O o0 9 N U kA WD -

[—
— o

—
\S)

Ju—
w

-
~

—_
(o)}

Common Language Infrastructure (CLI)

Partition 111
CIL Instruction Set

O o0 9 N U B~ W

[N NG SN NG S NG YN NG Y GG S g Sy
A WD = O O 0 NN R WD = O

25
26
27

28
29

30
31
32

33
34
35
36
37

1.1
1.1.
1.1.
1.1.
I.1.
1.2
1.2.
1.3
1.4
1.5
1.6
1.7

1.8

1.8.

1.9

2
2.1
2.2
2.3

e L R
AN L LN

—_

E-NNVS I)

Table of Contents

Introduction

Data types

Numeric data types

Boolean data type

Object references

Runtime pointer types
Instruction variant table
Opcode encodings

Stack transition diagram
English description

Operand type table

Implicit argument coercion
Restrictions on CIL code sequences
The instruction stream

Valid branch targets

Exception ranges

Must provide maxstack
Backward branch constraints
Branch verification constraints
Verifiability and correctness
Flow control restrictions for verifiable CIL
Metadata tokens

Exceptions thrown

Prefixes to instructions
constrained. — (prefix) invoke a member on a value of a variable type
no. — (prefix) possibly skip a fault check

readonly. (prefix) — following instruction returns a controlled-mutability

managed pointer

2.4
2.5
2.6

3
3.1
3.2
3.3
3.4

tail. (prefix) — call terminates current method
unaligned. (prefix) — pointer instruction might be unaligned

volatile. (prefix) — pointer reference is volatile

Base instructions

add — add numeric values

add.ovf.<signed> - add integer values with overflow check
and — bitwise AND

arglist — get argument list

Partition III

= = N U O N Y

11
11
11
14
16
16
16
17
17
17
17
17
18
23
23

24
25
27

28
29
30
31

32
33
34
35
36

—_

O 0 9 N n kWL DN

[\ I S N NG R NS I NS R NS e e e e T e T S =
LN A W D = O O 0 9 & A W N = O

N DD
~N

W W W W W W W W W W N DN
O 0 9 N kA WD, O O ©

3.5
3.6

3.7
unordered

3.8

3.9

.10
.11
12
13
14
15
.16
17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28

.29
etection

.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41

w

W W W W W W W W W W W W oW W W W W W W W W W W W W W W W W W w

ii

beq.<length> — branch on equal
bge.<length> — branch on greater than or equal to

bge.un.<length> — branch on greater than or equal to, unsigned or
39

bgt.<length> — branch on greater than

bgt.un.<length> — branch on greater than, unsigned or unordered
ble.<length> — branch on less than or equal to
ble.un.<length> — branch on less than or equal to, unsigned or unordered
blt.<length> — branch on less than

blt.un.<length> — branch on less than, unsigned or unordered
bne.un<length> — branch on not equal or unordered
br.<length> — unconditional branch

break — breakpoint instruction

brfalse.<length> — branch on false, null, or zero
brtrue.<length> — branch on non-false or non-null

call — call a method

calli — indirect method call

ceq — compare equal

cgt — compare greater than

cgt.un — compare greater than, unsigned or unordered

ckfinite — check for a finite real number

clt — compare less than

clt.un — compare less than, unsigned or unordered

conv.<to type> — data conversion

conv.ovf.<to type> — data conversion with overflow detection

conv.ovf.<to type>.un — unsigned data conversion with overflow
62

cpblk — copy data from memory to memory

div — divide values

div.un — divide integer values, unsigned

dup — duplicate the top value of the stack
endfilter — end exception handling filter clause
endfinally — end the finally or fault clause of an exception block
initblk — initialize a block of memory to a value
jmp — jump to method

Idarg.<length> — load argument onto the stack
Idarga.<length> — load an argument address
Idc.<type> — load numeric constant

Idftn — load method pointer

Partition III

37
38

40
41
42
43
44
45
46
47
48
49
50
51
53
54
55
56
57
58
59
60
61

63
64
65
66
67
68
69
70
71
72
73
74

O 0 9 N B WD =

[S I N R S I S N S S e e e T e e e e
A L A W D= O 0 N Y R W N~ O

27
28
29
30
31
32
33
34
35
36
37
38

W w

ES

N T S e e e S N

42
43
.44
.45
46
47
48
49
.50
51
.52
53
.54
55
.56
.57
.58
.59
.60
61
.62
.63
.64
.65
.66
.67

O o0 9 N U B WD

[—
— o

Idind.<type> — load value indirect onto the stack

Idloc — load local variable onto the stack

Idloca.<length> — load local variable address

Idnull — load a null pointer

leave.<length> — exit a protected region of code

localloc — allocate space in the local dynamic memory pool
mul — multiply values

mul.ovf.<type> — multiply integer values with overflow check
neg — negate

nop — no operation

not — bitwise complement

or — bitwise OR

pop — remove the top element of the stack

rem — compute remainder

rem.un — compute integer remainder, unsigned

ret — return from method

shl — shift integer left

shr — shift integer right

shr.un — shift integer right, unsigned

starg.<length> — store a value in an argument slot
stind.<type> — store value indirect from stack

stloc — pop value from stack to local variable

sub — subtract numeric values

sub.ovf.<type> — subtract integer values, checking for overflow
switch — table switch based on value

xor — bitwise XOR

Object model instructions

box — convert a boxable value to its boxed form

callvirt — call a method associated, at runtime, with an object
castclass — cast an object to a class

cpobj — copy a value from one address to another

initobj — initialize the value at an address

isinst — test if an object is an instance of a class or interface
Idelem — load element from array

Idelem.<type> — load an element of an array

Idelema — load address of an element of an array

Idfld — load field of an object

Idflda — load field address

Partition III

75
77
78
79
80
81
82
83
84
85
86
87
88
89
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110

113
114
116

iii

O 0 9 N BN =

[I NS R NS R e e e e T T Y
N = O O X N N BN = O

23

24

12
13
14
15
16
17
18

pop R oB oA oA

4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33

iv

Idlen — load the length of an array
Idobj — copy a value from an address to the stack
Idsfld — load static field of a class
Idsflda — load static field address

Idstr — load a literal string

Idtoken — load the runtime representation of a metadata token

Idvirtftn — load a virtual method pointer

mkrefany — push a typed reference on the stack
newarr — create a zero-based, one-dimensional array
newobj — create a new object

refanytype — load the type out of a typed reference
refanyval — load the address out of a typed reference
rethrow — rethrow the current exception

sizeof — load the size, in bytes,of a type

stelem — store element to array

stelem.<type> — store an element of an array

stfld — store into a field of an object

stobj — store a value at an address

stsfld — store a static field of a class

throw — throw an exception

unbox — convert boxed value type to its raw form

unbox.any — convert boxed type to value

Index

Partition III

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139

— O O o0 NN Dk W =

—_
[\

—_—
W

—_— =
~N O\ D

NN = =
N — O O X

DN NN
NN W

N
3

N DN
O 0

w W
- O

W W W W
(U, I LS I)

W W W
[cBEE N)

B W
S o

1.1

Introduction

This partition is a detailed description of the Common Intermediate Language (CIL) instruction set, part of the
specification of the CLI. Partition I describes the architecture of the CLI and provides an overview of a large
number of issues relating to the CIL instruction set. That overview is essential to an understanding of the
instruction set as described here.

In this partition, each instruction is described in its own subclause, one per page. Related CLI machine instructions
are described together. Each instruction description consists of the following parts:

. A table describing the binary format, assembly language notation, and description of each variant of
the instruction. See §1.2.

. A stack transition diagram, that describes the state of the evaluation stack before and after the
instruction is executed. (See §1.3.)

. An English description of the instruction. See §1.4.

. A list of exceptions that might be thrown by the instruction. (See Partition I for details.) There are
three exceptions which can be thrown by any instruction and are not listed with the instruction:

System.ExecutionEngineException: indicates that the internal state of the Execution Engine is
corrupted and execution cannot continue. In a system that executes only verifiable code this exception is not
thrown.

System.StackOverflowException: indicates that the hardware stack size has been exceeded. The
precise timing of this exception and the conditions under which it occurs are implementation-specific. [Note:
this exception is unrelated to the maximum stack size described in §1.7.4. That size relates to the depth of the
evaluation stack that is part of the method state described in Partition I, while this exception has to do with
the implementation of that method state on physical hardware.]

System.OutOfMemoryException: indicates that the available memory space has been exhausted,
either because the instruction inherently allocates memory (newobj, newarr) or for an implementation-
specific reason (e.g., an implementation based on JIT compilation to native code can run out of space to store
the translated method while executing the first call or callvirt to a given method).

. A section describing the verifiability conditions associated with the instruction. See §1.8.

In addition, operations that have a numeric operand also specify an operand type table that describes how they
operate based on the type of the operand. See §1.5.

Note that not all instructions are included in all CLI Profiles. See Partition IV for details.
Data types

While the CTS defines a rich type system and the CLS specifies a subset that can be used for language
interoperability, the CLI itself deals with a much simpler set of types. These types include user-defined value types
and a subset of the built-in types. The subset, collectively called the “basic CLI types”, contains the following

types:

. A subset of the full numeric types (int32, int64, native int, and F).

. Object references (0) without distinction between the type of object referenced.

. Pointer types (native unsigned int and &) without distinction as to the type pointed to.

Note that object references and pointer types can be assigned the value null. This is defined throughout the CLI to
be zero (a bit pattern of all-bits-zero).

Partition III 1

[Note: As far as VES operations on the evaluation stack are concerned, there is only one floating-point type, and the
VES does not care about its size. The VES makes the distinction about the size of numerical values only when
storing these values to, or reading from, the heap, statics, local variables, or method arguments. end note]

1.1.1 Numeric data types

—_
S O 0 ~N N N BV R S

—
W N =

—_ = =
~N N D b

NN = =
N = O O

NN
W

NN
N W

N DN
[c BN]

W N
[e>3\e}

W W W W
AW N —

W W W W
(o BN e WV, |

P il
AN DW= OO

The CLI only operates on the numeric types int32 (4-byte signed integers), int 64 (8-byte signed
integers), native int (native-size integers), and F (native-size floating-point numbers). However,
the CIL instruction set allows additional data types to be implemented:

Short integers: The evaluation stack only holds 4- or 8-byte integers, but other locations (arguments,
local variables, statics, array elements, fields) can hold 1- or 2-byte integers. Loading from these
locations onto the stack either zero-extends (Idind.u*, Idelem.u*, etc.) or sign-extends (ldind.i*,
Idelem.i*, etc.) to a 4-byte value. Storing to integers (stind.i1, stelem.i2, etc.) truncates. Use the
conv.ovf.* instructions to detect when this truncation results in a value that doesn’t correctly
represent the original value.

[Note: Short (i.e., 1- and 2-byte) integers are loaded as 4-byte numbers on all architectures and these 4-byte
numbers are always tracked as distinct from 8-byte numbers. This helps portability of code by ensuring that
the default arithmetic behavior (i.e., when no conv or conv.ovf instruction is executed) will have identical
results on all implementations. end note]

Convert instructions that yield short integer values actually leave an int 32 (32-bit) value on the stack, but it
is guaranteed that only the low bits have meaning (i.e., the more significant bits are all zero for the unsigned
conversions or a sign extension for the signed conversions). To correctly simulate the full set of short integer
operations a conversion to a short integer is required before the div, rem, shr, comparison and conditional
branch instructions.

In addition to the explicit conversion instructions there are four cases where the CLI handles short integers in
a special way:

1. Assignment to a local (stloc) or argument (starg) whose type is declared to be a short integer
type automatically truncates to the size specified for the local or argument.

2. Loading from a local (Idloc) or argument (Idarg) whose type is declared to be a short signed
integer type automatically sign extends.

3. Calling a procedure with an argument that is a short integer type is equivalent to assignment to
the argument value, so it truncates.

4. Returning a value from a method whose return type is a short integer is modeled as storing into
a short integer within the called procedure (i.e., the CLI automatically truncates) and then
loading from a short integer within the calling procedure (i.e., the CLI automatically zero- or
sign-extends).

In the last two cases it is up to the native calling convention to determine whether values are actually
truncated or extended, as well as whether this is done in the called procedure or the calling procedure. The
CIL instruction sequence is unaffected and it is as though the CIL sequence included an appropriate conv
instruction.

4-byte integers: The shortest value actually stored on the stack is a 4-byte integer. These can be
converted to 8-byte integers or native-size integers using conv.” instructions. Native-size integers can
be converted to 4-byte integers, but doing so is not portable across architectures. The conv.i4 and
conv.u4 can be used for this conversion if the excess significant bits should be ignored; the
conv.ovf.i4 and conv.ovf.u4 instructions can be used to detect the loss of information. Arithmetic
operations allow 4-byte integers to be combined with native size integers, resulting in native size
integers. 4-byte integers cannot be directly combined with 8-byte integers (they shall be converted to
8-byte integers first).

Partition III

0NN b W

11
12
13
14
15
16
17
18
19
20
21
22

23
24

25
26
27
28
29

30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47

Native-size integers: Native-size integers can be combined with 4-byte integers using any of the
normal arithmetic instructions, and the result will be a native-size integer. Native-size integers shall
be explicitly converted to 8-byte integers before they can be combined with 8-byte integers.

8-byte integers: Supporting 8-byte integers on 32-bit hardware can be expensive, whereas 32-bit
arithmetic is available and efficient on current 64-bit hardware. For this reason, numeric instructions
allow int32 and I data types to be intermixed (yielding the largest type used as input), but these
types cannot be combined with int 64s. Instead, a native int or int32 shall be explicitly
converted to int 64 before it can be combined with an int64.

Unsigned integers: Special instructions are used to interpret integers on the stack as though they
were unsigned, rather than tagging the stack locations as being unsigned.

Floating-point numbers: See also Partition I, Handling of Floating Point Datatypes. Storage
locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed size.

The supported storage sizes are f1oat32 and float64. Everywhere else (on the evaluation stack,
as arguments, as return types, and as local variables) floating-point numbers are represented using an
internal floating-point type. In each such instance, the nominal type of the variable or expression is
either float32 or float64, but its value might be represented internally with additional range
and/or precision. The size of the internal floating-point representation is implementation-dependent,
might vary, and shall have precision at least as great as that of the variable or expression being
represented. An implicit widening conversion to the internal representation from float32 or
float64 is performed when those types are loaded from storage. The internal representation is
typically the natural size for the hardware, or as required for efficient implementation of an operation.
The internal representation shall have the following characteristics:

o The internal representation shall have precision and range greater than or equal to the nominal
type.
o Conversions to and from the internal representation shall preserve value. [Note: This implies

that an implicit widening conversion from float32 (or f1oat64) to the internal
representation, followed by an explicit conversion from the internal representation to f1oat32
(or float64), will result in a value that is identical to the original f1o0at32 (or float64)
value.]

[Note: The above specification allows a compliant implementation to avoid rounding to the precision of the
target type on intermediate computations, and thus permits the use of wider precision hardware registers, as
well as the application of optimizing transformations (such as contractions), which result in the same or
greater precision. Where exactly reproducible behavior precision is required by a language or application
(e.g., the Kahan Summation Formula), explicit conversions can be used. Reproducible precision does not
guarantee reproducible behavior, however. Implementations with extra precision might round twice: once for
the floating-point operation, and once for the explicit conversion. Implementations without extra precision
effectively round only once. In rare cases, rounding twice versus rounding once can yield results differing by
one unit of least precision. end note]

When a floating-point value whose internal representation has greater range and/or precision than its nominal
type is put in a storage location, it is automatically coerced to the type of the storage location. This might
involve a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However,
the value might be retained in the internal representation for future use, if it is reloaded from the storage
location without having been modified. It is the responsibility of the compiler to ensure that the memory
location is still valid at the time of a subsequent load, taking into account the effects of aliasing and other
execution threads (see memory model section). This freedom to carry extra precision is not permitted,
however, following the execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal
representation shall be exactly representable in the associated type.

Partition III 3

O 0N Wn A~ W~

—_
(=]

—_— —
N —

—_—
w

—_ = =
[c-BEN o)V, IR N

—_
O

NSRS
— O

NN
W N

N B
[N N

NN
~N

[\
oo

W W W N
N - O O

W W W W W W W
O 02N U bW

N
[«

B
AW N —

[Note: To detect values that cannot be converted to a particular storage type, use a conversion instruction
(conv.r4, or conv.r8) and then check for an out-of-range value using ckfinite. To detect underflow when
converting to a particular storage type, a comparison to zero is required before and after the conversion. end
note]

[Note: This standard does not specify the behavior of arithmetic operations on denormalized floating point
numbers, nor does it specify when or whether such representations should be created. This is in keeping with
IEC 60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that
are created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this
behavior is deliberately left implementation-specific. end note]

Boolean data type

A CLI Boolean type occupies 1 byte in memory. A bit pattern of all zeroes denotes a value of false. A bit pattern
with any one or more bits set (analogous to a non-zero integer) denotes a value of true.

Object references

Object references (type O) are completely opaque. There are no arithmetic instructions that allow object references
as operands, and the only comparison operations permitted are equality and inequality between two object
references. There are no conversion operations defined on object references. Object references are created by
certain CIL object instructions (notably newobj and newarr). Object references can be passed as arguments, stored
as local variables, returned as values, and stored in arrays and as fields of objects.

Runtime pointer types

There are two kinds of pointers: unmanaged pointers and managed pointers. For pointers into the same array or
object (see Partition I), the following arithmetic operations are defined:

. Adding an integer to a pointer, where the integer is interpreted as a number of bytes, results in a
pointer of the same kind.

. Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. (Note
that subtracting a pointer from an integer is not permitted.)

. Two pointers, regardless of kind, can be subtracted one from the other, producing a signed integer
that specifies the number of bytes between the addresses they reference.

None of these operations is allowed in verifiable code.

It is important to understand the impact on the garbage collector of using arithmetic on the different kinds of
pointers. Since unmanaged pointers shall never reference memory that is controlled by the garbage collector,
performing arithmetic on them can endanger the memory safety of the system (hence it is not verifiable), but since
they are not reported to the garbage collector there is no impact on its operation.

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the contents of
the location to which they point and the pointer itself can be modified. The garbage collector will ignore managed
pointers if they point into memory that is not under its control (the evaluation stack, the call stack, static memory,
or memory under the control of another allocator). If, however, a managed pointer refers to memory controlled by
the garbage collector it shall point to either a field of an object, an element of an array, or the address of the element
just past the end of an array. If address arithmetic is used to create a managed pointer that refers to any other
location (an object header or a gap in the allocated memory) the garbage collector’s behavior is unspecified.

1.1.4.1 Unmanaged pointers

Unmanaged pointers are the traditional pointers used in languages like C and C++. There are no restrictions on their
use, although for the most part they result in code that cannot be verified. While it is perfectly valid to mark
locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how they are
treated by the CLI), it is often better to mark them as unmanaged pointers to a specific type of data. This is done by

Partition III

— o O ™ - AN B N R S

—_
[\

—_—
w

—
(N

16

17
18
19
20

21
22

23
24

25
26

27

28
29

30
31

32
33
34

35
36
37

38
39

using ELEMENT TYPE PTR in a signature for a return value, local variable or an argument or by using a pointer
type for a field or array element.

Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be

used.

Unmanaged pointers should be treated as unsigned (i.e., using conv.ovf.u rather than conv.ovf.i,
etc.).

Verifiable code cannot use unmanaged pointers to reference memory.

Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is
safe only if one of the following is true:

a. The unmanaged pointer refers to memory that is not in memory managed by the garbage
collector.

b. The unmanaged pointer refers to a field within an object.

c. The unmanaged pointer refers to an element within an array.

d. The unmanaged pointer refers to the location where the element following the last element in an

array would be located.

1.1.4.2 Managed pointers (type &)

Managed pointers (&) can point to a local variable, a method argument, a field of an object, a field of a value type,
an element of an array, a static field, or the address where an element just past the end of an array would be stored
(for pointer indexes into managed arrays). Managed pointers cannot be nul1l. (They shall be reported to the
garbage collector, even if they do not point to managed memory)

Managed pointers are specified by using ELEMENT TYPE BYREF in a signature for a return value, local variable
or an argument or by using a byref type for a field or array element.

Managed pointers can be passed as arguments and stored in local variables.
If you pass a parameter by reference, the corresponding argument is a managed pointer.

Managed pointers cannot be stored in static variables, array elements, or fields of objects or value
types.

Managed pointers are not interchangeable with object references.

A managed pointer cannot point to another managed pointer, but it can point to an object reference or
a value type.

Managed pointers that do not point to managed memory can be converted (using conv.u or
conv.ovf.u) into unmanaged pointers, but this is not verifiable.

