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1 Introduction 1 

This partition is a detailed description of the Common Intermediate Language (CIL) instruction set, part of the 2 
specification of the CLI. Partition I describes the architecture of the CLI and provides an overview of a large 3 
number of issues relating to the CIL instruction set. That overview is essential to an understanding of the 4 
instruction set as described here. 5 

In this partition, each instruction is described in its own subclause, one per page. Related CLI machine instructions 6 
are described together. Each instruction description consists of the following parts: 7 

• A table describing the binary format, assembly language notation,  and description of each variant of 8 
the instruction. See §1.2. 9 

• A stack transition diagram, that describes the state of the evaluation stack before and after the 10 
instruction is executed. (See §1.3.) 11 

• An English description of the instruction. See §1.4. 12 

• A list of exceptions that might be thrown by the instruction. (See Partition I for details.) There are 13 
three exceptions which can be thrown by any instruction and are not listed with the instruction: 14 

System.ExecutionEngineException: indicates that the internal state of the Execution Engine is 15 
corrupted and execution cannot continue. In a system that executes only verifiable code this exception is not 16 
thrown. 17 

System.StackOverflowException: indicates that the hardware stack size has been exceeded. The 18 
precise timing of this exception and the conditions under which it occurs are implementation-specific. [%ote: 19 
this exception is unrelated to the maximum stack size described in §1.7.4. That size relates to the depth of the 20 
evaluation stack that is part of the method state described in Partition I, while this exception has to do with 21 
the implementation of that method state on physical hardware.] 22 

System.OutOfMemoryException: indicates that the available memory space has been exhausted, 23 
either because the instruction inherently allocates memory (newobj, newarr) or for an implementation-24 
specific reason (e.g., an implementation based on JIT compilation to native code can run out of space to store 25 
the translated method while executing the first call or callvirt to a given method). 26 

• A section describing the verifiability conditions associated with the instruction. See §1.8. 27 

In addition, operations that have a numeric operand also specify an operand type table that describes how they 28 
operate based on the type of the operand. See §1.5. 29 

Note that not all instructions are included in all CLI Profiles. See Partition IV for details. 30 

1.1  Data types 31 

While the CTS defines a rich type system and the CLS specifies a subset that can be used for language 32 
interoperability, the CLI itself deals with a much simpler set of types. These types include user-defined value types 33 
and a subset of the built-in types.  The subset, collectively called the “basic CLI types”, contains the following 34 
types: 35 

• A subset of the full numeric types (int32, int64, native int, and F). 36 

• Object references (O) without distinction between the type of object referenced. 37 

• Pointer types (native unsigned int and &) without distinction as to the type pointed to. 38 

Note that object references and pointer types can be assigned the value null. This is defined throughout the CLI to 39 
be zero (a bit pattern of all-bits-zero). 40 
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[�ote: As far as VES operations on the evaluation stack are concerned, there is only one floating-point type, and the 1 
VES does not care about its size. The VES makes the distinction about the size of numerical values only when 2 
storing these values to, or reading from, the heap, statics, local variables, or method arguments. end note] 3 

1.1.1  %umeric  data types  4 

• The CLI only operates on the numeric types int32 (4-byte signed integers), int64 (8-byte signed 5 
integers), native int (native-size integers), and F (native-size floating-point numbers). However, 6 
the CIL instruction set allows additional data types to be implemented: 7 

• Short integers: The evaluation stack only holds 4- or 8-byte integers, but other locations (arguments, 8 
local variables, statics, array elements, fields) can hold 1- or 2-byte integers. Loading from these 9 
locations onto the stack either zero-extends (ldind.u*, ldelem.u*, etc.) or sign-extends (ldind.i*, 10 
ldelem.i*, etc.) to a 4-byte value. Storing to integers (stind.i1, stelem.i2, etc.) truncates. Use the 11 
conv.ovf.* instructions to detect when this truncation results in a value that doesn’t correctly 12 
represent the original value. 13 

[�ote: Short (i.e., 1- and 2-byte) integers are loaded as 4-byte numbers on all architectures and these 4-byte 14 
numbers are always tracked as distinct from 8-byte numbers. This helps portability of code by ensuring that 15 
the default arithmetic behavior (i.e., when no conv or conv.ovf instruction is executed) will have identical 16 
results on all implementations. end note] 17 

Convert instructions that yield short integer values actually leave an int32 (32-bit) value on the stack, but it 18 
is guaranteed that only the low bits have meaning (i.e., the more significant bits are all zero for the unsigned 19 
conversions or a sign extension for the signed conversions). To correctly simulate the full set of short integer 20 
operations a conversion to a short integer is required before the div, rem, shr, comparison and conditional 21 
branch instructions. 22 

In addition to the explicit conversion instructions there are four cases where the CLI handles short integers in 23 
a special way: 24 

1. Assignment to a local (stloc) or argument (starg) whose type is declared to be a short integer 25 
type automatically truncates to the size specified for the local or argument. 26 

2. Loading from a local (ldloc) or argument (ldarg) whose type is declared to be a short signed 27 
integer type automatically sign extends. 28 

3. Calling a procedure with an argument that is a short integer type is equivalent to assignment to 29 
the argument value, so it truncates. 30 

4. Returning a value from a method whose return type is a short integer is modeled as storing into 31 
a short integer within the called procedure (i.e., the CLI automatically truncates) and then 32 
loading from a short integer within the calling procedure (i.e., the CLI automatically zero- or 33 
sign-extends). 34 

In the last two cases it is up to the native calling convention to determine whether values are actually 35 
truncated or extended, as well as whether this is done in the called procedure or the calling procedure. The 36 
CIL instruction sequence is unaffected and it is as though the CIL sequence included an appropriate conv 37 
instruction. 38 

• 4-byte integers: The shortest value actually stored on the stack is a 4-byte integer. These can be 39 
converted to 8-byte integers or native-size integers using conv.* instructions. Native-size integers can 40 
be converted to 4-byte integers, but doing so is not portable across architectures. The conv.i4 and 41 
conv.u4 can be used for this conversion if the excess significant bits should be ignored; the 42 
conv.ovf.i4 and conv.ovf.u4 instructions can be used to detect the loss of information. Arithmetic 43 
operations allow 4-byte integers to be combined with native size integers, resulting in native size 44 
integers. 4-byte integers cannot be directly combined with 8-byte integers (they shall be converted to 45 
8-byte integers first). 46 
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• %ative-size integers: Native-size integers can be combined with 4-byte integers using any of the 1 
normal arithmetic instructions, and the result will be a native-size integer. Native-size integers shall 2 
be explicitly converted to 8-byte integers before they can be combined with 8-byte integers. 3 

• 8-byte integers: Supporting 8-byte integers on 32-bit hardware can be expensive, whereas 32-bit 4 
arithmetic is available and efficient on current 64-bit hardware. For this reason, numeric instructions 5 
allow int32 and I data types to be intermixed (yielding the largest type used as input), but these 6 
types cannot be combined with int64s. Instead, a native int or int32 shall be explicitly 7 
converted to int64 before it can be combined with an int64. 8 

• Unsigned integers: Special instructions are used to interpret integers on the stack as though they 9 
were unsigned, rather than tagging the stack locations as being unsigned. 10 

• Floating-point numbers: See also Partition I, Handling of Floating Point Datatypes. Storage 11 
locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed size. 12 
The supported storage sizes are float32 and float64. Everywhere else (on the evaluation stack, 13 
as arguments, as return types, and as local variables) floating-point numbers are represented using an 14 
internal floating-point type. In each such instance, the nominal type of the variable or expression is 15 
either float32 or float64, but its value might be represented internally with additional range 16 
and/or precision. The size of the internal floating-point representation is implementation-dependent, 17 
might vary, and shall have precision at least as great as that of the variable or expression being 18 
represented. An implicit widening conversion to the internal representation from float32 or 19 
float64 is performed when those types are loaded from storage. The internal representation is 20 
typically the natural size for the hardware, or as required for efficient implementation of an operation. 21 
The internal representation shall have the following characteristics: 22 

o The internal representation shall have precision and range greater than or equal to the nominal 23 
type. 24 

o Conversions to and from the internal representation shall preserve value. [%ote: This implies 25 
that an implicit widening conversion from float32 (or float64) to the internal 26 
representation, followed by an explicit conversion from the internal representation to float32 27 
(or float64), will result in a value that is identical to the original float32 (or float64) 28 
value.] 29 

[�ote: The above specification allows a compliant implementation to avoid rounding to the precision of the 30 
target type on intermediate computations, and thus permits the use of wider precision hardware registers, as 31 
well as the application of optimizing transformations (such as contractions), which result in the same or 32 
greater precision. Where exactly reproducible behavior precision is required by a language or application 33 
(e.g., the Kahan Summation Formula), explicit conversions can be used.  Reproducible precision does not 34 
guarantee reproducible behavior, however.  Implementations with extra precision might round twice: once for 35 
the floating-point operation, and once for the explicit conversion. Implementations without extra precision 36 
effectively round only once.  In rare cases, rounding twice versus rounding once can yield results differing by 37 
one unit of least precision. end note] 38 

When a floating-point value whose internal representation has greater range and/or precision than its nominal 39 
type is put in a storage location, it is automatically coerced to the type of the storage location. This might 40 
involve a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, 41 
the value might be retained in the internal representation for future use, if it is reloaded from the storage 42 
location without having been modified. It is the responsibility of the compiler to ensure that the memory 43 
location is still valid at the time of a subsequent load, taking into account the effects of aliasing and other 44 
execution threads (see memory model section). This freedom to carry extra precision is not permitted, 45 
however, following the execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal 46 
representation shall be exactly representable in the associated type. 47 
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[�ote: To detect values that cannot be converted to a particular storage type, use a conversion instruction 1 
(conv.r4, or conv.r8) and then check for an out-of-range value using ckfinite. To detect underflow when 2 
converting to a particular storage type, a comparison to zero is required before and after the conversion. end 3 
note] 4 

[�ote: This standard does not specify the behavior of arithmetic operations on denormalized floating point 5 
numbers, nor does it specify when or whether such representations should be created. This is in keeping with 6 
IEC 60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that 7 
are created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this 8 
behavior is deliberately left implementation-specific. end note] 9 

1.1.2  Boolean data type  10 

A CLI Boolean type occupies 1 byte in memory. A bit pattern of all zeroes denotes a value of false. A bit pattern 11 
with any one or more bits set (analogous to a non-zero integer) denotes a value of true. 12 

1.1.3  Object  references  13 

Object references (type O) are completely opaque. There are no arithmetic instructions that allow object references 14 
as operands, and the only comparison operations permitted are equality and inequality between two object 15 
references. There are no conversion operations defined on object references. Object references are created by 16 
certain CIL object instructions (notably newobj and newarr). Object references can be passed as arguments, stored 17 
as local variables, returned as values, and stored in arrays and as fields of objects. 18 

1.1.4  Runtime pointer types  19 

There are two kinds of pointers: unmanaged pointers and managed pointers. For pointers into the same array or 20 
object (see Partition I), the following arithmetic operations are defined: 21 

• Adding an integer to a pointer, where the integer is interpreted as a number of bytes, results in a 22 
pointer of the same kind. 23 

• Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. (Note 24 
that subtracting a pointer from an integer is not permitted.) 25 

• Two pointers, regardless of kind, can be subtracted one from the other, producing a signed integer 26 
that specifies the number of bytes between the addresses they reference. 27 

None of these operations is allowed in verifiable code. 28 

It is important to understand the impact on the garbage collector of using arithmetic on the different kinds of 29 
pointers. Since unmanaged pointers shall never reference memory that is controlled by the garbage collector, 30 
performing arithmetic on them can endanger the memory safety of the system (hence it is not verifiable), but since 31 
they are not reported to the garbage collector there is no impact on its operation. 32 

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the contents of 33 
the location to which they point and the pointer itself can be modified. The garbage collector will ignore managed 34 
pointers if they point into memory that is not under its control (the evaluation stack, the call stack, static memory, 35 
or memory under the control of another allocator). If, however, a managed pointer refers to memory controlled by 36 
the garbage collector it shall point to either a field of an object, an element of an array, or the address of the element 37 
just past the end of an array. If address arithmetic is used to create a managed pointer that refers to any other 38 
location (an object header or a gap in the allocated memory) the garbage collector’s behavior is unspecified. 39 

1.1.4 .1  Unmanaged pointers  40 

Unmanaged pointers are the traditional pointers used in languages like C and C++. There are no restrictions on their 41 
use, although for the most part they result in code that cannot be verified. While it is perfectly valid to mark 42 
locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how they are 43 
treated by the CLI), it is often better to mark them as unmanaged pointers to a specific type of data. This is done by 44 
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using ELEMENT_TYPE_PTR in a signature for a return value, local variable or an argument or by using a pointer 1 
type for a field or array element. 2 

Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be 3 
used. 4 

• Unmanaged pointers should be treated as unsigned (i.e., using conv.ovf.u rather than conv.ovf.i, 5 
etc.). 6 

• Verifiable code cannot use unmanaged pointers to reference memory. 7 

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is 8 
safe only if one of the following is true: 9 

a. The unmanaged pointer refers to memory that is not in memory managed by the garbage 10 
collector. 11 

b. The unmanaged pointer refers to a field within an object. 12 

c. The unmanaged pointer refers to an element within an array. 13 

d. The unmanaged pointer refers to the location where the element following the last element in an 14 
array would be located. 15 

1.1.4 .2  Managed pointers ( type &)  16 

Managed pointers (&) can point to a local variable, a method argument, a field of an object, a field of a value type, 17 
an element of an array, a static field, or the address where an element just past the end of an array would be stored 18 
(for pointer indexes into managed arrays). Managed pointers cannot be null. (They shall be reported to the 19 
garbage collector, even if they do not point to managed memory) 20 

Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature for a return value, local variable 21 
or an argument or by using a byref type for a field or array element. 22 

• Managed pointers can be passed as arguments and stored in local variables. 23 

• If you pass a parameter by reference, the corresponding argument is a managed pointer. 24 

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or value 25 
types. 26 

• Managed pointers are not interchangeable with object references. 27 

• A managed pointer cannot point to another managed pointer, but it can point to an object reference or 28 
a value type. 29 

• Managed pointers that do not point to managed memory can be converted (using conv.u or 30 
conv.ovf.u) into unmanaged pointers, but this is not verifiable. 31 

• Unverified code that erroneously converts a managed pointer into an unmanaged pointer can seriously 32 
compromise the integrity of the CLI. This conversion is safe if any of the following is known to be 33 
true: 34 

a. the managed pointer does not point into the garbage collector’s memory area 35 

b. the memory referred to has been pinned for the entire time that the unmanaged pointer is in use 36 

c. a garbage collection cannot occur while the unmanaged pointer is in use 37 

d. the garbage collector for the given implementation of the CLI is known to not move the 38 
referenced memory 39 
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1.2  Instruction variant table 1 

In §3 an Instruction Variant Table is presented for each instruction. It describes each variant of the instructions. The 2 
format column of the table lists the opcode for the instruction variant, along with any operands that follow the 3 
instruction in the instruction stream. For example: 4 

Format Assembly Format Description 

FE 0A <unsigned int16> ldarga arg�um Fetch the address of argument arg�um. 

0F <unsigned int8>  ldarga.s arg�um Fetch the address of argument arg�um, short form. 
 5 
The first one or two hex numbers in the format show how this instruction is encoded (its “opcode”). For example, 6 
the ldarga instruction is encoded as a byte holding FE, followed by another holding 0A. Italicized type names 7 
delimited by < and > represent numbers that should follow in the instruction stream; for example, a 2-byte quantity 8 
that is to be treated as an unsigned integer directly follows the FE 0A opcode. [Example: One of the forms of the 9 
ldc.<type> instruction is ldc.r8 num, which has a Format “23 <float64>”. For the instruction ldc.r8 10 
3.1415926535897931, the resulting code is 23 182D4454FB210940, where 182D4454FB210940 is the 8-byte hex 11 
representation for 3.1415926535897931. 12 

Similarly, another of the forms of the ldc.<type> instruction is ldc.i4.s num, which a Format of “1F <int8>”. For 13 
the instruction ldc.i4.s -3, the resulting code is 1F FD, where FD is the 1-byte hex representation for -3. The .s 14 
suffix indicates an instruction is a short-form instruction. In this case, it requires 2 bytes rather than the long form 15 
ldc.i4, which requires 5 bytes.  end example] 16 

Any of the fixed-size built-in types (int8, unsigned int8, int16, unsigned int16, int32, 17 
unsigned int32, int64, unsigned in64, float32, and float64) can appear in format descriptions. 18 
These types define the number of bytes for the operand and how it should be interpreted (signed, unsigned or 19 
floating-point). In addition, a metadata token can appear, indicated as <T>. Tokens are encoded as 4-byte integers. 20 
All operand numbers are encoded least-significant-byte-at-smallest-address (a pattern commonly termed “little-21 
endian”). Bytes for instruction opcodes and operands are packed as tightly as possible (no alignment padding is 22 
done). 23 

The assembly format column defines an assembly code mnemonic for each instruction variant. For those 24 
instructions having instruction stream operands, this column also assigns names to each of the operands to the 25 
instruction. For each instruction operand, there is a name in the assembly format. These names are used later in the 26 
instruction description. 27 

1.2.1  Opcode encodings  28 

CIL opcodes are one or more bytes long; they can be followed by zero or more operand bytes. All opcodes whose 29 
first byte lies in the ranges 0x00 through 0xEF, or 0xFC through 0xFF are reserved for standardization. Opcodes 30 
whose first byte lies in the range 0xF0 through 0xFB inclusive, are available for experimental purposes. The use of 31 
experimental opcodes in any method renders the method invalid and hence unverifiable. 32 

The currently defined encodings are specified in Table 1: Opcode Encodings. 33 



 

 Partition III 7 

 1 

Table 1: Opcode Encodings 2 

Opcode Instruction 

0x00 nop 

0x01 break 

0x02 ldarg.0 

0x03 ldarg.1 

0x04 ldarg.2 

0x05 ldarg.3 

0x06 ldloc.0 

0x07 ldloc.1 

0x08 ldloc.2 

0x09 ldloc.3 

0x0A stloc.0 

0x0B stloc.1 

0x0C stloc.2 

0x0D stloc.3 

0x0E ldarg.s 

0x0F ldarga.s 

0x10 starg.s 

0x11 ldloc.s 

0x12 ldloca.s 

0x13 stloc.s 

0x14 ldnull 

0x15 ldc.i4.m1 

0x16 ldc.i4.0 

0x17 ldc.i4.1 

0x18 ldc.i4.2 

0x19 ldc.i4.3 

0x1A ldc.i4.4 

0x1B ldc.i4.5 

0x1C ldc.i4.6 

0x1D ldc.i4.7 

0x1E ldc.i4.8 

Opcode Instruction 

0x1F ldc.i4.s 

0x20 ldc.i4 

0x21 ldc.i8 

0x22 ldc.r4 

0x23 ldc.r8 

0x25 dup 

0x26 pop 

0x27 jmp 

0x28 call 

0x29 calli 

0x2A ret 

0x2B br.s 

0x2C brfalse.s 

0x2D brtrue.s 

0x2E beq.s 

0x2F bge.s 

0x30 bgt.s 

0x31 ble.s 

0x32 blt.s 

0x33 bne.un.s 

0x34 bge.un.s 

0x35 bgt.un.s 

0x36 ble.un.s 

0x37 blt.un.s 

0x38 br 

0x39 brfalse 

0x3A brtrue 

0x3B beq 

0x3C bge 

0x3D bgt 

0x3E ble 

0x3F blt 

0x40 bne.un 
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Opcode Instruction 

0x41 bge.un 

0x42 bgt.un 

0x43 ble.un 

0x44 blt.un 

0x45 switch 

0x46 ldind.i1 

0x47 ldind.u1 

0x48 ldind.i2 

0x49 ldind.u2 

0x4A ldind.i4 

0x4B ldind.u4 

0x4C ldind.i8 

0x4D ldind.i 

0x4E ldind.r4 

0x4F ldind.r8 

0x50 ldind.ref 

0x51 stind.ref 

0x52 stind.i1 

0x53 stind.i2 

0x54 stind.i4 

0x55 stind.i8 

0x56 stind.r4 

0x57 stind.r8 

0x58 add 

0x59 sub 

0x5A mul 

0x5B div 

0x5C div.un 

0x5D rem 

0x5E rem.un 

0x5F and 

0x60 or 

0x61 xor 

Opcode Instruction 

0x62 shl 

0x63 shr 

0x64 shr.un 

0x65 neg 

0x66 not 

0x67 conv.i1 

0x68 conv.i2 

0x69 conv.i4 

0x6A conv.i8 

0x6B conv.r4 

0x6C conv.r8 

0x6D conv.u4 

0x6E conv.u8 

0x6F callvirt 

0x70 cpobj 

0x71 ldobj 

0x72 ldstr 

0x73 newobj 

0x74 castclass 

0x75 isinst 

0x76 conv.r.un 

0x79 unbox 

0x7A throw 

0x7B ldfld 

0x7C ldflda 

0x7D stfld 

0x7E ldsfld 

0x7F ldsflda 

0x80 stsfld 

0x81 stobj 

0x82 conv.ovf.i1.un 

0x83 conv.ovf.i2.un 

0x84 conv.ovf.i4.un 
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Opcode Instruction 

0x85 conv.ovf.i8.un 

0x86 conv.ovf.u1.un 

0x87 conv.ovf.u2.un 

0x88 conv.ovf.u4.un 

0x89 conv.ovf.u8.un 

0x8A conv.ovf.i.un 

0x8B conv.ovf.u.un 

0x8C box 

0x8D newarr 

0x8E ldlen 

0x8F ldelema 

0x90 ldelem.i1 

0x91 ldelem.u1 

0x92 ldelem.i2 

0x93 ldelem.u2 

0x94 ldelem.i4 

0x95 ldelem.u4 

0x96 ldelem.i8 

0x97 ldelem.i 

0x98 ldelem.r4 

0x99 ldelem.r8 

0x9A ldelem.ref 

0x9B stelem.i 

0x9C stelem.i1 

0x9D stelem.i2 

0x9E stelem.i4 

0x9F stelem.i8 

0xA0 stelem.r4 

0xA1 stelem.r8 

0xA2 stelem.ref 

0xA3 ldelem 

0xA4 stelem 

0xA5 unbox.any 

Opcode Instruction 

0xB3 conv.ovf.i1 

0xB4 conv.ovf.u1 

0xB5 conv.ovf.i2 

0xB6 conv.ovf.u2 

0xB7 conv.ovf.i4 

0xB8 conv.ovf.u4 

0xB9 conv.ovf.i8 

0xBA conv.ovf.u8 

0xC2 refanyval 

0xC3 ckfinite 

0xC6 mkrefany 

0xD0 ldtoken 

0xD1 conv.u2 

0xD2 conv.u1 

0xD3 conv.i 

0xD4 conv.ovf.i 

0xD5 conv.ovf.u 

0xD6 add.ovf 

0xD7 add.ovf.un 

0xD8 mul.ovf 

0xD9 mul.ovf.un 

0xDA sub.ovf 

0xDB sub.ovf.un 

0xDC endfinally 

0xDD leave 

0xDE leave.s 

0xDF stind.i 

0xE0 conv.u 

0xFE 0x00 arglist 

0xFE 0x01 ceq 

0xFE 0x02 cgt 

0xFE 0x03 cgt.un 

0xFE 0x04 clt 
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Opcode Instruction 

0xFE 0x05 clt.un 

0xFE 0x06 ldftn 

0xFE 0x07 ldvirtftn 

0xFE 0x09 ldarg 

0xFE 0x0A ldarga 

0xFE 0x0B starg 

0xFE 0x0C ldloc 

0xFE 0x0D ldloca 

0xFE 0x0E stloc 

0xFE 0x0F localloc 

0xFE 0x11 endfilter 

0xFE 0x12 unaligned. 

0xFE 0x13 volatile. 

0xFE 0x14 tail. 

0xFE 0x15 initobj 

0xFE 0x16 constrained. 

0xFE 0x17 cpblk 

0xFE 0x18 initblk 

0xFE 0x19 no. 

