 in the Param table.]

TypeDefOrRef: 2 bits to encode tag Tag
TypeDef 0
TypeRef 1
TypeSpec 2
HasConstant: 2 bits to encode tag Tag
Field 0
Param 1
Property 2
HasCustomAttribute: 5 bits to encode tag Tag
MethodDef 0
Field 1
TypeRef 2
TypeDef 3
Param 4
InterfaceImpl 5
MemberRef 6
Module 7
Permission 8
Property 9
Event 10
StandAloneSig 11
ModuleRef 12
TypeSpec 13
Assembly 14
AssemblyRef 15
File 16
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ExportedType

17

ManifestResource

18

[Note: Hascustomattributes only has values for tables that are “externally visible”; that is, that correspond to items
in a user source program. For example, an attribute can be attached to a TypeDef table and a Field table, but not a
ClassLayout table. As a result, some table types are missing from the enum above. end note]

HasFieldMarshall: 1 bit to encode tag

Tag

Field

Param

HasDeclSecurity: 2 bits to encode tag

TypeDef

MethodDef

Assembly

MemberRefParent: 3 bits to encode tag

TypeDef

TypeRef

ModuleRef

MethodDef

TypeSpec

HasSemantics: 1 bit to encode tag

Event

Property

MethodDefOrRef: 1 bit to encode tag

MethodDef

MemberRef

MemberForwarded: 1 bit to encode tag

Field

MethodDef

Implementation: 2 bits to encode tag

File

AssemblyRef

ExportedType

CustomAttributeType: 3 bits to encode tag

Not used

Not used

MethodDef
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MemberRef

Not used

ResolutionScope: 2 bits to encode tag

Module

ModuleRef

AssemblyRef

TypeRef

TypeOrMethodDef: 1 bit to encode tag

TypeDef

MethodDef
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25 File format extensions to PE

This contains informative text only

The file format for CLI components is a strict extension of the current Portable Executable (PE) File Format.
This extended PE format enables the operating system to recognize runtime images, accommodates code
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.
There are also specifications for a subset of the full Windows PE/COFF file format, in sufficient detail that a
tool or compiler can use the specifications to emit valid CLI images.

The PE format frequently uses the term RVA (Relative Virtual Address). An RVA is the address of an item
once loaded into memory, with the base address of the image file subtracted from it (i.e., the offset from the
base address where the file is loaded). The RVA of an item will almost always differ from its position within
the file on disk. To compute the file position of an item with RVA r, search all the sections in the PE file to find
the section with RVA s, length / and file position p in which the RVA lies, ie s < r < s+/. The file position of
the item is then given by p+(r-s).

Unless stated otherwise, all binary values are stored in little-endian format.

End informative text

25.1 Structure of the runtime file format
The figure below provides a high-level view of the CLI file format. All runtime images contain the following:
e PE headers, with specific guidelines on how field values should be set in a runtime file.

e A CLI header that contains all of the runtime specific data entries. The runtime header is read-only
and shall be placed in any read-only section.

e The sections that contain the actual data as described by the headers, including imports/exports,
data, and code.

PE Headers

CLI Header

CLI Data : metadata, IL method bodies, fi-ups

Mative Image Sections

The CLI header (§25.3.3) is found using CLI Header directory entry in the PE header. The CLI header in turn
contains the address and sizes of the runtime data (for metadata, see §24; for CIL see § 25.4) in the rest of the
image. Note that the runtime data can be merged into other areas of the PE format with the other data based on
the attributes of the sections (such as read only versus execute, etc.).

25.2 PE headers

A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and
then the PE optional header followed by PE section headers.
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1 MS-DOS header

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the
module. At offset 0x3c in the DOS header is a 4-byte unsigned integer offset, 1fanew, to the PE signature (shall
be “PE\0\0”), immediately followed by the PE file header.