Unverified code that erroneously converts a managed pointer into an unmanaged pointer can seriously
compromise the integrity of the CLI. This conversion is safe if any of the following is known to be
true:

the managed pointer does not point into the garbage collector’s memory area

a
b. the memory referred to has been pinned for the entire time that the unmanaged pointer is in use

o

a garbage collection cannot occur while the unmanaged pointer is in use

d. the garbage collector for the given implementation of the CLI is known to not move the
referenced memory

Partition III 5

E-NNVS I)

[o BN o)WV]

O

11
12

13
14
15
16

17
18
19
20
21
22
23

24
25
26
27

28

29
30
31
32

33

1.2

1.2.1

Instruction variant table

In §3 an Instruction Variant Table is presented for each instruction. It describes each variant of the instructions. The
format column of the table lists the opcode for the instruction variant, along with any operands that follow the
instruction in the instruction stream. For example:

Format Assembly Format Description
FE OA <unsigned int16> | ldarga argNum Fetch the address of argument argNum.
OF <umsigned int8> Idarga.s argNum Fetch the address of argument argNum, short form.

The first one or two hex numbers in the format show how this instruction is encoded (its “opcode”). For example,
the Idarga instruction is encoded as a byte holding FE, followed by another holding 0A. Italicized type names
delimited by < and > represent numbers that should follow in the instruction stream; for example, a 2-byte quantity
that is to be treated as an unsigned integer directly follows the FE OA opcode. [Example: One of the forms of the
Idc.<type> instruction is Idc.r8 num, which has a Format “23 <float64>". For the instruction ldc.r8
3.1415926535897931, the resulting code is 23 182D4454FB210940, where 182D4454FB210940 is the 8-byte hex
representation for 3.1415926535897931.

Similarly, another of the forms of the ldc.<type> instruction is Idc.i4.s num, which a Format of “1F <int8>". For
the instruction Idc.i4.s -3, the resulting code is 1F FD, where FD is the 1-byte hex representation for -3. The .S
suffix indicates an instruction is a short-form instruction. In this case, it requires 2 bytes rather than the long form
Idc.i4, which requires 5 bytes. end example]

Any of the fixed-size built-in types (int8, unsigned int8,intl6,unsigned intl6, int32,
unsigned int32,int64,unsigned in64, float32, and float64) can appear in format descriptions.
These types define the number of bytes for the operand and how it should be interpreted (signed, unsigned or
floating-point). In addition, a metadata token can appear, indicated as <7>. Tokens are encoded as 4-byte integers.
All operand numbers are encoded least-significant-byte-at-smallest-address (a pattern commonly termed “little-
endian”). Bytes for instruction opcodes and operands are packed as tightly as possible (no alignment padding is
done).

The assembly format column defines an assembly code mnemonic for each instruction variant. For those
instructions having instruction stream operands, this column also assigns names to each of the operands to the
instruction. For each instruction operand, there is a name in the assembly format. These names are used later in the
instruction description.

Opcode encodings

CIL opcodes are one or more bytes long; they can be followed by zero or more operand bytes. All opcodes whose
first byte lies in the ranges 0x00 through OxEF, or 0xFC through OxFF are reserved for standardization. Opcodes
whose first byte lies in the range 0xFO0 through 0xFB inclusive, are available for experimental purposes. The use of
experimental opcodes in any method renders the method invalid and hence unverifiable.

The currently defined encodings are specified in Table 1: Opcode Encodings.

Partition III

Table 1: Opcode Encodings

Opcode Instruction
0x00 nop
0x01 break
0x02 Idarg.0
0x03 Idarg.1
0x04 Idarg.2
0x05 Idarg.3
0x06 Idloc.0
0x07 Idloc.1
0x08 Idloc.2
0x09 Idloc.3
Ox0A stloc.0
0x0B stloc.1
0x0C stloc.2
0x0D stloc.3
O0x0E Idarg.s
O0xOF Idarga.s
0x10 starg.s
0x11 Idloc.s
0x12 Idloca.s
0x13 stloc.s
0x14 [dnull
0x15 Idc.i4.m1
0x16 Idc.i4.0
0x17 Idc.i4.1
0x18 Idc.i4.2
0x19 Idc.i4.3
Ox1A Idc.i4.4
0x1B Idc.i4.5
0x1C Idc.i4.6
0x1D Idc.i4.7
Ox1E Idc.i4.8

Partition III

Opcode Instruction
Ox1F Idc.i4.s
0x20 Idc.i4
0x21 Idc.i8
0x22 Idc.r4
0x23 Idc.r8
0x25 dup
0x26 pop
0x27 jmp
0x28 call
0x29 calli
0x2A ret
0x2B br.s
0x2C brfalse.s
0x2D brtrue.s
0x2E beq.s
0x2F bge.s
0x30 bgt.s
0x31 ble.s
0x32 blt.s
0x33 bne.un.s
0x34 bge.un.s
0x35 bgt.un.s
0x36 ble.un.s
0x37 blt.un.s
0x38 br
0x39 brfalse
0x3A brtrue
0x3B beq
0x3C bge
0x3D bgt
Ox3E ble
Ox3F bt
0x40 bne.un

Opcode Instruction
0x41 bge.un
0x42 bgt.un
0x43 ble.un
0x44 blt.un
0x45 switch
0x46 Idind.i1
0x47 Idind.u1
0x48 Idind.i2
0x49 Idind.u2
O0x4A Idind.i4
0x4B Idind.u4
0x4C Idind.i8
0x4D Idind.i
Ox4E Idind.r4
Ox4F Idind.r8
0x50 Idind.ref
0x51 stind.ref
0x52 stind.i1
0x53 stind.i2
0x54 stind.i4
0x55 stind.i8
0x56 stind.r4
0x57 stind.r8
0x58 add
0x59 sub
O0x5A mul
0x5B div
0x5C div.un
0x5D rem
Ox5E rem.un
Ox5F and
0x60 or
0x61 xor

Partition III

Opcode Instruction
0x62 shi
0x63 shr
0x64 shr.un
0x65 neg
0x66 not
0x67 conv.i1
0x68 conv.i2
0x69 conv.i4
Ox6A conv.i8
0x6B conv.r4
0x6C conv.r8
0x6D conv.u4
Ox6E conv.u8
Ox6F callvirt
0x70 cpobj
0x71 Idobj
0x72 Idstr
0x73 newobj
0x74 castclass
0x75 isinst
0x76 conv.r.un
0x79 unbox
Ox7A throw
0x7B Idfld
0x7C Idflda
0x7D stfld
Ox7E Idsfld
Ox7F Idsflda
0x80 stsfld
0x81 stobj
0x82 conv.ovf.il.un
0x83 conv.ovf.i2.un
0x84 conv.ovf.i4.un

Opcode

Instruction

0x85 conv.ovf.i8.un
0x86 conv.ovf.ul.un
0x87 conv.ovf.u2.un
0x88 conv.ovf.u4.un
0x89 conv.ovf.u8.un
O0x8A conv.ovf.i.un
0x8B conv.ovf.u.un
0x8C box

0x8D newarr

Ox8E Idlen

Ox8F Idelema

0x90 Idelem.i1

0x91 Idelem.u1
0x92 Idelem.i2

0x93 Idelem.u2
0x94 Idelem.i4

0x95 Idelem.u4
0x96 Idelem.i8

0x97 Idelem.i

0x98 Idelem.r4
0x99 Idelem.r8
0x9A Idelem.ref
0x9B stelem.i

0x9C stelem.i1

0x9D stelem.i2

Ox9E stelem.i4

Ox9F stelem.i8
0xAO0 stelem.r4

0xA1 stelem.r8
O0xA2 stelem.ref
O0xA3 Idelem

0xA4 stelem

O0xA5 unbox.any

Partition III

Opcode Instruction
0xB3 conv.ovf.i1
0xB4 conv.ovf.u1
0xB5 conv.ovf.i2
0xB6 conv.ovf.u2
0xB7 conv.ovf.i4
0xB8 conv.ovf.u4
0xB9 conv.ovf.i8
O0xBA conv.ovf.u8
0xC2 refanyval
0xC3 ckfinite
0xC6 mkrefany
0xDO Idtoken
0xD1 conv.u2
0xD2 conv.u1
0xD3 conv.i
0xD4 conv.ovf.i
0xD5 conv.ovf.u
0xD6 add.ovf
0xD7 add.ovf.un
0xD8 mul.ovf
0xD9 mul.ovf.un
OxDA sub.ovf
0xDB sub.ovf.un
0xDC endfinally
0xDD leave
OxDE leave.s
OxDF stind.i
OxEO conv.u
OxFE 0x00 arglist
OxFE 0x01 ceq
OxFE 0x02 cgt
OxFE 0x03 cgt.un
OxFE 0x04 clt

Opcode Instruction
OxFE 0x05 clt.un
OxFE 0x06 Idftn
OxFE 0x07 [dvirtftn
OxFE 0x09 Idarg
OxFE 0x0A Idarga
OxFE 0x0B starg
OxFE 0x0C Idloc
OxFE 0x0D Idloca
OxFE Ox0E stloc
OxFE OxOF localloc
OxFE 0x11 endfilter
OxFE 0x12 unaligned.
OxFE 0x13 volatile.
OxFE 0x14 tail.
OxFE 0x15 initobj
OxFE 0x16 constrained.
OxFE 0x17 cpblk
OxFE 0x18 initblk
OxFE 0x19 no.
OxFE Ox1A rethrow
OxFE 0x1C sizeof
OxFE 0x1D Refanytype
OxFE Ox1E readonly.

Partition III

24
25

26
27

28

29

1.3

1.4

1.5

Stack transition diagram

The stack transition diagram displays the state of the evaluation stack before and after the instruction is
executed. Below is a typical stack transition diagram.

..., valuel, value2 -> ..., result

This diagram indicates that the stack shall have at least two elements on it, and in the definition the topmost
value (“top-of-stack” or “most-recently-pushed”) will be called value2 and the value underneath (pushed prior
to value?2) will be called valuel. (In diagrams like this, the stack grows to the right, across the page). The
instruction removes these values from the stack and replaces them by another value, called result in the
description.

English description

The English description describes any details about the instructions that are not immediately apparent once the
format and stack transition have been described.

Operand type table

Many CIL operations take numeric operands on the stack. These operations fall into several categories,
depending on how they deal with the types of the operands. The following tables summarize the valid kinds of
operand types and the type of the result. Notice that the type referred to here is the type as tracked by the CLI
rather than the more detailed types used by tools such as CIL verification. The types tracked by the CLI are:
int32,int64, native int, F, O, and &.

Table 2 shows the result type for A op B—where op is add, div, mul, rem, or sub—for each possible
combination of operand types. Boxes holding simply a result type, apply to all five instructions. Boxes
marked % indicate an invalid CIL instruction. Shaded boxes indicate a CIL instruction that is not verifiable.
Boxes with a list of instructions are valid only for those instructions.

Table 2: Binary Numeric Operations

A's Type B's Type
int32 inté64 native F &
int
int32 int32 x native x & (add)
int
int64 x int64 x x x
native native x native x & (add)
int int int
F x x x F x
& & (add, x & (add, x native
sub) sub) int (sub)
0 x x x x x

Table 3 shows the result type for the unary numeric operations. Used for the neg instruction. Boxes marked %
indicate an invalid CIL instruction. All valid uses of this instruction are verifiable.

Table 3: Unary Numeric Operations

Operand int32 int64 native F &
Type int
Result int32 int64 native F x
Type int

Partition III

11

0 NN AW~

11
12

13
14
15
16

17
18
19

20
21
22
23
24
25
26

27

12

Table 4 shows the result type for the comparison and branch instructions. The binary comparison returns a
Boolean value and the branch operations branch based on the top two values on the stack. Used for beq, beq.s,
bge, bge.s, bge.un, bge.un.s, bgt, bgt.s, bgt.un, bgt.un.s, ble, ble.s, ble.un, ble.un.s, blt, blt.s, blt.un,
blt.un.s, bne.un, bne.un.s, ceq, cgt, cgt.un, clt, clt.un. Boxes marked v* indicate that all instructions are
valid for that combination of operand types. Boxes marked % indicate invalid CIL sequences. Shaded boxes
boxes indicate a CIL instruction that is not verifiable. Boxes with a list of instructions are valid only for those
instructions.

Table 4: Binary Comparison or Branch Operations

int32 int64 native F & (o}
int
int32 v x v x x x
int64 x v x x x x
native v x v x beq[.s], x
int bne.un[.s],
ceq
F x x x v x x
& x x beq[.s], x 1 x
bne.un[.s], v
ceq
o) x x x x x beq[.s],
bne.un[.s]
ceq’

1. Except for beq, bne.un, beq.s, bne.un.s, or ceq these combinations make sense if both
operands are known to be pointers to elements of the same array. However, there is no security
issue for a CLI that does not check this constraint

[Note: if the two operands are not pointers into the same array, then the result is simply the distance apart
in the garbage-collected heap of two unrelated data items. This distance apart will almost certainly
change at the next garbage collection. Essentially, the result cannot be used to compute anything useful
end note]

2. cgt.un is allowed and verifiable on ObjectRefs (O). This is commonly used when comparing an
ObjectRef with null (there is no “compare-not-equal” instruction, which would otherwise be a
more obvious solution)

Table 5 shows the result type for each possible combination of operand types in integer operations. Used for
and, div.un, not, or, rem.un, xor. The div.un and rem.un instructions treat their operands as unsigned
integers and produce the bit pattern corresponding to the unsigned result. As described in the CLI standard,
however, the CLI makes no distinction between signed and unsigned integers on the stack. The not instruction
is unary and returns the same type as the input. The shl and shr instructions return the same type as their first
operand, and their second operand shall be of type int32 or native int. Boxes marked ¥ indicate invalid
CIL sequences. All other boxes denote verifiable combinations of operands.

Table S: Integer Operations

int32 int64 native F & o
int

int32 int32 x native x x x
int

int64 x int64 x x x x

native native x native x x x
int int int

Partition III

[o)} WD A W=

10
11
12

13

14
15
16
17
18
19
20
21

F x x x x x
x x x x x
lo) x x x x x

Table 6 shows the valid combinations of operands and result for the shift instructions: shl, shr, shr.un. Boxes
marked % indicate invalid CIL sequences. All other boxes denote verifiable combinations of operand. If the
“Shift-By” operand is larger than the width of the “To-Be-Shifted” operand, then the results are unspecified.

(e.g., shift an int 32 integer left by 37 bits)

Table 6: Shift Operations

Shift-By
int32 int6é |native F |& |O
4 int
int32 int32 x int32 x [x | x
inté64 inte4 x inte4 x [x |x
To Be native native x native x [x | x
Shifted int int int
F x x x x [x |x
x x x x [x |x
[6) x x x x [x |x

Table 7 shows the result type for each possible combination of operand types in the arithmetic operations with

overflow checking. An exception shall be thrown if the result cannot be represented in the result type. Used for
add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, and sub.ovf.un. For details of the exceptions thrown, see
the descriptions of the specific instructions. The shaded uses are not verifiable, while boxes marked % indicate

invalid CIL sequences.

Table 7: Overflow Arithmetic Operations

int32 int6 |native int F &
4
int32 int32 x native int x & add.ovf.un
into64 x into | % x x
4
native native int | x native int x & add.ovf.un
int
F x x x x x
& & x & x native int
add.ovf.un, add.ovf.un, sub.ovf.un
sub.ovf.un sub.ovf.un
0 x x x x x

Table 8 shows the result type for the conversion operations. Conversion operations convert the top item on the
evaluation stack from one numeric type to another. While converting, truncation or extension occurs as shown
in the table. The result type is guaranteed to be representable as the data type specified as part of the operation
(i.e., the conv.u2 instruction returns a value that can be stored in an unsigned int16). The stack, however,
can only store values that are a minimum of 4 bytes wide. Used for the conv.<to type>, conv.ovf.<to type>,
and conv.ovf.<to type>.un instructions. The shaded uses are not verifiable, while boxes marked % indicate

invalid CIL sequences.

Partition III

— O 00 NN AW

—_— = = =
EENRVA N)

—_ —_ = =
e e} ~N N D

N NN NN —
W= O 0

Table 8: Conversion Operations

Convert-To Input (from evaluation stack)
int32 int64 native F & (o]
int
int8 Truncate' Truncate’ | Truncate' Truncate to x x
unsigned zero’
int8
intlé
unsigned
intlé
int32 Nop Truncate' | Truncate' Truncate to x x
unsigned zero’
int32
int64 Sign extend | Nop Sign extend | Truncate to Stop GC | Stop GC
zero’ tracking | tracking
unsigned Zero extend | Nop Zero extend | Truncate to Stop GC | Stop GC
int64 zero’ tracking | tracking
native int Sign extend Truncate' Nop Truncate to Stop GC | Stop GC
zero’ tracking | tracking
native Zero extend | Truncate! | Nop Truncate to Stop GC | Stop GC
unsigned int zero’ tracking | tracking
All Float Types To Float To Float To Float Change x x
precision’

"“Truncate” means that the number is truncated to the desired size (i.e., the most significant bytes of
the input value are simply ignored). If the result is narrower than the minimum stack width of

4 bytes, then this result is zero extended (if the result type is unsigned) or sign-extended (if the result
type is signed). Thus, converting the value 0x1234 ABCD from the evaluation stack to an 8-bit
datum yields the result 0xCD; if the result type were int8, this is sign-extended to give OxFFFF
FFCD; if, instead, the result type were unsigned int8, this is zero-extended to give 0x0000
00CD.

? “Truncate to zero” means that the floating-point number will be converted to an integer by
truncation toward zero. Thus 1.1 is converted to 1, and —1.1 is converted to —1.

3 Converts from the current precision available on the evaluation stack to the precision specified by
the instruction. If the stack has more precision than the output size the conversion is performed using
the IEC 60559:1989 “round-to-nearest” mode to compute the low order bit of the result.

* “Stop GC Tracking” means that, following the conversion, the item’s value will not be reported to
subsequent garbage-collection operations (and therefore will not be updated by such operations).

Rounding mode for integer to and from F conversions is the same as for arithmetic.

1.6

14

Implicit argument coercion

While the CLI operates only on 6 types (int32, native int, int64, F, O, and &) the metadata supplies a
much richer model for parameters of methods. When about to call a method, the CLI performs implicit type
conversions, detailed in the following table. (Conceptually, it inserts the appropriate conv.* instruction into the
CIL stream, which might result in an information loss through truncation or rounding) This implicit conversion
occurs for boxes marked v'. Shaded boxes are not verifiable. Boxes marked % indicate invalid CIL sequences.
(A compiler is, of course, free to emit explicit conv.* or conv.*.ovf instructions to achieve any desired effect.)

Partition III

Table 9: Signature Matching

Type In Stack Parameter

Signature int32 native int64 F & (o)
int

int8 v v x x x x

unsigned | v v x x x x

ints8,

bool

intlé v v x x x x

unsigned | v v x x x x

intle,

char

int32 v v x x x x

unsigned |V v x x x x

int32

int64 x x v x x x

unsigned | x x v x x x

int64

native v’ Sign v x x x x

int extend

native v’ Zero v’ Zero x x x x

unsigned | extend extend

int

float32 x x x Note” x x

float64 |x x x Note* x %

Class x x x x x v

Value Type Note' Note' Note' Note' x x

(Note2)

By- x v Start GC | x x v x

reference tracking

(Byref)

(&)

Typed X X X X X X

Reference

(RefAny)

(Note)

O 03 O bk W

" Passing a built-in type to a parameter that is required to be a value type is not allowed.

2 The CLI’s stack can contain a value type. These can only be passed if the particular value type on the
stack exactly matches the class required by the corresponding parameter.

3 There are special instructions to construct and pass a RefAny.

* The CLI is permitted to pass floating point arguments using its internal F type, see §1.1.1. CIL
generators can, of course, include an explicit conv.r4, conv.r4.ovf, or similar instruction.

Further notes concerning this table:

Partition III 15

oe] ~N N WA W N —

11
12

13

14
15
16
17

18
19
20
21

2
23
24

25
26
27

28
29
30
31
32
33
34

35
36
37

38

39
40
41
42

43
44
45
46

47
48

1.7

1.7.1

1.7.2

16

. On a 32-bit machine passing a native int argument to an unsigned int32 parameter
involves no conversion. On a 64-bit machine it is implicitly converted.

. “Start GC Tracking” means that, following the implicit conversion, the item’s value will be
reported to any subsequent garbage-collection operations, and perhaps changed as a result of the
item pointed-to being relocated in the heap.

Restrictions on CIL code sequences
As well as detailed restrictions on CIL code sequences to ensure:
. Valid CIL
. Verifiable CIL

There are a few further restrictions, imposed to make it easier to construct a simple CIL-to-native-code
compiler. This subclause specifies the general restrictions that apply in addition to this listed for individual
instructions.

The instruction stream

The implementation of a method is provided by a contiguous block of CIL instructions, encoded as specified
below. The address of the instruction block for a method as well as its length is specified in the file format (see
Partition II, CIL Physical Layout). The first instruction is at the first byte (lowest address) of the instruction
block.