0xFE 0x1A rethrow 

0xFE 0x1C sizeof 

0xFE 0x1D Refanytype 

0xFE 0x1E readonly. 
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1.3  Stack transition diagram 1 

The stack transition diagram displays the state of the evaluation stack before and after the instruction is 2 
executed. Below is a typical stack transition diagram. 3 

…, value1, value2 � …, result 4 

This diagram indicates that the stack shall have at least two elements on it, and in the definition the topmost 5 
value (“top-of-stack” or “most-recently-pushed”) will be called value2 and the value underneath (pushed prior 6 
to value2) will be called value1. (In diagrams like this, the stack grows to the right, across the page). The 7 
instruction removes these values from the stack and replaces them by another value, called result in the 8 
description. 9 

1.4  English description 10 

The English description describes any details about the instructions that are not immediately apparent once the 11 
format and stack transition have been described. 12 

1.5  Operand type table  13 

Many CIL operations take numeric operands on the stack. These operations fall into several categories, 14 
depending on how they deal with the types of the operands. The following tables summarize the valid kinds of 15 
operand types and the type of the result. Notice that the type referred to here is the type as tracked by the CLI 16 
rather than the more detailed types used by tools such as CIL verification. The types tracked by the CLI are: 17 
int32, int64, native int, F, O, and &. 18 

Table 2 shows the result type for A op B—where op is add, div, mul, rem, or sub—for each possible 19 
combination of operand types. Boxes holding simply a result type, apply to all five instructions. Boxes 20 
marked � indicate an invalid CIL instruction. Shaded boxes indicate a CIL instruction that is not verifiable. 21 
Boxes with a list of instructions are valid only for those instructions. 22 

Table 2: Binary %umeric Operations 23 

A's Type B's Type 

int32 int64 native 
int 

F & O 

int32 int32 � native 
int 

� & (add) � 

int64 � int64 � � � � 

native 
int 

native 
int 

� native 
int 

� & (add) � 

F � � � F � � 

& & (add, 
sub) 

� & (add, 
sub) 

� native 
int (sub) 

� 

O � � � � � � 
 24 
 25 

Table 3 shows the result type for the unary numeric operations. Used for the neg instruction. Boxes marked � 26 
indicate an invalid CIL instruction. All valid uses of this instruction are verifiable. 27 

Table 3: Unary %umeric Operations 28 

Operand 
Type 

int32 int64 native 
int 

F & O 

Result 
Type 

int32 int64 native 
int 

F � � 

 29 
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Table 4 shows the result type for the comparison and branch instructions. The binary comparison returns a 1 
Boolean value and the branch operations branch based on the top two values on the stack. Used for beq, beq.s, 2 
bge, bge.s, bge.un, bge.un.s, bgt, bgt.s, bgt.un, bgt.un.s, ble, ble.s, ble.un, ble.un.s, blt, blt.s, blt.un, 3 
blt.un.s, bne.un, bne.un.s, ceq, cgt, cgt.un, clt, clt.un. Boxes marked � indicate that all instructions are 4 
valid for that combination of operand types. Boxes marked � indicate invalid CIL sequences. Shaded boxes 5 
boxes indicate a CIL instruction that is not verifiable. Boxes with a list of instructions are valid only for those 6 
instructions. 7 

Table 4: Binary Comparison or Branch Operations 8 

 int32 int64 native 
int 

F & O 

int32 � � � � � � 

int64 � � � � � � 

native 
int 

� � � � beq[.s], 
bne.un[.s], 
ceq 

� 

F � � � � � � 

& � � beq[.s], 
bne.un[.s], 
ceq 

� 
�

1 � 

O � � � � � beq[.s], 
bne.un[.s] 
ceq2 

 9 
1. Except for beq, bne.un, beq.s, bne.un.s, or ceq these combinations make sense if both 10 

operands are known to be pointers to elements of the same array. However, there is no security 11 
issue for a CLI that does not check this constraint 12 

[�ote: if the two operands are not pointers into the same array, then the result is simply the distance apart 13 
in the garbage-collected heap of two unrelated data items. This distance apart will almost certainly 14 
change at the next garbage collection. Essentially, the result cannot be used to compute anything useful 15 
end note] 16 

2. cgt.un is allowed and verifiable on ObjectRefs (O). This is commonly used when comparing an 17 
ObjectRef with null (there is no “compare-not-equal” instruction, which would otherwise be a 18 
more obvious solution) 19 

Table 5 shows the result type for each possible combination of operand types in integer operations. Used for 20 
and, div.un, not, or, rem.un, xor. The div.un and rem.un instructions treat their operands as unsigned 21 
integers and produce the bit pattern corresponding to the unsigned result. As described in the CLI standard, 22 
however, the CLI makes no distinction between signed and unsigned integers on the stack. The not instruction 23 
is unary and returns the same type as the input. The shl and shr instructions return the same type as their first 24 
operand, and their second operand shall be of type int32 or native int. Boxes marked � indicate invalid 25 
CIL sequences. All other boxes denote verifiable combinations of operands. 26 

Table 5: Integer Operations 27 

 int32 int64 native 
int 

F & O 

int32 int32 � native 
int 

� � � 

int64 � int64 � � � � 

native 
int 

native 
int 

� native 
int 

� � � 
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F � � � � � � 

& � � � � � � 

O � � � � � � 
 1 
Table 6 shows the valid combinations of operands and result for the shift instructions: shl, shr, shr.un. Boxes 2 
marked � indicate invalid CIL sequences. All other boxes denote verifiable combinations of operand. If the 3 
“Shift-By” operand is larger than the width of the “To-Be-Shifted” operand, then the results are unspecified. 4 
(e.g., shift an int32 integer left by 37 bits) 5 

Table 6: Shift Operations 6 

 Shift-By 

int32 int6
4 

native 
int 

F & O 

 

 

To Be 
Shifted 

int32 int32 � int32 � � � 

int64 int64 � int64 � � � 

native 
int 

native 
int 

� native 
int 

� � � 

F � � � � � � 

& � � � � � � 

O � � � � � � 
 7 
Table 7 shows the result type for each possible combination of operand types in the arithmetic operations with 8 
overflow checking. An exception shall be thrown if the result cannot be represented in the result type. Used for 9 
add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, and sub.ovf.un. For details of the exceptions thrown, see 10 
the descriptions of the specific instructions.  The shaded uses are not verifiable, while boxes marked � indicate 11 
invalid CIL sequences. 12 

Table 7: Overflow Arithmetic Operations 13 

 int32 int6
4 

native int F & O 

int32 int32 � native int � & add.ovf.un � 

int64 � int6
4 

� � � � 

native 
int 

native int � native int � & add.ovf.un � 

F � � � � � � 

& & 
add.ovf.un, 
sub.ovf.un 

� & 
add.ovf.un, 
sub.ovf.un 

� native int 
sub.ovf.un 

� 

O � � � � � � 
 14 
Table 8 shows the result type for the conversion operations. Conversion operations convert the top item on the 15 
evaluation stack from one numeric type to another. While converting, truncation or extension occurs as shown 16 
in the table. The result type is guaranteed to be representable as the data type specified as part of the operation 17 
(i.e., the conv.u2 instruction returns a value that can be stored in an unsigned int16). The stack, however, 18 
can only store values that are a minimum of 4 bytes wide. Used for the conv.<to type>, conv.ovf.<to type>, 19 
and conv.ovf.<to type>.un instructions. The shaded uses are not verifiable, while boxes marked � indicate 20 
invalid CIL sequences. 21 
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Table 8: Conversion Operations 1 

Convert-To Input (from evaluation stack) 

int32 int64 native 
int 

F & O 

int8 
unsigned 
int8 
int16 
unsigned 
int16 

Truncate1 Truncate1 Truncate1 Truncate to 
zero2 

� � 

int32 
unsigned 
int32 

Nop Truncate1 Truncate1 Truncate to 
zero2 

� � 

int64 Sign extend Nop Sign extend Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

unsigned 
int64 

Zero extend Nop Zero extend Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

native int Sign extend Truncate1 Nop Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

native 
unsigned int 

Zero extend Truncate1 Nop Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

All Float Types To Float To Float To Float Change 
precision3 

� � 

 2 
1 “Truncate” means that the number is truncated to the desired size (i.e., the most significant bytes of 3 
the input value are simply ignored). If the result is narrower than the minimum stack width of 4 
4 bytes, then this result is zero extended (if the result type is unsigned) or sign-extended (if the result 5 
type is signed). Thus, converting the value 0x1234 ABCD from the evaluation stack to an 8-bit 6 
datum yields the result 0xCD; if the result type were int8, this is sign-extended to give 0xFFFF 7 
FFCD; if, instead, the result type were unsigned int8, this is zero-extended to give 0x0000 8 
00CD. 9 
2 “Truncate to zero” means that the floating-point number will be converted to an integer by 10 
truncation toward zero. Thus 1.1 is converted to 1, and –1.1 is converted to –1. 11 
3 Converts from the current precision available on the evaluation stack to the precision specified by 12 
the instruction. If the stack has more precision than the output size the conversion is performed using 13 
the IEC 60559:1989 “round-to-nearest” mode to compute the low order bit of the result. 14 
4 “Stop GC Tracking” means that, following the conversion, the item’s value will not be reported to 15 
subsequent garbage-collection operations (and therefore will not be updated by such operations). 16 

Rounding mode for integer to and from F conversions is the same as for arithmetic. 17 

1.6  Implicit argument coercion 18 

While the CLI operates only on 6 types (int32, native int, int64, F, O, and &) the metadata supplies a 19 
much richer model for parameters of methods. When about to call a method, the CLI performs implicit type 20 
conversions, detailed in the following table. (Conceptually, it inserts the appropriate conv.* instruction into the 21 
CIL stream, which might result in an information loss through truncation or rounding) This implicit conversion 22 
occurs for boxes marked �. Shaded boxes are not verifiable. Boxes marked � indicate invalid CIL sequences. 23 
(A compiler is, of course, free to emit explicit conv.* or conv.*.ovf instructions to achieve any desired effect.) 24 
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Table 9: Signature Matching 1 

Type In 
Signature 

Stack Parameter 

int32 native 
int 

int64 F & O 

int8 � � � � � � 

unsigned 
int8, 
bool 

� � � � � � 

int16 � � � � � � 

unsigned 
int16, 
char 

� � � � � � 

int32 � � � � � � 

unsigned 
int32 

� � � � � � 

int64 � � � � � � 

unsigned 
int64 

� � � � � � 

native 
int 

� Sign 
extend 

� � � � � 

native 
unsigned 
int 

� Zero 
extend 

� Zero 
extend 

� � � � 

float32 � � � Note4 � � 

float64 � � � Note4 � � 

Class � � � � � � 

Value Type 
(Note2) 

Note1 Note1 Note1 Note1 � � 

By-
reference 
(Byref) 
(&) 

� � Start GC 
tracking 

� � � � 

Typed 
Reference 
(RefAny) 
(Note3) 

� � � � � � 

 2 
3. 1 Passing a built-in type to a parameter that is required to be a value type is not allowed. 3 

4. 2 The CLI’s stack can contain a value type. These can only be passed if the particular value type on the 4 
stack exactly matches the class required by the corresponding parameter. 5 

5. 3 There are special instructions to construct and pass a RefAny. 6 

6. 4 The CLI is permitted to pass floating point arguments using its internal F type, see §1.1.1. CIL 7 
generators can, of course, include an explicit conv.r4, conv.r4.ovf, or similar instruction. 8 

Further notes concerning this table: 9 
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• On a 32-bit machine passing a native int argument to an unsigned int32 parameter 1 
involves no conversion. On a 64-bit machine it is implicitly converted. 2 

•  “Start GC Tracking” means that, following the implicit conversion, the item’s value will be 3 
reported to any subsequent garbage-collection operations, and perhaps changed as a result of the 4 
item pointed-to being relocated in the heap. 5 

1.7  Restrictions on CIL code sequences  6 

As well as detailed restrictions on CIL code sequences to ensure: 7 

• Valid CIL 8 

• Verifiable CIL 9 

There are a few further restrictions, imposed to make it easier to construct a simple CIL-to-native-code 10 
compiler.  This subclause specifies the general restrictions that apply in addition to this listed for individual 11 
instructions. 12 

1.7.1  The instruct ion stream 13 

The implementation of a method is provided by a contiguous block of CIL instructions, encoded as specified 14 
below. The address of the instruction block for a method as well as its length is specified in the file format (see 15 
Partition II, CIL Physical Layout). The first instruction is at the first byte (lowest address) of the instruction 16 
block. 17 

Instructions are variable in size. The size of each instruction can be determined (decoded) from the content of 18 
the instruction bytes themselves. The size of and ordering of the bytes within an instruction is specified by each 19 
instruction definition. Instructions follow each other without padding in a stream of bytes that is both alignment 20 
and byte-order insensitive. 21 

Each instruction occupies an exact number of bytes, and until the end of the instruction block, the next 22 
instruction begins immediately at the next byte. It is invalid for the instruction block (as specified by the 23 
block’s length) to end without forming a complete last instruction. 24 

Instruction prefixes extend the length of an instruction without introducing a new instruction; an instruction 25 
having one or more prefixes introduces only one instruction that begins at the first byte of the first instruction 26 
prefix. 27 

[�ote: Until the end of the instruction block, the instruction following any control transfer instruction is 28 
decoded as an instruction and thus participates in locating subsequent instructions even if it is not the target of a 29 
branch. Only instructions can appear in the instruction stream, even if unreachable. There are no address-30 
relative data addressing modes and raw data cannot be directly embedded within the instruction stream. Certain 31 
instructions allow embedding of immediate data as part of the instruction; however that differs from allowing 32 
raw data embedded directly in the instruction stream. Unreachable code can appear as the result of machine-33 
generated code and is allowed, but it shall always be in the form of properly formed instruction sequences. 34 

The instruction stream can be translated and the associated instruction block discarded prior to execution of the 35 
translation. Thus, even instructions that capture and manipulate code addresses, such as call, ret, etc. can be 36 
virtualized to operate on translated addresses instead of addresses in the CIL instruction stream. end note] 37 

1.7.2  Valid branch targets  38 

The set of addresses composed of the first byte of each instruction identified in the instruction stream defines 39 
the only valid instruction targets. Instruction targets include branch targets as specified in branch instructions, 40 
targets specified in exception tables such as protected ranges (see Partition I and Partition II), filter, and handler 41 
targets. 42 

Branch instructions specify branch targets as either a 1-byte or 4-byte signed relative offset; the size of the 43 
offset is differentiated by the opcode of the instruction. The offset is defined as being relative to the byte 44 
following the branch instruction. [%ote: Thus, an offset value of zero targets the immediately following 45 
instruction.] 46 

The value of a 1-byte offset is computed by interpreting that byte as a signed 8-bit integer. The value of a 4-47 
byte offset is can be computed by concatenating the bytes into a signed integer in the following manner: the 48 
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byte of lowest address forms the least significant byte, and the byte with highest address forms the most 1 
significant byte of the integer. [%ote: This representation is often called “a signed integer in little-endian byte-2 
order”.] 3 

1.7.3   Exception ranges  4 

Exception tables describe ranges of instructions that are protected by catch, fault, or finally handlers (see 5 
Partition I and Partition II). The starting address of a protected block, filter clause, or handler shall be a valid 6 
branch target as specified in §1.7.2. It is invalid for a protected block, filter clause, or handler to end without 7 
forming a complete last instruction. 8 

1.7.4  Must provide  maxstack 9 

Every method specifies a maximum number of items that can be pushed onto the CIL evaluation stack. The 10 
value is stored in the IMAGE_COR_ILMETHOD structure that precedes the CIL body of each method. A 11 
method that specifies a maximum number of items less than the amount required by a static analysis of the 12 
method (using a traditional control flow graph without analysis of the data) is invalid (hence also unverifiable) 13 
and need not be supported by a conforming implementation of the CLI. 14 

[�ote: Maxstack is related to analysis of the program, not to the size of the stack at runtime. It does not specify 15 
the maximum size in bytes of a stack frame, but rather the number of items that shall be tracked by an analysis 16 
tool. end note] 17 
 18 
[Rationale: By analyzing the CIL stream for any method, it is easy to determine how many items will be 19 
pushed on the CIL Evaluation stack. However, specifying that maximum number ahead of time helps a CIL-to-20 
native-code compiler (especially a simple one that does only a single pass through the CIL stream) in allocating 21 
internal data structures that model the stack and/or verification algorithm. end rationale] 22 

1.7.5  Backward branch constraints  23 

It shall be possible, with a single forward-pass through the CIL instruction stream for any method, to infer the 24 
exact state of the evaluation stack at every instruction (where by “state” we mean the number and type of each 25 
item on the evaluation stack). 26 

In particular, if that single-pass analysis arrives at an instruction, call it location X, that immediately follows an 27 
unconditional branch, and where X is not the target of an earlier branch instruction, then the state of the 28 
evaluation stack at X, clearly, cannot be derived from existing information. In this case, the CLI demands that 29 
the evaluation stack at X be empty. 30 

Following on from this rule, it would clearly be invalid CIL if a later branch instruction to X were to have a 31 
non-empty evaluation stack 32 

[Rationale: This constraint ensures that CIL code can be processed by a simple CIL-to-native-code compiler. It 33 
ensures that the state of the evaluation stack at the beginning of each CIL can be inferred from a single, 34 
forward-pass analysis of the instruction stream. end rationale] 35 

[�ote: the stack state at location X in the above can be inferred by various means: from a previous forward 36 
branch to X; because X marks the start of an exception handler, etc. end note] 37 

See the following for further information: 38 

• Exceptions: Partition I 39 

• Verification conditions for branch instructions: §3 40 

• The tail. prefix: §3.19 41 

1.7.6  Branch veri f icat ion constraints  42 

The target of all branch instruction shall be a valid branch target (see§1.7.2) within the method holding that 43 
branch instruction. 44 

1.8  Verifiabil ity and correctness 45 

Memory safety is a property that ensures programs running in the same address space are correctly isolated 46 
from one another (see Partition I). Thus, it is desirable to test whether programs are memory safe prior to 47 
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running them. Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the CLI can test 1 
a stronger restriction, called verifiability. Every program that is verified is memory safe, but some programs 2 
that are not verifiable are still memory safe.  3 

Correct CIL is CIL that executes on all conforming implementations of the CLI, with well-defined behavior as 4 
specified in this standard. However, correct CIL need not result in identical behavior across conforming 5 
implementations; that is, the behavior might be implementation-specific. 6 

It is perfectly acceptable to generate correct CIL code that is not verifiable, but which is known to be memory 7 
safe by the compiler writer. Thus, correct CIL might not be verifiable, even though the producing compiler 8 
might know that it is memory safe. Several important uses of CIL instructions are not verifiable, such as the 9 
pointer arithmetic versions of add that are required for the faithful and efficient compilation of C programs. 10 
For non-verifiable code, memory safety is the responsibility of the application programmer. 11 

Correct CIL contains a verifiable subset. The Verifiability description gives details of the conditions under 12 
which a use of an instruction falls within the verifiable subset of CIL. Verification tracks the types of values in 13 
much finer detail than is required for the basic functioning of the CLI, because it is checking that a CIL code 14 
sequence respects not only the basic rules of the CLI with respect to the safety of garbage collection, but also 15 
the typing rules of the CTS. This helps to guarantee the sound operation of the entire CLI. 16 

The verifiability section of each operation description specifies requirements both for correct CIL generation 17 
and for verification. Correct CIL generation always requires guaranteeing that the top items on the stack 18 
correspond to the types shown in the stack transition diagram. The verifiability section specifies only 19 
requirements for correct CIL generation that are not captured in that diagram. Verification tests both the 20 
requirements for correct CIL generation and the specific verification conditions that are described with the 21 
instruction. The operation of CIL sequences that do not meet the CIL correctness requirements is unspecified. 22 
The operation of CIL sequences that meet the correctness requirements, but which are not verifiable, might 23 
violate type safety and hence might violate security or memory access constraints. See II.3 for additional 24 
information. 25 

1.8.1  Flow control  restr ict ions for  veri f iable  CIL 26 

This subclause specifies a verification algorithm that, combined with information on individual CIL 27 
instructions (see §3) and metadata validation (see Partition II), guarantees memory integrity. 28 

The algorithm specified here creates a minimum level for all compliant implementations of the CLI in the sense 29 
that any program that is considered verifiable by this algorithm shall be considered verifiable and run correctly 30 
on all compliant implementations of the CLI. 31 

The CLI provides a security permission (see Partition IV) that controls whether or not the CLI shall run 32 
programs that might violate memory safety. Any program that is verifiable according to this standard does not 33 
violate memory safety, and a conforming implementation of the CLI shall run such programs. The 34 
implementation might also run other programs provided it is able to show they do not violate memory safety 35 
(typically because they use a verification algorithm that makes use of specific knowledge about the 36 
implementation). 37 

[�ote: While a compliant implementation is required to accept and run any program this verification algorithm 38 
states is verifiable, there might be programs that are accepted as verifiable by a given implementation but 39 
which this verification algorithm will fail to consider verifiable. Such programs will run in the given 40 
implementation but need not be considered verifiable by other implementations. 41 

For example, an implementation of the CLI might choose to correctly track full signatures on method pointers 42 
and permit programs to execute the calli instruction even though this is not permitted by the verification 43 
algorithm specified here. 44 

Implementers of the CLI are urged to provide a means for testing whether programs generated on their 45 
implementation meet this portable verifiability standard. They are also urged to specify where their verification 46 
algorithms are more permissive than this standard. end note] 47 

Implementation Specific (Microsoft) 48 

The various implementations of the CLI produced by Microsoft use slightly different verification 49 
algorithms. In all cases, however, the PEVerify program (part of the SDK) implements the portable 50 
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verification algorithm as specified in this Standard. Programmers are urged to run PEVerify over all 1 
code before shipping it for possible use on other implementations of the CLI. 2 

Some implementations of the CLI produced by Microsoft differ from the verification algorithm 3 
specified here. 4 

Only valid programs shall be verifiable. For ease of explanation, the verification algorithm described here 5 
assumes that the program is valid and does not explicitly call for tests of all validity conditions. Validity 6 
conditions are specified on a per-CIL instruction basis (see §3), and on the overall file format in Partition II. 7 

1.8.1 .1  Verif icat ion algorithm 8 

The verification algorithm shall attempt to associate a valid stack state with every CIL instruction. The stack 9 
state specifies the number of slots on the CIL stack at that point in the code and for each slot a required type 10 
that shall be present in that slot. The initial stack state is empty (there are no items on the stack). 11 

Verification assumes that the CLI zeroes all memory other than the evaluation stack before it is made visible to 12 
programs. A conforming implementation of the CLI shall provide this observable behavior. Furthermore, 13 
verifiable methods shall have the localsinit bit set, see Partition II (Flags for Method Headers). If this bit is not 14 
set, then a CLI might throw a Verification exception at any point where a local variable is accessed, and where 15 
the assembly containing that method has not been granted SecurityPermission.SkipVerification. 16 

[Rationale: This requirement strongly enhances program portability, and a well-known technique (definite 17 
assignment analysis) allows a CIL-to-native-code compiler to minimize its performance impact. Note that a 18 
CLI might optionally choose to perform definite-assignment analysis – in such a case, it might confirm that a 19 
method, even without the localsinit bit set, might in fact be verifiable (and therefore not throw a Verification 20 
exception) end rationale] 21 
 22 
[�ote: Definite assignment analysis can be used by the CLI to determine which locations are written before 23 
they are read. Such locations needn’t be zeroed, since it isn’t possible to observe the contents of the memory as 24 
it was provided by the VES. 25 

Performance measurements on C++ implementations (which do not require definite-assignment analysis) 26 
indicate that adding this requirement has almost no impact, even in highly optimized code. Furthermore, 27 
customers incorrectly attribute bugs to the compiler when this zeroing is not performed, since such code often 28 
fails when small, unrelated changes are made to the program. end note] 29 

The verification algorithm shall simulate all possible control flow paths through the code and ensure that a 30 
valid stack state exists for every reachable CIL instruction. The verification algorithm does not take advantage 31 
of any data values during its simulation (e.g., it does not perform constant propagation), but uses only type 32 
assignments. Details of the type system used for verification and the algorithm used to merge stack states are 33 
provided in §1.8.1.3. The verification algorithm terminates as follows: 34 

1. Successfully, when all control paths have been simulated. 35 

2. Unsuccessfully when it is not possible to compute a valid stack state for a particular CIL 36 
instruction. 37 

3. Unsuccessfully when additional tests specified in this clause fail. 38 

With the exception of the unconditional branch instructions, throw, rethrow, and ret, there is a control flow 39 
path from every instruction to the subsequent instruction. There is also a control flow path from each branch 40 
instruction (conditional or unconditional) to the branch target (or targets, in the case of the switch instruction). 41 

Verification simulates the operation of each CIL instruction to compute the new stack state, and any type 42 
mismatch between the specified conditions on the stack state (see §3) and the simulated stack state shall cause 43 
the verification algorithm to fail. (Note that verification simulates only the effect on the stack state: it does not 44 
perform the actual computation). The algorithm shall also fail if there is an existing stack state at the next 45 
instruction address (for conditional branches or instructions within a try block there might be more than one 46 
such address) that cannot be merged with the stack state just computed. For rules of this merge operation, 47 
see §1.8.1.3. 48 
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The CLI supports the notion of a controlled-mutability managed pointer. (See §1.8.1.2.2, the merging rules in 1 
§1.8.1.3, the readonly. instruction prefix in §2.3, the ldfld instruction in §4.10, the stfld instruction in §4.30, 2 
and the unbox instruction in §4.32.) 3 

The VES ensures that both special constraints and type constraints are satisfied. The constraints can be checked 4 
as early as when a closed type is constructed, or as late as when a method on the constrained generic type is 5 
invoked, a constrained generic method is invoked, a field in a constrained generic type is accessed, or an 6 
instance of a constrained generic type is created. 7 