Ox4d Ox5a 0x90 0x00 0x03 0x00 0x00 0x00
0x04 0x00 0x00 0x00 0xFF OxFF 0x00 0x00
0xb8 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 lfanew

0x0e 0x1f Oxba 0x0e 0x00 0xb4 0x09 Oxcd
0x21 0xb8 0x01 Ox4c Oxcd 0x21 0x54 0x68
0x69 0x73 0x20 0x70 0x72 Ox6f 0x67 0x72
0x61 Ox6d 0x20 0x63 0x61 Ox6e Ox6e Ox6f
0x74 0x20 0x62 0x65 0x20 0x72 0x75 Ox6e
0x20 0x69 Ox6e 0x20 0x44 Ox4f 0x53 0x20
Ox6d Ox6f 0x64 0x65 0x2e 0x0d 0x0d 0x0a
0x24 0x00 0x00 0x00 0x00 0x00 0x00 0x00

25.2.

25.2.

2 PE file header

Immediately after the PE signature is the PE File header consisting of the following:

Offset Size Field Description

0 2 Machine Always 0x14c. (§24H

2 2 Number of Sections Number of sections; indicates size of the Section Table,
which immediately follows the headers.

4 4 Time/Date Stamp Time and date the file was created in seconds since
January 1* 1970 00:00:00 or 0.

8 4 Pointer to Symbol Table Always 0 (§24.1).

12 4 Number of Symbols Always 0 (§24.1).

16 2 Optional Header Size Size of the optional header, the format is described below.

18 2 Characteristics Flags indicating attributes of the file, see §25.2.2.1.

2.1 Characteristics

A CIL-only DLL sets flag 0x2000 to 1, while a CIL-only .exe has flag 0x2000 set to zero:

Flag

Value

Description

IMAGE FILE DLL

0x2000

The image file is a dynamic-link library (DLL).

194

Except for the 1Mace_r11E_DLL flag (0x2000), flag 0x0002 (IMAGE_FILE EXECUTABLE IMAGE) shall be
set, flags 0x0010, 0x0020, 0x0100, 0x0400 and 0x0800 are implementation-specific, and all others shall always
be zero (§24.1).
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Implementation Specific (Microsoft Only)

The following table explains the Microsoft implementation-specific DLL characteristic flags (see
winnt.h).

0x0100 | Must be the same as COMIMAGE FLAGS 32BITREQUIRED

(lsee" 2530301

25.2.3 PE optional header

Immediately after the PE Header is the PE Optional Header. This header contains the following information:

Offset Size Header part Description

0 28 Standard fields These define general properties of the PE file, see §25.2.3.1.

28 68 NT-specific fields These include additional fields to support specific features of
Windows, see 25.2.3.2.

96 128 Data directories These fields are address/size pairs for special tables, found in
the image file (for example, Import Table and Export Table).

25.2.3.1 PE header standard fields

These fields are required for all PE files and contain the following information:

Offset Size Field Description

0 2 Magic Always 0x10B. (§24-H

2 1 LMajor Always 6 (§24.1).

3 1 LMinor Always 0 (§24.1).

4 4 Code Size Size of the code (text) section, or the sum of all code sections
if there are multiple sections.

8 4 Initialized Data Size Size of the initialized data section, or the sum of all such
sections if there are multiple data sections.

12 4 Uninitialized Data Size Size of the uninitialized data section, or the sum of all such
sections if there are multiple unitinitalized data sections.

16 4 Entry Point RVA RVA of entry point , needs to point to bytes OXFF 0x25
followed by the RVA in a section marked execute/read for
EXEs or 0 for DLLs

20 4 Base Of Code RVA of the code section. (This is a hint to the loader.)

24 4 Base Of Data RVA of the data section. (This is a hint to the loader.)

This contains informative text only
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The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CLI aware platforms, this
stub will call the entry point API of mscoree (_CorExeMain or CorDIIMain). The mscoree entry point will use
the module handle to load the metadata from the image, and invoke the entry point specified in vthe CLI

header.

End informative text

25.2.3.2

These fields are Windows NT specific:

PE header Windows NT-specific fields

Offset Size Field Description

28 4 Image Base Always 0x400000 (§24.1).

32 4 Section Alignment Always 0x2000 (§24.1).

36 4 File Alignment Always 0x200 (§24.1).

40 2 OS Major Always 5 (§24.1).

42 2 OS Minor Always 0 (§24.1).

44 2 User Major Always 0 (§24.1).

46 2 User Minor Always 0 (§24.1).

48 2 SubSys Major Always 5 (§24.1).

50 2 SubSys Minor Always 0 (§24.1).

52 4 Reserved Always 0 (§24.1).

56 4 Image Size Size, in bytes, of image, including all headers and padding;
shall be a multiple of Section Alignment.