Instructions are variable in size. The size of each instruction can be determined (decoded) from the content of
the instruction bytes themselves. The size of and ordering of the bytes within an instruction is specified by each
instruction definition. Instructions follow each other without padding in a stream of bytes that is both alignment
and byte-order insensitive.

Each instruction occupies an exact number of bytes, and until the end of the instruction block, the next
instruction begins immediately at the next byte. It is invalid for the instruction block (as specified by the
block’s length) to end without forming a complete last instruction.

Instruction prefixes extend the length of an instruction without introducing a new instruction; an instruction
having one or more prefixes introduces only one instruction that begins at the first byte of the first instruction
prefix.

[Note: Until the end of the instruction block, the instruction following any control transfer instruction is
decoded as an instruction and thus participates in locating subsequent instructions even if it is not the target of a
branch. Only instructions can appear in the instruction stream, even if unreachable. There are no address-
relative data addressing modes and raw data cannot be directly embedded within the instruction stream. Certain
instructions allow embedding of immediate data as part of the instruction; however that differs from allowing
raw data embedded directly in the instruction stream. Unreachable code can appear as the result of machine-
generated code and is allowed, but it shall always be in the form of properly formed instruction sequences.

The instruction stream can be translated and the associated instruction block discarded prior to execution of the
translation. Thus, even instructions that capture and manipulate code addresses, such as call, ret, etc. can be
virtualized to operate on translated addresses instead of addresses in the CIL instruction stream. end note]

Valid branch targets

The set of addresses composed of the first byte of each instruction identified in the instruction stream defines
the only valid instruction targets. Instruction targets include branch targets as specified in branch instructions,
targets specified in exception tables such as protected ranges (see Partition I and Partition II), filter, and handler
targets.

Branch instructions specify branch targets as either a 1-byte or 4-byte signed relative offset; the size of the
offset is differentiated by the opcode of the instruction. The offset is defined as being relative to the byte
following the branch instruction. [Note: Thus, an offset value of zero targets the immediately following
instruction.]

The value of a 1-byte offset is computed by interpreting that byte as a signed 8-bit integer. The value of a 4-
byte offset is can be computed by concatenating the bytes into a signed integer in the following manner: the

Partition III

byte of lowest address forms the least significant byte, and the byte with highest address forms the most
significant byte of the integer. [Note: This representation is often called “a signed integer in little-endian byte-
order”.]

1.7.3 Exception ranges

Exception tables describe ranges of instructions that are protected by catch, fault, or finally handlers (see
Partition I and Partition II). The starting address of a protected block, filter clause, or handler shall be a valid
branch target as specified in §1.7.2. It is invalid for a protected block, filter clause, or handler to end without
forming a complete last instruction.

03NN K W N~

9 1.7.4 Must provide maxstack

10 Every method specifies a maximum number of items that can be pushed onto the CIL evaluation stack. The

11 value is stored in the IMAGE COR_ILMETHOD structure that precedes the CIL body of each method. A

12 method that specifies a maximum number of items less than the amount required by a static analysis of the

13 method (using a traditional control flow graph without analysis of the data) is invalid (hence also unverifiable)
14 and need not be supported by a conforming implementation of the CLI.

15 [Note: Maxstack is related to analysis of the program, not to the size of the stack at runtime. It does not specify
16 the maximum size in bytes of a stack frame, but rather the number of items that shall be tracked by an analysis
17 tool. end note)

18

19 [Rationale: By analyzing the CIL stream for any method, it is easy to determine how many items will be

20 pushed on the CIL Evaluation stack. However, specifying that maximum number ahead of time helps a CIL-to-
21 native-code compiler (especially a simple one that does only a single pass through the CIL stream) in allocating
22 internal data structures that model the stack and/or verification algorithm. end rationale]

23 1.7.5 Backward branch constraints

24 It shall be possible, with a single forward-pass through the CIL instruction stream for any method, to infer the
25 exact state of the evaluation stack at every instruction (where by “state” we mean the number and type of each
26 item on the evaluation stack).

27 In particular, if that single-pass analysis arrives at an instruction, call it location X, that immediately follows an
28 unconditional branch, and where X is not the target of an earlier branch instruction, then the state of the

29 evaluation stack at X, clearly, cannot be derived from existing information. In this case, the CLI demands that
30 the evaluation stack at X be empty.

31 Following on from this rule, it would clearly be invalid CIL if a later branch instruction to X were to have a
32 non-empty evaluation stack

33 [Rationale: This constraint ensures that CIL code can be processed by a simple CIL-to-native-code compiler. It
34 ensures that the state of the evaluation stack at the beginning of each CIL can be inferred from a single,

35 forward-pass analysis of the instruction stream. end rationale)

36 [Note: the stack state at location X in the above can be inferred by various means: from a previous forward

37 branch to X; because X marks the start of an exception handler, etc. end note]

38 See the following for further information:

39 . Exceptions: Partition [

40 . Verification conditions for branch instructions: §3

41 . The tail. prefix: §3.19

42 1.7.6 Branch verification constraints

43 The target of all branch instruction shall be a valid branch target (see§1.7.2) within the method holding that
44 branch instruction.

45 1.8 Verifiability and correctness

46 Memory safety is a property that ensures programs running in the same address space are correctly isolated
47 from one another (see Partition I). Thus, it is desirable to test whether programs are memory safe prior to

Partition III

03 ANk W~

—_—
— O O

—_ = = = =
AN L bW

N NN NN = ==
N AW —= OO0 o

[\
o)

NN
e BN |

W W N
— O O

W W W W W W
~N N AW

S b WW
— O O ®

> B~ B
EENRVE I 8]

o
~ O\ W

N
)

D
[eNe}

1.8.1

18

running them. Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the CLI can test
a stronger restriction, called verifiability. Every program that is verified is memory safe, but some programs
that are not verifiable are still memory safe.

Correct CIL is CIL that executes on all conforming implementations of the CLI, with well-defined behavior as
specified in this standard. However, correct CIL need not result in identical behavior across conforming
implementations; that is, the behavior might be implementation-specific.

It is perfectly acceptable to generate correct CIL code that is not verifiable, but which is known to be memory
safe by the compiler writer. Thus, correct CIL might not be verifiable, even though the producing compiler
might know that it is memory safe. Several important uses of CIL instructions are not verifiable, such as the
pointer arithmetic versions of add that are required for the faithful and efficient compilation of C programs.
For non-verifiable code, memory safety is the responsibility of the application programmer.

Correct CIL contains a verifiable subset. The Verifiability description gives details of the conditions under
which a use of an instruction falls within the verifiable subset of CIL. Verification tracks the types of values in
much finer detail than is required for the basic functioning of the CLI, because it is checking that a CIL code
sequence respects not only the basic rules of the CLI with respect to the safety of garbage collection, but also
the typing rules of the CTS. This helps to guarantee the sound operation of the entire CLI.

The verifiability section of each operation description specifies requirements both for correct CIL generation
and for verification. Correct CIL generation always requires guaranteeing that the top items on the stack
correspond to the types shown in the stack transition diagram. The verifiability section specifies only
requirements for correct CIL generation that are not captured in that diagram. Verification tests both the
requirements for correct CIL generation and the specific verification conditions that are described with the
instruction. The operation of CIL sequences that do not meet the CIL correctness requirements is unspecified.
The operation of CIL sequences that meet the correctness requirements, but which are not verifiable, might
violate type safety and hence might violate security or memory access constraints. See I1.3 for additional
information.

Flow control restrictions for verifiable CIL

This subclause specifies a verification algorithm that, combined with information on individual CIL
instructions (see §3) and metadata validation (see Partition II), guarantees memory integrity.

The algorithm specified here creates a minimum level for all compliant implementations of the CLI in the sense
that any program that is considered verifiable by this algorithm shall be considered verifiable and run correctly
on all compliant implementations of the CLI.

The CLI provides a security permission (see Partition V) that controls whether or not the CLI shall run
programs that might violate memory safety. Any program that is verifiable according to this standard does not
violate memory safety, and a conforming implementation of the CLI shall run such programs. The
implementation might also run other programs provided it is able to show they do not violate memory safety
(typically because they use a verification algorithm that makes use of specific knowledge about the
implementation).

[Note: While a compliant implementation is required to accept and run any program this verification algorithm
states is verifiable, there might be programs that are accepted as verifiable by a given implementation but
which this verification algorithm will fail to consider verifiable. Such programs will run in the given
implementation but need not be considered verifiable by other implementations.

For example, an implementation of the CLI might choose to correctly track full signatures on method pointers
and permit programs to execute the calli instruction even though this is not permitted by the verification
algorithm specified here.

Implementers of the CLI are urged to provide a means for testing whether programs generated on their
implementation meet this portable verifiability standard. They are also urged to specify where their verification
algorithms are more permissive than this standard. end note]

Implementation Specific (Microsoft)

The various implementations of the CLI produced by Microsoft use slightly different verification
algorithms. In all cases, however, the PEVerify program (part of the SDK) implements the portable

Partition III

— O 0O 0 9N W B O R

[N

—
AN W

D — — —
S ©

NN DN
WK —

N B
[N

NN
NeoJNc BN Bo)N

W W
— o

W W W
E-NUS T S

(98]
(9]

W W
~N

[O%]
oo

S Bh W
— O O

e o N
o BEN e NV, I NRUS I 8]

verification algorithm as specified in this Standard. Programmers are urged to run PEVerify over all
code before shipping it for possible use on other implementations of the CLI.

Some implementations of the CLI produced by Microsoft differ from the verification algorithm
specified here.

Only valid programs shall be verifiable. For ease of explanation, the verification algorithm described here
assumes that the program is valid and does not explicitly call for tests of all validity conditions. Validity
conditions are specified on a per-CIL instruction basis (see §3), and on the overall file format in Partition II.

1.8.1.1 Verification algorithm

The verification algorithm shall attempt to associate a valid stack state with every CIL instruction. The stack
state specifies the number of slots on the CIL stack at that point in the code and for each slot a required type
that shall be present in that slot. The initial stack state is empty (there are no items on the stack).

Verification assumes that the CLI zeroes all memory other than the evaluation stack before it is made visible to
programs. A conforming implementation of the CLI shall provide this observable behavior. Furthermore,
verifiable methods shall have the localsinit bit set, see Partition II (Flags for Method Headers). If this bit is not
set, then a CLI might throw a Verification exception at any point where a local variable is accessed, and where
the assembly containing that method has not been granted SecurityPermission.Skip Verification.

[Rationale: This requirement strongly enhances program portability, and a well-known technique (definite
assignment analysis) allows a CIL-to-native-code compiler to minimize its performance impact. Note that a
CLI might optionally choose to perform definite-assignment analysis — in such a case, it might confirm that a
method, even without the localsinit bit set, might in fact be verifiable (and therefore not throw a Verification
exception) end rationale)

[Note: Definite assignment analysis can be used by the CLI to determine which locations are written before
they are read. Such locations needn’t be zeroed, since it isn’t possible to observe the contents of the memory as
it was provided by the VES.

Performance measurements on C++ implementations (which do not require definite-assignment analysis)
indicate that adding this requirement has almost no impact, even in highly optimized code. Furthermore,
customers incorrectly attribute bugs to the compiler when this zeroing is not performed, since such code often
fails when small, unrelated changes are made to the program. end note]

The verification algorithm shall simulate all possible control flow paths through the code and ensure that a
valid stack state exists for every reachable CIL instruction. The verification algorithm does not take advantage
of any data values during its simulation (e.g., it does not perform constant propagation), but uses only type
assignments. Details of the type system used for verification and the algorithm used to merge stack states are
provided in §1.8.1.3. The verification algorithm terminates as follows:

1. Successfully, when all control paths have been simulated.

2. Unsuccessfully when it is not possible to compute a valid stack state for a particular CIL
instruction.

3. Unsuccessfully when additional tests specified in this clause fail.

With the exception of the unconditional branch instructions, throw, rethrow, and ret, there is a control flow
path from every instruction to the subsequent instruction. There is also a control flow path from each branch
instruction (conditional or unconditional) to the branch target (or targets, in the case of the switch instruction).

Verification simulates the operation of each CIL instruction to compute the new stack state, and any type
mismatch between the specified conditions on the stack state (see §3) and the simulated stack state shall cause
the verification algorithm to fail. (Note that verification simulates only the effect on the stack state: it does not
perform the actual computation). The algorithm shall also fail if there is an existing stack state at the next
instruction address (for conditional branches or instructions within a try block there might be more than one
such address) that cannot be merged with the stack state just computed. For rules of this merge operation,

see §1.8.1.3.

Partition III

19

e e e —_ =
O 003N bk~ W — o O 0 LB W=

[N}
(e}

N NN
(O R S

NN
[o M I

\]
-

W W W NN
N = O O

(98]
w

W W
(LR

AW W W W
— O O 00 J

The CLI supports the notion of a controlled-mutability managed pointer. (See §1.8.1.2.2, the merging rules in
§1.8.1.3, the readonly. instruction prefix in §2.3, the Idfld instruction in §4.10, the stfld instruction in §4.30,
and the unbox instruction in §4.32.)

The VES ensures that both special constraints and type constraints are satisfied. The constraints can be checked
as early as when a closed type is constructed, or as late as when a method on the constrained generic type is
invoked, a constrained generic method is invoked, a field in a constrained generic type is accessed, or an
instance of a constrained generic type is created.

To accommodate generics, the type compatibility relation is extended to deal with:
. generic parameters: a generic parameter is compatible only with itself.

. boxed generic parameters: a boxed generic parameter is compatible with the constraint types
declared on the generic parameter.

In the verification semantics, boxing a value of primitive or value type on the stack introduces a value
of type “boxed” type; if the value type is Nullable<T> (Partition 1.8.2.4), a value of type “boxed” T is
introduced. This notion of boxed type is extended to generic parameters. Boxing a value whose type is
a generic parameter (!0, for example) introduces a value of the boxed parameter type on the stack
(“boxed” !0, for example). The boxed forms of value types, and now generic parameters, are used to
support efficient instance and virtual method calls on boxed values. Because the “boxed” type
statically records the exact type of the underlying value, there is no need to perform a checked cast on
the instance from some less informative, but syntactically expressible, reference type.

Just like the boxed forms of primitive and non-primitive value types, the boxed forms of generic
parameters only occur on the verification stack (after being introduced by a box instruction). They
cannot be explicitly specified using metadata signatures.

1.8.1.2 Verification type system

The verification algorithm compresses types that are logically equivalent, since they cannot lead to memory
safety violations. The types used by the verification algorithm are specified in §1.8.1.2.1, the type compatibility
rules are specified in §1.8.1.2.2, and the rules for merging stack states are in §1.8.1.3.

1.8.1.2.1 Verification types

20

The following table specifies the mapping of types used in the CLI and those used in verification. Notice that
verification compresses the CLI types to a smaller set that maintains information about the size of those types
in memory, but then compresses these again to represent the fact that the CLI stack expands 1, 2 and 4-byte
built-in types into 4-byte types on the stack. Similarly, verification treats floating-point numbers on the stack as
64-bit quantities regardless of the actual representation.

Arrays are objects, but with special compatibility rules.

There is a special encoding for nul1l that represents an object known to be the null value, hence with
indeterminate actual type.

In the following table, “CLI Type” is the type as it is described in metadata. The “Verification Type” is a
corresponding type used for type compatibility rules in verification (see §1.8.1.2.2) when considering the types
of local variables, arguments, and parameters on methods being called. The column “Verification Type (in
stack state)” is used to simulate instructions that load data onto the stack, and shows the types that are actually
maintained in the stack state information of the verification algorithm. The column “Managed Pointer to Type”
shows the type tracked for managed pointers.

CLI Type Verification Type Verification Type Managed Pointer to Type
(in stack state)

int8, unsigned int8, int8 int32 int8¢&

bool

intl6, unsigned intle, intl6 int32 intl6é&

char

int32, unsigned int32 int32 int32 int32&

Partition III

[e<BEEN| AN B W=

—_— —
N == O O

Ju—
w

—_—
[T N

—_—
[c BN BN

N NN —
N = OO

[\
W

24
25
26
27

28

29
30
31
32

33
34
35
36
37

38

int64, unsigned int64

int64

int64

int64s

native int, native
unsigned int

native int

native int

native inté&

float32 float32 float64 float32&
float64 float64 float64 float64s
Any value type Same type Same type Same typeé&
Any object type Same type Same type Same typeé&
Method pointer Same type Same type Not wvalid

1.8.1.2.2

1.8.1.2.3

A method can be defined as returning a managed pointer, but calls upon such methods are not verifiable. When
returning byrefs, verification is done at the return site, not at the call site.

[Rationale: Some uses of returning a managed pointer are perfectly verifiable (e.g., returning a reference to a
field in an object); but some not (e.g., returning a pointer to a local variable of the called method). Tracking this
in the general case is a burden, and therefore not included in this standard. end rationale)

Controlled-mutability managed pointers

The readonly. prefix and unbox instructions can produce what is called a controlled-mutability managed
pointer. Unlike ordinary managed pointer types, a controlled-mutability managed pointer is incompatible with
ordinary managed pointers; e.g., it cannot be passed as a byref argument to a method. At control flow points, a
controlled-mutability managed pointer can be merged with a managed pointer of the same type to yield a
controlled-mutability managed pointer.

Controlled-mutability managed pointers can only be used in the following ways:

1. As the object parameter for an Idfld, Idflda, stfld, call, callvirt, or constrained. callvirt

instruction.
2. As the pointer parameter to a Idind.* or Idobj instruction.
3. As the source parameter to a cpobj instruction.

All other operations (including stobj, stind.*, initobj, and mkrefany) are invalid.

The pointer is called a controlled-mutability managed pointer because the defining type decides whether the
value can be mutated. For value classes that expose no public fields or methods that update the value in place,
the pointer is read-only (hence the name of the prefix). In particular, the classes representing primitive types
(such as System. Int32) do not expose mutators and thus are read-only.

Verification type compatibility

Verification type compatibility is defined in terms of assignment compatibility (see Partition I). We use S and
T to denote verification types, and the assignment compatibility notation “S := T” indicates that the
verification type T can be used wherever the verification type S can be used, while “S ! := T” indicates that
T cannot be used where S is expected.

1.8.1.3 Merging stack states

As the verification algorithm simulates all control flow paths it shall merge the simulated stack state with any
existing stack state at the next CIL instruction in the flow. If there is no existing stack state, the simulated stack
state is stored for future use. Otherwise the merge shall be computed as follows and stored to replace the
existing stack state for the CIL instruction. If the merge fails, the verification algorithm shall fail.

The merge shall be computed by comparing the number of slots in each stack state. If they differ, the merge
shall fail. If they match, then the overall merge shall be computed by merging the states slot-by-slot as follows.
Let T be the type from the slot on the newly computed state and S be the type from the corresponding slot on
the previously stored state. The merged type, U, shall be computed as follows (recall that S := T is the
compatibility function defined in §1.8.1.2.2):

1. if S := T then U=S

Partition III

21

E-SEENVS N]

O o0 ~N N WD

2. Otherwise, if T := S then U=T

3. Otherwise, if S and T are both object types, then let V be the closest common supertype of S and
T then U=V.

4. Otherwise, the merge shall fail.

Implementation Specific (Microsoft)

The V1.0 release of the Microsoft CLI will merge interfaces by arbitrarily choosing the first common
interface between the two verification types being merged.

Merging a controlled-mutability managed pointer with an ordinary (that is, non-controlled-mutability) managed
pointer to the same type results in a controlled-mutability managed pointer to that type.

1.8.1.4 Class and object initialization rules

The VES ensures that all statics are initially zeroed (i.e., built-in types are 0 or false, object references are null),
hence the verification algorithm does not test for definite assignment to statics.

An object constructor shall not return unless a constructor for the base class or a different construct for the
object’s class has been called on the newly constructed object. The verification algorithm shall treat the this
pointer as uninitialized unless the base class constructor has been called. No operations can be performed on an
uninitialized this except for storing into and loading from the object’s fields.

[Note: If the constructor generates an exception the this pointer in the corresponding catch block is still
uninitialized. end note]

1.8.1.5Delegate constructors

The verification algorithm shall require that one of the following code sequences is used for constructing
delegates; no other code sequence in verifiable code shall contain a newobj instruction for a delegate type.
There shall be only one instance constructor method for a delegate (overloading is not allowed)

The verification algorithm shall fail if a branch target is within these instruction sequences (other than at the
start of the sequence).

[Note: See Partition I for the signature of delegates and a validity requirement regarding the signature of the
method used in the constructor and the signature of Invoke and other methods on the delegate class. end note]

1.8.1.5.1 Delegating via virtual dispatch

The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence
begins with an object on the stack.

dup

ldvirtftn mthd ; Method shall be on the class of the object,
; or one of its parent classes, or an interface
; implemented by the object

newobj delegateclass::.ctor (object, native int)

[Rationale: The dup is required to ensure that it is precisely the same object stored in the delegate as was used
to compute the virtual method. If another object of a subtype were used the object and the method wouldn’t
match and could lead to memory violations. end rationale)

When mthd is a non-final virtual method on an instance other than a boxed value type, the verification also
checks that the instance reference to the method being called is the result of Idarg 0, Idarg.s 0, Idarg O and the
caller’s body does not contain starg.s 0, starg O or Idarga.s 0, Idarga O.