To accommodate generics, the type compatibility relation is extended to deal with: 8 

• generic parameters: a generic parameter is compatible only with itself. 9 

• boxed generic parameters: a boxed generic parameter is compatible with the constraint types 10 
declared on the generic parameter. 11 

In the verification semantics, boxing a value of primitive or value type on the stack introduces a value 12 
of type “boxed” type; if the value type is Nullable<T> (Partition I.8.2.4), a value of type “boxed” T is 13 
introduced.  This notion of boxed type is extended to generic parameters.  Boxing a value whose type is 14 
a generic parameter (!0, for example) introduces a value of the boxed parameter type on the stack 15 
(“boxed” !0, for example).  The boxed forms of value types, and now generic parameters, are used to 16 
support efficient instance and virtual method calls on boxed values.  Because the “boxed” type 17 
statically records the exact type of the underlying value, there is no need to perform a checked cast on 18 
the instance from some less informative, but syntactically expressible, reference type. 19 

Just like the boxed forms of primitive and non-primitive value types, the boxed forms of generic 20 
parameters only occur on the verification stack (after being introduced by a box instruction).  They 21 
cannot be explicitly specified using metadata signatures. 22 

1.8.1 .2  Verif icat ion type system 23 

The verification algorithm compresses types that are logically equivalent, since they cannot lead to memory 24 
safety violations. The types used by the verification algorithm are specified in §1.8.1.2.1, the type compatibility 25 
rules are specified in §1.8.1.2.2, and the rules for merging stack states are in §1.8.1.3. 26 

1.8.1 .2.1  Verif icat ion types  27 
The following table specifies the mapping of types used in the CLI and those used in verification. Notice that 28 
verification compresses the CLI types to a smaller set that maintains information about the size of those types 29 
in memory, but then compresses these again to represent the fact that the CLI stack expands 1, 2 and 4-byte 30 
built-in types into 4-byte types on the stack. Similarly, verification treats floating-point numbers on the stack as 31 
64-bit quantities regardless of the actual representation. 32 

Arrays are objects, but with special compatibility rules. 33 

There is a special encoding for null that represents an object known to be the null value, hence with 34 
indeterminate actual type. 35 

In the following table, “CLI Type” is the type as it is described in metadata. The “Verification Type” is a 36 
corresponding type used for type compatibility rules in verification (see §1.8.1.2.2) when considering the types 37 
of local variables, arguments, and parameters on methods being called. The column “Verification Type (in 38 
stack state)” is used to simulate instructions that load data onto the stack, and shows the types that are actually 39 
maintained in the stack state information of the verification algorithm. The column “Managed Pointer to Type” 40 
shows the type tracked for managed pointers. 41 

CLI Type Verification Type Verification Type 
(in stack state) 

Managed Pointer to Type 

int8, unsigned int8, 
bool 

int8 int32 int8& 

int16, unsigned int16, 
char 

int16 int32 int16& 

int32, unsigned int32 int32 int32 int32& 
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int64, unsigned int64 int64 int64 int64& 

native int, native 
unsigned int 

native int native int native int& 

float32 float32 float64 float32& 

float64 float64 float64 float64& 

Any value type Same type Same type Same type& 

Any object type Same type Same type Same type& 

Method pointer Same type Same type Not valid 
 1 
A method can be defined as returning a managed pointer, but calls upon such methods are not verifiable. When 2 
returning byrefs, verification is done at the return site, not at the call site. 3 

[Rationale: Some uses of returning a managed pointer are perfectly verifiable (e.g., returning a reference to a 4 
field in an object); but some not (e.g., returning a pointer to a local variable of the called method). Tracking this 5 
in the general case is a burden, and therefore not included in this standard. end rationale] 6 

1.8.1 .2.2  Control led-mutabi l ity  managed pointers 7 
The readonly. prefix and unbox instructions can produce what is called a controlled-mutability managed 8 
pointer. Unlike ordinary managed pointer types, a controlled-mutability managed pointer is incompatible with 9 
ordinary managed pointers; e.g., it cannot be passed as a byref argument to a method. At control flow points, a 10 
controlled-mutability managed pointer can be merged with a managed pointer of the same type to yield a 11 
controlled-mutability managed pointer. 12 

Controlled-mutability managed pointers can only be used in the following ways: 13 

1. As the object parameter for an ldfld, ldflda, stfld, call, callvirt, or constrained. callvirt 14 
instruction. 15 

2. As the pointer parameter to a ldind.* or ldobj instruction. 16 

3. As the source parameter to a cpobj instruction. 17 

All other operations (including stobj, stind.*, initobj, and mkrefany) are invalid. 18 

The pointer is called a controlled-mutability managed pointer because the defining type decides whether the 19 
value can be mutated. For value classes that expose no public fields or methods that update the value in place, 20 
the pointer is read-only (hence the name of the prefix). In particular, the classes representing primitive types 21 
(such as System.Int32) do not expose mutators and thus are read-only. 22 

1.8.1 .2.3  Verif icat ion type compat ibi l ity  23 
Verification type compatibility is defined in terms of assignment compatibility (see Partition I).  We use S and 24 
T to denote verification types, and the assignment compatibility notation “S := T” indicates that the 25 
verification type T can be used wherever the verification type S can be used, while “S !:= T” indicates that 26 
T cannot be used where S is expected.  27 

1.8.1 .3  Merging stack state s  28 

As the verification algorithm simulates all control flow paths it shall merge the simulated stack state with any 29 
existing stack state at the next CIL instruction in the flow. If there is no existing stack state, the simulated stack 30 
state is stored for future use. Otherwise the merge shall be computed as follows and stored to replace the 31 
existing stack state for the CIL instruction. If the merge fails, the verification algorithm shall fail. 32 

The merge shall be computed by comparing the number of slots in each stack state. If they differ, the merge 33 
shall fail. If they match, then the overall merge shall be computed by merging the states slot-by-slot as follows. 34 
Let T be the type from the slot on the newly computed state and S be the type from the corresponding slot on 35 
the previously stored state. The merged type, U, shall be computed as follows (recall that S := T is the 36 
compatibility function defined in §1.8.1.2.2): 37 

1. if S := T then U=S 38 
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2. Otherwise, if T := S then U=T 1 

3. Otherwise, if S and T are both object types, then let V be the closest common supertype of S and 2 
T then U=V. 3 

4. Otherwise, the merge shall fail. 4 

Implementation Specific (Microsoft) 5 

The V1.0 release of the Microsoft CLI will merge interfaces by arbitrarily choosing the first common 6 
interface between the two verification types being merged. 7 

Merging a controlled-mutability managed pointer with an ordinary (that is, non-controlled-mutability) managed 8 
pointer to the same type results in a controlled-mutability managed pointer to that type. 9 

1.8.1 .4  Class and object  in it ia l izat ion rule s  10 

The VES ensures that all statics are initially zeroed (i.e., built-in types are 0 or false, object references are null), 11 
hence the verification algorithm does not test for definite assignment to statics. 12 

An object constructor shall not return unless a constructor for the base class or a different construct for the 13 
object’s class has been called on the newly constructed object. The verification algorithm shall treat the this 14 
pointer as uninitialized unless the base class constructor has been called. No operations can be performed on an 15 
uninitialized this except for storing into and loading from the object’s fields. 16 

[�ote: If the constructor generates an exception the this pointer in the corresponding catch block is still 17 
uninitialized. end note] 18 

1.8.1 .5  Delegate  constructors 19 

The verification algorithm shall require that one of the following code sequences is used for constructing 20 
delegates; no other code sequence in verifiable code shall contain a newobj instruction for a delegate type. 21 
There shall be only one instance constructor method for a delegate (overloading is not allowed) 22 

The verification algorithm shall fail if a branch target is within these instruction sequences (other than at the 23 
start of the sequence). 24 

[�ote: See Partition II for the signature of delegates and a validity requirement regarding the signature of the 25 
method used in the constructor and the signature of Invoke and other methods on the delegate class. end note] 26 

1.8.1 .5.1  Delegat ing via virtual  dispatch 27 
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence 28 
begins with an object on the stack. 29 

dup 30 
ldvirtftn mthd ; Method shall be on the class of the object, 31 
     ; or one of its parent classes, or an interface 32 
     ; implemented by the object 33 
newobj delegateclass::.ctor(object, native int) 34 

[Rationale: The dup is required to ensure that it is precisely the same object stored in the delegate as was used 35 
to compute the virtual method. If another object of a subtype were used the object and the method wouldn’t 36 
match and could lead to memory violations. end rationale] 37 

When mthd is a non-final virtual method on an instance other than a boxed value type, the verification also 38 
checks that the instance reference to the method being called is the result of ldarg 0, ldarg.s 0, ldarg 0 and the 39 
caller’s body does not contain starg.s 0, starg 0 or ldarga.s 0, ldarga 0. 40 
 41 

1.8.1 .5.2  Delegat ing via instance  dispatch  42 
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence 43 
begins with either null or an object on the stack. 44 

ldftn mthd ; Method shall be a static method 45 
   ; or a method on the class of the object on  46 
   ; the stack or a method on any parent class  47 
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   ; of the object on the stack.  In addition, if  1 
   ; the method is virtual, the object on the stack  2 
   ; must be the “this” pointer of the currently  3 
   ; executing method (the result of a ldarg.0,  4 
   ; ldarg.s 0, or ldarg 0 instruction), and the  5 
   ; current method body must not include any  6 
   ; starg.s 0, starg 0, ldarga.s 0, or ldarga 0  7 
   ; instructions. 8 

newobj delegateclass::.ctor(object, native int) 9 

1.9  Metadata tokens 10 

Many CIL instructions are followed by a "metadata token". This is a 4-byte value, that specifies a row in a 11 
metadata table, or a starting byte offset in the User String heap. The most-significant byte of the token specifies 12 
the table or heap. For example, a value of 0x02 specifies the TypeDef table; a value of 0x70 specifies the User 13 
String heap. The value corresponds to the number assigned to that metadata table (see Partition II for the full 14 
list of tables) or to 0x70 for the User String heap. The least-significant 3 bytes specify the target row within that 15 
metadata table, or starting byte offset within the User String heap. The rows within metadata tables are 16 
numbered one upwards, whilst offsets in the heap are numbered zero upwards. (So, for example, the metadata 17 
token with value 0x02000007 specifies row number 7 in the TypeDef table) 18 

1.10   Exceptions thrown 19 

A CIL instruction can throw a range of exceptions. The CLI can also throw the general purpose exception 20 
called ExecutionEngineException. See Partition I for details. 21 
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2 Prefixes to instructions 1 

These special values are reserved to precede specific instructions. They do not constitute full instructions in 2 
their own right. It is not valid CIL to branch to the instruction following the prefix, but the prefix itself is a 3 
valid branch target. It is not valid CIL to have a prefix without immediately following it by one of the 4 
instructions it is permitted to precede. 5 
  6 
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2.1  constrained.  – (prefix)  invoke a member on a value of  a variable type 1 

 2 

Format Assembly Format Description 

FE 16 <T> constrained. 
thisType 

Call a virtual method on a type constrained to be type T 

 3 
Stack Transition: 4 

…, ptr, arg1, … argN � …, ptr, arg1, … argN 5 

Description: 6 

The constrained. prefix is permitted only on a callvirt instruction.  The type of ptr must be a managed 7 
pointer (&) to thisType.   The constrained prefix is designed to allow callvirt instructions to be made in a 8 
uniform way independent of whether thisType is a value type or a reference type.   9 

When callvirt method instruction has been prefixed by constrained thisType the instruction is executed as 10 
follows.  11 

If thisType is a reference type (as opposed to a value type) then 12 

 ptr is dereferenced and passed as the ‘this’ pointer to the callvirt of method 13 

If thisType is a value type and thisType implements method then 14 

 ptr is passed unmodified as the ‘this’ pointer to a call of method implemented by thisType    15 

If thisType is a value type and thisType does not implement method then 16 

 ptr is dereferenced, boxed, and passed as the ‘this’ pointer to the callvirt of method 17 

This last case can only occur when method was defined on System.Object, System.ValueType, or 18 
System.Enum and not overridden by thisType.    In this last case, the boxing causes a copy of the original 19 
object to be made, however since all methods on System.Object, System.ValueType, and 20 
System.Enum do not modify the state of the object, this fact can not be detected.   21 

The need for the constrained prefix was motivated by the needs IL generators creating generic code.   Normally 22 
the callvirt instruction is not valid on value types.   Instead it is required that IL compilers effectively perform 23 
the `this’ transformation outlined above at IL compile time, depending on the type of ptr and the method being 24 
called.    It is not possible to do this transformation at IL compile time, however, when ptr is a generic type 25 
(which is unknown at IL compile time).   This is why the constrained prefix is needed.   The constrained 26 
opcode allows IL compilers to make a call to a virtual function in a uniform way independent of whether ptr is 27 
a value type or reference type.   While this was targeted for the case were thisType is a generic type variable, 28 
constrained works for non-generic types too, and can ease the complexity of generating virtual calls in 29 
languages that hide the distinction between value and reference types.   30 

Exceptions: 31 

None. 32 

Correctness: 33 

The constrained prefix will be immediately followed by a callvirt instruction.  thisType  shall be a valid 34 
typedef, typeref, or typespec metadata token.   35 

Verifiability: 36 

The ptr argument will be a managed pointer (&)  to thisType.   In addition all the normal verification rules of 37 
the callvirt instruction apply after the ptr transformation as described above.    This is equivalent to requiring 38 
that a boxed thisType must be a subclass of the class which method belongs to.  39 

[Rationale: The goal of this instruction was to achieve uniformity of calling virtual functions, so such calls 40 
could be made verifiably in generic routines.     One way of achieving this uniformity was to always box the 41 
‘this’ pointer before making a callvirt.    This works for both reference type (where box is a no-op), and value 42 
types.   The problem with this approach is that a copy is made in the value type case.  Thus if the method being 43 
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called modifies the state of the value type, this will not be reflected after the call completes since this 1 
modification was made in the boxed copy.    This semantic difference (as well as the performance cost of the 2 
extra boxing), makes this alternative unacceptable.  ] 3 

4 
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2.2  no.  –  (pref ix) possibly skip a  fault check 1 

Format Assembly Format Description 

FE 19 <unsigned int8> no. { typecheck 
  | rangecheck 
  | nullcheck } 

The specified fault check(s) normally performed 
as part of the execution of the subsequent 
instruction can/shall be skipped. 

 2 
Description: 3 

This prefix indicates that the subsequent instruction need not perform the specified fault check when it is 4 
executed.  The byte that follows the instruction code indicates which checks can optionally be skipped.  This 5 
instruction is not verifiable.  6 

The prefix can be used in the following circumstances: 7 

0x01: typecheck (castclass, unbox, ldelema, stelem, stelem).  The CLI can optionally skip any type 8 
checks normally performed as part of the execution of the subsequent instruction.  9 
InvalidCastException can optionally still be thrown if the check would fail.  10 

0x02: rangecheck (ldelem.*, ldelema, stelem.*).  The CLI can optionally skip any array range checks 11 
normally performed as part of the execution of the subsequent instruction.  IndexOutOfRangeException 12 
can optionally still be thrown if the check would fail. 13 

0x04: nullcheck (ldfld, stfld, callvirt, ldvirtftn, ldelem.*, stelem.*, ldelema). The CLI can optionally skip 14 
any null-reference checks normally performed as part of the execution of the subsequent instruction.  15 
NullReferenceException can optionally still be thrown if the check would fail. 16 

The byte values can be OR-ed; e.g.; a value of 0x05 indicates that both typecheck and nullcheck can 17 
optionally be omitted. 18 

Exceptions: 19 

None. 20 

Correctness: 21 

Correct IL permits the prefix only on the instructions specified above. 22 

Verifiability: 23 

Verifiable IL does not permit the use of no. 24 

Implementation Specific (Microsoft) 25 

The Microsoft CLI does not currently support the no. prefix. 26 
  27 
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2.3  readonly.  (prefix)  – following instruction returns a controlled-mutabil ity 1 
managed pointer 2 

Format Assembly Format Description 

FE 1E readonly. Specify that the subsequent array address operation performs no 
type check at runtime, and that it returns a controlled-mutability 
managed pointer 

 3 
Description: 4 

This prefix can only appear only immediately preceding the ldelema instruction and calls to the special 5 
Address method on arrays.  Its effect on the subsequent operation is twofold.   6 

1. At run-time, no type check operation is performed.  (For the value class case there is never a runtime time 7 
check so this is a noop in that case).  8 

2. The verifier treats the result of the address-of operation as a controlled-mutability managed pointer 9 
(§1.8.1.2.2).  10 

Exceptions: 11 

None. 12 

Correctness: 13 
Verifiability: 14 

A controlled-mutability managed pointer must obey the verifier rules given in (2) of §1.8.1.2.2. See also 15 
§1.8.1.3. 16 

[Rationale: The main goal of the readonly. prefix is to avoid a type check when fetching an element from an 17 
array in generic code.  For example the expression  18 

array[i].method()  19 

where array has type T[] (where T is a generic parameter), and T has been constrained to have an interface with 20 
method  ‘method’ might compile into the following IL code.  21 

ldloc array 22 
ldloc j  // j is array index 23 
readonly. 24 
ldelema !0    // loads the pointer to the object 25 
…    // load the arguments to the call 26 
constrained. !0 27 
callvirt method  28 

Without the readonly. prefix the ldelema would do a type check in the case that !0 was a reference class.  29 
Not only is this type check inefficient, but it is semantically incorrect.   The type check for ldelema does an 30 
exact match typecheck, which is too strong in general.  If the array held derived classes of !0 then the code 31 
above would fail the ldelema typecheck.   The only reason we fetch the address of the array element instead of 32 
the element itself (which is what the source code says), is because we need a handle for array[i] that works 33 
both for value types and reference types that can be passed to the constrained callvirt instruction.   34 

If the array holds elements of a reference type, in general, skipping the runtime check would be unsafe.  To be 35 
safe we have to insure that no modifications of the array happen through this pointer.  The verifier rules stated 36 
above insure this.   Since we explicitly allow read-only pointers to be passed as the object of instance method 37 
calls, these pointers are not strictly read-only for value types, but there is no type safety problem for value 38 
types. end rationale] 39 

40 
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2.4  tai l .  (pref ix) – call  terminates current method 1 

Format Assembly Format Description 

FE 14 tail. Subsequent call terminates current method 
 2 
Description: 3 

The tail. prefix shall immediately precede a call, calli, or callvirt instruction. It indicates that the current 4 
method’s stack frame is no longer required and thus can be removed before the call instruction is executed. 5 
Because the value returned by the call will be the value returned by this method, the call can be converted into 6 
a cross-method jump. 7 

The evaluation stack shall be empty except for the arguments being transferred by the following call. The 8 
instruction following the call instruction shall be a ret. Thus the only valid code sequence is 9 

tail. call (or calli or callvirt) somewhere 10 
ret 11 

Correct CIL shall not branch to the call instruction, but it is permitted to branch to the ret. The only values on 12 
the stack shall be the arguments for the method being called. 13 

The tail. call (or calli or callvirt) instruction cannot be used to transfer control out of a try, filter, catch, or 14 
finally block. See Partition I. 15 

The current frame cannot be discarded when control is transferred from untrusted code to trusted code, since 16 
this would jeopardize code identity security. Security checks can therefore cause the tail. to be ignored, leaving 17 
a standard call instruction. 18 

Similarly, in order to allow the exit of a synchronized region to occur after the call returns, the tail. prefix is 19 
ignored when used to exit a method that is marked synchronized. 20 

There can also be implementation-specific restrictions that prevent the tail. prefix from being obeyed in certain 21 
cases. While an implementation is free to ignore the tail. prefix under these circumstances, they should be 22 
clearly documented as they can affect the behavior of programs. 23 

CLI implementations are required to honor tail. call requests where caller and callee methods can be statically 24 
determined to lie in the same assembly; and where the caller is not in a synchronized region; and where caller 25 
and callee satisfy all conditions listed in the “Verifiability” rules below. (To “honor” the tail. prefix means to 26 
remove the caller’s frame, rather than revert to a regular call sequence). Consequently, a CLI implementation 27 
need not honor tail. calli or tail. callvirt sequences. 28 

[Rationale: tail. calls allow some linear space algorithms to be converted to constant space algorithms and are 29 
required by some languages. In the presence of ldloca and ldarga instructions it isn’t always possible for a 30 
compiler from CIL to native code to optimally determine when a tail. can be automatically inserted. end 31 
rationale] 32 

Exceptions: 33 

None. 34 

Correctness: 35 

Correct CIL obeys the control transfer constraints listed above. In addition, no managed pointers can be passed 36 
to the method being called if they point into the stack frame that is about to be removed. The return type of the 37 
method being called shall be compatible with the return type of the current method.  38 

Verifiability: 39 

Verification requires that no managed pointers are passed to the method being called, since it does not track 40 
pointers into the current frame. 41 
  42 
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2.5  unal igned.  (pref ix) – pointer instruction might be unaligned 1 

Format Assembly Format Description 

FE 12 <unsigned int8> unaligned. alignment Subsequent pointer instruction might be unaligned. 

 2 
Stack Transition: 3 

…, addr � …, addr 4 

Description: 5 

The unaligned. prefix specifies that addr (an unmanaged pointer (&), or native int) on the stack mignt not 6 
be aligned to the natural size of the immediately following ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or 7 
cpblk instruction. That is, for a ldind.i4 instruction the alignment of addr might not be to a 4-byte boundary. 8 
For initblk and cpblk the default alignment is architecture-dependent (4-byte on 32-bit CPUs, 8-byte on 64-bit 9 
CPUs). Code generators that do not restrict their output to a 32-bit word size (see Partition I and Partition II) 10 
shall use unaligned. if the alignment is not known at compile time to be 8-byte. 11 

The value of alignment shall be 1, 2, or 4 and means that the generated code should assume that addr is byte, 12 
double-byte, or quad-byte-aligned, respectively. 13 

[Rationale: While the alignment for a cpblk instruction would logically require two numbers (one for the 14 
source and one for the destination), there is no noticeable impact on performance if only the lower number is 15 
specified. end rationale] 16 

The unaligned. and volatile. prefixes can be combined in either order. They shall immediately precede a ldind, 17 
stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. 18 

[�ote: See Partition I, 12.7 for information about atomicity and data alignment. end note] 19 

Exceptions: 20 
None. 21 

Correctness and Verifiability: 22 

An unaligned. prefix shall be followed immediately by one of the instructions listed above. 23 
  24 
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2.6  volat i le.  (pref ix) – pointer reference is  volati le 1 

Format Assembly Format Description 

FE 13 volatile. Subsequent pointer reference is volatile. 
 2 
Stack Transition: 3 

…, addr � …, addr 4 

Description: 5 

The volatile. prefix specifies that addr is a volatile address (i.e., it can be referenced externally to the current 6 
thread of execution) and the results of reading that location cannot be cached or that multiple stores to that 7 
location cannot be suppressed. Marking an access as volatile. affects only that single access; other accesses to 8 
the same location shall be marked separately. Access to volatile locations need not be performed atomically. 9 
(See Partition I, “Memory Model and Optimizations”) 10 

The unaligned. and volatile. prefixes can be combined in either order. They shall immediately precede a ldind, 11 
stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed with the ldsfld 12 
and stsfld instructions. 13 

Exceptions: 14 

None. 15 

Correctness and Verifiability: 16 

A volatile. prefix should be followed immediately by one of the instructions listed above. 17 
 18 
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3 Base instructions 1 

These instructions form a “Turing Complete” set of basic operations. They are independent of the object model 2 
that might be employed. Operations that are specifically related to the CTS’s object model are contained in the 3 
Object Model Instructions section. 4 
  5 
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3.1  add  – add numeric values 1 

Format Assembly Format Description 

58 add Add two values, returning a new value. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The add instruction adds value2 to value1 and pushes the result on the stack. Overflow is not detected for 6 
integral operations (but see add.ovf); floating-point overflow returns +inf or -inf. 7 

The acceptable operand types and their corresponding result data type are encapsulated in 8 
Table 2: Binary Numeric Operations. 9 

Exceptions: 10 

None. 11 

Correctness and Verifiability: 12 
See Table 2: Binary Numeric Operations. 13 
  14 
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3.2  add.ovf.<signed>  – add integer values with overf low check 1 

Format Assembly Format Description 

D6 add.ovf Add signed integer values with overflow check.  