60 4 Header Size Combined size of MS-DOS Header, PE Header, PE Optional
Header and padding; shall be a multiple of the file alignment.

64 4 File Checksum Always 0 (§24.1).

68 2 SubSystem Subsystem required to run this image. Shall be either
IMAGE _SUBSYSTEM WINDOWS_CUI (0x3) or
IMAGE _SUBSYSTEM_WINDOWS GUI (0x2).

70 2 DLL Flags Always 0x8540, see below (§24.1).

72 4 Stack Reserve Size Always 0x100000 (1Mb) (§24.1).

76 4 Stack Commit Size Always 0x1000 (4KD) (§24.1).

80 4 Heap Reserve Size Always 0x100000 (1Mb) (§24.1).

84 4 Heap Commit Size Always 0x1000 (4Kb) (§24.1).

88 4 Loader Flags Always 0 (§24.1)

92 4 Number of Data Always 0x10 (§24.1).

Directories

Implementation Specific (Microsoft Only)

The following table explains the DLL Flags field value (see winnt.h).

196
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IMAGE DLL CHARATERISTICS NO SEH

0x0400

.3.3 PE header data directories

The optional header data directories give the address and size of several tables that appear in the sections of the
PE file. Each data directory entry contains the RVA and Size of the structure it describes, in that order.

Offset Size Field Description

96 8 Export Table Always 0 (§24.1).

104 8 Import Table RVA and Size of Import Table, (§25.3.1).

112 8 Resource Table Always 0 (§24.1).

120 8 Exception Table Always 0 (§24.1).

128 8 Certificate Table Always 0 (§24.1).

136 8 Base Relocation Table Relocation Table; set to 0 if unused (§25.3.2).

144 8 Debug Always 0 (§24.1).

152 8 Copyright Always 0 (§24.1).

160 8 Global Ptr Always 0 (§24.1).

1e8 8 TLS Table Always 0 (§24.1).

176 8 Load Config Table Always 0 (§24.1).

184 8 Bound Import Always 0 (§24.1).

192 8 IAT RVA and Size of Import Address Table,
(§25.3.1).

200 8 Delay Import Descriptor Always 0 (§24.1).

208 8 CLI Header CLI Header with directories for runtime data,
(§25.3.1).

216 8 Reserved Always 0 (§24.1).

The tables pointed to by the directory entries are stored in one of the PE file’s sections; these sections

themselves are described by section headers.

25.3 Section headers

Immediately following the optional header is the Section Table, which contains a number of section headers.
This positioning is required because the file header does not contain a direct pointer to the section table; the
location of the section table is determined by calculating the location of the first byte after the headers.

Each section header has the following format, for a total of 40 bytes per entry:

Offset | Size | Field Description

0 8 Name An 8-byte, null-padded ASCII string. There is no terminating null
if the string is exactly eight characters long.

8 4 VirtualSize Total size of the section in bytes. If this value is greater than
SizeOfRawData, the section is zero-padded.

12 4 Virtual Address For executable images this is the address of the first byte of the
section, when loaded into memory, relative to the image base.
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16 SizeOfRawData Size of the initialized data on disk in bytes, shall be a multiple of
FileAlignment from the PE header. If this is less than VirtualSize
the remainder of the section is zero filled. Because this field is
rounded while the VirtualSize field is not it is possible for this to
be greater than VirtualSize as well. When a section contains only
uninitialized data, this field should be 0.

20 PointerToRawData Offset of section’s first page within the PE file. This shall be a
multiple of FileAlignment from the optional header. When a
section contains only uninitialized data, this field should be 0.

24 PointerToRelocations Always 0 (§24.1).

28 PointerToLinenumbers Always 0 (§24.1).

32 NumberOfRelocations Always 0 (§24.1).

34 NumberOfLinenumbers Always 0 (§24.1).

36 Characteristics Flags describing section’s characteristics, see below.

The following table defines the possible characteristics of the section.

Flag Value Description

IMAGE_SCN_CNT CODE 0x00000020 Section contains code.

IMAGE SCN_CNT INITIALIZED DATA 0x00000040 Section contains initialized data.
IMAGE_SCN_CNT UNINITIALIZED DATA 0x00000080 Section contains uninitialized data.
IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as code.
IMAGE_SCN_MEM READ 0x40000000 Section can be read.