1.8.1.5.2 Delegating via instance dispatch
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence
begins with either null or an object on the stack.

1ldftn mthd ; Method shall be a static method
; or a method on the class of the object on
; the stack or a method on any parent class

22 Partition III

O N WN—

—
[= el

— e e e e
01NN WN—

—
O

N
—_ O

of the object on the stack. 1In addition, if
the method is virtual, the object on the stack
must be the “this” pointer of the currently
executing method (the result of a ldarg.0,
ldarg.s 0, or ldarg 0 instruction), and the
current method body must not include any
starg.s 0, starg 0, ldarga.s 0, or ldarga O
instructions.

newobj delegateclass::.ctor (object, native int)

1.9 Metadata tokens

Many CIL instructions are followed by a "metadata token". This is a 4-byte value, that specifies a row in a
metadata table, or a starting byte offset in the User String heap. The most-significant byte of the token specifies
the table or heap. For example, a value of 0x02 specifies the TypeDef table; a value of 0x70 specifies the User
String heap. The value corresponds to the number assigned to that metadata table (see Partition II for the full
list of tables) or to 0x70 for the User String heap. The least-significant 3 bytes specify the target row within that
metadata table, or starting byte offset within the User String heap. The rows within metadata tables are
numbered one upwards, whilst offsets in the heap are numbered zero upwards. (So, for example, the metadata
token with value 0x02000007 specifies row number 7 in the TypeDef table)

1.10 Exceptions thrown

A CIL instruction can throw a range of exceptions. The CLI can also throw the general purpose exception
called ExecutionEngineException. See Partition I for details.

Partition III

23

AN bW

24

Prefixes to instructions

These special values are reserved to precede specific instructions. They do not constitute full instructions in
their own right. It is not valid CIL to branch to the instruction following the prefix, but the prefix itself is a
valid branch target. It is not valid CIL to have a prefix without immediately following it by one of the
instructions it is permitted to precede.

Partition III

— O Vo003 O W B

e e e e
N N bW

NN = =
— O O ®©

W N NN NN
SOOI W A~ W

W W W W W W
AN bk W N =

W W W
O 0

A BS
W= O

2.1

constrained. — (prefix) invoke a member on a value of a variable type
Format Assembly Format Description
FE 16 <T> constrained. Call a virtual method on a type constrained to be type T
thisType

Stack Transition:
.., ptr, argl, .. argN -> .., ptr, argl, .. argN

Description:
The constrained. prefix is permitted only on a callvirt instruction. The type of p¢r must be a managed

pointer (&) to thisType. The constrained prefix is designed to allow callvirt instructions to be made in a
uniform way independent of whether thisType is a value type or a reference type.

When callvirt method instruction has been prefixed by constrained thisType the instruction is executed as
follows.

If thisType is a reference type (as opposed to a value type) then

ptr is dereferenced and passed as the ‘this’ pointer to the callvirt of method
If thisType is a value type and thisType implements method then

ptr is passed unmodified as the ‘this’ pointer to a call of method implemented by thisType
If thisType is a value type and thisType does not implement method then

ptr is dereferenced, boxed, and passed as the ‘this’ pointer to the callvirt of method

This last case can only occur when method was defined on System.Object, System.ValueType, or
System.Enum and not overridden by thisType. In this last case, the boxing causes a copy of the original
object to be made, however since all methods on System.Object, System.ValueType, and
System.Enum do not modify the state of the object, this fact can not be detected.

The need for the constrained prefix was motivated by the needs IL generators creating generic code. Normally
the callvirt instruction is not valid on value types. Instead it is required that IL compilers effectively perform
the “this’ transformation outlined above at IL compile time, depending on the type of ptr and the method being
called. It is not possible to do this transformation at IL compile time, however, when ptr is a generic type
(which is unknown at IL compile time). This is why the constrained prefix is needed. The constrained
opcode allows IL compilers to make a call to a virtual function in a uniform way independent of whether ptr is
a value type or reference type. While this was targeted for the case were thisType is a generic type variable,
constrained works for non-generic types too, and can ease the complexity of generating virtual calls in
languages that hide the distinction between value and reference types.

Exceptions:
None.

Correctness:

The constrained prefix will be immediately followed by a callvirt instruction. thisType shall be a valid
typedef, typeref, or typespec metadata token.

Verifiability:
The ptr argument will be a managed pointer (&) to thisType. In addition all the normal verification rules of

the callvirt instruction apply after the ptr transformation as described above. This is equivalent to requiring
that a boxed thisType must be a subclass of the class which method belongs to.

[Rationale: The goal of this instruction was to achieve uniformity of calling virtual functions, so such calls
could be made verifiably in generic routines. One way of achieving this uniformity was to always box the
‘this’ pointer before making a callvirt. This works for both reference type (where box is a no-op), and value
types. The problem with this approach is that a copy is made in the value type case. Thus if the method being

Partition III 25

N W N —

26

called modifies the state of the value type, this will not be reflected after the call completes since this
modification was made in the boxed copy. This semantic difference (as well as the performance cost of the
extra boxing), makes this alternative unacceptable. |

Partition III

0 3 (o) WV, [N SN VS Y 9]

11
12
13

14
15
16

17
18

19
20

21
22

23
24
25

26
27

2.2

no. — (prefix) possibly skip a fault check

Format

Assembly Format

Description

FE 19 <unsigned int8>

no. { typecheck
| rangecheck
|nullcheck }

The specified fault check(s) normally performed
as part of the execution of the subsequent
instruction can/shall be skipped.

Description:

This prefix indicates that the subsequent instruction need not perform the specified fault check when it is
executed. The byte that follows the instruction code indicates which checks can optionally be skipped. This

instruction is not verifiable.

The prefix can be used in the following circumstances:

0x01: typecheck (castclass, unbox, Idelema, stelem, stelem). The CLI can optionally skip any type
checks normally performed as part of the execution of the subsequent instruction.
InvalidCastException can optionally still be thrown if the check would fail.

0x02: rangecheck (Idelem.*, Idelema, stelem.*). The CLI can optionally skip any array range checks

normally performed as part of the execution of the subsequent instruction. IndexOutOfRangeException

can optionally still be thrown if the check would fail.

0x04: nullcheck (Idfld, stfld, callvirt, Idvirtftn, Idelem.*, stelem.*, Idelema). The CLI can optionally skip
any null-reference checks normally performed as part of the execution of the subsequent instruction.
NullReferenceException can optionally still be thrown if the check would fail.

The byte values can be OR-ed; e.g.; a value of 0x05 indicates that both typecheck and nullcheck can

optionally be omitted.

Exceptions:

None.

Correctness:

Correct IL permits the prefix only on the instructions specified above.

Verifiability:

Verifiable IL does not permit the use of no.

Implementation Specific (Microsoft)

The Microsoft CLI does not currently support the no. prefix.

Partition III

27

03 ONWn bW

2.3

28

readonly. (prefix) — following instruction returns a controlled-mutability
managed pointer

Format Assembly Format Description

FE1E readonly. Specify that the subsequent array address operation performs no
type check at runtime, and that it returns a controlled-mutability
managed pointer

Description:

This prefix can only appear only immediately preceding the Idelema instruction and calls to the special
Address method on arrays. Its effect on the subsequent operation is twofold.

1. At run-time, no type check operation is performed. (For the value class case there is never a runtime time
check so this is a noop in that case).

2. The verifier treats the result of the address-of operation as a controlled-mutability managed pointer
(§1.8.1.2.2).

Exceptions:

None.

Correctness:

Verifiability:

A controlled-mutability managed pointer must obey the verifier rules given in (2) of §1.8.1.2.2. See also
§1.8.1.3.

[Rationale: The main goal of the readonly. prefix is to avoid a type check when fetching an element from an
array in generic code. For example the expression

arraylil.method()

where array has type T[] (where T is a generic parameter), and T has been constrained to have an interface with
method ‘method’ might compile into the following IL code.

ldloc array

ldloc j // j is array index
readonly.
ldelema !0 // loads the pointer to the object

- // load the arguments to the call
constrained. !0
callvirt method

Without the readonly. prefix the Idelema would do a type check in the case that ! 0 was a reference class.

Not only is this type check inefficient, but it is semantically incorrect. The type check for [delema does an
exact match typecheck, which is too strong in general. If the array held derived classes of ! O then the code
above would fail the Idelema typecheck. The only reason we fetch the address of the array element instead of
the element itself (which is what the source code says), is because we need a handle for array/i] that works
both for value types and reference types that can be passed to the constrained callvirt instruction.

If the array holds elements of a reference type, in general, skipping the runtime check would be unsafe. To be
safe we have to insure that no modifications of the array happen through this pointer. The verifier rules stated
above insure this. Since we explicitly allow read-only pointers to be passed as the object of instance method
calls, these pointers are not strictly read-only for value types, but there is no type safety problem for value
types. end rationale]

Partition III

— O 00 NN Wn bk W

—_— = =
W N

— e
01N Wbk

(NSRS IS S s
W= O\

&)
=

NN NN
0~ N W

W W W WN
W = O O

w
g

(98]
()]

W W W
[c BN o)

(98]
O

A~ b
=]

N
[\

2.4

tail. (prefix) — call terminates current method
Format Assembly Format Description
FE 14 tail. Subsequent call terminates current method
Description:

The tail. prefix shall immediately precede a call, calli, or callvirt instruction. It indicates that the current
method’s stack frame is no longer required and thus can be removed before the call instruction is executed.
Because the value returned by the call will be the value returned by this method, the call can be converted into
a cross-method jump.

The evaluation stack shall be empty except for the arguments being transferred by the following call. The
instruction following the call instruction shall be a ret. Thus the only valid code sequence is

tail. call (or calli or callvirt) somewhere
ret

Correct CIL shall not branch to the call instruction, but it is permitted to branch to the ret. The only values on
the stack shall be the arguments for the method being called.

The tail. call (or calli or callvirt) instruction cannot be used to transfer control out of a try, filter, catch, or
finally block. See Partition 1.

The current frame cannot be discarded when control is transferred from untrusted code to trusted code, since
this would jeopardize code identity security. Security checks can therefore cause the tail. to be ignored, leaving
a standard call instruction.

Similarly, in order to allow the exit of a synchronized region to occur after the call returns, the tail. prefix is
ignored when used to exit a method that is marked synchronized.

There can also be implementation-specific restrictions that prevent the tail. prefix from being obeyed in certain
cases. While an implementation is free to ignore the tail. prefix under these circumstances, they should be
clearly documented as they can affect the behavior of programs.

CLI implementations are required to honor tail. call requests where caller and callee methods can be statically
determined to lie in the same assembly; and where the caller is not in a synchronized region; and where caller
and callee satisfy all conditions listed in the “Verifiability” rules below. (To “honor” the tail. prefix means to
remove the caller’s frame, rather than revert to a regular call sequence). Consequently, a CLI implementation
need not honor tail. calli or tail. callvirt sequences.

[Rationale: tail. calls allow some linear space algorithms to be converted to constant space algorithms and are
required by some languages. In the presence of Idloca and Idarga instructions it isn’t always possible for a
compiler from CIL to native code to optimally determine when a tail. can be automatically inserted. end
rationale)

Exceptions:
None.
Correctness:

Correct CIL obeys the control transfer constraints listed above. In addition, no managed pointers can be passed
to the method being called if they point into the stack frame that is about to be removed. The return type of the
method being called shall be compatible with the return type of the current method.

Verifiability:

Verification requires that no managed pointers are passed to the method being called, since it does not track
pointers into the current frame.

Partition III 29

01N L A WN

O

11

12
13

14
15
16

17
18

19
20
21
22

23
24

2.5

30

unaligned. (prefix) — pointer instruction might be unaligned

Format Assembly Format Description

FE 12 <unsigned int8> unaligned. alignment Subsequent pointer instruction might be unaligned.

Stack Transition:
., addr = .., addr

Description:

The unaligned. prefix specifies that addr (an unmanaged pointer (&), or native int) on the stack mignt not
be aligned to the natural size of the immediately following Idind, stind, Idfld, stfld, Idobj, stobj, initblk, or
cpblk instruction. That is, for a Idind.i4 instruction the alignment of addr might not be to a 4-byte boundary.
For initblk and cpblk the default alignment is architecture-dependent (4-byte on 32-bit CPUs, 8-byte on 64-bit
CPUs). Code generators that do not restrict their output to a 32-bit word size (see Partition I and Partition IT)
shall use unaligned. if the alignment is not known at compile time to be 8-byte.

The value of alignment shall be 1, 2, or 4 and means that the generated code should assume that addr is byte,
double-byte, or quad-byte-aligned, respectively.

[Rationale: While the alignment for a cpblk instruction would logically require two numbers (one for the
source and one for the destination), there is no noticeable impact on performance if only the lower number is
specified. end rationale)

The unaligned. and volatile. prefixes can be combined in either order. They shall immediately precede a Idind,
stind, Idfld, stfld, Idobj, stobj, initblk, or cpblk instruction.

[Note: See Partition 1, 12.7 for information about atomicity and data alignment. end note)

Exceptions:

None.

Correctness and Verifiability:
An unaligned. prefix shall be followed immediately by one of the instructions listed above.

Partition III

03N L B~ W N

11
12
13

14
15
16

17
18

2.6

volatile. (prefix) — pointer reference is volatile

Format Assembly Format Description

FE 13 volatile. Subsequent pointer reference is volatile.

Stack Transition:
.., addr -> .., addr

Description:

The volatile. prefix specifies that addr is a volatile address (i.e., it can be referenced externally to the current
thread of execution) and the results of reading that location cannot be cached or that multiple stores to that
location cannot be suppressed. Marking an access as volatile. affects only that single access; other accesses to
the same location shall be marked separately. Access to volatile locations need not be performed atomically.
(See Partition I, “Memory Model and Optimizations”)

The unaligned. and volatile. prefixes can be combined in either order. They shall immediately precede a Idind,
stind, Idfld, stfld, Idobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed with the Idsfld
and stsfld instructions.

Exceptions:
None.

Correctness and Verifiability:
A volatile. prefix should be followed immediately by one of the instructions listed above.

Partition III

31

(O BN SNV)

32

Base instructions

These instructions form a “Turing Complete” set of basic operations. They are independent of the object model
that might be employed. Operations that are specifically related to the CTS’s object model are contained in the
Object Model Instructions section.

Partition III

O 0 I L B W

[——
— O

—
[\S}

—_
B~ W

3.1

add — add numeric values
Format Assembly Format Description
58 add Add two values, returning a new value.

Stack Transition:

.., valuel, value2 -> .., result

Description:

The add instruction adds value?2 to valuel and pushes the result on the stack. Overflow is not detected for

integral operations (but see add.ovf); floating-point overflow returns +inf or —inf.

The acceptable operand types and their corresponding result data type are encapsulated in

Table 2: Binary Numeric Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 2: Binary Numeric Operations.

Partition III

33

3.2 add.ovf.<signed> — add integer values with overflow check

Format Assembly Format Description

D6 add.ovf Add signed integer values with overflow check.

D7 add.ovf.un Add unsigned integer values with overflow check.

Stack Transition:
.., valuel, value?2 -> .., result

Description:

The add.ovf instruction adds valuel and value2 and pushes the result on the stack. The acceptable operand
types and their corresponding result data type are encapsulated in Table 7: Overflow Arithmetic Operations.

Exceptions:

O 0 9N L AW

—_
=]

—_
N —

34

System.OverflowException is thrown if the result cannot be represented in the result type.

Correctness and Verifiability:

See Table 7: Overflow Arithmetic Operations.

Partition III

O O L B W

—
=]

—_——
W N =

3.3

and — bitwise AND

Format

Instruction

Description

5F

and

Bitwise AND of two integral values, returns an integral value.

Stack Transition:

.., valuel, value2 -> .., result

Description:

The and instruction computes the bitwise AND of valuel and value2and pushes the result on the stack. The
acceptable operand types and their corresponding result data type are encapsulated in

Table 5: Integer Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

Partition III

35

01 L A~ W

11
12
13
14
15

16
17
18
19

20
21
22

23

3.4

36

arglist — get argument list

Format Assembly Format | Description

FE 00 arglist Return argument list handle for the current method.

Stack Transition:
2 .., argListHandle

Description:

The arglist instruction returns an opaque handle (having type System.RuntimeArgumentHandle)
representing the argument list of the current method. This handle is valid only during the lifetime of the current
method. The handle can, however, be passed to other methods as long as the current method is on the thread of
control. The arglist instruction can only be executed within a method that takes a variable number of
arguments.

[Rationale: This instruction is needed to implement the C ‘va_*’ macros used to implement procedures like
‘printf’. It is intended for use with the class library implementation of System.ArgIterator. end
rationale)

Exceptions:

None.

Correctness:

It is incorrect CIL generation to emit this instruction except in the body of a method whose signature indicates
it accepts a variable number of arguments.

Verifiability:
Its use is verifiable within the body of a method whose signature indicates it accepts a variable number of

arguments, but verification requires that the result be an instance of the
System.RuntimeArgumentHandle class.

Partition III

— O O OO i AW

—_——
W N

e e
O 03 N W B~

N
—_ O

N
\]

3.5

beq.<length> — branch on equal
Format Assembly Format | Description
3B <int32> beq target Branch to target if equal.
2E <int8> beq.s target Branch to farget if equal, short form.

Stack Transition:
.., valuel, value2 -> .

Description:

The beq instruction transfers control to target if valuel is equal to value2. The effect is identical to performing
a ceq instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for beq, 1 byte
for beq.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

37

O 01N U B~ W

—_ = =
o= O

[E—
W

—_ =
AN D

—_ =
[c BN |

N DN —
[\S I e RN

NN
W

[\
W

3.6

38

bge.<length> — branch on greater than or equal to

Format Assembly Format | Description
3C <int32> bge target Branch to target if greater than or equal to.
2F <int8> bge.s target Branch to target if greater than or equal to, short form.

Stack Transition:
.., valuel, value2 > .

Description:

The bge instruction transfers control to farget if valuel is greater than or equal to value2. The effect is identical
to performing a clt.un instruction followed by a brfalse target. target is represented as a signed offset (4 bytes
for bge, 1 byte for bge.s) from the beginning of the instruction following the current instruction.

The effect of a “bge target” instruction is identical to:

. If stack operands are integers, then clt followed by a brfalse target

. If stack operands are floating-point, then clt.un followed by a brfalse target

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

—_

SO o3 O W B

3.7

bge.un.<length> — branch on greater than or equal to, unsigned or
unordered
Format Assembly Format | Description
41 <int32> bge.un target Branch to farget if greater than or equal to (unsigned or unordered).
34 <int8> bge.un.s target Branch to farget if greater than or equal to (unsigned or unordered),
short form.

Stack Transition:
.., valuel, value2 -> .

Description:

The bge.un instruction transfers control to target if valuel is greater than or equal to value2, when compared
unsigned (for integer values) or unordered (for floating-point values).

target is represented as a signed offset (4 bytes for bge.un, 1 byte for bge.un.s) from the beginning of the
instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

39

— O O O U B W

—_— —_ =
W N

e e
O 03 N W B~

NSNS}
— O

N
NS}

3.8

40

bgt.<length> — branch on greater than

Format Assembly Format | Description
3D <int32> bat target Branch to target if greater than.
30 <int8> bgt.s target Branch to target if greater than, short form.

Stack Transition:
.., valuel, value2 > .

Description:

The bgt instruction transfers control to farget if valuel is greater than value?2. The effect is identical to
performing a cgt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for
bgt, 1 byte for bgt.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

O 002N L A W

—
=]

—_—
N —

—_—
W

—_
AN W

D == =
S Voo

NN
N —

N
w

3.9

bgt.un.<length> — branch on greater than, unsigned or unordered
Format Assembly Format | Description
42 <int32> bgt.un target Branch to target if greater than (unsigned or unordered).
35 <int8> bgt.un.s target Branch to farget if greater than (unsigned or unordered), short form.

Stack Transition:
.., valuel, value2 -> .

Description:

The bgt.un instruction transfers control to target if valuel is greater than value2, when compared unsigned (for

integer values) or unordered (for floating-point values). The effect is identical to performing a cgt.un
instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for bgt.un, 1 byte for
bgt.un.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

41

O 01N L B~ W

—_ = =
No= O

—_——
W

—_—
AN D

—_ =
[c BN |

[NS T SO S
[\S e RN

NN
W

[\
W

3.10 ble.<length> — branch on less than or equal to

42

Format Assembly Format | Description
3E <int32> ble target Branch to target if less than or equal to.
31 <int8> ble.s target Branch to target if less than or equal to, short form.

Stack Transition:
.., valuel, value2 > .

Description:

The ble instruction transfers control to target if valuel is less than or equal to value?2. target is represented as a
signed offset (4 bytes for ble, 1 byte for ble.s) from the beginning of the instruction following the current
instruction.