D7 add.ovf.un Add unsigned integer values with overflow check. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The add.ovf instruction adds value1 and value2 and pushes the result on the stack. The acceptable operand 6 
types and their corresponding result data type are encapsulated in Table 7: Overflow Arithmetic Operations. 7 

Exceptions: 8 

System.OverflowException is thrown if the result cannot be represented in the result type. 9 

Correctness and Verifiability: 10 

See Table 7: Overflow Arithmetic Operations. 11 
  12 
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3.3  and  – bitwise A%D 1 

Format Instruction Description 

5F and Bitwise AND of two integral values, returns an integral value. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The and instruction computes the bitwise AND of value1 and value2and pushes the result on the stack. The 6 
acceptable operand types and their corresponding result data type are encapsulated in 7 
Table 5: Integer Operations. 8 

Exceptions: 9 

None. 10 

Correctness and Verifiability: 11 
See Table 5: Integer Operations. 12 
  13 
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3.4  argl ist  – get  argument l ist  1 

Format Assembly Format Description 

FE 00 arglist Return argument list handle for the current method.  
 2 
Stack Transition: 3 

… � …, argListHandle 4 

Description: 5 

The arglist instruction returns an opaque handle (having type System.RuntimeArgumentHandle) 6 
representing the argument list of the current method. This handle is valid only during the lifetime of the current 7 
method. The handle can, however, be passed to other methods as long as the current method is on the thread of 8 
control. The arglist instruction can only be executed within a method that takes a variable number of 9 
arguments. 10 

[Rationale: This instruction is needed to implement the C ‘va_*’ macros used to implement procedures like 11 
‘printf’. It is intended for use with the class library implementation of System.ArgIterator. end 12 
rationale] 13 

Exceptions: 14 

None. 15 

Correctness: 16 

It is incorrect CIL generation to emit this instruction except in the body of a method whose signature indicates 17 
it accepts a variable number of arguments. 18 

Verifiability: 19 

Its use is verifiable within the body of a method whose signature indicates it accepts a variable number of 20 
arguments, but verification requires that the result be an instance of the 21 
System.RuntimeArgumentHandle class. 22 
  23 
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3.5  beq.<length>  – branch on equal  1 

Format Assembly Format Description 

3B <int32> beq target Branch to target if equal. 

2E <int8> beq.s target Branch to target if equal, short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The beq instruction transfers control to target if value1 is equal to value2. The effect is identical to performing 6 
a ceq instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for beq, 1 byte 7 
for beq.s) from the beginning of the instruction following the current instruction. 8 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 9 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 10 
prefixes. 11 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 12 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 13 

Exceptions: 14 

None. 15 

Correctness: 16 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 17 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 18 

Verifiability: 19 
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 20 
destination instruction. See §1.8 for more details. 21 
  22 
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3.6  bge.<length>  – branch on greater than or equal to 1 

Format Assembly Format Description 

3C <int32> bge target Branch to target if greater than or equal to. 

2F <int8> bge.s target Branch to target if greater than or equal to, short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The bge instruction transfers control to target if value1 is greater than or equal to value2. The effect is identical 6 
to performing a clt.un instruction followed by a brfalse target. target is represented as a signed offset (4 bytes 7 
for bge, 1 byte for bge.s) from the beginning of the instruction following the current instruction. 8 

The effect of a “bge target” instruction is identical to: 9 

• If stack operands are integers, then clt followed by a brfalse target 10 

• If stack operands are floating-point, then clt.un followed by a brfalse target 11 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 12 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 13 
prefixes. 14 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 15 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 16 

Exceptions: 17 

None. 18 

Correctness: 19 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 20 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 21 

Verifiability: 22 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 23 
destination instruction. See §1.8 for more details. 24 
  25 
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3.7  bge.un.<length>  – branch on greater than or equal to , unsigned or 1 
unordered 2 

Format Assembly Format Description 

41 <int32> bge.un target Branch to target if greater than or equal to (unsigned or unordered). 

34 <int8> bge.un.s target Branch to target if greater than or equal to (unsigned or unordered), 
short form. 

 3 
Stack Transition: 4 

…, value1, value2 � … 5 

Description: 6 

The bge.un instruction transfers control to target if value1 is greater than or equal to value2, when compared 7 
unsigned (for integer values) or unordered (for floating-point values). 8 

target is represented as a signed offset (4 bytes for bge.un, 1 byte for bge.un.s) from the beginning of the 9 
instruction following the current instruction. 10 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 11 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 12 
prefixes. 13 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 14 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 15 

Exceptions: 16 
None. 17 

Correctness: 18 
Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 19 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 20 

Verifiability: 21 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 22 
destination instruction. See §1.8 for more details. 23 
  24 
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3.8  bgt.<length>  –  branch on greater than 1 

Format Assembly Format Description 

3D <int32> bgt target Branch to target if greater than. 

30 <int8> bgt.s target Branch to target if greater than, short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The bgt instruction transfers control to target if value1 is greater than value2. The effect is identical to 6 
performing a cgt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for 7 
bgt, 1 byte for bgt.s) from the beginning of the instruction following the current instruction. 8 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 9 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 10 
prefixes. 11 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 12 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 13 

Exceptions: 14 

None. 15 

Correctness: 16 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 17 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 18 

Verifiability: 19 
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 20 
destination instruction. See §1.8 for more details. 21 
  22 
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3.9  bgt.un.<length>  –  branch on greater than,  unsigned or unordered 1 

Format Assembly Format Description 

42 <int32> bgt.un target Branch to target if greater than (unsigned or unordered). 

35 <int8> bgt.un.s target Branch to target if greater than (unsigned or unordered), short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The bgt.un instruction transfers control to target if value1 is greater than value2, when compared unsigned (for 6 
integer values) or unordered (for floating-point values). The effect is identical to performing a cgt.un 7 
instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for bgt.un, 1 byte for 8 
bgt.un.s) from the beginning of the instruction following the current instruction. 9 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 10 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 11 
prefixes. 12 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 13 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 14 

Exceptions: 15 

None. 16 

Correctness: 17 
Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 18 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 19 

Verifiability: 20 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 21 
destination instruction. See §1.8 for more details. 22 
  23 
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3.10  ble.<length>  – branch on less  than or equal to 1 

Format Assembly Format Description 

3E <int32> ble target Branch to target if less than or equal to. 

31 <int8> ble.s target Branch to target if less than or equal to, short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The ble instruction transfers control to target if value1 is less than or equal to value2. target is represented as a 6 
signed offset (4 bytes for ble, 1 byte for ble.s) from the beginning of the instruction following the current 7 
instruction. 8 

The effect of a “ble target” instruction is identical to: 9 

• If stack operands are integers, then : cgt followed by a brfalse target 10 

• If stack operands are floating-point, then : cgt.un followed by a brfalse target 11 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 12 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 13 
prefixes. 14 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 15 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 16 

Exceptions: 17 

None. 18 

Correctness: 19 
Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 20 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 21 

Verifiability: 22 
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 23 
destination instruction. See §1.8 for more details. 24 
  25 
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3.11  ble.un.<length>  – branch on less than or equal to, unsigned or unordered 1 

Format Assembly Format Description 

43 <int32> ble.un target Branch to target if less than or equal to (unsigned or unordered). 

36 <int8> ble.un.s target Branch to target if less than or equal to (unsigned or unordered), 
short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The ble.un instruction transfers control to target if value1 is less than or equal to value2, when compared 6 
unsigned (for integer values) or unordered (for floating-point values). target is represented as a signed offset 7 
(4 bytes for ble.un, 1 byte for ble.un.s) from the beginning of the instruction following the current instruction. 8 

The effect of a “ble.un target” instruction is identical to: 9 

• If stack operands are integers, then cgt.un followed by a brfalse target 10 

• If stack operands are floating-point, then cgt followed by a brfalse target 11 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 12 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 13 
prefixes. 14 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 15 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 16 

Exceptions: 17 

None. 18 

Correctness: 19 
Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 20 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 21 

Verifiability: 22 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 23 
destination instruction. See §1.8 for more details. 24 
  25 
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3.12  blt .< length>  – branch on less than 1 

Format Assembly Format Description 

3F <int32> blt target Branch to target if less than. 

32 <int8> blt.s target Branch to target if less than, short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The blt instruction transfers control to target if value1 is less than value2. The effect is identical to performing 6 
a clt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for blt, 1 byte for 7 
blt.s) from the beginning of the instruction following the current instruction. 8 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 9 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 10 
prefixes. 11 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 12 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 13 

Exceptions: 14 

None. 15 

Correctness: 16 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 17 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 18 

Verifiability: 19 
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 20 
destination instruction. See §1.8 for more details. 21 
  22 
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3.13  blt.un.<length>  – branch on less than, unsigned or unordered 1 

Format Assembly Format Description 

44 <int32> blt.un target Branch to target if less than (unsigned or unordered).  

37 <int8> blt.un.s target Branch to target if less than (unsigned or unordered), short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The blt.un instruction transfers control to target if value1 is less than value2, when compared unsigned (for 6 
integer values) or unordered (for floating-point values). The effect is identical to performing a clt.un instruction 7 
followed by a brtrue target. target is represented as a signed offset (4 bytes for blt.un, 1 byte for blt.un.s) from 8 
the beginning of the instruction following the current instruction. 9 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 10 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 11 
prefixes. 12 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 13 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 14 

Exceptions: 15 

None. 16 

Correctness: 17 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 18 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 19 

Verifiability: 20 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 21 
destination instruction. See §1.8 for more details. 22 
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3.14  bne.un<length>  – branch on not equal or unordered 1 

Format Assembly Format Description 

40 <int32> bne.un target Branch to target if unequal or unordered. 

33 <int8> bne.un.s target Branch to target if unequal or unordered, short form. 

 2 
Stack Transition: 3 

…, value1, value2 � … 4 

Description: 5 

The bne.un instruction transfers control to target if value1 is not equal to value2, when compared unsigned 6 
(for integer values) or unordered (for floating-point values). The effect is identical to performing a ceq 7 
instruction followed by a brfalse target. target is represented as a signed offset (4 bytes for bne.un, 1 byte for 8 
bne.un.s) from the beginning of the instruction following the current instruction. 9 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 10 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 11 
prefixes. 12 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 13 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 14 

Exceptions: 15 

None. 16 

Correctness: 17 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 18 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 19 

Verifiability: 20 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 21 
destination instruction. See §1.8 for more details. 22 
  23 
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3.15  br.< length>  – unconditional branch 1 

Format Assembly Format Description 

38 <int32> br target Branch to target.  

2B <int8> br.s target Branch to target, short form. 

 2 
Stack Transition: 3 

…, � … 4 

Description: 5 

The br instruction unconditionally transfers control to target. target is represented as a signed offset (4 bytes 6 
for br, 1 byte for br.s) from the beginning of the instruction following the current instruction. 7 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 8 
prefixes. 9 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 10 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 11 

[Rationale: While a leave instruction can be used instead of a br instruction when the evaluation stack is 12 
empty, doing so might increase the resources required to compile from CIL to native code and/or lead to 13 
inferior native code. Therefore CIL generators should use a br instruction in preference to a leave instruction 14 
when both are valid. end rationale] 15 

Exceptions: 16 

None. 17 

Correctness: 18 

Correct CIL shall observe all of the control transfer rules specified above. 19 

Verifiability: 20 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 21 
destination instruction. See §1.8 for more details. 22 
  23 
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3.16  break  –  breakpoint instruction 1 

Format Assembly Format Description 

01  break Inform a debugger that a breakpoint has been reached. 
 2 
Stack Transition: 3 

…, � … 4 

Description: 5 

The break instruction is for debugging support. It signals the CLI to inform the debugger that a break point has 6 
been tripped. It has no other effect on the interpreter state. 7 

The break instruction has the smallest possible instruction size so that code can be patched with a breakpoint 8 
with minimal disturbance to the surrounding code. 9 

The break instruction might trap to a debugger, do nothing, or raise a security exception: the exact behavior is 10 
implementation-defined. 11 

Exceptions: 12 

None. 13 

Correctness: 14 
Verifiability: 15 

The break instruction is always verifiable. 16 
  17 
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3.17  brfalse.< length>  – branch on false, null ,  or zero 1 

Format Assembly Format Description 

39 <int32> brfalse target Branch to target if value is zero (false). 

2C <int8> brfalse.s target Branch to target if value is zero (false), short form. 

39 <int32> brnull target Branch to target if value is null (alias for brfalse). 

2C <int8> brnull.s target Branch to target if value is null (alias for brfalse.s), short form. 

39 <int32> brzero target Branch to target if value is zero (alias for brfalse). 

2C <int8> brzero.s target Branch to target if value is zero (alias for brfalse.s), short form. 

 2 
Stack Transition: 3 

…, value � … 4 

Description: 5 

The brfalse instruction transfers control to target if value (of type int32, int64, object reference, managed 6 
pointer, unmanaged pointer or native int) is zero (false). If value is non-zero (true), execution continues at 7 
the next instruction. 8 

Target is represented as a signed offset (4 bytes for brfalse, 1 byte for brfalse.s) from the beginning of the 9 
instruction following the current instruction. 10 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 11 
prefixes. 12 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 13 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 14 

Exceptions: 15 
None. 16 

Correctness: 17 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee there is a 18 
minimum of one item on the stack. 19 

Verifiability: 20 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 21 
destination instruction. See §1.8 for more details. 22 
  23 
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3.18  brtrue.<length>  – branch on non-false or non-null  1 

Format Assembly Format Description 

3A <int32> brtrue target Branch to target if value is non-zero (true). 

2D <int8> brtrue.s target Branch to target if value is non-zero (true), short form. 

3A <int32> brinst target Branch to target if value is a non-null object reference (alias for 
brtrue). 

2D <int8> brinst.s target Branch to target if value is a non-null object reference, short form 
(alias for brtrue.s). 

 2 
Stack Transition: 3 

…, value � … 4 

Description: 5 

The brtrue instruction transfers control to target if value (of type native int) is nonzero (true). If value is 6 
zero (false) execution continues at the next instruction. 7 

If the value is an object reference (type O) then brinst (an alias for brtrue) transfers control if it represents an 8 
instance of an object (i.e., isn’t the null object reference, see ldnull). 9 

Target is represented as a signed offset (4 bytes for brtrue, 1 byte for brtrue.s) from the beginning of the 10 
instruction following the current instruction. 11 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 12 
prefixes. 13 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 14 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 15 

Exceptions: 16 

None. 17 

Correctness: 18 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee there is a 19 
minimum of one item on the stack. 20 

Verifiability: 21 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 22 
destination instruction. See §1.8 for more details. 23 
  24 
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3.19  cal l  – call a method 1 

Format Assembly Format Description 

28 <T> call method Call method described by method. 
 2 
Stack Transition: 3 

…, arg1, arg2 … argN � …, retVal (not always returned) 4 

Description: 5 

The call instruction calls the method indicated by the descriptor method. method is a metadata token (a 6 
methodref, methoddef, or methodspec;See Partition II) that indicates the method to call, and the 7 
number, type, and order of the arguments that have been placed on the stack to be passed to that method, as 8 
well as the calling convention to be used. (See Partition I for a detailed description of the CIL calling 9 
sequence.) The call instruction can be immediately preceded by a tail. prefix to specify that the current method 10 
state should be released before transferring control (see §2.3). 11 

The metadata token carries sufficient information to determine whether the call is to a static method, an 12 
instance method, a virtual method, or a global function. In all of these cases the destination address is 13 
determined entirely from the metadata token. (Contrast this with the callvirt instruction for calling virtual 14 
methods, where the destination address also depends upon the exact type of the instance reference pushed 15 
before the callvirt; see below.) 16 

The CLI resolves the method to be called according to the rules specified in I.12.4.1.3 (Computed destinations), 17 
except that the destination is computed with respect to the class specified by the metadata token. 18 

[Rationale: This implements“call base class” behavior. end rationale] 19 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 20 
on the stack, then the second argument, and so on. There are three important special cases: 21 

1. Calls to an instance (or virtual, see below) method shall push that instance reference (the this 22 
pointer) before any of the user-visible arguments. The signature carried in the metadata does not 23 
contain an entry in the parameter list for the this pointer but uses a bit (called HASTHIS) to 24 
indicate whether the method requires passing the this pointer (see Partition II) (For calls to 25 
methods on value types, the this pointer is a managed pointer, not an instance reference.) 26 

2. It is valid to call a virtual method using call (rather than callvirt); this indicates that the method is 27 
to be resolved using the class specified by method rather than as specified dynamically from the 28 
object being invoked. This is used, for example, to compile calls to “methods on super” (i.e., 29 
the statically known parent class). 30 

3. Note that a delegate’s Invoke method can be called with either the call or callvirt instruction. 31 

Exceptions: 32 

System.SecurityException can be thrown if system security does not grant the caller access to the 33 
called method. The security check can occur when the CIL is converted to native code rather than at runtime. 34 

System.MethodAccessException can be thrown when there is an invalid attempt to access a non-35 
public method. 36 

System.MissingMethodException can be thrown when there is an attempt to dynamically access a 37 
method that does not exist. 38 

Correctness: 39 

Correct CIL ensures that the stack contains the correct number and type of arguments for the method being 40 
called. 41 

Verifiability: 42 

For a typical use of the call instruction, verification checks that (a) method refers to a valid methodref, 43 
methoddef, or methodspec token; (b) the types of the objects on the stack are consistent with the types 44 
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expected by the method call, and (c) the method is accessible from the call site, and (d) the method is not 1 
abstract (i.e., it has an implementation). 2 

The call instruction can also be used to call an object’s base class constructor, or to initialize a value type 3 
location by calling an appropriate constructor, both of which are treated as special cases by verification. A call 4 
annotated by tail. is also a special case. 5 

If the target method is global (defined outside of any type), then the method shall be static. 6 

When using the call opcode to call a non-final virtual method on an instance other than a boxed value type, 7 
verification checks that the instance reference to the method being called is the result of ldarg.s 0, ldarg 0 and 8 
the caller’s body does not contain starg.s 0, starg 0 or ldarga.s 0, ldarga 0. 9 

[Rationale: This means that non-virtually calling a non-final virtual method is only verifiable in the case where 10 
the subclass methods calls one of its superclasses using the same this object reference, where “same” is easy 11 
to verify. This means that an override implementation effectively "hides" the superclass' implementation, and 12 
can assume that the override implementation cannot be bypassed by code outside the class hierarchy. 13 

For non-sealed class hierarchies, malicious code can attempt to extend the class hierarchy in an attempt to 14 
bypass a class' override implementation. However, this can only be done on an object of the malicious type, 15 
and not of the class with the override, which mitigates much of the security concern. end rationale] 16 
  17 
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3.20  cal l i  –  indirect  method call  1 

Format Assembly Format Description 

29 <T> calli callsitedescr Call method indicated on the stack with arguments described by 
callsitedescr. 

 2 
Stack Transition: 3 

…, arg1, arg2 … argN, ftn � …, retVal (not always returned) 4 

Description: 5 

The calli instruction calls ftn (a pointer to a method entry point) with the arguments arg1 … argN. The types 6 
of these arguments are described by the signature callsitedescr. (See Partition I for a description of the CIL 7 
calling sequence.) The calli instruction can be immediately preceded by a tail. prefix to specify that the current 8 
method state should be released before transferring control. If the call would transfer control to a method of 9 
higher trust than the originating method the stack frame will not be released; instead, the execution will 10 
continue silently as if the tail. prefix had not been supplied. 11 

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of 12 
the caller.] 13 

The ftn argument is assumed to be a pointer to native code (of the target machine) that can be legitimately 14 
called with the arguments described by callsitedescr (a metadata token for a stand-alone signature). Such a 15 
pointer can be created using the ldftn or ldvirtftn instructions, or could have been passed in from native code. 16 

The standalone signature specifies the number and type of parameters being passed, as well as the calling 17 
convention (See Partition II) The calling convention is not checked dynamically, so code that uses a calli 18 
instruction will not work correctly if the destination does not actually use the specified calling convention. 19 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 20 
on the stack, then the second argument, and so on. The argument-building code sequence for an instance or 21 
virtual method shall push that instance reference (the this pointer, which shall not be null) before any of the 22 
user-visible arguments. (For calls to methods on value types, the this pointer is a managed pointer, not an 23 
instance reference.) 24 

Exceptions: 25 

System.SecurityException can be thrown if the system security does not grant the caller access to the 26 
called method. The security check can occur when the CIL is converted to native code rather than at runtime. 27 

Correctness: 28 

Correct CIL requires that the function pointer contains the address of a method whose signature matches that 29 
specified by callsitedescr and that the arguments correctly correspond to the types of the destination function’s 30 
parameters. 31 

Verifiability: 32 

Verification checks that ftn is a pointer to a function generated by ldftn or ldvirtfn. 33 

Implementation Specific (Microsoft) 34 

In Microsoft’s implementation of the CLI, the calli instruction is never verifiable 35 
  36 
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3.21  ceq  – compare equal  1 

Format Assembly Format Description 

FE 01 Ceq Push 1 (of type int32) if value1 equals value2, else push 0. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The ceq instruction compares value1 and value2. If value1 is equal to value2, then 1 (of type int32) is 6 
pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack. 7 

For floating-point numbers, ceq will return 0 if the numbers are unordered (either or both are NaN). The 8 
infinite values are equal to themselves. 9 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 10 

Exceptions: 11 

None. 12 

Correctness: 13 
Correct CIL provides two values on the stack whose types match those specified in 14 
Table 4: Binary Comparison or Branch Operations 15 

Verifiability: 16 

There are no additional verification requirements. 17 
  18 
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3.22  cgt  –  compare greater than 1 

Format Assembly Format Description 

FE 02  Cgt Push 1 (of type int32) if value1 > value2, else push 0. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The cgt instruction compares value1 and value2. If value1 is strictly greater than value2, then 1 (of type 6 
int32) is pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack. 7 

For floating-point numbers, cgt returns 0 if the numbers are unordered (that is, if one or both of the arguments 8 
are NaN). 9 

As with IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -10 
infinity). 11 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 12 

Exceptions: 13 

None. 14 

Correctness: 15 
Correct CIL provides two values on the stack whose types match those specified in 16 
Table 4: Binary Comparison or Branch Operations 17 

Verifiability: 18 

There are no additional verification requirements. 19 
  20 
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3.23  cgt .un  –  compare greater than,  unsigned or unordered 1 

Format Assembly Format Description 

FE 03  cgt.un Push 1 (of type int32) if value1 > value2, unsigned or unordered, 
else push 0. 

 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The cgt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if 6 

• for floating-point numbers, either value1 is strictly greater than value2, or value1 is not ordered 7 
with respect to value2. 8 

• for integer values, value1 is strictly greater than value2 when considered as unsigned numbers. 9 

Otherwise, 0 (of type int32) is pushed on the stack. 10 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -11 
infinity). 12 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 13 

Exceptions: 14 

None. 15 

Correctness: 16 

Correct CIL provides two values on the stack whose types match those specified in 17 
Table 4: Binary Comparison or Branch Operations 18 

Verifiability: 19 

There are no additional verification requirements. 20 
  21 
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3.24  ckfin ite  – check for a  f inite real  number 1 

Format Assembly Format Description 

C3  Ckfinite Throw ArithmeticException if value is not a finite number. 
 2 
Stack Transition: 3 

…, value � …, value 4 

Description: 5 

The ckfinite instruction throws ArithmeticException if value (a floating-point number) is either a “not 6 
a number” value (NaN) or +/- infinity value. ckfinite leaves the value on the stack if no exception is thrown. 7 
Execution behavior is unspecified if value is not a floating-point number. 8 

Exceptions: 9 

System.ArithmeticException is thrown if value is a NaN or an infinity. 10 

Correctness: 11 

Correct CIL guarantees that value is a floating-point number. 12 

Verifiability: 13 
There are no additional verification requirements. 14 
  15 
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3.25  clt  – compare less than 1 

Format Assembly Format Description 

FE 04  Clt Push 1 (of type int32) if value1 < value2, else push 0. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The clt instruction compares value1 and value2. If value1 is strictly less than value2, then 1 (of type int32) is 6 
pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack. 7 

For floating-point numbers, clt will return 0 if the numbers are unordered (that is, one or both of the arguments 8 
are NaN). 9 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -10 
infinity). 11 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 12 

Exceptions: 13 
None. 14 

Correctness: 15 

Correct CIL provides two values on the stack whose types match those specified in 16 
Table 4: Binary Comparison or Branch Operations 17 

Verifiability: 18 

There are no additional verification requirements. 19 
  20 
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3.26  clt .un  – compare less  than, unsigned or unordered 1 

Format Assembly Format Description 

FE 05  clt.un Push 1 (of type int32) if value1 < value2, unsigned or unordered, 
else push 0. 

 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The clt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if  6 

• for floating-point numbers, either value1 is strictly less than value2, or value1 is not ordered with 7 
respect to value2. 8 

• for integer values, value1 is strictly less than value2 when considered as unsigned numbers. 9 

Otherwise, 0 (of type int32) is pushed on the stack. 10 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -11 
infinity). 12 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 13 

Exceptions: 14 

None. 15 

Correctness: 16 

Correct CIL provides two values on the stack whose types match those specified in 17 
Table 4: Binary Comparison or Branch Operations 18 

Verifiability: 19 

There are no additional verification requirements. 20 
  21 
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3.27  conv.<to type>  – data conversion 1 

Format Assembly Format Description 

67 conv.i1 Convert to int8, pushing int32 on stack. 