IMAGE SCN_MEM WRITE 0x80000000 Section can be written to.

25.3.

1 Import Table and Import Address Table (IAT)

The Import Table and the Import Address Table (IAT) are used to import the CorExeMain (for a .exe) or
_corDdl1Main (for a .dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to
a one element zero terminated array of Import Directory entries (in a general PE file there is one entry for each

imported DLL):

Offset Size Field Description

0 4 ImportLookupTable RVA of the Import Lookup Table

4 4 DateTimeStamp Always 0 (§24.1).

8 4 ForwarderChain Always 0 (§24.1).

12 4 Name RVA of null-terminated ASCII string “mscoree.dll”.

16 4 ImportAddressTable RVA of Import Address Table (this is the same as the
RVA of the IAT descriptor in the optional header).

20 20 End of Import Table. Shall be filled with zeros.

The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of
RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In a general PE file there is one entry in
this table for every imported symbol.

Offset

‘ Size ‘ Field

Description
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Hint/Name Table RVA

A 31-bit RVA into the Hint/Name Table. Bit 31
shall be set to 0 indicating import by name.

End of table, shall be filled with zeros.

The TAT should be in an executable and writable section as the loader will replace the pointers into the
Hint/Name table by the actual entry points of the imported symbols.

The Hint/Name table contains the name of the dll-entry that is imported.

Offset Size Field Description
0 2 Hint Shall be 0.
2 variable Name Case sensitive, null-terminated ASCII string containing name to
import. Shall be “ CorExeMain” for a .exe file and
“ CorDIIMain” for a .dll file.
25.3.2 Relocations

In a pure CIL image, a single fixup of type IMAGE_REL BASED_ HIGHLOW (0x3) is required for the x86
startup stub which access the IAT to load the runtime engine on down level loaders. When building a mixed
CIL/native image or when the image contains embedded RV As in user data, the relocation section contains

relocations for these as well.

The relocations shall be in their own section, named “.reloc”, which shall be the final section in the PE file. The
relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block
represents the fixups for a 4K page, and each block shall start on a 32-bit boundary.

Each fixup block starts with the following structure:

Offset Size Field Description

0 4 PageRVA The RVA of the block in which the fixup needs to be
applied. The low 12 bits shall be zero.

4 4 Block Size Total number of bytes in the fixup block, including the

Page RVA and Block Size fields, as well as the
Type/Offset fields that follow, rounded up to the next
multiple of 4.

The Block Size field is then fol

lowed by (BlockSize —8)/2 Type/Offset. Each entry is a word (2 bytes) and has
the following structure (if necessary, insert 2 bytes of 0 to pad to a multiple of 4 bytes in length):

Offset Size Field Description
0 4 bits Type Stored in high 4 bits of word. Value indicating which
type of fixup is to be applied (described above)
0 12 bits Offset Stored in remaining 12 bits of word. Offset from starting
address specified in the Page RVA field for the block.
This offset specifies where the fixup is to be applied.
25.3.3 CLI header

The CLI header contains all of the runtime-specific data entries and other information. The header should be
placed in a read-only, sharable section of the image. This header is defined as follows:

Offset

Size

Field

Description

0

4

Cb

Size of the header in bytes

Partition II 199




4 2 MajorRuntimeVersion The minimum version of the runtime required to run
this program, currently 2.

6 2 MinorRuntimeVersion The minor portion of the version, currently 0.

8 8 MetaData RVA and size of the physical metadata (§24).

16 4 Flags Flags describing this runtime image. (§25.3.3.1).

20 4 EntryPointToken Token for the MethodDef or File of the entry point
for the image

24 8 Resources RVA and size of implementation-specific resources.

32 8 StrongNameSignature RVA of the hash data for this PE file used by the
CLI loader for binding and versioning

40 8 CodeManagerTable Always 0 (§24.1).

48 8 VTableFixups RVA of an array of locations in the file that contain
an array of function pointers (e.g., vtable slots), see
below.

56 8 ExportAddressTableJumps Always 0 (§24.1).

64 8 ManagedNativeHeader Always 0 (§24.1).

25.3.3.1 Runtime flags

The following flags describe this runtime image and are used by the loader. All unspecified bits should be zero.