The effect of a “ble target” instruction is identical to:

. If stack operands are integers, then : cgt followed by a brfalse target

. If stack operands are floating-point, then : cgt.un followed by a brfalse rarget

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.
Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

O 03N L A W

—_ = =
No= O

—_—
W

—_——
N D

—_ =
o

N D —
N = O O

NN
W

N
W

3.11 ble.un.<length> — branch on less than or equal to, unsigned or unordered
Format Assembly Format | Description
43 <int32> ble.un target Branch to target if less than or equal to (unsigned or unordered).
36 <int8> ble.un.s rarget Branch to farget if less than or equal to (unsigned or unordered),
short form.

Stack Transition:
.., valuel, value2 -> .

Description:

The ble.un instruction transfers control to farget if valuel is less than or equal to value2, when compared
unsigned (for integer values) or unordered (for floating-point values). farget is represented as a signed offset

(4 bytes for ble.un, 1 byte for ble.un.s) from the beginning of the instruction following the current instruction.

The effect of a “ble.un target” instruction is identical to:

. If stack operands are integers, then cgt.un followed by a brfalse target

. If stack operands are floating-point, then cgt followed by a brfalse target

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

43

— O O O U B W

—_— —_ =
W N

e e
O 03 N W B~

NSNS}
— O

N
NS}

3.12 blt.<length> — branch on less than
Format Assembly Format | Description
3F <int32> blt rarget Branch to target if less than.
32 <int8> blt.s target Branch to target if less than, short form.

44

Stack Transition:
.., valuel, value2 > .

Description:

The blt instruction transfers control to target if valuel is less than value2. The effect is identical to performing
a clt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for blt, 1 byte for
blt.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

O 01 L K~ W

—_
(=}

—_—
N —

—_—
W

N == = =
S Vo I O W

NN
N —

[\
W

3.13 blt.un.<length> — branch on less than, unsigned or unordered
Format Assembly Format | Description
44 <int32> blt.un target Branch to target if less than (unsigned or unordered).
37 <int8> blt.un.s target Branch to farget if less than (unsigned or unordered), short form.

Stack Transition:
.., valuel, value2 -> .

Description:
The blt.un instruction transfers control to target if valuel is less than value2, when compared unsigned (for

integer values) or unordered (for floating-point values). The effect is identical to performing a clt.un instruction
followed by a brtrue target. target is represented as a signed offset (4 bytes for blt.un, 1 byte for blt.un.s) from

the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

45

O 02 L A WD

—_
=]

—_—
N —

—_—
W

N == = =
S Vo0 9 AN W

NSRS
N —

[\
w

3.14 bne.un<length> — branch on not equal or unordered

46

Format Assembly Format | Description
40 <int32> bne.un target Branch to target if unequal or unordered.
33 <int8> bne.un.s target Branch to target if unequal or unordered, short form.

Stack Transition:
.., valuel, value2 > .

Description:

The bne.un instruction transfers control to target if valuel is not equal to value2, when compared unsigned
(for integer values) or unordered (for floating-point values). The effect is identical to performing a ceq
instruction followed by a brfalse target. target is represented as a signed offset (4 bytes for bne.un, 1 byte for
bne.un.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

— O 00 NN L AW

—

—
wm AW

D = = = =
S ©V ® U

NN
N —

N
w

3.15 br.<length> — unconditional branch
Format Assembly Format Description
38 <int32> br target Branch to target.
2B <int8> br.s target Branch to target, short form.

Stack Transition:

Description:
The br instruction unconditionally transfers control to target. target is represented as a signed offset (4 bytes
for br, 1 byte for br.s) from the beginning of the instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

[Rationale: While a leave instruction can be used instead of a br instruction when the evaluation stack is
empty, doing so might increase the resources required to compile from CIL to native code and/or lead to
inferior native code. Therefore CIL generators should use a br instruction in preference to a leave instruction
when both are valid. end rationale)

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

47

0 NN L AW

11

12
13
14
15

16
17

3.16 break — breakpoint instruction

48

Format

Assembly Format

Description

01

break

Inform a debugger that a breakpoint has been reached.

Stack Transition:

Description:

The break instruction is for debugging support. It signals the CLI to inform the debugger that a break point has

been tripped. It has no other effect on the interpreter state.

The break instruction has the smallest possible instruction size so that code can be patched with a breakpoint

with minimal disturbance to the surrounding code.

The break instruction might trap to a debugger, do nothing, or raise a security exception: the exact behavior is

implementation-defined.

Exceptions:

None.

Correctness:

Verifiability:

The break instruction is always verifiable.

Partition III

1

O N L B~ W

11
12

13
14

15
16
17
18
19
20

21
22

23

3.17 brfalse.<length> — branch on false, null, or zero
Format Assembly Format Description
39 <int32> brfalse target Branch to target if value is zero (false).
2C <int8> brfalse.s target Branch to target if value is zero (false), short form.
39 <int32> brnull target Branch to target if value is null (alias for brfalse).
2C <int8> brnull.s target Branch to target if value is null (alias for brfalse.s), short form.
39 <int32> brzero target Branch to target if value is zero (alias for brfalse).
2C <int8> brzero.s target Branch to target if value is zero (alias for brfalse.s), short form.

Stack Transition:
.., value ->

Description:

The brfalse instruction transfers control to target if value (of type int32, int 64, object reference, managed
pointer, unmanaged pointer or native int) is zero (false). If value is non-zero (true), execution continues at
the next instruction.

Target is represented as a signed offset (4 bytes for brfalse, 1 byte for brfalse.s) from the beginning of the
instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee there is a
minimum of one item on the stack.

Verifiability:
Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

49

1

— O 00 NN L B W

—_ = = =
w N

[—
(O N

NN = = = =
— OO0 o0 3D

NN
W N

&)
=

3.18 brtrue.<length> — branch on non-false or non-null

50

Format Assembly Format Description

3A <int32> brtrue target Branch to target if value is non-zero (true).

2D <int8&> brtrue.s target Branch to target if value is non-zero (true), short form.

3A <int32> brinst target Branch to farget if value is a non-null object reference (alias for
brtrue).

2D <int8> brinst.s target Branch to target if value is a non-null object reference, short form
(alias for brtrue.s).

Stack Transition:
.., value 9

Description:
The brtrue instruction transfers control to target if value (of type native int) is nonzero (true). If value is
zero (false) execution continues at the next instruction.

If the value is an object reference (type O) then brinst (an alias for brtrue) transfers control if it represents an
instance of an object (i.e., isn’t the null object reference, see Idnull).

Target is represented as a signed offset (4 bytes for brtrue, 1 byte for brtrue.s) from the beginning of the
instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:
None.
Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee there is a
minimum of one item on the stack.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

Partition III

[S e T T
AN PE WD POV L A W

—_——
[e BN

—_
O

N
— O

BN NN NN
AN L W

W W W LW WEN NN
AW DO = OO0 0

W W
AN D

W W
[e BN

(98]
O

A~ b
— O

N
[\

oA
oW

3.19 call — call a method
Format Assembly Format | Description
28 <> call method Call method described by method.

Stack Transition:
.., argl, arg2 .. argN > .., retVal (not always returned)

Description:

The call instruction calls the method indicated by the descriptor method. method is a metadata token (a
methodref, methoddef, or methodspec;See Partition II) that indicates the method to call, and the
number, type, and order of the arguments that have been placed on the stack to be passed to that method, as
well as the calling convention to be used. (See Partition I for a detailed description of the CIL calling
sequence.) The call instruction can be immediately preceded by a tail. prefix to specify that the current method
state should be released before transferring control (see §2.3).

The metadata token carries sufficient information to determine whether the call is to a static method, an
instance method, a virtual method, or a global function. In all of these cases the destination address is
determined entirely from the metadata token. (Contrast this with the callvirt instruction for calling virtual
methods, where the destination address also depends upon the exact type of the instance reference pushed
before the callvirt; see below.)

The CLI resolves the method to be called according to the rules specified in 1.12.4.1.3 (Computed destinations),
except that the destination is computed with respect to the class specified by the metadata token.

[Rationale: This implements‘“call base class” behavior. end rationale)

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, and so on. There are three important special cases:

1. Calls to an instance (or virtual, see below) method shall push that instance reference (the this
pointer) before any of the user-visible arguments. The signature carried in the metadata does not
contain an entry in the parameter list for the this pointer but uses a bit (called HASTHIS) to
indicate whether the method requires passing the this pointer (see Partition IT) (For calls to
methods on value types, the this pointer is a managed pointer, not an instance reference.)

2. Ttis valid to call a virtual method using call (rather than callvirt); this indicates that the method is
to be resolved using the class specified by method rather than as specified dynamically from the
object being invoked. This is used, for example, to compile calls to “methods on super” (i.e.,
the statically known parent class).

3. Note that a delegate’s Tnvoke method can be called with either the call or callvirt instruction.

Exceptions:
System.SecurityException can be thrown if system security does not grant the caller access to the
called method. The security check can occur when the CIL is converted to native code rather than at runtime.

System.MethodAccessException can be thrown when there is an invalid attempt to access a non-
public method.

System.MissingMethodException can be thrown when there is an attempt to dynamically access a
method that does not exist.

Correctness:

Correct CIL ensures that the stack contains the correct number and type of arguments for the method being
called.

Verifiability:
For a typical use of the call instruction, verification checks that (a) method refers to a valid methodref,
methoddef, or methodspec token; (b) the types of the objects on the stack are consistent with the types

Partition III 51

O 03 O Wb W N~

—_— e —
W= O

—_— = =
(o) WV, IR N

—_
|

52

expected by the method call, and (c) the method is accessible from the call site, and (d) the method is not
abstract (i.e., it has an implementation).

The call instruction can also be used to call an object’s base class constructor, or to initialize a value type
location by calling an appropriate constructor, both of which are treated as special cases by verification. A call
annotated by tail. is also a special case.

If the target method is global (defined outside of any type), then the method shall be static.

When using the call opcode to call a non-final virtual method on an instance other than a boxed value type,
verification checks that the instance reference to the method being called is the result of Idarg.s 0, Idarg 0 and
the caller’s body does not contain starg.s 0, starg O or Idarga.s 0, Idarga 0.

[Rationale: This means that non-virtually calling a non-final virtual method is only verifiable in the case where
the subclass methods calls one of its superclasses using the same this object reference, where “same” is easy
to verify. This means that an override implementation effectively "hides" the superclass' implementation, and
can assume that the override implementation cannot be bypassed by code outside the class hierarchy.

For non-sealed class hierarchies, malicious code can attempt to extend the class hierarchy in an attempt to
bypass a class' override implementation. However, this can only be done on an object of the malicious type,
and not of the class with the override, which mitigates much of the security concern. end rationale)

Partition III

0N U K~ W

11

12
13

14
15
16

17
18
19

20
21
22
23
24
25

26
27

28

29
30
31

32
33
34

35
36

3.20 calli — indirect method call

Format Assembly Format | Description
29 <> calli callsitedescr Call method indicated on the stack with arguments described by
callsitedescr.

Stack Transition:
.., argl, arg2 .. argN, ftn 9 .., retVal (not always returned)

Description:

The calli instruction calls fin (a pointer to a method entry point) with the arguments argl ... argN. The types
of these arguments are described by the signature callsitedescr. (See Partition I for a description of the CIL
calling sequence.) The calli instruction can be immediately preceded by a tail. prefix to specify that the current
method state should be released before transferring control. If the call would transfer control to a method of
higher trust than the originating method the stack frame will not be released; instead, the execution will
continue silently as if the tail. prefix had not been supplied.

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of
the caller.]

The fin argument is assumed to be a pointer to native code (of the target machine) that can be legitimately
called with the arguments described by callsitedescr (a metadata token for a stand-alone signature). Such a
pointer can be created using the Idftn or Idvirtftn instructions, or could have been passed in from native code.

The standalone signature specifies the number and type of parameters being passed, as well as the calling
convention (See Partition II) The calling convention is not checked dynamically, so code that uses a calli
instruction will not work correctly if the destination does not actually use the specified calling convention.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, and so on. The argument-building code sequence for an instance or
virtual method shall push that instance reference (the this pointer, which shall not be nul1) before any of the
user-visible arguments. (For calls to methods on value types, the this pointer is a managed pointer, not an
instance reference.)

Exceptions:

System.SecurityException can be thrown if the system security does not grant the caller access to the
called method. The security check can occur when the CIL is converted to native code rather than at runtime.

Correctness:

Correct CIL requires that the function pointer contains the address of a method whose signature matches that
specified by callsitedescr and that the arguments correctly correspond to the types of the destination function’s
parameters.

Verifiability:
Verification checks that fin is a pointer to a function generated by Idftn or Idvirtfn.

Implementation Specific (Microsoft)

In Microsoft’s implementation of the CLI, the calli instruction is never verifiable

Partition III

53

OO0 I N A~ W

—_ = =
N = O

e e
0 3 N b W

3.21

ceq — compare equal

Format Assembly Format Description

FE 01 Ceq Push 1 (of type int32) if valuel equals value2, else push 0.

54

Stack Transition:
.., valuel, value2 -> .., result

Description:

The ceq instruction compares valuel and value. If valuel is equal to value2, then 1 (of type int32) is
pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack.

For floating-point numbers, ceq will return 0 if the numbers are unordered (either or both are NaN). The
infinite values are equal to themselves.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.
Exceptions:
None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations

Verifiability:
There are no additional verification requirements.

Partition III

— O Vo NN L AW

—_— = e
w N

—_
~

Ju—
W

—_—
~N

—_
o]

[
[==Ne)

3.22

cgt — compare greater than

Format Assembly Format Description

FE 02 Cgt Push 1 (of type int32) if valuel > value2, else push 0.

Stack Transition:
.., valuel, value2 -> .., result

Description:

The cgt instruction compares valuel and value2. If valuel is strictly greater than value2, then 1 (of type
int32) is pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack.

For floating-point numbers, cgt returns 0 if the numbers are unordered (that is, if one or both of the arguments
are NaN).

As with IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.
Exceptions:
None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations

Verifiability:

There are no additional verification requirements.

Partition III

55

O e RN | [=) NNV, B SNV])

—_
=]

—_—
N —

—_ = =
wm AW

—_
N

—_ =
[e BN

—_
O

NN
— O

3.23 cgt.un — compare greater than, unsigned or unordered
Format Assembly Format Description
FE 03 cgt.un Push 1 (of type int32) if valuel > value2, unsigned or unordered,
else push 0.

56

Stack Transition:
.., valuel, value?2 -> .., result
Description:

The cgt.un instruction compares valuel and value2. A value of 1 (of type int32) is pushed on the stack if

. for floating-point numbers, either valuel is strictly greater than value?2, or valuel is not ordered
with respect to value?2.

. for integer values, valuel is strictly greater than value2 when considered as unsigned numbers.
Otherwise, 0 (of type int32) is pushed on the stack.

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.
Exceptions:

None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations

Verifiability:
There are no additional verification requirements.

Partition III

O O L B~ W

—_— = = =
W N = O

—_—
W

3.24

ckfinite — check for a finite real number

Format

Assembly Format

Description

C3

Ckfinite

Throw ArithmeticException if value is not a finite number.

Stack Transition:

.., value -> .., value

Description:

The ckfinite instruction throws ArithmeticException if value (a floating-point number) is either a “not
a number” value (NaN) or +/- infinity value. ckfinite leaves the value on the stack if no exception is thrown.
Execution behavior is unspecified if value is not a floating-point number.

Exceptions:

System.ArithmeticException is thrown if value is a NaN or an infinity.

Correctness:

Correct CIL guarantees that value is a floating-point number.

Verifiability:

There are no additional verification requirements.

Partition III

57

— O Vo 9 L AW

—_ = = = =
W

—_
W

—_ =
~N

—_
e e}

N —
S O

3.25

clt — compare less than

Format Assembly Format Description

FE 04 Clt Push 1 (of type int32) if valuel < value2, else push 0.

58

Stack Transition:
.., valuel, value2 -> .., result

Description:

The clt instruction compares valuel and value2. If valuel is strictly less than value?2, then 1 (of type int32) is
pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack.

For floating-point numbers, clt will return 0 if the numbers are unordered (that is, one or both of the arguments
are NaN).

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:
None.
Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations

Verifiability:

There are no additional verification requirements.

Partition III

e o BN AN W A~ W

—
=]

—_—
N —

—_ = =
wm W

—
N

—_——
[e BN

—
O

NS
— O

3.26 clt.un — compare less than, unsigned or unordered

Format

Assembly Format

Description

FE 05

clt.un

Push 1 (of type int32) if valuel < value2, unsigned or unordered,
else push 0.

Stack Transition:

.., valuel, value2 -> .., result

Description:

The clt.un instruction compares valuel and value2. A value of 1 (of type int32) is pushed on the stack if

. for floating-point numbers, either valuel is strictly less than value2, or valuel is not ordered with
respect to value?2.

. for integer values, valuel is strictly less than value2 when considered as unsigned numbers.

Otherwise, 0 (of type int32) is pushed on the stack.

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -

infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations

Verifiability:

There are no additional verification requirements.

Partition III

59

1

0N LN AW

11
12
13

14
15
16

17
18

19

20
21

22
23
24

25
26

conv.<to type> — data conversion

Format Assembly Format Description

67 conv.i1 Convert to int8, pushing int32 on stack.

68 conv.i2 Convert to int16, pushing int32 on stack.

69 conv.i4 Convert to int32, pushing int32 on stack.

6A conv.i8 Convert to int64, pushing int64 on stack.

6B conv.r4 Convert to float32, pushing F on stack.

6C conv.r8 Convert to float64, pushing F on stack.

D2 conv.u1 Convert to unsigned int8, pushing int32 on stack.

D1 conv.u2 Convert to unsigned int16, pushing int32 on stack.

6D conv.u4 Convert to unsigned int32, pushing int32 on stack.

6E conv.u8 Convert to unsigned int64, pushing int64 on stack.

D3 conv.i Convert to native int, pushing native int on stack.

EO conv.u Convert to native unsigned int, pushing native int on stack.
76 conv.r.un Convert unsigned integer to floating-point, pushing F on stack.

Stack Transition:
.., value 9 .., result

Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. Note that integer values of less than 4 bytes are extended to int32 (not native int) when
they are loaded onto the evaluation stack, and floating-point values are converted to the F type.

Conversion from floating-point numbers to integral values truncates the number toward zero. When converting
froma float64 toa float32, precision might be lost. If value is too large to fitina f1oat32, the IEC
60559:1989 positive infinity (if value is positive) or IEC 60559:1989 negative infinity (if value is negative) is
returned. If overflow occurs when converting one integer type to another, the high-order bits are silently
truncated. If the result is smaller than an int 32, then the value is sign-extended to fill the slot.

If overflow occurs converting a floating-point type to an integer, or if the floating-point value being converted
to an integer is a NaN, the value returned is unspecified. The conv.r.un operation takes an integer off the stack,
interprets it as unsigned, and replaces it with an F type floating-point number to represent the integer.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 8: Conversion Operations.

Exceptions:

No exceptions are ever thrown. See conv.ovf for instructions that will throw an exception when the result type
cannot properly represent the result value.

Correctness:

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack.
Verifiability:

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code.

Partition III

1

o NN L B~ wW N

11
12
13
14
15
16

17
18

conv.ovf.<to type> — data conversion with overflow detection

Format Assembly Format Description

B3 conv.ovf.i1 Convert to an int8 (on the stack as int32) and throw an
exception on overflow.

B5 conv.ovf.i2 Convert to an int16 (on the stack as int32) and throw an
exception on overflow.

B7 conv.ovf.i4 Convert to an int32 (on the stack as int32) and throw an
exception on overflow.

B9 conv.ovf.i8 Convert to an int64 (on the stack as int64) and throw an
exception on overflow.

B4 conv.ovf.u1l Convert to an unsigned int8 (on the stack as int32) and throw
an exception on overflow.

B6 conv.ovf.u2 Convert to an unsigned int16 (on the stack as int32) and
throw an exception on overflow.

B8 conv.ovf.u4 Convert to an unsigned int32 (on the stack as int32) and
throw an exception on overflow

BA conv.ovf.u8 Convert to an unsigned int64 (on the stack as int64) and
throw an exception on overflow.

D4 conv.ovf.i Convert to a native int (on the stack as native int) and throw
an exception on overflow.

D5 conv.ovf.u Convert to a native unsigned int (on the stack as native int)
and throw an exception on overflow.

Stack Transition:
.., value 9 .., result

Description:
Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. If the result cannot be represented in the target type, an exception is thrown.

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 8: Conversion Operations.

Exceptions:
System.OverflowException is thrown if the result can not be represented in the result type.
Correctness:

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack.

Verifiability:
The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code.

Partition III

61

1

01N L W

11
12

13
14
15
16
17

18
19

conv.ovf.<to type>.un — unsigned data conversion with overflow detection

Format Assembly Format Description

82 conv.ovf.il.un Convert unsigned to an int8 (on the stack as int32) and throw
an exception on overflow.