68 conv.i2 Convert to int16, pushing int32 on stack. 

69 conv.i4 Convert to int32, pushing int32 on stack. 

6A conv.i8 Convert to int64, pushing int64 on stack. 

6B conv.r4 Convert to float32, pushing F on stack. 

6C conv.r8 Convert to float64, pushing F on stack. 

D2 conv.u1 Convert to unsigned int8, pushing int32 on stack. 

D1 conv.u2 Convert to unsigned int16, pushing int32 on stack. 

6D conv.u4 Convert to unsigned int32, pushing int32 on stack. 

6E conv.u8 Convert to unsigned int64, pushing int64 on stack. 

D3 conv.i Convert to native int, pushing native int on stack. 

E0 conv.u Convert to native unsigned int, pushing native int on stack. 

76 conv.r.un Convert unsigned integer to floating-point, pushing F on stack. 
 2 
Stack Transition: 3 

…, value � …, result 4 

Description: 5 
Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 6 
top of the stack. Note that integer values of less than 4 bytes are extended to int32 (not native int) when 7 
they are loaded onto the evaluation stack, and floating-point values are converted to the F type. 8 

Conversion from floating-point numbers to integral values truncates the number toward zero. When converting 9 
from a float64 to a float32, precision might be lost. If value is too large to fit in a float32, the IEC 10 
60559:1989 positive infinity (if value is positive) or IEC 60559:1989 negative infinity (if value is negative) is 11 
returned. If overflow occurs when converting one integer type to another, the high-order bits are silently 12 
truncated. If the result is smaller than an int32, then the value is sign-extended to fill the slot. 13 

If overflow occurs converting a floating-point type to an integer, or if the floating-point value being converted 14 
to an integer is a NaN, the value returned is unspecified. The conv.r.un operation takes an integer off the stack, 15 
interprets it as unsigned, and replaces it with an F type floating-point number to represent the integer. 16 

The acceptable operand types and their corresponding result data type is encapsulated in 17 
Table 8: Conversion Operations. 18 

Exceptions: 19 

No exceptions are ever thrown. See conv.ovf for instructions that will throw an exception when the result type 20 
cannot properly represent the result value. 21 

Correctness: 22 

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. 23 

Verifiability: 24 

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code. 25 
  26 



 

 Partition III 61 

3.28  conv.ovf.<to type>  – data conversion with overflow detection 1 

Format Assembly Format Description 

B3 conv.ovf.i1 Convert to an int8 (on the stack as int32) and throw an 
exception on overflow.  

B5 conv.ovf.i2 Convert to an int16 (on the stack as int32) and throw an 
exception on overflow.  

B7 conv.ovf.i4 Convert to an int32 (on the stack as int32) and throw an 
exception on overflow.  

B9 conv.ovf.i8 Convert to an int64 (on the stack as int64) and throw an 
exception on overflow.  

B4 conv.ovf.u1 Convert to an unsigned int8 (on the stack as int32) and throw 
an exception on overflow.  

B6 conv.ovf.u2 Convert to an unsigned int16 (on the stack as int32) and 
throw an exception on overflow. 

B8 conv.ovf.u4 Convert to an unsigned int32 (on the stack as int32) and 
throw an exception on overflow  

BA conv.ovf.u8 Convert to an unsigned int64 (on the stack as int64) and 
throw an exception on overflow.  

D4 conv.ovf.i Convert to a native int (on the stack as native int) and throw 
an exception on overflow. 

D5 conv.ovf.u Convert to a native unsigned int (on the stack as native int) 
and throw an exception on overflow. 

 2 
Stack Transition: 3 

…, value � …, result 4 

Description: 5 

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 6 
top of the stack. If the result cannot be represented in the target type, an exception is thrown. 7 

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer 8 
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack. 9 

The acceptable operand types and their corresponding result data type is encapsulated in 10 
Table 8: Conversion Operations. 11 

Exceptions: 12 

System.OverflowException is thrown if the result can not be represented in the result type. 13 

Correctness: 14 

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. 15 

Verifiability: 16 

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code. 17 
  18 
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3.29  conv.ovf.<to type>.un  – unsigned data conversion with overflow detection 1 

Format Assembly Format Description 

82 conv.ovf.i1.un Convert unsigned to an int8 (on the stack as int32) and throw 
an exception on overflow.  

83 conv.ovf.i2.un Convert unsigned to an int16 (on the stack as int32) and 
throw an exception on overflow.  

84 conv.ovf.i4.un Convert unsigned to an int32 (on the stack as int32) and 
throw an exception on overflow.  

85 conv.ovf.i8.un Convert unsigned to an int64 (on the stack as int64) and 
throw an exception on overflow. 

86 conv.ovf.u1.un Convert unsigned to an unsigned int8 (on the stack as int32) 
and throw an exception on overflow.  

87 conv.ovf.u2.un Convert unsigned to an unsigned int16 (on the stack as int32) 
and throw an exception on overflow.  

88 conv.ovf.u4.un Convert unsigned to an unsigned int32 (on the stack as int32) 
and throw an exception on overflow.  

89 conv.ovf.u8.un Convert unsigned to an unsigned int64 (on the stack as int64) 
and throw an exception on overflow.  

8A conv.ovf.i.un Convert unsigned to a native int (on the stack as native int) 
and throw an exception on overflow. 

8B conv.ovf.u.un Convert unsigned to a native unsigned int (on the stack as 
native int) and throw an exception on overflow. 

 2 
Stack Transition: 3 

…, value � …, result 4 

Description: 5 

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 6 
top of the stack. If the value cannot be represented, an exception is thrown. The item on the top of the stack is 7 
treated as an unsigned value before the conversion. 8 

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer 9 
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack. 10 

The acceptable operand types and their corresponding result data type are encapsulated in 11 
Table 8: Conversion Operations. 12 

Exceptions: 13 

System.OverflowException is thrown if the result cannot be represented in the result type. 14 

Correctness: 15 

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack.  16 

Verifiability: 17 

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code. 18 
  19 
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3.30  cpblk  – copy data from memory to memory 1 

Format Instruction Description 

FE 17 cpblk Copy data from memory to memory. 
 2 
Stack Transition: 3 

…, destaddr, srcaddr, size � … 4 

Description: 5 

The cpblk instruction copies size (of type unsigned int32) bytes from address srcaddr (of type native 6 
int, or &) to address destaddr (of type native int, or &). The behavior of cpblk is unspecified if the 7 
source and destination areas overlap. 8 

cpblk assumes that both destaddr and srcaddr are aligned to the natural size of the machine (but see the 9 
unaligned. prefix instruction). The operation of the cpblk instruction can be altered by an immediately 10 
preceding volatile. or unaligned. prefix instruction. 11 

[Rationale: cpblk is intended for copying structures (rather than arbitrary byte-runs). All such structures, 12 
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the compiler 13 
that generates cpblk instructions to be aware of whether the code will eventually execute on a 32-bit or 64-bit 14 
platform. end rationale] 15 

Exceptions: 16 

System.NullReferenceException can be thrown if an invalid address is detected. 17 

Correctness: 18 

CIL ensures the conditions specified above. 19 

Verifiability: 20 

The cpblk instruction is never verifiable. 21 
  22 
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3.31  div  – divide values 1 

Format Assembly Format Description 

5B Div Divide two values to return a quotient or floating-point result. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

result = value1 div value2 satisfies the following conditions: 6 

|result| = |value1| / |value2|, and 7 

sign(result) = +, if sign(value1) = sign(value2), or 8 
 –, if sign(value1) ~= sign(value2) 9 

The div instruction computes result and pushes it on the stack. 10 

Integer division truncates towards zero. 11 

Floating-point division is per IEC 60559:1989. In particular, division of a finite number by 0 produces the 12 
correctly signed infinite value and 13 

0 / 0 = NaN 14 

infinity / infinity = NaN. 15 

X / infinity = 0 16 

The acceptable operand types and their corresponding result data type are encapsulated in 17 
Table 2: Binary Numeric Operations. 18 

Exceptions: 19 

Integral operations throw System.ArithmeticException if the result cannot be represented in the 20 
result type. (This can happen if value1 is the smallest representable integer value, and value2 is -1.) 21 

Integral operations throw DivideByZeroException if value2 is zero. 22 

Implementation Specific (Microsoft) 23 

On the x86 an System.OverflowException is thrown when computing (minint div –1). 24 

Floating-point operations never throw an exception (they produce NaNs or infinities instead, see Partition I). 25 

Example: 26 

+14 div +3  is 4 27 

+14 div -3  is -4 28 

-14 div +3  is -4 29 

-14 div -3  is 4 30 

Correctness and Verifiability 31 

See Table 2: Binary Numeric Operations. 32 

 33 
  34 
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3.32  div.un  – divide integer values, unsigned 1 

Format Assembly Format Description 

5C div.un Divide two values, unsigned, returning a quotient. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The div.un instruction computes value1 divided by value2, both taken as unsigned integers, and pushes the 6 
result on the stack. 7 

The acceptable operand types and their corresponding result data type are encapsulated in 8 
Table 5: Integer Operations. 9 

Exceptions: 10 

System.DivideByZeroException is thrown if value2 is zero. 11 

Example: 12 

+5 div.un +3  is 1 13 

+5 div.un -3  is 0 14 

-5 div.un +3  is 14316557630 or 0x55555553 15 

-5 div.un -3  is 0 16 

Correctness and Verifiability 17 

See Table 5: Integer Operations. 18 

 19 
  20 
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3.33  dup  – duplicate the top value of  the stack 1 

Format Assembly Format Description 

25  Dup Duplicate the value on the top of the stack. 
 2 
Stack Transition: 3 

…, value � …, value, value 4 

Description: 5 

The dup instruction duplicates the top element of the stack. 6 

Exceptions: 7 

None. 8 

Correctness and Verifiability: 9 

No additional requirements. 10 
  11 
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3.34  endfi lter  – end except ion handling f i lter clause 1 

Format Assembly Format Description 

FE 11 Endfilter End an exception handling filter clause. 
 2 
Stack Transition: 3 

…, value � … 4 

Description: 5 

Used to return from the filter clause of an exception (see the Exception Handling subclause of Partition I for a 6 
discussion of exceptions). value (which shall be of type int32 and one of a specific set of values) is returned 7 
from the filter clause. It should be one of: 8 

• exception_continue_search (0) to continue searching for an exception handler 9 

• exception_execute_handler (1) to start the second phase of exception handling where 10 
finally blocks are run until the handler associated with this filter clause is located. Then the 11 
handler is executed. 12 

The result of using any other integer value is unspecified. 13 

The entry point of a filter, as shown in the method’s exception table, shall be the (lexically) first instruction in 14 
the filter’s code block. The endfilter shall be the (lexically) last instruction in the filter’s code block (hence 15 
there can only be one endfilter for any single filter block). After executing the endfilter instruction, control 16 
logically flows back to the CLI exception handling mechanism. 17 

Control cannot be transferred into a filter block except through the exception mechanism. Control cannot be 18 
transferred out of a filter block except through the use of a throw instruction or executing the final endfilter 19 
instruction. In particular, it is not valid to execute a ret or leave instruction within a filter block. It is not 20 
valid to embed a try block within a filter block. If an exception is thrown inside the filter block, it is 21 
intercepted and a value of exception_continue_search is returned. 22 

Exceptions: 23 
None. 24 

Correctness: 25 

Correct CIL guarantees the control transfer restrictions specified above. 26 

Verifiability: 27 

The stack shall contain exactly one item (of type int32). 28 
  29 
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3.35  endfinal ly  – end the f inally or fault  clause of  an exception block 1 

Format Assembly Format Description 

DC endfault End fault clause of an exception block. 

DC endfinally End finally clause of an exception block. 
 2 
Stack Transition: 3 

… � … 4 

Description: 5 

Return from the finally or fault clause of an exception block (see the Exception Handling subclause of 6 
Partition I for details). 7 

Signals the end of the finally or fault clause so that stack unwinding can continue until the exception 8 
handler is invoked. The endfinally or endfault instruction transfers control back to the CLI exception 9 
mechanism. This then searches for the next finally clause in the chain, if the protected block was exited 10 
with a leave instruction. If the protected block was exited with an exception, the CLI will search for the next 11 
finally or fault, or enter the exception handler chosen during the first pass of exception handling. 12 

An endfinally instruction can only appear lexically within a finally block. Unlike the endfilter instruction, 13 
there is no requirement that the block end with an endfinally instruction, and there can be as many endfinally 14 
instructions within the block as required. These same restrictions apply to the endfault instruction and the 15 
fault block, mutatis mutandis. 16 

Control cannot be transferred into a finally (or fault block) except through the exception mechanism. 17 
Control cannot be transferred out of a finally (or fault) block except through the use of a throw 18 
instruction or executing the endfinally (or endfault) instruction. In particular, it is not valid to “fall out” of a 19 
finally (or fault) block or to execute a ret or leave instruction within a finally (or fault) block. 20 

Note that the endfault and endfinally instructions are aliases—they correspond to the same opcode. 21 

endfinally empties the evaluation stack as a side-effect. 22 

Exceptions: 23 

None. 24 

Correctness: 25 
Correct CIL guarantees the control transfer restrictions specified above. 26 

Verifiability: 27 
There are no additional verification requirements. 28 
  29 
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3.36  initblk  – init ialize a block of  memory to a value 1 

Format Assembly Format Description 

FE 18 initblk Set all bytes in a block of memory to a given byte value. 
 2 
Stack Transition: 3 

…, addr, value, size � … 4 

Description: 5 

The initblk instruction sets size (of type unsigned int32) bytes starting at addr (of type native int, 6 
or &) to value (of type unsigned int8). initblk assumes that addr is aligned to the natural size of the 7 
machine (but see the unaligned. prefix instruction). 8 

[Rationale: initblk is intended for initializing structures (rather than arbitrary byte-runs). All such structures, 9 
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the compiler 10 
that generates initblk instructions to be aware of whether the code will eventually execute on a 32-bit or 64-bit 11 
platform. end rationale] 12 

The operation of the initblk instructions can be altered by an immediately preceding volatile. or unaligned. 13 
prefix instruction. 14 

Exceptions: 15 

System.NullReferenceException can be thrown if an invalid address is detected. 16 

Correctness: 17 

Correct CIL code ensures the restrictions specified above. 18 

Verifiability: 19 

The initblk instruction is never verifiable.  20 
  21 
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3.37  jmp  – jump to method 1 

Format Assembly Format Description 

27 <T> jmp method Exit current method and jump to the specified method. 
 2 
Stack Transition: 3 

… � … 4 

Description: 5 

Transfer control to the method specified by method, which is a metadata token (either a methodref or 6 
methoddef (See Partition II). The current arguments are transferred to the destination method. 7 

The evaluation stack shall be empty when this instruction is executed. The calling convention, number and type 8 
of arguments at the destination address shall match that of the current method. 9 

The jmp instruction cannot be used to transferred control out of a try, filter, catch, fault or 10 
finally block; or out of a synchronized region. If this is done, results are undefined. See Partition I. 11 

Exceptions: 12 

None. 13 

Correctness: 14 

Correct CIL code obeys the control flow restrictions specified above. 15 

Verifiability: 16 

The jmp instruction is never verifiable.  17 
  18 
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3.38  ldarg.<length>  – load argument onto the stack 1 

Format Assembly 
Format 

Description 

FE 09 <unsigned int16> ldarg num Load argument numbered num onto the stack. 

0E <unsigned int8> ldarg.s num Load argument numbered num onto the stack, short form. 

02 ldarg.0 Load argument 0 onto the stack. 

03 ldarg.1 Load argument 1 onto the stack. 

04 ldarg.2 Load argument 2 onto the stack. 

05 ldarg.3 Load argument 3 onto the stack. 
 2 
Stack Transition: 3 

… � …, value 4 

Description: 5 

The ldarg num instruction pushes onto the evaluation stack, the num’th incoming argument, where arguments 6 
are numbered 0 onwards (see Partition I). The ldarg instruction can be used to load a value type or a built-in 7 
value onto the stack by copying it from an incoming argument. The type of the value is the same as the type of 8 
the argument, as specified by the current method’s signature. 9 

The ldarg.0, ldarg.1, ldarg.2, and ldarg.3 instructions are efficient encodings for loading any one of the first 10 
4 arguments. The ldarg.s instruction is an efficient encoding for loading argument numbers 4–255. 11 

For procedures that take a variable-length argument list, the ldarg instructions can be used only for the initial 12 
fixed arguments, not those in the variable part of the signature. (See the arglist instruction.) 13 

Arguments that hold an integer value smaller than 4 bytes long are expanded to type int32 when they are 14 
loaded onto the stack. Floating-point values are expanded to their native size (type F). 15 

Exceptions: 16 

None. 17 

Correctness: 18 

Correct CIL guarantees that num is a valid argument index. 19 

Verifiability: 20 

See §1.8 for details on how verification determines the type of the value loaded onto the stack. 21 
  22 
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3.39  ldarga.<length>  – load an argument address 1 

Format Assembly Format Description 

FE 0A <unsigned int16> ldarga arg�um Fetch the address of argument arg�um. 

0F <unsigned int8>  ldarga.s arg�um Fetch the address of argument arg�um, short form. 

 2 
Stack Transition: 3 

…, � …, address of argument number argNum 4 

Description: 5 

The ldarga instruction fetches the address (of type &, i.e., managed pointer) of the arg�um’th argument, where 6 
arguments are numbered 0 onwards. The address will always be aligned to a natural boundary on the target 7 
machine (cf. cpblk and initblk). The short form (ldarga.s) should be used for argument numbers 0–255. 8 

For procedures that take a variable-length argument list, the ldarga instructions can be used only for the initial 9 
fixed arguments, not those in the variable part of the signature. 10 

[Rationale: ldarga is used for byref parameter passing (see Partition I). In other cases, ldarg and starg should 11 
be used. end rationale] 12 

Exceptions: 13 
None. 14 

Correctness: 15 

Correct CIL ensures that arg�um is a valid argument index. 16 

Verifiability: 17 
See §1.8 for details on how verification determines the type of the value loaded onto the stack. 18 
  19 
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3.40  ldc.<type>  – load numeric constant 1 

Format Assembly Format Description 

20 <int32> ldc.i4 num Push num of type int32 onto the stack as int32. 

21 <int64> ldc.i8 num Push num of type int64 onto the stack as int64. 

22 <float32> ldc.r4 num Push num of type float32 onto the stack as F. 

23 <float64> ldc.r8 num Push num of type float64 onto the stack as F. 

16 ldc.i4.0 Push 0 onto the stack as int32. 

17 ldc.i4.1 Push 1 onto the stack as int32. 

18 ldc.i4.2 Push 2 onto the stack as int32. 

19 ldc.i4.3 Push 3 onto the stack as int32. 

1A ldc.i4.4 Push 4 onto the stack as int32. 

1B ldc.i4.5 Push 5 onto the stack as int32. 

1C ldc.i4.6 Push 6 onto the stack as int32. 

1D ldc.i4.7 Push 7 onto the stack as int32. 

1E ldc.i4.8 Push 8 onto the stack as int32. 

15 ldc.i4.m1 Push -1 onto the stack as int32. 

15 ldc.i4.M1 Push -1 of type int32 onto the stack as int32 (alias for 
ldc.i4.m1). 

1F <int8> ldc.i4.s num Push num onto the stack as int32, short form. 

 2 
Stack Transition: 3 

… � …, num 4 

Description: 5 

The ldc num instruction pushes number num or some constant onto the stack. There are special short encodings 6 
for the integers –128 through 127 (with especially short encodings for –1 through 8). All short encodings push 7 
4-byte integers on the stack. Longer encodings are used for 8-byte integers and 4- and 8-byte floating-point 8 
numbers, as well as 4-byte values that do not fit in the short forms. 9 

There are three ways to push an 8-byte integer constant onto the stack 10 

1. For constants that shall be expressed in more than 32 bits, use the ldc.i8 instruction. 11 

2. For constants that require 9–32 bits, use the ldc.i4 instruction followed by a conv.i8. 12 

3. For constants that can be expressed in 8 or fewer bits, use a short form instruction followed by a 13 
conv.i8. 14 

There is no way to express a floating-point constant that has a larger range or greater precision than a 64-bit 15 
IEC 60559:1989 number, since these representations are not portable across architectures. 16 

Exceptions: 17 
None. 18 

Correctness: 19 
Verifiability: 20 

The ldc instruction is always verifiable. 21 
  22 
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3.41  ldftn  – load method pointer 1 

Format Assembly Format Description 

FE 06 <T> ldftn method Push a pointer to a method referenced by method, on the stack. 
 2 
Stack Transition: 3 

… � …, ftn 4 

Description: 5 

The ldftn instruction pushes an unmanaged pointer (type native int) to the native code implementing the 6 
method described by method (a metadata token, either a methoddef or methodref (see Partition II) onto 7 
the stack). The value pushed can be called using the calli instruction if it references a managed method (or a 8 
stub that transitions from managed to unmanaged code). 9 

The CLI resolves the method pointer according to the rules specified in I.12.4.1.3 (Computed destinations), 10 
except that the destination is computed with respect to the class specified by method. 11 

The value returned points to native code using the calling convention specified by method. Thus a method 12 
pointer can be passed to unmanaged native code (e.g., as a callback routine). Note that the address computed by 13 
this instruction can be to a thunk produced specially for this purpose (for example, to re-enter the CIL 14 
interpreter when a native version of the method isn’t available). 15 

[�ote: There are many options for implementing this instruction.  Conceptually, this instruction places on the 16 
virtual machine’s evaluation stack a representation of the address of the method specified.  In terms of native 17 
code this can be an address (as specified), a data structure that contains the address, or any value that can be 18 
used to  compute the address, depending on the architecture of the underlying machine, the native calling 19 
conventions, and the implementation technology of the VES (JIT, interpreter, threaded code, etc.). end note] 20 

Exceptions: 21 

System.MethodAccessException can be thrown when there is an invalid attempt to access a non-22 
public method. 23 

Correctness: 24 

Correct CIL requires that method is a valid methoddef or methodref token. 25 

Verifiability: 26 

Verification tracks the type of the value pushed in more detail than the native int type, remembering that 27 
it is a method pointer. Such a method pointer can then be used with calli or to construct a delegate. 28 
  29 
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3.42  ldind.<type>  – load value indirect onto the stack 1 

Format Assembly Format Description 

46 ldind.i1  Indirect load value of type int8 as int32 on the stack. 

48 ldind.i2 Indirect load value of type int16 as int32 on the stack. 

4A ldind.i4 Indirect load value of type int32 as int32 on the stack. 

4C ldind.i8 Indirect load value of type int64 as int64 on the stack. 

47  ldind.u1 Indirect load value of type unsigned int8 as int32 on the 
stack. 

49 ldind.u2 Indirect load value of type unsigned int16 as int32 on 
the stack. 

4B ldind.u4 Indirect load value of type unsigned int32 as int32 on 
the stack. 

4E ldind.r4 Indirect load value of type float32 as F on the stack. 

4C ldind.u8 Indirect load value of type unsigned int64 as int64 on 
the stack (alias for ldind.i8). 

4F ldind.r8  Indirect load value of type float64 as F on the stack. 

4D ldind.i Indirect load value of type native int as native int on the 
stack 

50 ldind.ref Indirect load value of type object ref as O on the stack. 
 2 
Stack Transition: 3 

…, addr � …, value 4 

Description: 5 

The ldind instruction indirectly loads a value from address addr (an unmanaged pointer, native int, or 6 
managed pointer, &) onto the stack. The source value is indicated by the instruction suffix. The ldind.ref 7 
instruction is a shortcut for a ldobj instruction that specifies the type pointed at by addr, all of the other ldind 8 
instructions are shortcuts for a ldobj instruction that specifies the corresponding built-in value class. 9 

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded 10 
onto the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack. 11 

Correct CIL ensures that the ldind instructions are used in a manner consistent with the type of the pointer. 12 

The address specified by addr shall be to a location with the natural alignment of <type> or a 13 
NullReferenceException might occur (but see the unaligned. prefix instruction). (Alignment is 14 
discussed in Partition I.) The results of all CIL instructions that return addresses (e.g., ldloca and ldarga) are 15 
safely aligned. For data types larger than 1 byte, the byte ordering is dependent on the target CPU. Code that 16 
depends on byte ordering might not run on all platforms. 17 

The operation of the ldind instructions can be altered by an immediately preceding volatile. or unaligned. 18 
prefix instruction. 19 

[Rationale: Signed and unsigned forms for the small integer types are needed so that the CLI can know whether 20 
to sign extend or zero extend. The ldind.u8 and ldind.u4 variants are provided for convenience; ldind.u8 is an 21 
alias for ldind.i8; ldind.u4 and ldind.i4 have different opcodes, but their effect is identical. end rationale] 22 

Exceptions: 23 

System.NullReferenceException can be thrown if an invalid address is detected. 24 

Correctness: 25 
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Correct CIL only uses an ldind instruction in a manner consistent with the type of the pointer. For ldind.ref the 1 
type pointer at by addr cannot be a generic parameter. 2 

[�ote: A ldobj instruction can be used with generic parameter types. end note] 3 

 4 

Verifiability: 5 
For verifiable code, the address on the stack shall be a managed pointer, and the instruction form used shall be 6 
consistent with the type of the pointer, as specified by the table above. 7 

  8 
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3.43  ldloc  – load local variable onto the stack 1 

Format Assembly 
Format 

Description 

FE 0C<unsigned int16> ldloc indx Load local variable of index indx onto stack. 