Flag Value Description

COMIMAGE FLAGS ILONLY 0x00000001 Always 1. (82415

COMIMAGE FLAGS_ 32BITREQUIRED 0x00000002 Image can only be loaded into a 32-bit process,
for instance if there are 32-bit vtablefixups, or
casts from native integers to int32. CLI
implementations that have 64-bit native
integers shall refuse loading binaries with this
flag set.

COMIMAGE FLAGS STRONGNAMESIGNED 0x00000008 Image has a Strong name Signature.

COMIMAGE FLAGS NATIVE ENTRYPOINT 0x00000010 Always 0.

COMIMAGE FLAGS_TRACKDEBUGDATA 0x00010000 Always 0 (§24.1).

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Implementation Specific (Microsoft Only)

If comIMAGE FLAGS NATIVE ENTRYPOINT is 1 the RV A references the native function which is the real
entry point and COMIMAGE FLAGS_ILONLY must be 0.

— o o N »n bk
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25.3.
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Entry point metadata token

e The entry point token (§15.4.1.2) is always a MethodDef token (§22.26) or File token (§22.19)
when the entry point for a multi-module assembly is not in the manifest assembly. The signature
and implementation flags in metadata for the method indicate how the entry is run

3.3 Vtable fixup

Certain languages, which choose not to follow the common type system runtime model, can have virtual
functions which need to be represented in a v-table. These v-tables are laid out by the compiler, not by the
runtime. Finding the correct v-table slot and calling indirectly through the value held in that slot is also done
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by the compiler. The VtableFixups field in the runtime header contains the location and size of an array of
Vtable Fixups (§15.5.1). V-tables shall be emitted into a read-write section of the PE file.

Each entry in this array describes a contiguous array of v-table slots of the specified size. Each slot starts out
initialized to the metadata token value for the method they need to call. At image load time, the runtime
Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.

Offset Size Field Description

0 4 VirtualAddress RVA of Vtable

4 2 Size Number of entries in Vtable

6 2 Type Type of the entries, as defined in table below

Constant Value Description

COR_VTABLE 32BIT 0x01 Vtable slots are 32 bits.

COR_VTABLE 64BIT 0x02 Vtable slots are 64 bits.

COR_VTABLE_FROM_UNMANAGED 0x04 Transition from unmanaged to managed code.

COR_VTABLE CALL MOST_ DERIVED 0x10 Call most derived method described by the
token (only valid for virtual methods).

25.3.

25.4

25.4.

3.4 Strong name signature

This header entry points to the strong name hash for an image that can be used to deterministically identify a
module from a referencing point (§6.2.1.3).

Common Intermediate Language physical layout

This section contains the layout of the data structures used to describe a CIL method and its exceptions. Method
bodies can be stored in any read-only section of a PE file. The MethodDef (§22.26) records in metadata carry
each method's RVA.

A method consists of a method header immediately followed by the method body, possibly followed by extra
method data sections (§25.4.5), typically exception handling data. If exception-handling data is present, then
CorlLMethod_MoreSects flag (§25.4.4) shall be specified in the method header and for each chained item after
that.

There are two flavors of method headers - tiny (§25.4.2) and fat (§25.4.3). The two least significant bits in a
method header indicate which type is present (§25.4.1). The tiny header is 1 byte long and stores only the
method's code size. A method is given a tiny header if it has no local variables, maxstack is 8 or less, the
method has no exceptions, the method size is less than 64 bytes, and the method has no flags above 0x7. Fat
headers carry full information - local vars signature token, maxstack, code size, flag. Tiny method headers can
start on any byte boundary. Fat method headers shall start on a 4-byte boundary.

1 Method header type values

The two least significant bits of the first byte of the method header indicate what type of header is present.
These 2 bits will be one and only one of the following:

Value Value Description

CorILMethod TinyFormat 0x2 The method header is tiny (§25.4.2) .

CorIlMethod_ FatFormat 0x3 The method header is fat (§25.4.3).
25.4.2 Tiny format

Tiny headers use a 6-bit length encoding. The following is true for all tiny headers:

e No local variables are allowed
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e No exceptions

e No extra data sections

e The operand stack shall be no bigger than 8 entries

A Tiny Format header is encoded as follows:

Start Bit Count of Bits Description

0 2 Flags (CorILMethod TinyFormat shall be set, see §25.4.4).