83 conv.ovf.i2.un Convert unsigned to an int16 (on the stack as int32) and
throw an exception on overflow.

84 conv.ovf.i4.un Convert unsigned to an int32 (on the stack as int32) and
throw an exception on overflow.

85 conv.ovf.i8.un Convert unsigned to an int64 (on the stack as int64) and
throw an exception on overflow.

86 conv.ovf.ul.un Convert unsigned to an unsigned int8 (on the stack as int32)
and throw an exception on overflow.

87 conv.ovf.u2.un Convert unsigned to an unsigned int16 (on the stack as int32)
and throw an exception on overflow.

88 conv.ovf.u4.un Convert unsigned to an unsigned int32 (on the stack as int32)
and throw an exception on overflow.

89 conv.ovf.u8.un Convert unsigned to an unsigned int64 (on the stack as int64)
and throw an exception on overflow.

8A conv.ovf.i.un Convert unsigned to a native int (on the stack as native int)
and throw an exception on overflow.

8B conv.ovf.u.un Convert unsigned to a native unsigned int (on the stack as
native int) and throw an exception on overflow.

Stack Transition:
.., value 9 .., result

Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. If the value cannot be represented, an exception is thrown. The item on the top of the stack is
treated as an unsigned value before the conversion.

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer
values of less than 4 bytes are extended to int 32 (not native int) on the evaluation stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 8: Conversion Operations.

Exceptions:
System.OverflowException is thrown if the result cannot be represented in the result type.
Correctness:

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack.

Verifiability:
The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code.

Partition III

—_—
— OO NN N b W N

—_— =
wn AW

D = = = =
S vV ® 3 &

NN
N —

3.30 cpblk — copy data from memory to memory
Format Instruction Description
FE 17 cpblk Copy data from memory to memory.

Stack Transition:
.., destaddr, srcaddr, size > .

Description:

The cpblk instruction copies size (of type unsigned int32) bytes from address srcaddr (of type native
int, or &) to address destaddr (of type native int, or &). The behavior of cpblk is unspecified if the
source and destination areas overlap.

cpblk assumes that both destaddr and srcaddr are aligned to the natural size of the machine (but see the
unaligned. prefix instruction). The operation of the cpblk instruction can be altered by an immediately
preceding volatile. or unaligned. prefix instruction.

[Rationale: cpblk is intended for copying structures (rather than arbitrary byte-runs). All such structures,
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the compiler
that generates cpblk instructions to be aware of whether the code will eventually execute on a 32-bit or 64-bit
platform. end rationale)

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.
Correctness:

CIL ensures the conditions specified above.

Verifiability:

The cpblk instruction is never verifiable.

Partition III

63

OO0 3 N L B W

_
- O

—_—
w N

—_ = =
AN W B

—_ =
[e BN

—_
O

[NSNS
— o

NN NN
[N

NN
~N

W NN
S O ©

W W
N =

W W
W

3.31 div — divide values

Format Assembly Format Description

5B Div Divide two values to return a quotient or floating-point result.

Stack Transition:
.., valuel, value2 -> .., result

Description:

result = valuel div value? satisfies the following conditions:
|result| = |valuel| / |value2|, and

sign(result) = +, if sign(valuel) = sign(value2), or
—, if sign(valuel) ~= sign(value2)

The div instruction computes result and pushes it on the stack.
Integer division truncates towards zero.

Floating-point division is per IEC 60559:1989. In particular, division of a finite number by 0 produces the
correctly signed infinite value and

0 / 0 = NaN

infinity / infinity = NaN.

X / infinity = 0
The acceptable operand types and their corresponding result data type are encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

Integral operations throw System.ArithmeticException if the result cannot be represented in the
result type. (This can happen if valuel is the smallest representable integer value, and value? is -1.)

Integral operations throw DivideByZeroException if value? is zero.
Implementation Specific (Microsoft)

On the x86 an System.OverflowException isthrown when computing (minint div —1).

Floating-point operations never throw an exception (they produce NaNs or infinities instead, see Partition I).
Example:
+14div+3 is 4

+14div-3 is -4
-14div+3 is -4
-14div-3 is 4
Correctness and Verifiability

See Table 2: Binary Numeric Operations.

64 Partition III

O 0 I L B~ W

—_ —
— O

e e e e
AN W B WN

—_ =
e BN |

N =
S O

3.32

div.un — divide integer values, unsigned

Format

Assembly Format

Description

5C

div.un

Divide two values, unsigned, returning a quotient.

Stack Transition:

.., valuel, value2 -> .., result

Description:

The div.un instruction computes valuel divided by value2, both taken as unsigned integers, and pushes the

result on the stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Exceptions:

System.DivideByZeroException is thrown if value? is zero.

Example:
+5 div.un +3

+5 div.un -3
-5div.un +3

-5div.un -3

Correctness and Verifiability

is 1

is 0

is 14316557630 or 0x55555553

is O

See Table 5: Integer Operations.

Partition III

65

—_ =
— O O 0 N N L AW

3.33 dup — duplicate the top value of the stack

66

Format

Assembly Format

Description

25

Dup

Duplicate the value on the top of the stack.

Stack Transition:

.., value -> .., value, value

Description:

The dup instruction duplicates the top element of the stack.

Exceptions:

None.

Correctness and Verifiability:

No additional requirements.

Partition III

0NN i A~ W

10
11
12

13

14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29

3.34 endfilter — end exception handling filter clause
Format Assembly Format | Description
FE 11 Endfilter End an exception handling filter clause.

Stack Transition:
.., value ->

Description:

Used to return from the filter clause of an exception (see the Exception Handling subclause of Partition I for a
discussion of exceptions). value (which shall be of type int32 and one of a specific set of values) is returned
from the filter clause. It should be one of:

. exception continue search (0) to continue searching for an exception handler

. exception execute handler (1) to start the second phase of exception handling where
finally blocks are run until the handler associated with this filter clause is located. Then the
handler is executed.

The result of using any other integer value is unspecified.

The entry point of a filter, as shown in the method’s exception table, shall be the (lexically) first instruction in
the filter’s code block. The endfilter shall be the (lexically) last instruction in the filter’s code block (hence
there can only be one endfilter for any single filter block). After executing the endfilter instruction, control
logically flows back to the CLI exception handling mechanism.

Control cannot be transferred into a filter block except through the exception mechanism. Control cannot be
transferred out of a filter block except through the use of a throw instruction or executing the final endfilter
instruction. In particular, it is not valid to execute a ret or leave instruction within a £i1ter block. It is not
valid to embed a try block within a £i1ter block. If an exception is thrown inside the £i1ter block, it is
intercepted and a value of exception continue search is returned.

Exceptions:

None.

Correctness:

Correct CIL guarantees the control transfer restrictions specified above.

Verifiability:

The stack shall contain exactly one item (of type int32).

Partition III

67

3.35 endfinally — end the finally or fault clause of an exception block
Format Assembly Format | Description
DC endfault End fault clause of an exception block.
DC endfinally End finally clause of an exception block.

68

Stack Transition:
D

Description:
Return from the finally or fault clause of an exception block (see the Exception Handling subclause of
Partition I for details).

Signals the end of the finally or fault clause so that stack unwinding can continue until the exception
handler is invoked. The endfinally or endfault instruction transfers control back to the CLI exception
mechanism. This then searches for the next finally clause in the chain, if the protected block was exited
with a leave instruction. If the protected block was exited with an exception, the CLI will search for the next
finally or fault, or enter the exception handler chosen during the first pass of exception handling.

An endfinally instruction can only appear lexically within a finally block. Unlike the endfilter instruction,
there is no requirement that the block end with an endfinally instruction, and there can be as many endfinally
instructions within the block as required. These same restrictions apply to the endfault instruction and the
fault block, mutatis mutandis.

Control cannot be transferred intoa finally (or fault block) except through the exception mechanism.
Control cannot be transferred out of a finally (or fault) block except through the use of a throw
instruction or executing the endfinally (or endfault) instruction. In particular, it is not valid to “fall out” of a
finally (or fault) block or to execute a ret or leave instruction within a finally (or fault) block.

Note that the endfault and endfinally instructions are aliases—they correspond to the same opcode.
endfinally empties the evaluation stack as a side-effect.

Exceptions:

None.

Correctness:
Correct CIL guarantees the control transfer restrictions specified above.

Verifiability:

There are no additional verification requirements.

Partition III

O N L B~ W

11
12

13
14

15
16
17
18
19

20
21

3.36

initblk — initialize a block of memory to a value

Format Assembly Format | Description

FE 18 initblk Set all bytes in a block of memory to a given byte value.

Stack Transition:
.., addr, value, size > .

Description:

The initblk instruction sets size (of type unsigned int32) bytes starting at addr (of type native int,
or &) to value (of type unsigned int8). initblk assumes that addr is aligned to the natural size of the
machine (but see the unaligned. prefix instruction).

[Rationale: initblk is intended for initializing structures (rather than arbitrary byte-runs). All such structures,
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the compiler
that generates initblk instructions to be aware of whether the code will eventually execute on a 32-bit or 64-bit
platform. end rationale)

The operation of the initblk instructions can be altered by an immediately preceding volatile. or unaligned.
prefix instruction.

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.
Correctness:

Correct CIL code ensures the restrictions specified above.

Verifiability:

The initblk instruction is never verifiable.

Partition III

69

0 NN L B W

11
12
13
14
15
16

17
18

3.37

jmp — jump to method

Format Assembly Format | Description

27 <> jmp method Exit current method and jump to the specified method.

70

Stack Transition:
LD

Description:

Transfer control to the method specified by method, which is a metadata token (either a methodref or
methoddef (See Partition IT). The current arguments are transferred to the destination method.

The evaluation stack shall be empty when this instruction is executed. The calling convention, number and type
of arguments at the destination address shall match that of the current method.

The jmp instruction cannot be used to transferred control out of a try, filter, catch, fault or
finally block; or out of a synchronized region. If this is done, results are undefined. See Partition I.

Exceptions:

None.

Correctness:

Correct CIL code obeys the control flow restrictions specified above.
Verifiability:

The jmp instruction is never verifiable.

Partition III

1

—_ O 00NN L B w N

—_—— = —
w N

N = = = = = e
S © ® N »n A

NN
N =

Idarg.<length> — load argument onto the stack

Format Assembly Description
Format
FE 09 <unsigned intl 6> ldarg num Load argument numbered num onto the stack.
OE <unsz’gned int8> Idarg.s num Load argument numbered num onto the stack, short form.
02 Idarg.0 Load argument 0 onto the stack.
03 Idarg.1 Load argument 1 onto the stack.
04 Idarg.2 Load argument 2 onto the stack.
05 Idarg.3 Load argument 3 onto the stack.

Stack Transition:
. 9 .., value

Description:

The Idarg num instruction pushes onto the evaluation stack, the num’th incoming argument, where arguments
are numbered 0 onwards (see Partition I). The Idarg instruction can be used to load a value type or a built-in
value onto the stack by copying it from an incoming argument. The type of the value is the same as the type of
the argument, as specified by the current method’s signature.

The Idarg.0, Idarg.1, Idarg.2, and Idarg.3 instructions are efficient encodings for loading any one of the first
4 arguments. The ldarg.s instruction is an efficient encoding for loading argument numbers 4-255.

For procedures that take a variable-length argument list, the Idarg instructions can be used only for the initial
fixed arguments, not those in the variable part of the signature. (See the arglist instruction.)

Arguments that hold an integer value smaller than 4 bytes long are expanded to type int 32 when they are
loaded onto the stack. Floating-point values are expanded to their native size (type F).

Exceptions:

None.

Correctness:

Correct CIL guarantees that num is a valid argument index.

Verifiability:

See §1.8 for details on how verification determines the type of the value loaded onto the stack.

Partition III

71

0O W\ bW

11
12

13
14
15
16
17

18
19

3.39

Idarga.<length> — load an argument address

Format Assembly Format Description
FE 0A <unsigned intl6> |ldarga argNum Fetch the address of argument argNum.
OF <unsigned int8> Idarga.s argNum Fetch the address of argument argNum, short form.

72

Stack Transition:
ey > .., address of argument number argNum

Description:

The ldarga instruction fetches the address (of type &, i.e., managed pointer) of the argNum’th argument, where
arguments are numbered 0 onwards. The address will always be aligned to a natural boundary on the target
machine (cf. cpblk and initblk). The short form (Idarga.s) should be used for argument numbers 0-255.

For procedures that take a variable-length argument list, the ldarga instructions can be used only for the initial
fixed arguments, not those in the variable part of the signature.

[Rationale: ldarga is used for byref parameter passing (see Partition I). In other cases, Idarg and starg should
be used. end rationale]

Exceptions:

None.

Correctness:

Correct CIL ensures that argNum is a valid argument index.

Verifiability:

See §1.8 for details on how verification determines the type of the value loaded onto the stack.

Partition III

1

O 01 L B~ W

—_ = =
No= O

—_——
W

O = = = =
S O 0 9 N W»n

NN
N =

3.40

Idc.<type> — load numeric constant

Format Assembly Format | Description

20 <int32> Idc.i4 num Push num of type int 32 onto the stack as int32.

21 <int64> Idc.i8 num Push num of type int 64 onto the stack as int64.

22 <ﬂ0az32> Idc.rd4 num Push num of type f1oat32 onto the stack as F.

23 <float64> Idc.r8 num Push num of type f1oat 64 onto the stack as F.

16 Idc.i4.0 Push 0 onto the stack as int32.

17 Idc.i4.1 Push 1 onto the stack as int32.

18 Idc.i4.2 Push 2 onto the stack as int32.

19 Idc.i4.3 Push 3 onto the stack as int32.

1A Idc.i4.4 Push 4 onto the stack as int32.

1B Idc.i4.5 Push 5 onto the stack as int32.

1C Idc.i4.6 Push 6 onto the stack as int32.

1D Idc.i4.7 Push 7 onto the stack as int32.

1E Idc.i4.8 Push 8 onto the stack as int32.

15 Idc.i4.m1 Push -1 onto the stack as int32.

15 Idc.i4.M1 Push -1 of type int32 onto the stack as int32 (alias for
Idc.i4.m1).

IF <int8> Idc.i4.s num Push num onto the stack as int 32, short form.

Stack Transition:
> .., num

Description:

The ldc num instruction pushes number num or some constant onto the stack. There are special short encodings
for the integers —128 through 127 (with especially short encodings for —1 through 8). All short encodings push
4-byte integers on the stack. Longer encodings are used for 8-byte integers and 4- and 8-byte floating-point
numbers, as well as 4-byte values that do not fit in the short forms.

There are three ways to push an 8-byte integer constant onto the stack
1. For constants that shall be expressed in more than 32 bits, use the Idc.i8 instruction.
2. For constants that require 9-32 bits, use the Idc.i4 instruction followed by a conv.i8.

3. For constants that can be expressed in 8 or fewer bits, use a short form instruction followed by a
conv.i8.

There is no way to express a floating-point constant that has a larger range or greater precision than a 64-bit
IEC 60559:1989 number, since these representations are not portable across architectures.

Exceptions:
None.

Correctness:
Verifiability:

The Idc instruction is always verifiable.

Partition III

73

—_ = = = —_ =
wm AW — O 00NN K w N

DN — — = —
SOOI

NN
W =

N NN
AN W A

[\S I)
e BN |

[\
Ne)

3.41 Idftn — load method pointer
Format Assembly Format | Description
FE 06 <T> Idftn method Push a pointer to a method referenced by method, on the stack.

74

Stack Transition:
. 9 ., ftn

Description:

The Idftn instruction pushes an unmanaged pointer (type native int) to the native code implementing the
method described by method (a metadata token, either a methoddef or methodref (see Partition IT) onto
the stack). The value pushed can be called using the calli instruction if it references a managed method (or a
stub that transitions from managed to unmanaged code).

The CLI resolves the method pointer according to the rules specified in 1.12.4.1.3 (Computed destinations),
except that the destination is computed with respect to the class specified by method.

The value returned points to native code using the calling convention specified by method. Thus a method
pointer can be passed to unmanaged native code (e.g., as a callback routine). Note that the address computed by
this instruction can be to a thunk produced specially for this purpose (for example, to re-enter the CIL
interpreter when a native version of the method isn’t available).

[Note: There are many options for implementing this instruction. Conceptually, this instruction places on the
virtual machine’s evaluation stack a representation of the address of the method specified. In terms of native
code this can be an address (as specified), a data structure that contains the address, or any value that can be
used to compute the address, depending on the architecture of the underlying machine, the native calling
conventions, and the implementation technology of the VES (JIT, interpreter, threaded code, etc.). end note]

Exceptions:

System.MethodAccessException can be thrown when there is an invalid attempt to access a non-
public method.

Correctness:

Correct CIL requires that method is a valid methoddef or methodref token.

Verifiability:

Verification tracks the type of the value pushed in more detail than the native int type, remembering that
it is a method pointer. Such a method pointer can then be used with calli or to construct a delegate.

Partition III

— O Voo L AW

—_— = —_ = —
w W \]

—_——
~N

—_——
O o0

NN
[\)

NN N
(2 NS OV}

Idind.<type> — load value indirect onto the stack

Format Assembly Format Description

46 Idind.i1 Indirect load value of type int8 as int32 on the stack.

48 Idind.i2 Indirect load value of type int16 as int32 on the stack.

4A Idind.i4 Indirect load value of type int32 as int32 on the stack.

4C Idind.i8 Indirect load value of type int64 as int64 on the stack.

47 Idind.u1 Indirect load value of type unsigned int8 as int32 on the
stack.

49 Idind.u2 Indirect load value of type unsigned int16 as int32 on
the stack.

4B Idind.u4 Indirect load value of type unsigned int32 as int32 on
the stack.

4E Idind.r4 Indirect load value of type float32 as F on the stack.

4C Idind.u8 Indirect load value of type unsigned int64 as int64 on
the stack (alias for Idind.i8).

4F Idind.r8 Indirect load value of type float64 as F on the stack.

4D Idind.i Indirect load value of type native int as native int on the
stack

50 Idind.ref Indirect load value of type object ref as O on the stack.

Stack Transition:
.., addr 9 .., value

Description:

The Idind instruction indirectly loads a value from address addr (an unmanaged pointer, native int, or
managed pointer, &) onto the stack. The source value is indicated by the instruction suffix. The Idind.ref
instruction is a shortcut for a l[dobj instruction that specifies the type pointed at by addr, all of the other Idind
instructions are shortcuts for a Idobj instruction that specifies the corresponding built-in value class.

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded
onto the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack.

Correct CIL ensures that the Idind instructions are used in a manner consistent with the type of the pointer.

The address specified by addr shall be to a location with the natural alignment of <fype> or a
NullReferenceException might occur (but see the unaligned. prefix instruction). (Alignment is
discussed in Partition 1.) The results of all CIL instructions that return addresses (e.g., Idloca and Idarga) are
safely aligned. For data types larger than 1 byte, the byte ordering is dependent on the target CPU. Code that
depends on byte ordering might not run on all platforms.

The operation of the Idind instructions can be altered by an immediately preceding volatile. or unaligned.
prefix instruction.

[Rationale: Signed and unsigned forms for the small integer types are needed so that the CLI can know whether
to sign extend or zero extend. The Idind.u8 and Idind.u4 variants are provided for convenience; Idind.u8 is an
alias for Idind.i8; Idind.u4 and Idind.i4 have different opcodes, but their effect is identical. end rationale]

Exceptions:
System.NullReferenceException can be thrown if an invalid address is detected.

Correctness:

Partition III

0 9N L A W=

76

Correct CIL only uses an Idind instruction in a manner consistent with the type of the pointer. For Idind.ref the
type pointer at by addr cannot be a generic parameter.

[Note: A ldobj instruction can be used with generic parameter types. end note]

Verifiability:
For verifiable code, the address on the stack shall be a managed pointer, and the instruction form used shall be
consistent with the type of the pointer, as specified by the table above.

Partition III

1

0N L A~ W

11
12

13
14
15

16
17
18
19
20

21
22

23
24
25
26

27
28
29
30
31

3.43

Idloc — load local variable onto the stack

Format Assembly Description
Format
FE 0C<unsigned int16> Idloc indx Load local variable of index indx onto stack.
11 <unsigned int8> Idloc.s indx Load local variable of index indx onto stack, short form.
06 Idloc.0 Load local variable 0 onto stack.
07 Idloc.1 Load local variable 1 onto stack.
08 Idloc.2 Load local variable 2 onto stack.
09 Idloc.3 Load local variable 3 onto stack.

Stack Transition:
. 9 .., value

Description:

The Idloc indx instruction pushes the contents of the local variable number indx onto the evaluation stack,
where local variables are numbered 0 onwards. Local variables are initialized to 0 before entering the method
only if the localsinit on the method is true (see Partition I). The Idloc.0, Idloc.1, Idloc.2, and Idloc.3
instructions provide an efficient encoding for accessing the first 4 local variables. The ldloc.s instruction
provides an efficient encoding for accessing local variables 4-255.