11 <unsigned int8> ldloc.s indx Load local variable of index indx onto stack, short form. 

06 ldloc.0 Load local variable 0 onto stack. 

07 ldloc.1 Load local variable 1 onto stack. 

08 ldloc.2 Load local variable 2 onto stack. 

09 ldloc.3 Load local variable 3 onto stack. 
 2 
Stack Transition: 3 

… � …, value 4 

Description: 5 

The ldloc indx instruction pushes the contents of the local variable number indx onto the evaluation stack, 6 
where local variables are numbered 0 onwards. Local variables are initialized to 0 before entering the method 7 
only if the localsinit on the method is true (see Partition I). The ldloc.0, ldloc.1, ldloc.2, and ldloc.3 8 
instructions provide an efficient encoding for accessing the first 4 local variables. The ldloc.s instruction 9 
provides an efficient encoding for accessing local variables 4–255. 10 

The type of the value is the same as the type of the local variable, which is specified in the method header. See 11 
Partition I. 12 

Local variables that are smaller than 4 bytes are expanded to type int32 when they are loaded onto the stack. 13 
Floating-point values are expanded to their native size (type F). 14 

Exceptions: 15 

System.VerificationException is thrown if the the localsinit bit for this method has not been set, and 16 
the assembly containing this method has not been granted 17 
System.Security.Permissions.SecurityPermission.SkipVerification (and the CIL 18 
does not perform automatic definite-assignment analysis) 19 

Correctness: 20 
Correct CIL ensures that indx is a valid local index. 21 

For the ldloc indx instruction, indx shall lie in the range 0–65534 inclusive (specifically, 65535 is not valid). 22 

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 23 
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had 24 
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale] 25 

Verifiability: 26 

For verifiable code, this instruction shall guarantee that it is not loading an uninitialized value – whether that 27 
initialization is done explicitly by having set thelocalsinit bit for the method, or by previous instructions (where 28 
the CLI performs definite-assignment analysis). 29 

See §1.8 for more details on how verification determines the type of a local variable. 30 
  31 



 

78  Partition III  

3.44  ldloca.<length>  – load local variable  address 1 

Format Assembly Format Description 

FE 0D <unsigned int16> ldloca indx Load address of local variable with index indx. 

12 <unsigned int8> ldloca.s indx Load address of local variable with index indx, short form. 

 2 
Stack Transition: 3 

… � …, address 4 

Description: 5 

The ldloca instruction pushes the address of the local variable number indx onto the stack, where local 6 
variables are numbered 0 onwards. The value pushed on the stack is already aligned correctly for use with 7 
instructions like ldind and stind. The result is a managed pointer (type &). The ldloca.s instruction provides an 8 
efficient encoding for use with the local variables 0–255. (Local variables that are the subject of ldloca shall be 9 
aligned as described in the ldind instruction, since the address obtained by ldloca can be used as an argument 10 
to ldind.) 11 

Exceptions: 12 

System.VerificationException is thrown if the the localsinit bit for this method has not been set, and 13 
the assembly containing this method has not been granted 14 
System.Security.Permissions.SecurityPermission.SkipVerification (and the CIL 15 
does not perform automatic definite-assignment analysis) 16 

Correctness: 17 
Correct CIL ensures that indx is a valid local index. 18 

For the ldloca indx instruction, indx shall lie in the range 0–65534 inclusive (specifically, 65535 is not valid). 19 

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 20 
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had 21 
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale] 22 

Verifiability: 23 
See §1.8 for details on how verification determines the type of a local variable.  24 

For verifiable code, this instruction shall guarantee that it is not loading the address of an uninitialized value – 25 
whether that initialization is done explicitly by having set the localsinit bit for the method, or by previous 26 
instructions (where the CLI performs definite-assignment analysis) 27 
  28 
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3.45  ldnul l  – load a null  pointer 1 

Format Assembly Format Description 

14 ldnull Push a null reference on the stack. 
 2 
Stack Transition: 3 

… � …, null value 4 

Description: 5 

The ldnull pushes a null reference (type O) on the stack. This is used to initialize locations before they become 6 
live or when they become dead. 7 

[Rationale: It might be thought that ldnull is redundant: why not use ldc.i4.0 or ldc.i8.0 instead? The answer is 8 
that ldnull provides a size-agnostic null – analogous to an ldc.i instruction, which does not exist. However, 9 
even if CIL were to include an ldc.i instruction it would still benefit verification algorithms to retain the ldnull 10 
instruction because it makes type tracking easier. end rationale] 11 

Exceptions: 12 

None. 13 

Correctness: 14 
 15 
Verifiability: 16 

The ldnull instruction is always verifiable, and produces a value that verification considers compatible with any 17 
other reference type. 18 
  19 
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3.46  leave.<length>  – exit  a protected region of  code 1 

Format Assembly Format Description 

DD <int32> leave target Exit a protected region of code. 

DE <int8> leave.s target Exit a protected region of code, short form. 

 2 
Stack Transition: 3 

…, � 4 

Description: 5 

The leave instruction unconditionally transfers control to target. target is represented as a signed offset 6 
(4 bytes for leave, 1 byte for leave.s) from the beginning of the instruction following the current instruction. 7 

The leave instruction is similar to the br instruction, but the former can be used to exit a try, filter, or 8 
catch block whereas the ordinary branch instructions can only be used in such a block to transfer control 9 
within it. The leave instruction empties the evaluation stack and ensures that the appropriate surrounding 10 
finally blocks are executed. 11 

It is not valid to use a leave instruction to exit a finally block. To ease code generation for exception 12 
handlers it is valid from within a catch block to use a leave instruction to transfer control to any instruction 13 
within the associated try block. 14 

The leave instruction can be used to exit multiple nested blocks (see Partition I). 15 

If an instruction has one or more prefix codes, control can only be transferred to the first of these prefixes. 16 

Exceptions: 17 
None. 18 

Correctness: 19 

Correct CIL requires the computed destination lie within the current method. 20 

Verifiability: 21 

See §1.8 for details. 22 
  23 



 

 Partition III 81 

3.47  localloc  – allocate space in the local  dynamic memory pool 1 

Format Assembly Format Description 

FE 0F localloc Allocate space from the local memory pool. 
 2 
Stack Transition: 3 

size � address 4 

Description: 5 

The localloc instruction allocates size (type native unsigned int or U4) bytes from the local dynamic 6 
memory pool and returns the address (an unmanaged pointer, type native int) of the first allocated byte. If the 7 
localsinit flag on the method is true, the block of memory returned is initialized to 0; otherwise, the initial value 8 
of that block of memory is unspecified. The area of memory is newly allocated. When the current method 9 
returns, the local memory pool is available for reuse. 10 

address is aligned so that any built-in data type can be stored there using the stind instructions and loaded 11 
using the ldind instructions. 12 

The localloc instruction cannot occur within an exception block: filter, catch, finally, or fault. 13 

[Rationale: localloc is used to create local aggregates whose size shall be computed at runtime. It can be used 14 
for C’s intrinsic alloca method. end rationale] 15 

Exceptions: 16 

System.StackOverflowException is thrown if there is insufficient memory to service the request. 17 

Correctness: 18 

Correct CIL requires that the evaluation stack be empty, apart from the size item 19 

Verifiability: 20 
This instruction is never verifiable. 21 
  22 
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3.48  mul  – multiply values 1 

Format Assembly Format Description 

5A mul Multiply values. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The mul instruction multiplies value1 by value2 and pushes the result on the stack. Integral operations silently 6 
truncate the upper bits on overflow (see mul.ovf). 7 

For floating-point types, 0 × infinity = NaN. 8 

The acceptable operand types and their corresponding result data types are encapsulated in 9 
Table 2: Binary Numeric Operations. 10 

Exceptions: 11 

None. 12 

Correctness and Verifiability: 13 
See Table 2: Binary Numeric Operations. 14 

 15 
  16 
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3.49  mul.ovf.<type>  –  multiply integer values with overf low check 1 

Format Assembly Format Description 

D8 mul.ovf Multiply signed integer values. Signed result shall fit in same 
size. 

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result shall fit in 
same size. 

 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The mul.ovf instruction multiplies integers, value1 and value2, and pushes the result on the stack. An exception 6 
is thrown if the result will not fit in the result type. 7 

The acceptable operand types and their corresponding result data types are encapsulated in 8 
Table 7: Overflow Arithmetic Operations. 9 

Exceptions: 10 

System.OverflowException is thrown if the result can not be represented in the result type. 11 

Correctness and Verifiability: 12 

See Table 8: Conversion Operations. 13 

 14 
  15 
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3.50  neg  – negate 1 

Format Assembly Format Description 

65 Neg Negate value. 
 2 
Stack Transition: 3 

…, value � …, result 4 

Description: 5 

The neg instruction negates value and pushes the result on top of the stack. The return type is the same as the 6 
operand type. 7 

Negation of integral values is standard twos-complement negation. In particular, negating the most negative 8 
number (which does not have a positive counterpart) yields the most negative number. To detect this overflow 9 
use the sub.ovf instruction instead (i.e., subtract from 0). 10 

Negating a floating-point number cannot overflow; negating NaN returns NaN. 11 

The acceptable operand types and their corresponding result data types are encapsulated in 12 
Table 3: Unary Numeric Operations. 13 

Exceptions: 14 

None. 15 

Correctness and Verifiability: 16 
See Table 3: Unary Numeric Operations. 17 
  18 
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3.51  nop  – no operation 1 

Format Assembly Format Description 

00 Nop Do nothing. 
 2 
Stack Transition: 3 

…, � …, 4 

Description: 5 

The nop instruction does nothing. It is intended to fill in space if bytecodes are patched. 6 

Exceptions: 7 

None. 8 

Correctness: 9 
 10 
Verifiability: 11 

The nop instruction is always verifiable. 12 
  13 
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3.52  not  – bitwise complement 1 

Format Assembly Format Description 

66 Not Bitwise complement. 
 2 
Stack Transition: 3 

…, value � …, result 4 

Description: 5 

The not instruction computes the bitwise complement of the integer value on top of the stack and leaves the 6 
result on top of the stack. The return type is the same as the operand type. 7 

The acceptable operand types and their corresponding result data type are encapsulated in 8 
Table 5: Integer Operations. 9 

Exceptions: 10 

None. 11 

Correctness and Verifiability: 12 

See Table 5: Integer Operations. 13 
  14 
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3.53  or  –  bitwise OR 1 

Format Instruction Description 

60 Or Bitwise OR of two integer values, returns an integer. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The or instruction computes the bitwise OR of the top two values on the stack and leaves the result on the stack. 6 

The acceptable operand types and their corresponding result data type are encapsulated in 7 
Table 5: Integer Operations. 8 

Exceptions: 9 

None. 10 

Correctness and Verifiability: 11 
See Table 5: Integer Operations. 12 
  13 
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3.54  pop  – remove the top element of  the stack 1 

Format Assembly Format Description 

26 pop Pop value from the stack. 
 2 
Stack Transition: 3 

…, value � … 4 

Description: 5 

The pop instruction removes the top element from the stack. 6 

Exceptions: 7 

None. 8 

Correctness: 9 
 10 
Verifiability: 11 
No additional requirements. 12 
  13 
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3.55  rem  – compute remainder 1 

Format Assembly Format Description 

5D rem Remainder when dividing one value by another. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The rem instruction divides value1 by value2 and pushes the remainder result on the stack. 6 

The acceptable operand types and their corresponding result data type are encapsulated in 7 
Table 2: Binary Numeric Operations. 8 

For integer operands 9 

result = value1 rem value2 satisfies the following conditions: 10 

           result = value1 – value2×(value1 div value2), and 11 

           0 ≤ |result| < |value2|, and 12 

           sign(result) = sign(value1), 13 

where div is the division instruction, which truncates towards zero. 14 

For floating-point operands 15 

rem is defined similarly as for integer operands, except that, if value2 is zero or value1 is infinity, result is 16 
NaN. If value2 is infinity, result is value1. This definition is different from the one for floating-point 17 
remainder in the IEC 60559:1989 Standard. That Standard specifies that value1 div value2 is the nearest integer 18 
instead of truncating towards zero. System.Math.IEEERemainder (see Partition IV) provides the IEC 19 
60559:1989 behavior. 20 

Implementation Specific (Microsoft) 21 

In the Microsoft CLI, where value2 is +infinity or -infinity result is simply value1. 22 

Exceptions: 23 

Integral operations throw System.DivideByZeroException if value2 is zero. 24 

Integral operations can throw System.ArithmeticException if value1 is the smallest representable 25 
integer value and value2 is -1. 26 

Implementation Specific (Microsoft) 27 

On the x86 an System.OverflowException is thrown when computing 28 
(System.Int32.MaxValue rem –1). 29 

Example: 30 

+10 rem +6  is 4 (+10 div +6 = 1) 31 

+10 rem -6  is 4 (+10 div -6 = -1) 32 

-10 rem +6  is -4 (-10 div +6 = -1) 33 

-10 rem -6  is -4 (-10 div -6 = 1) 34 

For the various floating-point values of 10.0 and 6.0, rem gives the same values; 35 
System.Math.IEEERemainder, however, gives the following values. 36 

System.Math.IEEERemainder(+10.0,+6.0) is  -2 (+10.0 div +6.0 =  1.666…7) 37 

System.Math.IEEERemainder(+10.0,-6.0) is  -2 (+10.0 div -6.0 = -1.666…7) 38 

System.Math.IEEERemainder(-10.0,+6.0) is   2 (-10.0 div +6.0 = -1.666…7) 39 
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System.Math.IEEERemainder(-10.0,-6.0) is   2 (-10.0 div -6.0 =    1.666…7) 1 

Correctness and Verifiability: 2 

See Table 2: Binary Numeric Operations. 3 
  4 
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3.56  rem.un  – compute integer remainder, unsigned 1 

Format Assembly Format Description 

5E rem.un Remainder when dividing one unsigned value by another. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The rem.un instruction divides value1 by value2 and pushes the remainder result on the stack. (rem.un treats 6 
its arguments as unsigned integers, while rem treats them as signed integers.) 7 

result = value1 rem.un value2 satisfies the following conditions: 8 

 result = value1 – value2×(value1 div.un value2), and 9 

 0 ≤ result < value2, 10 

where div.un is the unsigned division instruction. rem.un is unspecified for floating-point numbers. 11 

The acceptable operand types and their corresponding result data type are encapsulated in 12 
Table 5: Integer Operations. 13 

Exceptions: 14 

Integral operations throw System.DivideByZeroException if value2 is zero. 15 

Example: 16 

+5 rem.un +3  is 2   (+5 div.un +3 = 1) 17 

+5 rem.un -3  is 5   (+5 div.un -3 = 0) 18 

-5 rem.un +3  is 2   ( -5 div.un +3 = 1431655763 or 0x55555553) 19 

-5 rem.un -3  is -5 or 0xfffffffb ( -5 div.un -3 = 0) 20 

Correctness and Verifiability: 21 

See Table 5: Integer Operations. 22 
  23 
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3.57  ret  – return from method 1 

Format Assembly Format Description 

2A Ret Return from method, possibly with a value. 
 2 
Stack Transition: 3 

 retVal on callee evaluation stack (not always present) � 4 

…, retVal on caller evaluation stack (not always present) 5 

Description: 6 

Return from the current method. The return type, if any, of the current method determines the type of value to 7 
be fetched from the top of the stack and copied onto the stack of the method that called the current method. The 8 
evaluation stack for the current method shall be empty except for the value to be returned. 9 

The ret instruction cannot be used to transfer control out of a try, filter, catch, or finally block. 10 
From within a try or catch, use the leave instruction with a destination of a ret instruction that is outside all 11 
enclosing exception blocks. Because the filter and finally blocks are logically part of exception 12 
handling, not the method in which their code is embedded, correctly generated CIL does not perform a method 13 
return from within a filter or finally. See Partition I. 14 

Exceptions: 15 

None. 16 

Correctness: 17 

Correct CIL obeys the control constraints describe above. 18 

Verifiability: 19 
Verification requires that the type of retVal is compatible with the declared return type of the current method. 20 
  21 
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3.58  shl  – shif t integer left  1 

Format Assembly Format Description 

62 Shl Shift an integer left (shifting in zeros), return an integer. 
 2 
Stack Transition: 3 

…, value, shiftAmount � …, result 4 

Description: 5 

The shl instruction shifts value (int32, int64 or native int) left by the number of bits specified by 6 
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is 7 
greater than or equal to the width of value. See Table 6: Shift Operations for details of which operand types are 8 
allowed, and their corresponding result type. 9 

Exceptions: 10 

None. 11 

Correctness and Verifiability: 12 

See Table 5: Integer Operations. 13 
  14 
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3.59  shr  – shif t  integer right 1 

Format Assembly Format Description 

63 Shr Shift an integer right (shift in sign), return an integer. 
 2 
Stack Transition: 3 

…, value, shiftAmount � …, result 4 

Description: 5 

The shr instruction shifts value (int32, int64 or native int) right by the number of bits specified by 6 
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is 7 
greater than or equal to the width of value. shr replicates the high order bit on each shift, preserving the sign of 8 
the original value in result. See Table 6: Shift Operations for details of which operand types are allowed, and 9 
their corresponding result type. 10 

Exceptions: 11 

None. 12 

Correctness and Verifiability: 13 

See Table 5: Integer Operations. 14 
  15 
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3.60  shr.un  – shift  integer right, unsigned 1 

Format Assembly Format Description 

64 shr.un Shift an integer right (shift in zero), return an integer. 
 2 
Stack Transition: 3 

…, value, shiftAmount � …, result 4 

Description: 5 

The shr.un instruction shifts value (int32, int 64 or native int) right by the number of bits specified 6 
by shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if 7 
shiftAmount is greater than or equal to the width of value. shr.un inserts a zero bit on each shift. See Table 6: 8 
Shift Operations for details of which operand types are allowed, and their corresponding result type. 9 

Exceptions: 10 

None. 11 

Correctness and Verifiability: 12 

See Table 5: Integer Operations. 13 
  14 
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3.61  starg.<length>  – store a value in an argument s lot 1 

Format Assembly 
Format 

Description 

FE 0B <unsigned int16> starg num Store value to the argument numbered num. 

10 <unsigned int8> starg.s num Store value to the argument numbered num, short form. 

 2 
Stack Transition: 3 

…, value � …, 4 

Description: 5 

The starg num instruction pops a value from the stack and places it in argument slot num (see Partition I). The 6 
type of the value shall match the type of the argument, as specified in the current method’s signature. The 7 
starg.s instruction provides an efficient encoding for use with the first 256 arguments. 8 

For procedures that take a variable argument list, the starg instructions can be used only for the initial fixed 9 
arguments, not those in the variable part of the signature. 10 

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from 11 
the stack to the argument. Floating-point values are rounded from their native size (type F) to the size 12 
associated with the argument. 13 

Exceptions: 14 
None. 15 

Correctness: 16 

Correct CIL requires that num is a valid argument slot. 17 

Verifiability: 18 

Verification also checks that the verification type of value matches the type of the argument, as specified in the 19 
current method’s signature (verification types are less detailed than CLI types). 20 
  21 
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3.62  stind.<type>  – store value indirect from stack 1 

Format Assembly Format Description 

52 stind.i1 Store value of type int8 into memory at address 

53 stind.i2 Store value of type int16 into memory at address 

54 stind.i4 Store value of type int32 into memory at address 

55 stind.i8 Store value of type int64 into memory at address 

56 stind.r4 Store value of type float32 into memory at address 

57 stind.r8 Store value of type float64 into memory at address 

DF stind.i Store value of type native int into memory at address 

51 stind.ref Store value of type object ref (type O) into memory at address 
 2 
Stack Transition: 3 

…, addr, val � … 4 

Description: 5 

The stind instruction stores value val at address addr (an unmanaged pointer, type native int, or managed 6 
pointer, type &). The address specified by addr shall be aligned to the natural size of val or a 7 
NullReferenceException can occur (but see the unaligned. prefix instruction). The results of all CIL 8 
instructions that return addresses (e.g., ldloca and ldarga) are safely aligned. For data types larger than 1 byte, 9 
the byte ordering is dependent on the target CPU. Code that depends on byte ordering might not run on all 10 
platforms. The stind.ref instruction is a shortcut for a stobj instruction that specifies the type pointed at by 11 
addr, all of the other stind instructions are shortcuts for a stobj instruction that specifies the corresponding 12 
built-in value class. 13 

Type-safe operation requires that the stind instruction be used in a manner consistent with the type of the 14 
pointer. 15 

The operation of the stind instruction can be altered by an immediately preceding volatile. or unaligned. 16 
prefix instruction. 17 

Exceptions: 18 

System.NullReferenceException is thrown if addr is not naturally aligned for the argument type 19 
implied by the instruction suffix. 20 

Correctness: 21 

Correct CIL ensures that addr is a pointer whose type is assignment-compatible with that of val, subject to 22 
implicit conversion as specified in §1.6. For stind.ref the type pointer at by addr cannot be a generic parameter. 23 

[�ote: A stobj instruction can be used with generic parameter types. end note] 24 

 25 

Verifiability: 26 

For verifiable code, addr shall be a managed pointer, and the type of val shall be assignment compatible with 27 
addr: if addr has type S& and val has type T, then S := T according to the rules in §1.8.1.2.2. 28 
  29 
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3.63  stloc  – pop value from stack to local variable 1 

Format Assembly Format Description 

FE 0E <unsigned int16> stloc indx Pop a value from stack into local variable indx. 

13 <unsigned int8> stloc.s indx Pop a value from stack into local variable indx, short form. 

0A stloc.0 Pop a value from stack into local variable 0. 

0B stloc.1 Pop a value from stack into local variable 1. 

0C stloc.2 Pop a value from stack into local variable 2. 

0D stloc.3 Pop a value from stack into local variable 3. 
 2 
Stack Transition: 3 

…, value � … 4 

Description: 5 

The stloc indx instruction pops the top value off the evaluation stack and moves it into local variable number 6 
indx (see Partition I), where local variables are numbered 0 onwards. The type of value shall match the type of 7 
the local variable as specified in the current method’s locals signature. The stloc.0, stloc.1, stloc.2, and 8 
stloc.3 instructions provide an efficient encoding for the first 4 local variables; the stloc.s instruction provides 9 
an efficient encoding for local variables 4–255. 10 

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the 11 
stack to the local variable. Floating-point values are rounded from their native size (type F) to the size 12 
associated with the argument. 13 

Exceptions: 14 
None. 15 

Correctness: 16 

Correct CIL requires that indx be a valid local index. For the stloc indx instruction, indx shall lie in the 17 
range 0–65534 inclusive (specifically, 65535 is not valid) 18 

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 19 
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had 20 
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale] 21 

Verifiability: 22 
Verification also checks that the verification type of value matches the type of the local, as specified in the 23 
current method’s locals signature. 24 
  25 
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3.64  sub  – subtract numeric values  1 

Format Assembly Format Description 

59 sub Subtract value2 from value1, returning a new value. 
 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The sub instruction subtracts value2 from value1 and pushes the result on the stack. Overflow is not detected 6 
for the integral operations (see sub.ovf); for floating-point operands, sub returns +inf on positive overflow, -7 
inf on negative overflow, and zero on floating-point underflow. 8 

The acceptable operand types and their corresponding result data type are encapsulated in Table 2: Binary 9 
Numeric Operations. 10 

Exceptions: 11 

None. 12 

Correctness and Verifiability: 13 

See Table2: Binary Numeric Operations. 14 
  15 
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3.65  sub.ovf.<type>  – subtract integer values , checking for overf low 1 

Format Assembly Format Description 

DA sub.ovf Subtract native int from a native int. Signed result shall fit in 
same size. 

DB sub.ovf.un Subtract native unsigned int from a native unsigned int. 
Unsigned result shall fit in same size. 

 2 
Stack Transition: 3 

…, value1, value2 � …, result 4 

Description: 5 

The sub.ovf instruction subtracts value2 from value1 and pushes the result on the stack. The type of the values 6 
and the return type are specified by the instruction. An exception is thrown if the result does not fit in the result 7 
type. 8 

The acceptable operand types and their corresponding result data type is encapsulated in 9 
Table 7: Overflow Arithmetic Operations. 10 

Exceptions: 11 

System.OverflowException is thrown if the result can not be represented in the result type. 12 

Correctness and Verifiability: 13 

See Table 7: Overflow Arithmetic Operations. 14 
  15 



 

 Partition III 101 

3.66  switch  – table switch based on value 1 

Format Assembly Format Description 

45 <unsigned int32> <int32>… <int32> switch ( t1, t2 … t� ) Jump to one of n values. 