2 6 Size, in bytes, of the method body immediately following this
header.

25.4.

3 Fat format

The fat format is used whenever the tiny format is not sufficient. This can be true for one or more of the

following reasons:

e The method is too large to encode the size (i.e., at least 64 bytes)

e There are exceptions

e There are extra data sections

e There are local variables

e The operand stack needs more than 8 entries

A fat header has the following structure

Offset Size Field Description

0 12 (bits) Flags Flags (CorILMethod FatFormat shall be set in bits 0:1,
see §25.4.4)

12 (bits) 4 (bits) Size Size of this header expressed as the count of 4-byte
integers occupied (currently 3)

2 2 MaxStack Maximum number of items on the operand stack

4 4 CodeSize Size in bytes of the actual method body

8 4 LocalVarSigTok Meta Data token for a signature describing the layout
of the local variables for the method. 0 means there
are no local variables present

25.4.

4 Flags for method headers

The first byte of a method header can also contain the following flags, valid only for the Fat format, that
indicate how the method is to be executed:

Flag Value Description

CorILMethod FatFormat 0x3 Method header is fat.

CorILMethod TinyFormat 0x2 Method header is tiny.

CorILMethod MoreSects 0x8 More sections follow after this header (§25.4.5).
CorILMethod InitLocals 0x10 Call default constructor on all local variables.

202
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25.4.5

Method data section

At the next 4-byte boundary following the method body can be extra method data sections. These method data
sections start with a two byte header (1 byte for flags, 1 byte for the length of the actual data) or a 4-byte
header (1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the
header, and what data is in the actual section:

Flag Value Description

CorIlMethod Sect EHTable Ox1 Exception handling data.

CorILMethod Sect OptILTable 0x2 Reserved’ shall be 0.

CorILMethod Sect FatFormat 0x40 Data format is of the fat variety, meaning there is a 3-
byte length least-significant byte first format. If not
set, the header is small with a 1-byte length

CorIlMethod_Sect MoreSects 0x80 Another data section occurs after this current section

Currently, the method data sections are only used for exception tables (§19). The layout of a small exception
header structure as is a follows:

Offset Size Field Description

0 1 Kind Flags as described above.

1 1 DataSize Size of the data for the block, including the header, say
n*12+4.

2 2 Reserved Padding, always 0.

4 n Clauses n small exception clauses (§25.4.6).

The layout of a fat exception header structure is as follows:

Offset Size Field Description

0 1 Kind Which type of exception block is being used

1 3 DataSize Size of the data for the block, including the header, say
n*24+4.

4 n Clauses n fat exception clauses (§25.4.6).

25.4.6 Exception handling clauses

Exception handling clauses also come in small and fat versions.

The small form of the exception clause should be used whenever the code sizes for the try block and the
handler code are both smaller than 256 bytes and both their offsets are smaller than 65536. The format for a
small exception clause is as follows:

Offset Size Field Description

0 2 Flags Flags, see below.

2 2 TryOffset Offset in bytes of try block from start of method body.
4 1 TryLength Length in bytes of the try block

5 2 HandlerOffset Location of the handler for this try block

7 1 HandlerLength Size of the handler code in bytes

8 4 ClassToken Meta data token for a type-based exception handler
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8 4 FilterOffset Offset in method body for filter-based exception handler
The layout of the fat form of exception handling clauses is as follows:

Offset Size Field Description

0 4 Flags Flags, see below.

4 4 TryOffset Offset in bytes of try block from start of method body.

8 4 TryLength Length in bytes of the try block

12 4 HandlerOffset Location of the handler for this try block

16 4 HandlerLength Size of the handler code in bytes

20 4 ClassToken Meta data token for a type-based exception handler

20 4 FilterOffset Offset in method body for filter-based exception handler

The following flag values are used for each exception-handling clause:

Flag Value Description

COR_ILEXCEPTION CLAUSE EXCEPTION 0x0000 A typed exception clause

COR_ILEXCEPTION CLAUSE FILTER 0x0001 An exception filter and handler clause

COR_ILEXCEPTION CLAUSE FINALLY 0x0002 A finally clause

COR_ILEXCEPTION_CLAUSE FAULT 0x0004 Fault clause (finally that is called on
exception only)
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