The type of the value is the same as the type of the local variable, which is specified in the method header. See
Partition I.

Local variables that are smaller than 4 bytes are expanded to type int 32 when they are loaded onto the stack.
Floating-point values are expanded to their native size (type F).
Exceptions:

System.VerificationException is thrown if the the localsinit bit for this method has not been set, and
the assembly containing this method has not been granted
System.Security.Permissions.SecurityPermission.SkipVerification (and the CIL
does not perform automatic definite-assignment analysis)

Correctness:

Correct CIL ensures that indx is a valid local index.
For the /dloc indx instruction, indx shall lie in the range 0-65534 inclusive (specifically, 65535 is not valid).

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale]

Verifiability:
For verifiable code, this instruction shall guarantee that it is not loading an uninitialized value — whether that

initialization is done explicitly by having set thelocalsinit bit for the method, or by previous instructions (where
the CLI performs definite-assignment analysis).

See §1.8 for more details on how verification determines the type of a local variable.

Partition III

77

01N L AW

O

11
12

13
14
15
16
17
18

19

20
21
22

23
24
25
26
27
28

3.44 Idloca.<length> — load local variable address
Format Assembly Format | Description
FE 0D <unsigned int16> |ldloca indx Load address of local variable with index indx.
12 <unsigned int8> Idloca.s indx Load address of local variable with index indx, short form.

78

Stack Transition:
. -> .., address

Description:

The Idloca instruction pushes the address of the local variable number indx onto the stack, where local
variables are numbered 0 onwards. The value pushed on the stack is already aligned correctly for use with
instructions like Idind and stind. The result is a managed pointer (type &). The ldloca.s instruction provides an
efficient encoding for use with the local variables 0-255. (Local variables that are the subject of Idloca shall be
aligned as described in the Idind instruction, since the address obtained by Idloca can be used as an argument
to Idind.)

Exceptions:

System.VerificationException isthrown if the the localsinit bit for this method has not been set, and
the assembly containing this method has not been granted
System.Security.Permissions.SecurityPermission.SkipVerification (and the CIL
does not perform automatic definite-assignment analysis)

Correctness:

Correct CIL ensures that indx is a valid local index.
For the |dloca indx instruction, indx shall lie in the range 0—65534 inclusive (specifically, 65535 is not valid).

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale]

Verifiability:
See §1.8 for details on how verification determines the type of a local variable.

For verifiable code, this instruction shall guarantee that it is not loading the address of an uninitialized value —
whether that initialization is done explicitly by having set the localsinit bit for the method, or by previous
instructions (where the CLI performs definite-assignment analysis)

Partition III

00 9N »n b w N

11
12
13
14
15
16

17
18

19

3.45

Idnull — load a null pointer
Format Assembly Format | Description
14 Idnull Push a null reference on the stack.

Stack Transition:
. -> .., null value

Description:

The Idnull pushes a null reference (type O) on the stack. This is used to initialize locations before they become
live or when they become dead.

[Rationale: Tt might be thought that Idnull is redundant: why not use Idc.i4.0 or Idc.i8.0 instead? The answer is
that ldnull provides a size-agnostic null — analogous to an ldc.i instruction, which does not exist. However,
even if CIL were to include an Idc.i instruction it would still benefit verification algorithms to retain the Idnull
instruction because it makes type tracking easier. end rationale]

Exceptions:
None.

Correctness:
Verifiability:

The Idnull instruction is always verifiable, and produces a value that verification considers compatible with any
other reference type.

Partition III

79

— OO0 0 N L A W

—_— —_ =
w N

N N = = = = =
— O OC 0 N O Wn b

NN
w N

3.46

leave.<length> — exit a protected region of code

Format Assembly Format | Description
DD <int32> leave target Exit a protected region of code.
DE <int8> leave.s target Exit a protected region of code, short form.

80

Stack Transition:
.

Description:
The leave instruction unconditionally transfers control to target. target is represented as a signed offset
(4 bytes for leave, 1 byte for leave.s) from the beginning of the instruction following the current instruction.

The leave instruction is similar to the br instruction, but the former can be used to exita try, filter, or
catch block whereas the ordinary branch instructions can only be used in such a block to transfer control
within it. The leave instruction empties the evaluation stack and ensures that the appropriate surrounding
finally blocks are executed.

It is not valid to use a leave instruction to exit a finally block. To ease code generation for exception
handlers it is valid from within a catch block to use a leave instruction to transfer control to any instruction
within the associated try block.

The leave instruction can be used to exit multiple nested blocks (see Partition TI).

If an instruction has one or more prefix codes, control can only be transferred to the first of these prefixes.
Exceptions:

None.

Correctness:

Correct CIL requires the computed destination lie within the current method.

Verifiability:

See §1.8 for details.

Partition III

0N »n b W N

11
12

13

14
15

16
17
18
19
20

21
22

3.47 localloc — allocate space in the local dynamic memory pool
Format Assembly Format | Description
FE OF localloc Allocate space from the local memory pool.

Stack Transition:
size -> address

Description:

The localloc instruction allocates size (type native unsigned int or U4) bytes from the local dynamic
memory pool and returns the address (an unmanaged pointer, type native int) of the first allocated byte. If the
localsinit flag on the method is true, the block of memory returned is initialized to 0; otherwise, the initial value
of that block of memory is unspecified. The area of memory is newly allocated. When the current method
returns, the local memory pool is available for reuse.

address is aligned so that any built-in data type can be stored there using the stind instructions and loaded
using the Idind instructions.

The localloc instruction cannot occur within an exception block: filter, catch, finally, or fault.

[Rationale: localloc is used to create local aggregates whose size shall be computed at runtime. It can be used
for C’s intrinsic alloca method. end rationale)

Exceptions:
System.StackOverflowException is thrown if there is insufficient memory to service the request.

Correctness:

Correct CIL requires that the evaluation stack be empty, apart from the size item
Verifiability:
This instruction is never verifiable.

Partition III

81

0 NN L AW

11
12
13
14

15
16

3.48 mul — multiply values

82

Format

Assembly Format

Description

5A

mul

Multiply values.

Stack Transition:

.., valuel, value2 -> .., result

Description:

The mul instruction multiplies valuel by value2 and pushes the result on the stack. Integral operations silently

truncate the upper bits on overflow (see mul.ovf).

For floating-point types, 0 X infinity = NaN.

The acceptable operand types and their corresponding result data types are encapsulated in

Table 2: Binary Numeric Operations.

Exceptions:
None.

Correctness and Verifiability:

See Table 2: Binary Numeric Operations.

Partition III

O 0 I W bW

— = = =
W NN = O

—_
W A~

3.49 mul.ovf.<type> — multiply integer values with overflow check

Format Assembly Format Description

D8 mul.ovf Multiply signed integer values. Signed result shall fit in same
size.

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result shall fit in
same size.

Stack Transition:

.., valuel, value2 -> .., result

Description:

The mul.ovf instruction multiplies integers, valuel and value2, and pushes the result on the stack. An exception
is thrown if the result will not fit in the result type.

The acceptable operand types and their corresponding result data types are encapsulated in

Table 7: Overflow Arithmetic Operations.

Exceptions:

System.OverflowException is thrown if the result can not be represented in the result type.

Correctness and Verifiability:

See Table 8: Conversion Operations.

Partition III

83

SOV N L bW

3.50

neg — negate

Format Assembly Format Description

65 Neg Negate value.

84

Stack Transition:
.., value -> .., result

Description:
The neg instruction negates value and pushes the result on top of the stack. The return type is the same as the
operand type.

Negation of integral values is standard twos-complement negation. In particular, negating the most negative
number (which does not have a positive counterpart) yields the most negative number. To detect this overflow
use the sub.ovf instruction instead (i.e., subtract from 0).

Negating a floating-point number cannot overflow; negating NaN returns NaN.

The acceptable operand types and their corresponding result data types are encapsulated in
Table 3: Unary Numeric Operations.

Exceptions:
None.
Correctness and Verifiability:

See Table 3: Unary Numeric Operations.

Partition III

—_ =
— O O o0 3 N L B~ W

—_—
[N 8]

3.51

nop — no operation

Format Assembly Format Description

00 Nop Do nothing.

Stack Transition:

Description:

The nop instruction does nothing. It is intended to fill in space if bytecodes are patched.

Exceptions:

None.

Correctness:

Verifiability:
The nop instruction is always verifiable.

Partition III

85

3.52 not - bitwise complement

Format Assembly Format Description

66 Not

Bitwise complement.

Stack Transition:
.., value -> .., result

Description:

The not instruction computes the bitwise complement of the integer value on top of the stack and leaves the
result on top of the stack. The return type is the same as the operand type.

The acceptable operand types and their corresponding result data type are encapsulated in

OO0 N W\ bW

—_ = =
N o= O

—_ =
B~ W

86

Table 5: Integer Operations.

Exceptions:

None.

Correctness and Verifiability:
See Table 5: Integer Operations.

Partition III

O3 N W K~ W N

11
12
13

3.53

or — bitwise OR

Format

Instruction

Description

60

Or

Bitwise OR of two integer values, returns an integer.

Stack Transition:

.., valuel, value2 -> .., result

Description:

The or instruction computes the bitwise OR of the top two values on the stack and leaves the result on the stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Exceptions:
None.

Correctness and Verifiability:
See Table 5: Integer Operations.

Partition III

87

—_

—_ =
— O O 0 9 N L kA W

—_— =
w N

3.54 pop —remove the top element of the stack

88

Format

Assembly Format

Description

26

pop

Pop value from the stack.

Stack Transition:

.., value ->

Description:

The pop instruction removes the top element from the stack.

Exceptions:

None.

Correctness:

Verifiability:

No additional requirements.

Partition III

O 03 O L B~ W

e e
whn A W N = O

O — — o —
[e>RNo RN BN e

NN
[N S I

NN
W

NN
AN W

[\
N

NN
Nl

W W
- O

w W W
VS)

W W
AN

W W W
O o0

3.55 rem — compute remainder

Format Assembly Format | Description

5D rem

Remainder when dividing one value by another.

Stack Transition:
.., valuel, value2 -> .., result

Description:

The rem instruction divides valuel by value2 and pushes the remainder result on the stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 2: Binary Numeric Operations.

For integer operands

result = valuel rem value? satisfies the following conditions:
result = valuel — value2x(valuel div value?), and
0 < |result| < |value2|, and
sign(result) = sign(valuel),

where div is the division instruction, which truncates towards zero.

For floating-point operands

rem is defined similarly as for integer operands, except that, if value2 is zero or valuel is infinity, result is
NaN. If value2 is infinity, result is valuel. This definition is different from the one for floating-point
remainder in the IEC 60559:1989 Standard. That Standard specifies that valuel div value? is the nearest integer
instead of truncating towards zero. System.Math.IEEERemainder (see Partition IV) provides the IEC

60559:1989 behavior.

Implementation Specific (Microsoft)

In the Microsoft CLI, where value? is +infinity or —infinity resultis simply valuel.

Exceptions:

Integral operations throw System.DivideByZeroException if value? is zero.

Integral operations can throw System.ArithmeticException if valuel is the smallest representable

integer value and value? is -1.

Implementation Specific (Microsoft)

On the x86 an System.OverflowException is thrown when computing
(System.Int32.MaxValue rem —1).

Example:
+10rem +6 is 4 (+10 div +6 =1)

+10rem-6 is 4 (+10 div-6 = -1)
-10rem+6 is -4 (-10 div +6 = -1)
-10rem -6 is -4 (-10 div-6 =1)

For the various floating-point values of 10.0 and 6.0, rem gives the same values;
System.Math.IEEERemainder, however, gives the following values.

System.Math.IEEERemainder (+10.0,+6.0) is -2 (+10.0 div +6.0 = 1.666..

7)

System.Math.IEEERemainder (+10.0,-6.0) is -2 (+10.0 div -6.0 =-1.666..7)

System.Math.IEEERemainder (-10.0,+6.0) is 2 (-10.0 div +6.0 =-1.666..7)

Partition III

&9

AW N =

90

System.Math.IEEERemainder (-10.0,-6.0) is
Correctness and Verifiability:

See Table 2: Binary Numeric Operations.

Partition III

2

(-10.0 div -6.0

1.666..7)

O 0 N L B~ W

[—
- O

—_——
w N

—_—
W B

D = = = =
S vV ®© = o

N
—_

NN
W N

3.56 rem.un — compute integer remainder, unsigned
Format Assembly Format | Description
5E rem.un Remainder when dividing one unsigned value by another.

Stack Transition:
.., valuel, value2 -> .., result

Description:

The rem.un instruction divides valuel by value2 and pushes the remainder result on the stack. (rem.un treats
its arguments as unsigned integers, while rem treats them as signed integers.)

result = valuel rem.un value?2 satisfies the following conditions:

result = valuel — value2x(valuel div.un value?2), and

0 <result < value2,

where div.un is the unsigned division instruction. rem.un is unspecified for floating-point numbers.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.
Exceptions:

Integral operations throw System.DivideByZeroException if value? is zero.

Example:
+5remun+3 is?2 (+5 divun +3 = 1)
+5rem.un -3 is 5 (+5 div.un -3 = 0)
-5rem.un +3 is?2 (=5 divaun +3 = 1431655763 or 0x55555553)
-5rem.un -3 is -5 or Oxfffffffb (-5 div.un-3 = 0)

Correctness and Verifiability:
See Table 5: Integer Operations.

Partition III

91

O 03 &N L A~ W

—_ = = = = =
whn WD = O

—_ = = =
O o0 3 N

NSRS
— O

3.57

ret — return from method

Format Assembly Format | Description

2A Ret Return from method, possibly with a value.

92

Stack Transition:
retVal on callee evaluation stack (not always present) >
.., retValon caller evaluation stack (not always present)

Description:

Return from the current method. The return type, if any, of the current method determines the type of value to
be fetched from the top of the stack and copied onto the stack of the method that called the current method. The
evaluation stack for the current method shall be empty except for the value to be returned.

The ret instruction cannot be used to transfer control out of a try, filter, catch, or finally block.
From within a try or catch, use the leave instruction with a destination of a ret instruction that is outside all
enclosing exception blocks. Because the filter and finally blocks are logically part of exception
handling, not the method in which their code is embedded, correctly generated CIL does not perform a method
return from withina filter or finally. See Partition I.

Exceptions:

None.

Correctness:

Correct CIL obeys the control constraints describe above.

Verifiability:

Verification requires that the type of retVal is compatible with the declared return type of the current method.

Partition III

3.58 shl — shift integer left

Format Assembly Format Description

62 Shi Shift an integer left (shifting in zeros), return an integer.

Stack Transition:
.., value, shiftAmount -> .., result

Description:

The shl instruction shifts value (int32, int64 or native int) left by the number of bits specified by
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is
greater than or equal to the width of value. See Table 6: Shift Operations for details of which operand types are

O 0NN N K W N

—_— = =
No= O

—_
A~ W

allowed, and their corresponding result type.

Exceptions:
None.

Correctness and Verifiability:

See Table 5: Integer Operations.

Partition III

93

01N L A WD

O

11
12
13

14
15

3.59

shr — shift integer right

Format

Assembly Format

Description

63

Shr

Shift an integer right (shift in sign), return an integer.

94

Stack Transition:

.., value, shiftAmount -> .., result

Description:

The shr instruction shifts value (int32, int64 or native int) right by the number of bits specified by
shifiAmount. shifiAmount is of type int32 or native int. The return value is unspecified if shiftAmount is
greater than or equal to the width of value. shr replicates the high order bit on each shift, preserving the sign of
the original value in result. See Table 6: Shift Operations for details of which operand types are allowed, and
their corresponding result type.

Exceptions:

None.

Correctness and Verifiability:
See Table 5: Integer Operations.

Partition III

O 03N N K W N

[—
— o

—
[\S}

—_ =
B~ W

3.60

shr.un — shift integer right, unsigned

Format

Assembly Format

Description

64

shr.un

Shift an integer right (shift in zero), return an integer.

Stack Transition:

.., value, shiftAmount -> .., result

Description:

The shr.un instruction shifts value (int32, int 64 ornative int) right by the number of bits specified
by shiftAmount. shifitAmount is of type int32 or native int. The return value is unspecified if
shiftAmount is greater than or equal to the width of value. shr.un inserts a zero bit on each shift. See Table 6:
Shift Operations for details of which operand types are allowed, and their corresponding result type.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

Partition III

95

0N L B~ W

11
12
13
14
15

16
17
18

19
20

21

3.61 starg.<length> — store a value in an argument slot
Format Assembly Description
Format
FE OB <unsigned intl 6> | starg num Store value to the argument numbered num.
10 <unsigned int8> starg.s num Store value to the argument numbered num, short form.

96

Stack Transition:
.., value 9 ey

Description:

The starg num instruction pops a value from the stack and places it in argument slot num (see Partition I). The
type of the value shall match the type of the argument, as specified in the current method’s signature. The
starg.s instruction provides an efficient encoding for use with the first 256 arguments.

For procedures that take a variable argument list, the starg instructions can be used only for the initial fixed
arguments, not those in the variable part of the signature.

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from
the stack to the argument. Floating-point values are rounded from their native size (type F) to the size
associated with the argument.

Exceptions:

None.

Correctness:

Correct CIL requires that num is a valid argument slot.

Verifiability:

Verification also checks that the verification type of value matches the type of the argument, as specified in the
current method’s signature (verification types are less detailed than CLI types).

Partition III

1

0 NN L A WN

11
12
13

14
15

16
17

18

19
20

21
22
23
24
25

26

27
28
29

3.62

stind.<type> — store value indirect from stack

Format Assembly Format | Description

52 stind.i1 Store value of type int8 into memory at address

53 stind.i2 Store value of type int16 into memory at address

54 stind.i4 Store value of type int32 into memory at address

55 stind.i8 Store value of type int64 into memory at address

56 stind.r4 Store value of type float32 into memory at address

57 stind.r8 Store value of type float64 into memory at address

DF stind.i Store value of type native int into memory at address

51 stind.ref Store value of type object ref (type O) into memory at address

Stack Transition:

.., addr, wval

Description:

> .

The stind instruction stores value val at address addr (an unmanaged pointer, type native int, or managed
pointer, type &). The address specified by addr shall be aligned to the natural size of val or a
NullReferenceException can occur (but see the unaligned. prefix instruction). The results of all CIL
instructions that return addresses (e.g., l[dloca and Idarga) are safely aligned. For data types larger than 1 byte,
the byte ordering is dependent on the target CPU. Code that depends on byte ordering might not run on all
platforms. The stind.ref instruction is a shortcut for a stobj instruction that specifies the type pointed at by
addr, all of the other stind instructions are shortcuts for a stobj instruction that specifies the corresponding

built-in value class.

Type-safe operation requires that the stind instruction be used in a manner consistent with the type of the

pointer.

The operation of the stind instruction can be altered by an immediately preceding volatile. or unaligned.

prefix instruction.

Exceptions:

System.NullReferenceException is thrown if addr is not naturally aligned for the argument type
implied by the instruction suffix.

Correctness:

Correct CIL ensures that addr is a pointer whose type is assignment-compatible with that of val, subject to
implicit conversion as specified in §1.6. For stind.ref the type pointer at by addr cannot be a generic parameter.

[Note: A stobj instruction can be used with generic parameter types. end note]

Verifiability:

For verifiable code, addr shall be a managed pointer, and the type of va/ shall be assignment compatible with
addr: if addr has type S& and val has type T, then S := T according to the rules in §1.8.1.2.2.

Partition III

97

1

01N L A W

11
12
13
14
15

16
17
18

19
20
21
2
23
24
25

3.63 stloc — pop value from stack to local variable
Format Assembly Format | Description
FE OE <unsigned intl 6> stloc indx Pop a value from stack into local variable indXx.
13 <unsigned int8> stloc.s indx Pop a value from stack into local variable indx, short form.
0A stloc.0 Pop a value from stack into local variable 0.
0B stloc.1 Pop a value from stack into local variable 1.
0C stloc.2 Pop a value from stack into local variable 2.
0D stloc.3 Pop a value from stack into local variable 3.

98

Stack Transition:
.., value ->

Description:

The stloc indx instruction pops the top value off the evaluation stack and moves it into local variable number
indx (see Partition I), where local variables are numbered 0 onwards. The type of value shall match the type of
the local variable as specified in the current method’s locals signature. The stloc.0, stloc.1, stloc.2, and
stloc.3 instructions provide an efficient encoding for the first 4 local variables; the stloc.s instruction provides
an efficient encoding for local variables 4-255.

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the
stack to the local variable. Floating-point values are rounded from their native size (type F) to the size
associated with the argument.

Exceptions:

None.

Correctness:

Correct CIL requires that indx be a valid local index. For the stloc indx instruction, indx shall lie in the
range 0—65534 inclusive (specifically, 65535 is not valid)

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale]

Verifiability:
Verification also checks that the verification type of value matches the type of the local, as specified in the
current method’s locals signature.