 2 
Stack Transition: 3 

…, value � …, 4 

Description: 5 

The switch instruction implements a jump table. The format of the instruction is an unsigned int32 6 
representing the number of targets �, followed by � int32 values specifying jump targets: these targets are 7 
represented as offsets (positive or negative) from the beginning of the instruction following this switch 8 
instruction. 9 

The switch instruction pops value off the stack and compares it, as an unsigned integer, to n. If value is less 10 
than n, execution is transferred to the value’th target, where targets are numbered from 0 (i.e., a value of 0 takes 11 
the first target, a value of 1 takes the second target, and so on). If value is not less than n, execution continues at 12 
the next instruction (fall through). 13 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 14 
prefixes. 15 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 16 
instruction. (Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for 17 
details). 18 

Exceptions: 19 
None. 20 

Correctness: 21 

Correct CIL obeys the control transfer constraints listed above. 22 

Verifiability: 23 
Verification requires the type-consistency of the stack, locals and arguments for every possible way of reaching 24 
all destination instructions. See §1.8 for more details. 25 
  26 
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3.67  xor  – bitwise XOR 1 

Format Assembly Format Description 

61 xor Bitwise XOR of integer values, returns an integer. 
 2 
Stack Transition: 3 

..., value1, value2 � ..., result 4 

Description: 5 

The xor instruction computes the bitwise XOR of value1 and value2and leaves the result on the stack. 6 

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer 7 
Operations. 8 

Exceptions: 9 

None. 10 

Correctness and Verifiability: 11 
See Table 5: Integer Operations. 12 
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4  Object model instructions 1 

The instructions described in the base instruction set are independent of the object model being executed. Those 2 
instructions correspond closely to what would be found on a real CPU. The object model instructions are less 3 
built-in than the base instructions in the sense that they could be built out of the base instructions and calls to 4 
the underlying operating system. 5 

[Rationale: The object model instructions provide a common, efficient implementation of a set of services used 6 
by many (but by no means all) higher-level languages. They embed in their operation a set of conventions 7 
defined by the CTS. This include (among other things):  8 

• Field layout within an object 9 

• Layout for late bound method calls (vtables) 10 

• Memory allocation and reclamation 11 

• Exception handling 12 

• Boxing and unboxing to convert between reference-based objects and value types 13 

For more details, see Partition I. end rationale] 14 
  15 
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4.1  box  – convert a boxable value to its boxed form 1 

Format Assembly Format Description 

8C <T> box typeTok  Convert a boxable value to its boxed form 
 2 
Stack Transition: 3 

…, val � …, obj 4 

Description: 5 

If typeTok is a value type, the box instruction converts val to its boxed form. When typeTok is a non-nullable 6 
type (§1.8.2.4), this is done by creating a new object and copying the data from val into the newly allocated 7 
object. If it is a nullable type, this is done by inspecting val’s HasValue property; if it is false, a null reference is 8 
pushed onto the stack; otherwise, the result of boxing val’s Value property is pushed onto the stack. If typeTok 9 
is a reference type, the box instruction does nothing. 10 

typeTok is a metadata token (a typedef, typeref, or typespec) indicating the type of val.  typeTok can 11 
represent a value type, a reference type, or a generic parameter.  12 

Exceptions: 13 

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 14 

System.TypeLoadException is thrown if typeTok cannot be found. (This is typically detected when CIL 15 
is converted to native code rather than at runtime.) 16 

Correctness: 17 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  The type operand typeTok 18 
shall represent a boxable type.  19 

Verifiability: 20 

The top-of-stack shall be assignment compatible with the type represented by typeTok. When typeTok 21 
represents a non-nullable value type or a generic parameter, the resulting type is “boxed” typeTok; when 22 
typeTok is Nullable<T>, the resulting type is “boxed” T. When typeTok is a reference type, the resulting type is 23 
typeTok. The type operand typeTok shall not be a byref-like type. 24 

[Rationale: Based on the rules above, when typeTok represents a generic parameter whose runtime type is 25 
Nullable<T> the verifier states that the result is of type boxed Nullable<T>. This does not match what the 26 
implementation of box produces dynamically. At runtime, boxing a value of type Nullable<T> will actually 27 
produce an instance of boxed T, not boxed Nullable<T> as the verifier claims. For this to be type-safe, there 28 
must be no operation the verifier permits on a boxed Nullable<T> that isn’t also permissible on a boxed T. This 29 
requirement holds the Nullable<T> does not have any constrainable features, e.g. interface implementations. 30 
end rationale] 31 
  32 
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4.2  cal lvi rt  – call  a  method associated, at  runt ime, with an object  1 

Format Assembly Format Description 

6F <T> callvirt method  Call a method associated with an object. 
 2 
Stack Transition: 3 

…, obj, arg1, … argN � …, returnVal (not always returned) 4 

Description: 5 

The callvirt instruction calls a late-bound method on an object. That is, the method is chosen based on the exact 6 
type of obj rather than the compile-time class visible in the method metadata token. callvirt can be used to call 7 
both virtual and instance methods. See Partition I for a detailed description of the CIL calling sequence. The 8 
callvirt instruction can be immediately preceded by a tail. prefix to specify that the current stack frame should 9 
be released before transferring control. If the call would transfer control to a method of higher trust than the 10 
original method the stack frame will not be released. 11 

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of 12 
the caller] 13 

method is a metadata token (a methoddef, methodref or methodspec see Partition II) that provides the 14 
name, class and signature of the method to call. In more detail, callvirt can be thought of as follows. Associated 15 
with obj is the class of which it is an instance. The CLI resolves the method to be called according to the rules 16 
specified in I.12.4.1.3 (Computed destinations). 17 

callvirt pops the object and the arguments off the evaluation stack before calling the method. If the method has 18 
a return value, it is pushed on the stack upon method completion. On the callee side, the obj parameter is 19 
accessed as argument 0, arg1 as argument 1, and so on. 20 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 21 
on the stack, then the second argument, etc. The this pointer (always required for callvirt) shall be pushed 22 
before any of the user-visible arguments. The signature carried in the metadata does not contain an entry in the 23 
parameter list for the this pointer, but uses a bit (called HASTHIS) to indicate whether the method requires 24 
passing the this pointer (see Partition II) 25 

Note that a virtual method can also be called using the call instruction. 26 

Exceptions: 27 

System.MissingMethodException is thrown if a non-static method with the indicated name and 28 
signature could not be found in obj’s class or any of its base classes. This is typically detected when CIL is 29 
converted to native code, rather than at runtime.  30 

System.MethodAccessException can be thrown when there is an invalid attempt to access a non-31 
public method. 32 

System.NullReferenceException is thrown if obj is null. 33 

System.SecurityException is thrown if system security does not grant the caller access to the called 34 
method. The security check can occur when the CIL is converted to native code rather than at runtime. 35 

Correctness: 36 
Correct CIL ensures that the destination method exists and the values on the stack correspond to the types of 37 
the parameters of the method being called. 38 

Verifiability: 39 

In its typical use, callvirt is verifiable if (a) the above restrictions are met, (b) the verification type of obj is 40 
consistent with the method being called, (c) the verification types of the arguments on the stack are consistent 41 
with the types expected by the method call, and (d) the method is accessible from the call site. A callvirt 42 
annotated by tail. has additional considerations – see §1.8. 43 
  44 
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4.3  castclass  – cast  an object  to a class  1 

Format Assembly Format Description 

74 <T> castclass class  Cast obj to class. 
 2 
Stack Transition: 3 

…, obj � …, obj2 4 

Description: 5 

The castclass instruction attempts to cast obj (of type O) to class. class is a metadata token (a typeref, 6 
typedef or typespec), indicating the desired class. If the type of the object on the top of the stack: 7 

• does not implement class (if class is an interface), or 8 

• is not class or a derived class of class (if class is an object type), or 9 

• is not boxed T (if class is the non-nullable value type T), or 10 

• is not boxed T (if class is System.Nullable<T>) 11 

then an InvalidCastException is thrown.  Unlike coercions (§1.6) and conversions (§3.27), a cast never 12 
changes the actual type of an object and preserves object identity (see Partition I). 13 

Note that: 14 

1. Arrays inherit from System.Array. 15 

2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[]. 16 

3. For the purposes of note 2 above, enums are treated as their underlying type: thus E1[] can be cast 17 
to E2[] if E1 and E2 share an underlying type. 18 

4. The boxed T case exists to provide a way of casting from an object instance to a value type 19 
instance (in conjunction with unbox (§4.32)). 20 

5. The System.Nullable<T> case exists to be consistent with the behaviour of the box (§4.1) 21 
instruction – castclass takes an obj (of type O), boxing a value of type System.Nullable<T> 22 
produces a boxed T, a boxed T can be unboxed (§4.32) as either a T or a System.Nullable<T>, so 23 
a boxed T is a boxed System.Nullable<T>. 24 

If obj is null, castclass succeeds and returns null. This behavior differs semantically from isinst where if obj is 25 
null, isinst fails and returns null. 26 

Exceptions: 27 

System.InvalidCastException is thrown if obj cannot be cast to class. 28 

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is 29 
converted to native code rather than at runtime. 30 

Correctness: 31 

Correct CIL ensures that class is a valid typeRef, typeDef or typeSpec token, and that obj is always 32 
either null or an object reference. 33 

Verifiability: 34 
There are no additional verification requirements. 35 

Implementation Specific (Microsoft) 36 

%ote: In Microsoft’s implementation of the CLI the castclass instruction also will cast Bar[] to Foo[] 37 
if Bar and Foo are stored as the same sized integral type, this includes enumeration types. For example: 38 
int32[] can be cast to uint32[], and enum[] can be cast to int64[] iff enum has an underlying 64-bit 39 
integral type. 40 
  41 
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4.4  cpobj  –  copy a value from one address to another 1 

Format Assembly Format Description 

70 <T> cpobj typeTok Copy a value type from src to dest. 
 2 
Stack Transition: 3 

…, dest, src � …, 4 

Description: 5 

The cpobj instruction copies the value at the address specified by src (an unmanaged pointer, native int, 6 
or a managed pointer, &) to the address specified by dest (also a pointer).  typeTok can be a typedef, 7 
typeref, or typespec.  The behavior is unspecified if the type of the location referenced by src is not 8 
assignment-compatible with the type of the location referenced by dest.  9 

If typeTok is a reference type, the cpobj instruction has the same effect as ldind.ref followed by stind.ref.   10 

Exceptions: 11 

System.NullReferenceException can be thrown if an invalid address is detected. 12 

System.TypeLoadException is thrown if typeTok cannot be found.  This is typically detected when CIL 13 
is converted to native code rather than at runtime. 14 

Correctness: 15 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  16 

Verifiability: 17 

The static types of the destination (dest) and source (src) values shall both be managed pointers (&) to values 18 
whose types we denote destType and srcType, respectively.  Finally, srcType shall be assignment-compatible 19 
with typeTok, and typeTok shall be assignment-compatible with destType.  In the case of an Enum, its type is 20 
that of the underlying, or base, type of the Enum.  21 
  22 
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4.5  ini tobj  – initialize  the value at  an address 1 

Format Assembly Format Description 

FE 15 <T> initobj typeTok Initialize the value at address dest. 
 2 
Stack Transition: 3 

…, dest � …, 4 

Description: 5 

The initobj instruction initializes an address with a default value.  typeTok is a metadata token (a typedef, 6 
typeref, or typespec).  dest is an unmanaged pointer (native int), or a managed pointer (&).  If 7 
typeTok is a value type, the initobj instruction initializes each field of dest to null or a zero of the appropriate 8 
built-in type.  If typeTok is a value type, then after this instruction is executed, the instance is ready for a 9 
constructor method to be called.  If typeTok is a reference type, the initobj instruction has the same effect as 10 
ldnull followed by stind.ref. 11 

Unlike newobj, the initobj instruction does not call any constructor method.  12 

Exceptions: 13 

None. 14 

Correctness: 15 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  16 

Verifiability: 17 

The type of the destination value on top of the stack shall be a managed pointer to some type destType, and 18 
typeTok shall be a subtype of destType.  If typeTok is a non-reference type, the definition of subtyping implies 19 
that destType and typeTok shall be equal.  20 
  21 
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4.6  is inst  – test  if  an object  is an instance of  a class or interface 1 

Format Assembly Format Description 

75 <T> isinst class  Test if obj is an instance of class, returning null or an instance of 
that class or interface. 

 2 
Stack Transition: 3 

…, obj � …, result 4 

Description: 5 

The isinst instruction tests whether obj (type O) is an instance of class. class is a metadata token (a typeref, 6 
typedef or typespecsee Partition II) indicating the desired class. If the type of the object on the top of the 7 
stack: 8 

• implements class (if class is an interface), or 9 

• is class or a derived class of class (if class is an object type), or 10 

• is boxed T (if class is the non-nullable value type T), or 11 

• is boxed T (if class is System.Nullable<T>) 12 

then it is cast to the type class and the result is pushed on the stack, exactly as though castclass had been 13 
called. Otherwise null is pushed on the stack. If obj is null, isinst returns null. This behavior differs 14 
semantically from castclass where if obj is null, castclass succeeds and returns null. 15 

Note that: 16 

1. Arrays inherit from System.Array. 17 

2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[]. 18 

3. For the purposes of note 2, enums are treated as their underlying type: thus E1[] can cast to E2[] 19 
if E1 and E2 share an underlying type. 20 

4. The boxed T case exists to provide a way of checking the type of a value type instance. 21 

5. The System.Nullable<T> case exists to be consistent with the behaviour of the box (§4.1) 22 
instruction – castclass takes an obj (of type O), boxing a value of type System.Nullable<T> 23 
produces a boxed T, a boxed T can be unboxed (§4.32) as either a T or a System.Nullable<T>, so 24 
a boxed T is a boxed System.Nullable<T>. 25 

Exceptions: 26 

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is 27 
converted to native code rather than at runtime. 28 

Correctness: 29 

Correct CIL ensures that class is a valid typeref or typedef or typespec token, and that obj is always 30 
either null or an object reference. 31 

Verifiability: 32 

There are no additional verification requirements. 33 
  34 



 

110  Partition III  

4.7  ldelem  –  load element from array 1 

Format Assembly Format Description 

A3 <T> ldelem typeTok Load the element at index onto the top of the stack. 
 2 
Stack Transition: 3 

…, array, index � …, value 4 

Description: 5 

The ldelem instruction loads the value of the element with index index (of type native int or int32) in 6 
the zero-based one-dimensional array array, and places it on the top of the stack.  The type of the return value 7 
is indicated by the type token typeTok in the instruction.  8 

Exceptions: 9 

System.IndexOutOfRangeException is thrown if index is larger than the bound of array.  10 

System.NullReferenceException is thrown if array is null.  11 

Correctness: 12 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  13 

array shall be either null or a single dimensional, zero-based array.  14 

Verifiability: 15 

The static type of array is either the special reference type Null or a proper zero-based, one-dimensional array 16 
type elem[], for some type elem.  If the array type is Null, take elem to be the type represented by operand 17 
typeTok.  The value index shall have type native int.  The type elem shall be a subtype of the type operand 18 
typeTok.  The type of the value left on the stack is typeTok. 19 
  20 
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4.8  ldelem.<type>  – load an element of  an array 1 

Format Assembly Format Description 

90 ldelem.i1 Load the element with type int8 at index onto the top of the stack as 
an int32. 

92 ldelem.i2 Load the element with type int16 at index onto the top of the stack 
as an int32. 

94 ldelem.i4 Load the element with type int32 at index onto the top of the stack 
as an int32. 

96 ldelem.i8 Load the element with type int64 at index onto the top of the stack 
as an int64. 

91  ldelem.u1 Load the element with type unsigned int8 at index onto the top of 
the stack as an int32. 

93 ldelem.u2 Load the element with type unsigned int16 at index onto the top of 
the stack as an int32. 

95 ldelem.u4 Load the element with type unsigned int32 at index onto the top of 
the stack as an int32. 

96 ldelem.u8 Load the element with type unsigned int64 at index onto the top of 
the stack as an int64 (alias for ldelem.i8). 

98 ldelem.r4 Load the element with type float32 at index onto the top of the stack 
as an F 

99 ldelem.r8 Load the element with type float64 at index onto the top of the stack 
as an F. 

97 ldelem.i Load the element with type native int at index onto the top of the 
stack as a native int. 

9A ldelem.ref Load the element at index onto the top of the stack as an O. The type 
of the O is the same as the element type of the array pushed on the 
CIL stack. 

 2 
Stack Transition: 3 

…, array, index � …, value 4 

Description: 5 

The ldelem instruction loads the value of the element with index index (of type int32 or native int) in 6 
the zero-based one-dimensional array array and places it on the top of the stack. Arrays are objects and hence 7 
represented by a value of type O. The return value is indicated by the instruction. 8 

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a 9 
Get method. 10 

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded 11 
onto the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack. 12 

Exceptions: 13 

System.NullReferenceException is thrown if array is null. 14 

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 15 

Correctness: 16 

Correct CIL code requires that array is either null or a zero-based, one-dimensional array whose declared 17 
element type matches exactly the type for this particular instruction suffix (e.g., ldelem.r4 can only be applied 18 
to a zero-based, one dimensional array of float32s) 19 
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Verifiability: 1 

The type of index shall be int32 or native int. The element type of array shall match the type 2 
specified by the suffix, as described above.   3 
  4 
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4.9  ldelema  – load address of  an element of  an array 1 

Format Assembly Format Description 

8F <T> ldelema class Load the address of element at index onto the top of the stack. 
 2 
Stack Transition: 3 

…, array, index � …, address 4 

Description: 5 

The ldelema instruction loads the address of the element with index index (of type int32 or native int) 6 
in the zero-based one-dimensional array array (of element type class) and places it on the top of the stack. 7 
Arrays are objects and hence represented by a value of type O. The return address is a managed pointer 8 
(type &). 9 

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides an 10 
Address method. 11 

If this instruction is prefixed by the readonly. prefix, it produces a controlled-mutability managed pointer 12 
(§1.8.1.2.2). 13 

Exceptions: 14 

System.NullReferenceException is thrown if array is null. 15 

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 16 

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type. 17 

Correctness: 18 

Correct CIL ensures that class is a typeref or typedef or typespec token to a class, and that array is 19 
indeed always either null or a zero-based, one-dimensional array whose declared element type matches class 20 
exactly. 21 

Verifiability: 22 

The type of index shall be int32 or native int. The element type of array shall match class exactly. 23 
  24 
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4.10  ldf ld  – load f ield of  an object  1 

Format Assembly Format Description 

7B <T> ldfld field  Push the value of field of object (or value type) obj, onto the stack. 
 2 
Stack Transition: 3 

…, obj � …, value 4 

Description: 5 

The ldfld instruction pushes onto the stack the value of a field of obj. obj shall be an object (type O), a managed 6 
pointer (type &), an unmanaged pointer (type native int), or an instance of a value type. The use of an 7 
unmanaged pointer is not permitted in verifiable code. field is a metadata token (a fieldref or fielddef 8 
see Partition II) that shall refer to a field member. The return type is that associated with field. ldfld pops the 9 
object reference off the stack and pushes the value for the field in its place. The field can be either an instance 10 
field (in which case obj shall not be null) or a static field. 11 

The ldfld instruction can be preceded by either or both of the unaligned. and volatile. prefixes. 12 

Exceptions: 13 

System.FieldAccessException is thrown if field is not accessible. 14 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 15 
checked when CIL is converted to native code, not at runtime. 16 

System.NullReferenceException is thrown if obj is null and the field is not static. 17 

Correctness: 18 

Correct CIL ensures that field is a valid token referring to a field, and that obj will always have a type 19 
compatible with that required for the lookup being performed. 20 

Verifiability: 21 
For verifiable code, obj shall not be an unmanaged pointer. 22 

It is not verifiable to access an overlapped object reference field. 23 

A field is accessible only if every field that overlaps it is also accessible. 24 

Implementation Specific (Microsoft) 25 

This note also applies to §4.28. 26 

Field accessibility for overlapping built-in value type fields is defined differently in the current MS 27 
release. 28 

First, define explicit and implicit field overlap:  29 

a) Explicit: overlap of (at lest two) fields defined on the same type like below (i and f are 30 
overlapping fields defined on the same type)  31 

   class Foo 32 
   { 33 
      [FieldOffset(0)] 34 
      int i; 35 

      [FieldOffset(0)] 36 
      float f; 37 
   } 38 

b) Implicit: overlap of (at lest two) fields defined on different types like below (i and f are 39 
overlapping fields defined on different types). Note that nesting of types can be arbitrary deep.   40 

   struct AValueType 41 
   { 42 
      [FieldOffset(0)] 43 
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      int i; 1 
   } 2 

   class ThisIsOk 3 
   { 4 
      [FieldOffset(0)] 5 
      float f; 6 

      [FieldOffset(0)] 7 
      AValueType v; 8 
   } 9 

Then the rules for value types are: 10 

1. Type T contains explicitly (fully or partially) overlapped fields of built-in value type with different 11 
accessibility then accessing any field on type T is verifiable. Note: this means that type author is 12 
free to make private field publicly visible through overloading it with public field.  13 

2. Type T contains implicitly (fully or partially) overlapped fields of built-in value type with different 14 
accessibility then accessing any field on type T is unverifiable. All other access to the type like 15 
creating an instance, is verifiable. 16 

  17 
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4.11  ldf lda  – load f ield address 1 

Format Assembly Format Description 

7C <T> ldflda field  Push the address of field of object obj on the stack. 
 2 
Stack Transition: 3 

…, obj � …, address 4 

Description: 5 

The ldflda instruction pushes the address of a field of obj. obj is either an object, type O, a managed pointer, 6 
type &, or an unmanaged pointer, type native int. The use of an unmanaged pointer is not allowed in 7 
verifiable code. The value returned by ldflda is a managed pointer (type &) unless obj is an unmanaged pointer, 8 
in which case it is an unmanaged pointer (type native int). 9 

field is a metadata token (a fieldref or fielddef; see Partition II) that shall refer to a field member. The 10 
field can be either an instance field (in which case obj shall not be null) or a static field. 11 

Exceptions: 12 

System.FieldAccessException is thrown if field is not accessible. 13 

System.InvalidOperationException is thrown if the obj is not within the application domain from 14 
which it is being accessed. The address of a field that is not inside the accessing application domain cannot be 15 
loaded. 16 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 17 
checked when CIL is converted to native code, not at runtime. 18 

System.NullReferenceException is thrown if obj is null and the field isn’t static. 19 

Correctness: 20 

Correct CIL ensures that field is a valid fieldref token and that obj will always have a type compatible with 21 
that required for the lookup being performed. 22 

Verifiability: 23 

For verifiable code, field cannot be init-only. 24 

It is not verifiable to access an overlapped object reference field. 25 

A field is accessible only if every field that overlaps it is also accessible. 26 

Remark: 27 

Using ldflda to compute the address of a static, init-only field and then using the resulting pointer to modify 28 
that value outside the body of the class initializer might lead to unpredictable behavior. 29 
  30 
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4.12  ldlen  – load the length of  an array 1 

Format Assembly Format Description 

8E ldlen Push the length (of type native unsigned int) of array on the stack. 
 2 
Stack Transition: 3 

…, array � …, length 4 

Description: 5 

The ldlen instruction pushes the number of elements of array (a zero-based, one-dimensional array) on the 6 
stack. 7 

Arrays are objects and hence represented by a value of type O. The return value is a native unsigned 8 
int. 9 

Exceptions: 10 

System.NullReferenceException is thrown if array is null. 11 

Correctness: 12 

Correct CIL ensures that array is indeed always null or a zero-based, one dimensional array. 13 

Verifiability: 14 
  15 
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4.13  ldobj  – copy a value from an address to the stack 1 

Format Assembly Format Description 

71 <T> ldobj typeTok Copy the value stored at address src to the stack. 
 2 
Stack Transition: 3 

…, src � …, val 4 

Description: 5 

The ldobj instruction copies a value to the evaluation stack.  typeTok is a metadata token (a typedef, 6 
typeref, or typespec).  src is an unmanaged pointer (native int), or a managed pointer (&). If 7 
typeTok is not a generic parameter and either a reference type or a built-in value class, then the ldind instruction 8 
provides a shorthand for the ldobj instruction. 9 

 [Rationale: The ldobj instruction can be used to pass a value type as an argument. end rationale] 10 

The operation of the ldobj instruction can be altered by an immediately preceding volatile. or 11 
unaligned. prefix instruction.  12 

Exceptions: 13 

System.NullReferenceException can be thrown if an invalid address is detected. 14 

System.TypeLoadException is thrown if typeTok cannot be found. This is typically detected when CIL 15 
is converted to native code rather than at runtime. 16 

Correctness: 17 

typeTok shall be a valid typedef, typeref, or typespec metadata token. 18 

[�ote: Unlike the ldind instruction a ldobj instruction can be used with a generic parameter type. end note] 19 

Verifiability: 20 
The static type of the source value on top of the stack shall be a managed pointer to some type srcType, and 21 
srcType shall be a subtype of typeTok.  The static type of the value remaining on the stack is typeTok.  22 
  23 
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4.14  ldsfld  – load static f ield of  a class  1 

Format Assembly Format Description 

7E <T> ldsfld field  Push the value of field on the stack. 
 2 
Stack Transition: 3 

…, � …, value 4 

Description: 5 

The ldsfld instruction pushes the value of a static (shared among all instances of a class) field on the stack. field 6 
is a metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. The 7 
return type is that associated with field. 8 

The ldsfld instruction can have a volatile. prefix. 9 

Exceptions: 10 

System.FieldAccessException is thrown if field is not accessible. 11 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 12 
checked when CIL is converted to native code, not at runtime. 13 

Correctness: 14 

Correct CIL ensures that field is a valid metadata token referring to a static field member. 15 

Verifiability: 16 

There are no additional verification requirements. 17 
  18 
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4.15  ldsflda  –  load static f ie ld address  1 

Format Assembly Format Description 

7F <T> ldsflda field  Push the address of the static field, field, on the stack. 
 2 
Stack Transition: 3 

…, � …, address 4 

Description: 5 

The ldsflda instruction pushes the address (a managed pointer, type &, if field refers to a type whose memory is 6 
managed; otherwise an unmanaged pointer, type native int) of a static field on the stack. field is a 7 
metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. (Note that 8 
field can be a static global with assigned RVA, in which case its memory is unmanaged; where RVA stands for 9 
Relative Virtual Address, the offset of the field from the base address at which its containing PE file is loaded 10 
into memory) 11 

Exceptions: 12 

System.FieldAccessException is thrown if field is not accessible. 13 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 14 
checked when CIL is converted to native code, not at runtime. 15 

Correctness: 16 
Correct CIL ensures that field is a valid metadata token referring to a static field member if field refers to a type 17 
whose memory is managed. 18 

Verifiability: 19 

For verifiable code, field cannot be init-only. 20 

Remark: 21 

Using ldsflda to compute the address of a static, init-only field and then using the resulting pointer to modify 22 
that value outside the body of the class initializer can lead to unpredictable behavior. 23 
  24 
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4.16  ldstr  – load a l iteral  string 1 

Format Assembly Format Description 

72 <T> ldstr string Push a string object for the literal string. 
 2 
Stack Transition: 3 

…, � …, string 4 

Description: 5 

The ldstr instruction pushes a new string object representing the literal stored in the metadata as string (which 6 
is a string literal). 7 

By default, the CLI guarantees that the result of two ldstr instructions referring to two metadata tokens that 8 
have the same sequence of characters, return precisely the same string object (a process known as “string 9 
interning”). This behavior can be controlled using the System.Runtime.CompilerServices. 10 
CompilationRelaxationsAttribute and the System.Runtime.CompilerServices. 11 
CompilationRelaxations.NoStringInterning (see Partition IV). 12 

Exceptions: 13 

None. 14 

Correctness: 15 

Correct CIL requires that string is a valid string literal metadata token. 16 

Verifiability: 17 
There are no additional verification requirements. 18 
  19 
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4.17  ldtoken  – load the runtime representation of  a metadata token 1 

Format Assembly Format Description 

D0 <T> ldtoken token Convert metadata token to its runtime representation. 
 2 
Stack Transition: 3 

… � …, RuntimeHandle 4 

Description: 5 

The ldtoken instruction pushes a RuntimeHandle for the specified metadata token. The token shall be one of: 6 

A methoddef, methodref or methodspec: pushes a RuntimeMethodHandle 7 

A typedef, typeref, or typespec : pushes a RuntimeTypeHandle 8 

A fielddef or fieldref : pushes a RuntimeFieldHandle 9 

The value pushed on the stack can be used in calls to reflection methods in the system class library 10 

Exceptions: 11 

None. 12 

Correctness: 13 

Correct CIL requires that token describes a valid metadata token of the kinds listed above 14 

Verifiability: 15 

There are no additional verification requirements. 16 
  17 
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4.18  ldvir tf tn  – load a virtual method pointer 1 

Format Assembly Format Description 

FE 07 <T> ldvirtftn method Push address of virtual method method on the stack. 
 2 
Stack Transition: 3 

… object � …, ftn 4 

Description: 5 

The ldvirtftn instruction pushes an unmanaged pointer (type native int) to the native code implementing 6 
the virtual method associated with object and described by the method reference method (a metadata token, a 7 
methoddef, methodref or methodspec; see Partition II) onto the stack. The CLI resolves the method 8 
to be called according to the rules specified in I.12.4.1.3 (Computed destinations). The value pushed can be 9 
called using the calli instruction if it references a managed method (or a stub that transitions from managed to 10 
unmanaged code). 11 

The value returned points to native code using the calling convention specified by method. Thus a method 12 
pointer can be passed to unmanaged native code (e.g., as a callback routine) if that routine expects the 13 
corresponding calling convention. Note that the address computed by this instruction can be to a thunk 14 
produced specially for this purpose (for example, to re-enter the CLI when a native version of the method isn’t 15 
available) 16 

Exceptions: 17 

System.NullReferenceException is thrown if object is null. 18 

System.MethodAccessException can be thrown when there is an invalid attempt to access a non-19 
public method. 20 

Correctness: 21 

Correct CIL ensures that method is a valid methoddef, methodref or methodspec token. Also that 22 
method references a non-static method that is defined for object. 23 

Verifiability: 24 

Verification tracks the type of the value pushed in more detail than the native int type, remembering that 25 
it is a method pointer. Such a method pointer can then be used in verified code with calli or to construct a 26 
delegate.  27 
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4.19  mkrefany  – push a typed reference on the stack 1 

Format Assembly Format Description 

C6 <T> mkrefany class  Push a typed reference to ptr of type class onto the stack. 
 2 
Stack Transition: 3 

…, ptr � …, typedRef 4 

Description: 5 

The mkrefany instruction supports the passing of dynamically typed references. ptr shall be a pointer (type &, 6 
or native int) that holds the address of a piece of data. class is the class token (a typeref, typedef or 7 
typespec; see Partition II) describing the type of ptr. mkrefany pushes a typed reference on the stack, that 8 
is an opaque descriptor of ptr and class. The only valid operation on a typed reference on the stack is to pass it 9 
to a method that requires a typed reference as a parameter. The callee can then use the refanytype and 10 
refanyval instructions to retrieve the type (class) and address (ptr) respectively. 11 

Exceptions: 12 

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is 13 
converted to native code rather than at runtime. 14 

Correctness: 15 

Correct CIL ensures that class is a valid typeref or typedef token describing some type and that ptr is a 16 
pointer to exactly that type. 17 

Verifiability: 18 

Verification additionally requires that ptr be a managed pointer. Verification will fail if it cannot deduce that 19 
ptr is a pointer to an instance of class. 20 
  21 
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4.20  newarr  – create a zero-based, one-dimensional array 1 

Format Assembly Format Description 

8D <T> newarr etype Create a new array with elements of type etype. 
 2 
Stack Transition: 3 

…, numElems � …, array 4 

Description: 5 

The newarr instruction pushes a reference to a new zero-based, one-dimensional array whose elements are of 6 
type etype, a metadata token (a typeref, typedef or typespec; see Partition II). numElems (of type 7 
native int or int32) specifies the number of elements in the array. Valid array indexes are 0 ≤ index < 8 
numElems. The elements of an array can be any type, including value types. 9 

Zero-based, one-dimensional arrays of numbers are created using a metadata token referencing the appropriate 10 
value type (System.Int32, etc.). Elements of the array are initialized to 0 of the appropriate type. 11 

One-dimensional arrays that aren’t zero-based and multidimensional arrays are created using newobj rather 12 
than newarr. More commonly, they are created using the methods of System.Array class in the Base 13 
Framework. 14 

Exceptions: 15 

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 16 

System.OverflowException is thrown if numElems is < 0 17 

Correctness: 18 

Correct CIL ensures that etype is a valid typeref, typedef or typespec  token. 19 

Verifiability: 20 

.numElems shall be of type native int or int32. 21 
  22 
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4.21  newobj  –  create a  new object 1 

Format Assembly Format Description 

73 <T> newobj ctor Allocate an uninitialized object or value type and call ctor.  
 2 
Stack Transition: 3 

…, arg1, … argN � …, obj 4 

Description: 5 

The newobj instruction creates a new object or a new instance of a value type. ctor is a metadata token (a 6 
methodref or methodef that shall be marked as a constructor; see Partition II) that indicates the name, 7 
class, and signature of the constructor to call. If a constructor exactly matching the indicated name, class and 8 
signature cannot be found, MissingMethodException is thrown. 9 

The newobj instruction allocates a new instance of the class associated with ctor and initializes all the fields in 10 
the new instance to 0 (of the proper type) or null as appropriate. It then calls the constructor with the given 11 
arguments along with the newly created instance. After the constructor has been called, the now initialized 12 
object reference is pushed on the stack. 13 

From the constructor’s point of view, the uninitialized object is argument 0 and the other arguments passed to 14 
newobj follow in order. 15 

All zero-based, one-dimensional arrays are created using newarr, not newobj. On the other hand, all other 16 
arrays (more than one dimension, or one-dimensional but not zero-based) are created using newobj. 17 

Value types are not usually created using newobj. They are usually allocated either as arguments or local 18 
variables, using newarr (for zero-based, one-dimensional arrays), or as fields of objects. Once allocated, they 19 
are initialized using initobj. However, the newobj instruction can be used to create a new instance of a value 20 
type on the stack, that can then be passed as an argument, stored in a local, etc. 21 

Exceptions: 22 

System.InvalidOperationException is thrown if ctor’s class is abstract. 23 

System.MethodAccessException is thrown if ctor is inaccessible. 24 

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 25 

System.MissingMethodException is thrown if a constructor method with the indicated name, class, 26 
and signature could not be found. This is typically detected when CIL is converted to native code, rather than at 27 
runtime. 28 

Correctness: 29 

Correct CIL ensures that ctor is a valid methodref or methoddef token, and that the arguments on the 30 
stack are compatible with those expected by the constructor. 31 

Verifiability: 32 

Verification considers a delegate constructor as a special case, checking that the method pointer passed in as 33 
the second argument, of type native int, does indeed refer to a method of the correct type. 34 
  35 
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4.22  refanytype  –  load the type out of  a typed reference 1 

Format Assembly Format Description 

FE 1D Refanytype Push the type token stored in a typed reference. 
 2 
Stack Transition: 3 

…, TypedRef � …, type 4 

Description: 5 

Retrieves the type token embedded in TypedRef. See the mkrefany instruction. 6 

Exceptions: 7 
None. 8 

Correctness: 9 

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany). 10 

Verifiability: 11 

The refanytype instruction is always verifiable. 12 
  13 



 

128  Partition III  

4.23  refanyval  – load the address out of  a typed reference 1 

Format Assembly Format Description 

C2 <T> refanyval type Push the address stored in a typed reference. 
 2 
Stack Transition: 3 

…, TypedRef � …, address 4 

Description: 5 

Retrieves the address (of type &) embedded in TypedRef. The type of reference in TypedRef shall match the 6 
type specified by type (a metadata token, either a typedef, typedef or typespec; see Partition II). See 7 
the mkrefany instruction. 8 

Exceptions: 9 

System.InvalidCastException is thrown if type is not identical to the type stored in the TypedRef (ie, 10 
the class supplied to the mkrefany instruction that constructed that TypedRef) 11 

System.TypeLoadException is thrown if type cannot be found. 12 

Correctness: 13 

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany). 14 

Verifiability: 15 

The refanyval instruction is always verifiable. 16 
  17 
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4.24  rethrow  – rethrow the current exception 1 

Format Assembly Format Description 

FE 1A rethrow  Rethrow the current exception. 
 2 
Stack Transition: 3 

…, � …, 4 

Description: 5 

The rethrow instruction is only permitted within the body of a catch handler (see Partition I). It throws the 6 
same exception that was caught by this handler. A rethrow does not change the stack trace in the object. 7 

Exceptions: 8 

The original exception is thrown. 9 

Correctness: 10 

Correct CIL uses this instruction only within the body of a catch handler (not of any exception handlers 11 
embedded within that catch handler). If a rethrow occurs elsewhere, an exception will be thrown, but 12 
precisely which exception, is undefined 13 

Verifiability: 14 

There are no additional verification requirements. 15 
  16 
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4.25  sizeof  – load the size,  in bytes,of  a type  1 

Format Assembly Format Description 

FE 1C <T> sizeof typeTok Push the size, in bytes, of a type as an unsigned int32. 
 2 
Stack Transition: 3 

…, � …, size (4 bytes, unsigned) 4 

Description: 5 
Returns the size, in bytes, of a type.  typeTok can be a generic parameter, a reference type or a value type.  6 

For a reference type, the size returned is the size of a reference value of the corresponding type, not the size of 7 
the data stored in objects referred to by a reference value.  8 

[Rationale: The definition of a value type can change between the time the CIL is generated and the time that it 9 
is loaded for execution. Thus, the size of the type is not always known when the CIL is generated. The sizeof 10 
instruction allows CIL code to determine the size at runtime without the need to call into the Framework class 11 
library. The computation can occur entirely at runtime or at CIL-to-native-code compilation time. sizeof 12 
returns the total size that would be occupied by each element in an array of this type – including any padding 13 
the implementation chooses to add. Specifically, array elements lie sizeof bytes apart. end rationale] 14 

Exceptions: 15 

None. 16 

Correctness: 17 

typeTok shall be a typedef, typeref, or typespec metadata token.  18 

Verifiability: 19 

It is always verifiable. 20 
  21 
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4.26  stelem  –  store element to array 1 

Format Assembly Format Description 

A4 <T> stelem typeTok Replace array element at index with the value on the stack 
 2 
Stack Transition: 3 

…, array, index, value, � … 4 

Description: 5 

The stelem instruction replaces the value of the element with zero-based index index (of type native int 6 
or int32) in the one-dimensional array array, with value.  Arrays are objects and hence are represented by a 7 
value of type O. The value has the type specified by the token typeTok in the instruction.  8 

Exceptions: 9 

System.NullReferenceException is thrown if array is null.  10 

System.IndexOutOfRangeException is thrown if index is larger than the bound of array.  11 

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.  12 

Correctness: 13 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  14 

array shall be null or a single dimensional array.  15 

Verifiability: 16 

The static type of array shall either be the special reference type Null or a proper zero-based, one-dimensional 17 
array type elem[], for some type elem.  If the array type is Null, take elem to be the type represented by type 18 
operand typeTok.  The value index shall have type native int.  The type of elem shall be a supertype of the 19 
type operand typeTok.  The type of value shall be assignment-compatible with typeTok. 20 
  21 
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4.27  stelem.<type>  – store an element of  an array 1 

Format Assembly Format Description 

9C stelem.i1 Replace array element at index with the int8 value on the stack. 

9D stelem.i2 Replace array element at index with the int16 value on the stack. 

9E stelem.i4 Replace array element at index with the int32 value on the stack. 

9F stelem.i8 Replace array element at index with the int64 value on the stack. 

A0 stelem.r4 Replace array element at index with the float32 value on the stack. 

A1 stelem.r8 Replace array element at index with the float64 value on the stack. 

9B  stelem.i Replace array element at index with the i value on the stack. 

A2 stelem.ref Replace array element at index with the ref value on the stack. 
 2 
Stack Transition: 3 

…, array, index, value � …, 4 

Description: 5 

The stelem instruction replaces the value of the element with zero-based index index (of type int32 or 6 
native int) in the one-dimensional array array with value. Arrays are objects and hence represented by a 7 
value of type O. 8 

Note that stelem.ref implicitly casts value to the element type of array before assigning the value to the array 9 
element. This cast can fail, even for verified code. Thus the stelem.ref instruction can throw the 10 
ArrayTypeMismatchException. 11 

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a 12 
StoreElement method. 13 

Exceptions: 14 

System.NullReferenceException is thrown if array is null. 15 

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 16 

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type. 17 

Correctness: 18 

Correct CIL requires that array be a zero-based, one-dimensional array whose declared element type matches 19 
exactly the type for this particular instruction suffix (e.g., stelem.r4 can only be applied to a zero-based, one 20 
dimensional array of float32s). 21 

Verifiability: 22 

The static type of array shall either be the special reference type Null or a proper zero-based, one-dimensional 23 
array type elem[], for some type elem.  Both the type of array and the type of value shall be consistent with the 24 
instruction suffix. For the stelem.ref instruction, it is required only that the value and array element type are 25 
both reference types. 26 
  27 
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4.28  stfld  – store into a f ie ld of  an object  1 

Format Assembly Format Description 

7D <T> stfld field  Replace the value of field of the object obj with value. 
 2 
Stack Transition: 3 

…, obj, value � …, 4 

Description: 5 

The stfld instruction replaces the value of a field of an obj (an O) or via a pointer (type native int, or &) 6 
with value. field is a metadata token (a fieldref or fielddef; see Partition II) that refers to a field 7 
member reference. stfld pops the value and the object reference off the stack and updates the object. 8 

The stfld instruction can have a prefix of either or both of unaligned. and volatile.. 9 

Exceptions: 10 

System.FieldAccessException is thrown if field is not accessible. 11 

System.NullReferenceException is thrown if obj is null and the field isn’t static. 12 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 13 
checked when CIL is converted to native code, not at runtime. 14 

Correctness: 15 
Correct CIL ensures that field is a valid token referring to a field, and that obj and value will always have types 16 
appropriate for the assignment being performed, subject to implicit conversion as specified in §1.6. 17 

Verifiability: 18 
For verifiable code, obj shall not be an unmanaged pointer. 19 

[�ote: Using stfld to change the value of a static, init-only field outside the body of the class initializer can lead 20 
to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not tested by 21 
verification. end note] 22 

It is not verifiable to access an overlapped object reference field. 23 

A field is accessible only if every field that overlaps it is also accessible. 24 

Implementation Specific (Microsoft) 25 

See note on §4.10. 26 
  27 



 

134  Partition III  

4.29  stobj  – store a value at  an address  1 

Format Assembly Format Description 

81 <T> Stobj typeTok Store a value of type typeTok at an address. 
 2 
Stack Transition: 3 

…, dest, src � …, 4 

Description: 5 

If typeTok is a value type, the stobj instruction copies the value src to the address dest.  If typeTok is not a 6 
generic parameter and either a reference type or a built-in value class, then the stind instruction provides a 7 
shorthand for the stobj instruction.  8 

The operation of the stobj instruction can be altered by an immediately preceding volatile. or unaligned. 9 
prefix instruction. 10 

Exceptions: 11 

System.NullReferenceException can be thrown if an invalid address is detected. 12 

System.TypeLoadException is thrown if typeTok cannot be found. This is typically detected when CIL 13 
is converted to native code rather than at runtime. 14 

Correctness: 15 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  16 

[�ote: Unlike the stind instruction a stobj instruction can be used with a generic parameter type. end note] 17 

Verifiability: 18 
Let the static type of the value on top of the stack be some type srcType.  The value shall be initialized (when 19 
srcType is a reference type). The static type of the destination address dest on the preceding stack slot shall be a 20 
managed pointer (of type destType &) to some type destType. Finally, srcType shall be assignment-21 
compatible with typeTok, and typeTok shall be a subtype of destType.  When typeTok is a non-reference type, 22 
the definition of subtyping implies that srcType shall be assignment-compatible with destType (which, itself, 23 
shall be equal to typeTok).  24 
  25 
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4.30  stsfld  – store a static f ield of  a class 1 

Format Assembly Format Description 

80 <T> stsfld field  Replace the value of field with val. 
 2 
Stack Transition: 3 

…, val � …, 4 

Description: 5 

The stsfld instruction replaces the value of a static field with a value from the stack. field is a metadata token (a 6 
fieldref or fielddef; see Partition II) that shall refer to a static field member. stsfld pops the value off 7 
the stack and updates the static field with that value. 8 

The stsfld instruction can have a volatile. prefix. 9 

Exceptions: 10 

System.FieldAccessException is thrown if field is not accessible. 11 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 12 
checked when CIL is converted to native code, not at runtime. 13 

Correctness: 14 

Correct CIL ensures that field is a valid token referring to a static field, and that value will always have a type 15 
appropriate for the assignment being performed, subject to implicit conversion as specified in §1.6. 16 

Verifiability: 17 

 [�ote: Using stsfld to change the value of a static, init-only field outside the body of the class initializer can 18 
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not 19 
tested by verification. end note] 20 
  21 
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4.31  throw  – throw an exception 1 

Format Assembly Format Description 

7A throw  Throw an exception. 
 2 
Stack Transition: 3 

…, object � …, 4 

Description: 5 

The throw instruction throws the exception object (type O) on the stack and empties the stack. For details of the 6 
exception mechanism, see Partition I. 7 

[�ote: While the CLI permits any object to be thrown, the CLS describes a specific exception class that shall be 8 
used for language interoperability. end note] 9 

Exceptions: 10 

System.NullReferenceException is thrown if obj is null. 11 

Correctness: 12 

Correct CIL ensures that object is always either null or an object reference (i.e., of type O). 13 

Verifiability: 14 
There are no additional verification requirements. 15 
  16 
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4.32  unbox  – convert boxed value type to its  raw form 1 

Format Assembly Format Description 

79 <T> unbox valuetype  Extract a value-type from obj, its boxed representation.  
 2 
Stack Transition: 3 

…, obj � …, valueTypePtr 4 

Description: 5 

A value type has two separate representations (see Partition I) within the CLI: 6 

• A ‘raw’ form used when a value type is embedded within another object. 7 

• A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object, so it can exist 8 
as an independent entity. 9 

The unbox instruction converts obj (of type O), the boxed representation of a value type, to valueTypePtr (a 10 
controlled-mutability managed pointer (§1.8.1.2.2), type &), its unboxed form. valuetype is a metadata token (a 11 
typeref, typedef or typespec). The type of value type contained within obj must be assignment 12 
compatible with valuetype. [�ote: This effects the behavior with enum types, see Partition II.14.3. end note] 13 

Unlike box, which is required to make a copy of a value type for use in the object, unbox is not required to 14 
copy the value type from the object. Typically it simply computes the address of the value type that is already 15 
present inside of the boxed object. 16 

[�ote: Typically, unbox simply computes the address of the value type that is already present inside of the 17 
boxed object. This approach is not possible when unboxing nullable value types. Because Nullable<T> values 18 
are converted to boxed Ts during the box operation, an implementation often must manufacture a new 19 
Nullable<T> on the heap and compute the address to the newly allocated object. end note] 20 

Exceptions: 21 

System.InvalidCastException is thrown if obj is not a boxed value type, valuetype is a Nullable<T> 22 
and obj is not a boxed T, or if the type of the value contained in obj is not assignment compatible with 23 
valuetype. 24 

System.NullReferenceException is thrown if obj is null and valuetype is a non-nullable value type 25 
(Partition I.8.2.4). 26 

System.TypeLoadException is thrown if the class cannot be found. (This is typically detected when CIL 27 
is converted to native code rather than at runtime.) 28 

Correctness: 29 

Correct CIL ensures that valueType is a typeref, typedef or typespec metadata token for some boxable 30 
value type, and that obj is always an object reference (i.e., of type O). If valuetype is the type Nullable<T>, the 31 
boxed instance shall be of type T. 32 

Verifiability: 33 

There are no additional verification requirements. 34 

35 
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4.33  unbox.any  – convert boxed type to value 1 

Format Assembly Format Description 

A5 <T> unbox.any typeTok  Extract a value-type from obj, its boxed representation 
 2 
Stack Transition: 3 

…, obj � …, value or obj 4 

Description: 5 

When applied to the boxed form of a value type, the unbox.any instruction extracts the value contained within 6 
obj (of type O).  (It is equivalent to unbox followed by ldobj.)  When applied to a reference type, the 7 
unbox.any instruction has the same effect as castclass typeTok.  8 

If typeTok is a GenericParam, the runtime behavior is determined by the actual instantiation of that parameter. 9 

Exceptions: 10 

System.InvalidCastException is thrown if obj is not a boxed value type or a reference type, typeTok 11 
is Nullable<T> and obj is not a boxed T, or if the type of the value contained in obj is not assignment 12 
compatible with typeTok. 13 

System.NullReferenceException is thrown if obj is null and typeTok is a non-nullable value type 14 
(Partition I.8.2.4).  15 

Correctness: 16 
obj shall be of reference type and typeTok shall be a boxable type.  17 

Verifiability: 18 
The type operand typeTok shall not be a byref-like type. The type of the value left on the stack is typeTok. 19 

Rationale: 20 

There are two reasons for having both unbox.any and unbox instructions: 21 

1. Unlike the unbox instruction, for value types, unbox.any leaves a value, not an address of a 22 
value, on the stack.   23 

2. The type operand to unbox has a restriction: it can only represent value types and instantiations 24 
of generic value types. 25 
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