Partition III

09N L b~ W

11
12
13

14
15

3.64

sub — subtract numeric values

Format

Assembly Format

Description

59

sub

Subtract value2 from value1, returning a new value.

Stack Transition:

.., valuel, value2 -> .., result

Description:

The sub instruction subtracts value2 from valuel and pushes the result on the stack. Overflow is not detected
for the integral operations (see sub.ovf); for floating-point operands, sub returns +inf on positive overflow, -

inf on negative overflow, and zero on floating-point underflow.

The acceptable operand types and their corresponding result data type are encapsulated in Table 2: Binary

Numeric Operations.
Exceptions:

None.

Correctness and Verifiability:

See Table2: Binary Numeric Operations.

Partition III

99

01N L B~ W

11
12
13

14
15

3.65

sub.ovf.<type> — subtract integer values, checking for overflow

Format Assembly Format Description

DA sub.ovf Subtract native int from a native int. Signed result shall fit in
same size.

DB sub.ovf.un Subtract native unsigned int from a native unsigned int.

Unsigned result shall fit in same size.

100

Stack Transition:

.., valuel, value?2 -> .., result

Description:

The sub.ovf instruction subtracts value2 from valuel and pushes the result on the stack. The type of the values
and the return type are specified by the instruction. An exception is thrown if the result does not fit in the result

type.

The acceptable operand types and their corresponding result data type is encapsulated in

Table 7: Overflow Arithmetic Operations.

Exceptions:

System.OverflowException is thrown if the result can not be represented in the result type.

Correctness and Verifiability:

See Table 7: Overflow Arithmetic Operations.

Partition III

02N L A W

11
12
13

14
15

16
17
18

19
20

21
22
23

24
25

26

3.66

switch — table switch based on value

Format Assembly Format Description

45 <unsigned int32> <int32>... <int32> | switch (1, 2 ... tN) | Jump to one of n values.

Stack Transition:
.., value 9 ey

Description:

The switch instruction implements a jump table. The format of the instruction is an unsigned int32
representing the number of targets &, followed by N int 32 values specifying jump targets: these targets are
represented as offsets (positive or negative) from the beginning of the instruction following this switch
instruction.

The switch instruction pops value off the stack and compares it, as an unsigned integer, to n. If value is less
than n, execution is transferred to the value’th target, where targets are numbered from 0 (i.e., a value of 0 takes
the first target, a value of 1 takes the second target, and so on). If value is not less than n, execution continues at
the next instruction (fall through).

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this
instruction. (Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for
details).

Exceptions:

None.

Correctness:

Correct CIL obeys the control transfer constraints listed above.

Verifiability:

Verification requires the type-consistency of the stack, locals and arguments for every possible way of reaching
all destination instructions. See §1.8 for more details.

Partition III

101

O 031 N N B~ W

—_
(=}

—_ =
N —

3.67

xor — bitwise XOR

Format

Assembly Format

Description

61

Xor

Bitwise XOR of integer values, returns an integer.

102

Stack Transition:

., valuel, value2 -> ..., result

Description:

The xor instruction computes the bitwise XOR of valuel and value2and leaves the result on the stack.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer

Operations.

Exceptions:

None.

Correctness and Verifiability:
See Table 5: Integer Operations.

Partition III

e O Unh W —

—_— = =
W N = O

—_—
(O, N

Object model instructions

The instructions described in the base instruction set are independent of the object model being executed. Those
instructions correspond closely to what would be found on a real CPU. The object model instructions are less
built-in than the base instructions in the sense that they could be built out of the base instructions and calls to
the underlying operating system.

[Rationale: The object model instructions provide a common, efficient implementation of a set of services used
by many (but by no means all) higher-level languages. They embed in their operation a set of conventions
defined by the CTS. This include (among other things):

Field layout within an object

Layout for late bound method calls (vtables)
Memory allocation and reclamation
Exception handling

Boxing and unboxing to convert between reference-based objects and value types

For more details, see Partition I. end rationale)

Partition III

103

O 002N L A W

11
12

13
14

15
16

17

18
19

20

21
22
23
24

25
26
27
28
29
30
31

32

4.1

104

box — convert a boxable value to its boxed form

Format Assembly Format | Description

8C <I> box typeTok Convert a boxable value to its boxed form

Stack Transition:
.., val -> ..; Obj

Description:

If ypeTok is a value type, the boX instruction converts val to its boxed form. When #ypeTok is a non-nullable
type (§1.8.2.4), this is done by creating a new object and copying the data from val into the newly allocated
object. If it is a nullable type, this is done by inspecting val’s HasValue property; if it is false, a null reference is
pushed onto the stack; otherwise, the result of boxing val’s Value property is pushed onto the stack. If fypeTok
is a reference type, the box instruction does nothing.

typeTok is a metadata token (a typedef, typeref, or typespec) indicating the type of val. typeTok can
represent a value type, a reference type, or a generic parameter.

Exceptions:

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

System.TypeLoadException is thrown if typeTok cannot be found. (This is typically detected when CIL
is converted to native code rather than at runtime.)

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token. The type operand typeTok
shall represent a boxable type.

Verifiability:

The top-of-stack shall be assignment compatible with the type represented by #ypeTok. When typeTok
represents a non-nullable value type or a generic parameter, the resulting type is “boxed” typeTok; when
typeTok is Nullable<T>, the resulting type is “boxed” 7. When typeTok is a reference type, the resulting type is
typeTok. The type operand typeTok shall not be a byref-like type.

[Rationale: Based on the rules above, when typeTok represents a generic parameter whose runtime type is
Nullable<7> the verifier states that the result is of type boxed Nullable<7>. This does not match what the
implementation of box produces dynamically. At runtime, boxing a value of type Nullable<7> will actually
produce an instance of boxed T, not boxed Nullable<7> as the verifier claims. For this to be type-safe, there
must be no operation the verifier permits on a boxed Nullable<7> that isn’t also permissible on a boxed 7. This
requirement holds the Nullable<7> does not have any constrainable features, e.g. interface implementations.
end rationale]

Partition III

— OO0 O3 N LN B~ [OSR V]

[N

—_——
w N

—_——
NN L B

DN =
[=Eelo]

NN NN
DA W=

[N}
[o)

N
|

W N N
S O

w W
N —

w
w

W W W W W W
O 03 &N »n A~

A D
W= O

N
N

4.2

callvirt — call a method associated, at runtime, with an object
Format Assembly Format | Description
6F <> callvirt method Call a method associated with an object.

Stack Transition:
.., obj, argl, .. argN -> .., returnVal (not always returned)

Description:

The callvirt instruction calls a late-bound method on an object. That is, the method is chosen based on the exact
type of obj rather than the compile-time class visible in the method metadata token. callvirt can be used to call
both virtual and instance methods. See Partition I for a detailed description of the CIL calling sequence. The
callvirt instruction can be immediately preceded by a tail. prefix to specify that the current stack frame should
be released before transferring control. If the call would transfer control to a method of higher trust than the
original method the stack frame will not be released.

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of
the caller]

method is a metadata token (a methoddef, methodref ormethodspec see Partition II) that provides the
name, class and signature of the method to call. In more detail, callvirt can be thought of as follows. Associated
with obj is the class of which it is an instance. The CLI resolves the method to be called according to the rules
specified in 1.12.4.1.3 (Computed destinations).

callvirt pops the object and the arguments off the evaluation stack before calling the method. If the method has
a return value, it is pushed on the stack upon method completion. On the callee side, the obj parameter is
accessed as argument 0, arg! as argument 1, and so on.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, etc. The this pointer (always required for callvirt) shall be pushed
before any of the user-visible arguments. The signature carried in the metadata does not contain an entry in the
parameter list for the this pointer, but uses a bit (called HASTHIS) to indicate whether the method requires
passing the this pointer (see Partition II)

Note that a virtual method can also be called using the call instruction.

Exceptions:

System.MissingMethodException is thrown if a non-static method with the indicated name and
signature could not be found in 0bj’s class or any of its base classes. This is typically detected when CIL is
converted to native code, rather than at runtime.

System.MethodAccessException can be thrown when there is an invalid attempt to access a non-
public method.

System.NullReferenceException is thrown if obj is null.

System.SecurityException is thrown if system security does not grant the caller access to the called
method. The security check can occur when the CIL is converted to native code rather than at runtime.
Correctness:

Correct CIL ensures that the destination method exists and the values on the stack correspond to the types of
the parameters of the method being called.

Verifiability:

In its typical use, callvirt is verifiable if (a) the above restrictions are met, (b) the verification type of 0byj is
consistent with the method being called, (c) the verification types of the arguments on the stack are consistent

with the types expected by the method call, and (d) the method is accessible from the call site. A callvirt
annotated by tail. has additional considerations — see §1.8.

Partition III

105

O [e e} N L AW

—_
— O

—_—
W N

—_ = =
A »n A

—_ =
[e BN

[
S O

NN NN
B WN —

SO\
AN D

NN
e RN |

W N
[e>JNe)

W W W W W
T N U S

W
(@)}

W W W
S O 0

~
=

4.3

106

castclass — cast an object to a class
Format Assembly Format | Description
74 <T> castclass class Cast obj to class.

Stack Transition:
., obj =2 .., obj2
Description:

The castclass instruction attempts to cast obj (of type O) to class. class is a metadata token (a typeref,
typedef or typespec), indicating the desired class. If the type of the object on the top of the stack:

. does not implement class (if class is an interface), or
. is not class or a derived class of class (if class is an object type), or
. is not boxed T (if class is the non-nullable value type T), or

. is not boxed T (if class is System.Nullable<7>)

then an InvalidCastException is thrown. Unlike coercions (§1.6) and conversions (§3.27), a cast never
changes the actual type of an object and preserves object identity (see Partition I).

Note that:

1. Arrays inherit from System.Array.

2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[].

3. For the purposes of note 2 above, enums are treated as their underlying type: thus E1[] can be cast

to E2[] if E1 and E2 share an underlying type.

4. The boxed T case exists to provide a way of casting from an object instance to a value type
instance (in conjunction with unbox (§4.32)).

5. The System.Nullable<7> case exists to be consistent with the behaviour of the box (§4.1)
instruction — castclass takes an obj (of type O), boxing a value of type System.Nullable<7>
produces a boxed T, a boxed T can be unboxed (§4.32) as either a 7 or a System.Nullable<7>, so
a boxed T is a boxed System.Nullable<7>.

If obj is null, castclass succeeds and returns null. This behavior differs semantically from isinst where if 0bj is
null, isinst fails and returns null.

Exceptions:

System.InvalidCastException is thrown if obj cannot be cast to class.

System. TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is
converted to native code rather than at runtime.

Correctness:

Correct CIL ensures that class is a valid t ypeRef, typeDef or typeSpec token, and that obj is always
either null or an object reference.

Verifiability:

There are no additional verification requirements.

Implementation Specific (Microsoft)

! Note: In Microsoft’s implementation of the CLI the castclass instruction also will cast Bar[] to Foo[]
! if Bar and Foo are stored as the same sized integral type, this includes enumeration types. For example:
! int32[] can be cast to uint32[], and enum[] can be cast to int64[] iff enum has an underlying 64-bit
integral type.

Partition III

O 00 I N L A W

—_ = =
o= O

—_—
A W

—_ =
AN W

—_
-

NN = =
— O O >

N
\]

4.4

cpobj — copy a value from one address to another
Format Assembly Format Description
70 <> cpobj typeTok Copy a value type from src to dest.

Stack Transition:

.., dest, src

Description:

> .

The cpobj instruction copies the value at the address specified by src (an unmanaged pointer, native int,
or a managed pointer, &) to the address specified by dest (also a pointer). typeTok can be a typedef,
typeref, or typespec. The behavior is unspecified if the type of the location referenced by src is not
assignment-compatible with the type of the location referenced by dest.

If typeTok is a reference type, the cpobj instruction has the same effect as Idind.ref followed by stind.ref.

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.

System. TypeLoadException is thrown if fypeTok cannot be found. This is typically detected when CIL

is converted to native code rather than at runtime.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

Verifiability:

The static types of the destination (dest) and source (src) values shall both be managed pointers (&) to values
whose types we denote destType and srcType, respectively. Finally, srcType shall be assignment-compatible
with sypeTok, and typeTok shall be assignment-compatible with destType. In the case of an Enum, its type is
that of the underlying, or base, type of the Enum.

Partition III

107

— OO0 JIN L AW

e e e
AN L AW

—_
-

N — —
S O oo

[\S}
—_

4.5

108

initobj — initialize the value at an address

Format Assembly Format Description

FE 15 <> initobj sypeTok Initialize the value at address dest.

Stack Transition:
.., dest -> ey

Description:

The initobj instruction initializes an address with a default value. typeTok is a metadata token (a typedef,
typeref, or typespec). dest is an unmanaged pointer (native int), or a managed pointer (&). If
typeTok is a value type, the initobj instruction initializes each field of dest to null or a zero of the appropriate
built-in type. If typeTok is a value type, then after this instruction is executed, the instance is ready for a
constructor method to be called. If typeTok is a reference type, the initobj instruction has the same effect as
Idnull followed by stind.ref.

Unlike newobj, the initobj instruction does not call any constructor method.

Exceptions:

None.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

Verifiability:

The type of the destination value on top of the stack shall be a managed pointer to some type destType, and

typeTok shall be a subtype of destType. If typeTok is a non-reference type, the definition of subtyping implies
that destType and typeTok shall be equal .

Partition III

O 0O L B~ W

—_— =
o= O

—_— —
W oW

—
N

—_— =
[c BN |

[
[=Ne}

N
—_

NN NN
W AW

[\®)
(o)}

N N
e RN |

W W W W W N
N S N =T\e]

4.6

isinst — test if an object is an instance of a class or interface

Format Assembly Format | Description

75 <> isinst class Test if 0y is an instance of class, returning null or an instance of
that class or interface.

Stack Transition:
..; Obj -> .., result

Description:

The isinst instruction tests whether obj (type O) is an instance of class. class is a metadata token (a typeref,
typedef or typespecsee Partition IT) indicating the desired class. If the type of the object on the top of the
stack:

. implements class (if class is an interface), or
. is class or a derived class of class (if class is an object type), or
. is boxed T (if cl/ass is the non-nullable value type T), or

. is boxed 7 (if class is System.Nullable<7>)

then it is cast to the type class and the result is pushed on the stack, exactly as though castclass had been
called. Otherwise null is pushed on the stack. If 0bj is null, isinst returns null. This behavior differs
semantically from castclass where if 0b; is null, castclass succeeds and returns null.

Note that:

1. Arrays inherit from System.Array.

2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[].

3. For the purposes of note 2, enums are treated as their underlying type: thus E1[] can cast to E2[]

if E1 and E2 share an underlying type.
4. The boxed T case exists to provide a way of checking the type of a value type instance.

5. The System.Nullable<T> case exists to be consistent with the behaviour of the box (§4.1)
instruction — castclass takes an obj (of type O), boxing a value of type System.Nullable<7>
produces a boxed T, a boxed T can be unboxed (§4.32) as either a 7 or a System.Nullable<7>, so
a boxed T is a boxed System.Nullable<7>.

Exceptions:

System. TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is
converted to native code rather than at runtime.

Correctness:

Correct CIL ensures that class is a valid typeref or typedef or typespec token, and that obj is always
either null or an object reference.

Verifiability:
There are no additional verification requirements.

Partition III

109

O 01N L B~ W

—_
- O

—_— =
w N

—
~

—_
(o)}

DN — = = =
S O X I N

4.7

110

Idelem — load element from array

Format Assembly Format | Description

A3 <> Idelem typeTok Load the element at index onto the top of the stack.

Stack Transition:
.., array, index -> .., value

Description:

The Idelem instruction loads the value of the element with index index (of type native int or int32)in
the zero-based one-dimensional array array, and places it on the top of the stack. The type of the return value
is indicated by the type token typeTok in the instruction.

Exceptions:

System.IndexOutOfRangeException is thrown if index is larger than the bound of array.
System.NullReferenceException is thrown if array is null.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

array shall be either null or a single dimensional, zero-based array.

Verifiability:

The static type of array is either the special reference type Null or a proper zero-based, one-dimensional array
type elem[], for some type elem. If the array type is Null, take elem to be the type represented by operand

typeTok. The value index shall have type native int. The type elem shall be a subtype of the type operand
typeTok. The type of the value left on the stack is typeTok.

Partition III

O NN L K~ W

11
12

13
14
15

16

17
18
19

4.8

Idelem.<type> — load an element of an array

Format Assembly Format | Description

90 Idelem.i1 Load the element with type int8 at index onto the top of the stack as
an int32.

92 Idelem.i2 Load the element with type int16 at index onto the top of the stack
as an int32.

94 Idelem.i4 Load the element with type int32 at index onto the top of the stack
as an int32.

96 Idelem.i8 Load the element with type int64 at index onto the top of the stack
as an int64.

91 Idelem.u1 Load the element with type unsigned int8 at index onto the top of
the stack as an int32.

93 Idelem.u2 Load the element with type unsigned int16 at index onto the top of
the stack as an int32.

95 Idelem.ud Load the element with type unsigned int32 at index onto the top of
the stack as an int32.

96 Idelem.u8 Load the element with type unsigned int64 at index onto the top of
the stack as an int64 (alias for 1delem.i8).

98 Idelem.r4 Load the element with type float32 at index onto the top of the stack
asan F

99 Idelem.r8 Load the element with type float64 at index onto the top of the stack
asan F.

97 Idelem.i Load the element with type native int at index onto the top of the
stack as a native int.

9A Idelem.ref Load the element at index onto the top of the stack as an O. The type

of the O is the same as the element type of the array pushed on the
CIL stack.

Stack Transition:

.., array, index -> .., value

Description:

The Idelem instruction loads the value of the element with index index (of type int32 or native int)in
the zero-based one-dimensional array array and places it on the top of the stack. Arrays are objects and hence
represented by a value of type O. The return value is indicated by the instruction.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a

Get method.

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded
onto the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack.

Exceptions:

System.NullReferenceException is thrown if array is null.

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.

Correctness:

Correct CIL code requires that array is either null or a zero-based, one-dimensional array whose declared
element type matches exactly the type for this particular instruction suffix (e.g., Idelem.r4 can only be applied
to a zero-based, one dimensional array of £1oat32s)

Partition III 111

BAWND —

112

Verifiability:

The type of index shallbe int32 ornative int. The element type of array shall match the type
specified by the suffix, as described above.

Partition III

— O VL I L B W

e e e el e
[©) NV, I VS)

—_—
|

Ju—
e e}

NN —
— O O

N
\]

NN
N ON]

4.9

Idelema — load address of an element of an array
Format Assembly Format | Description
8F <> Idelema class Load the address of element at index onto the top of the stack.

Stack Transition:
.., array, index -> .., address

Description:

The Idelema instruction loads the address of the element with index index (of type int32 or native int)
in the zero-based one-dimensional array array (of element type class) and places it on the top of the stack.
Arrays are objects and hence represented by a value of type O. The return address is a managed pointer

(type &).

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides an
Address method.

If this instruction is prefixed by the readonly. prefix, it produces a controlled-mutability managed pointer
(§1.8.1.2.2).

Exceptions:

System.NullReferenceException is thrown if array is null.

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.

Correctness:

Correct CIL ensures that class is a typeref or typedef or typespec token to a class, and that array is
indeed always either null or a zero-based, one-dimensional array whose declared element type matches class
exactly.

Verifiability:

The type of index shall be int32 or native int. The element type of array shall match class exactly.

Partition III

113

— OO0 0N U W

—_ = = = =
AW

—_—
AN

—_
|

—_
o]

N —
S O

NN
N =

N NN
AN A~ W

[\S]
[e RN

29

4.10

114

Idfld — load field of an object

Format Assembly Format | Description

7B <T> Idfld field Push the value of field of object (or value type) obj, onto the stack.

Stack Transition:
..., ObJ > .., value

Description:

The Idfld instruction pushes onto the stack the value of a field of 0bj. 0bj shall be an object (type O), a managed

pointer (type &), an unmanaged pointer (type native int), or an instance of a value type. The use of an
unmanaged pointer is not permitted in verifiable code. field is a metadata token (a fieldref or fielddef
see Partition II) that shall refer to a field member. The return type is that associated with field. Idfld pops the
object reference off the stack and pushes the value for the field in its place. The field can be either an instance
field (in which case 0bj shall not be null) or a static field.

The Idfld instruction can be preceded by either or both of the unaligned. and volatile. prefixes.
Exceptions:
System.FieldAccessException is thrown if field is not accessible.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

System.NullReferenceException is thrown if 0bj is null and the field is not static.

Correctness:

Correct CIL ensures that field is a valid token referring to a field, and that obj will always have a type
compatible with that required for the lookup being performed.

Verifiability:
For verifiable code, obj shall not be an unmanaged pointer.
It is not verifiable to access an overlapped object reference field.

A field is accessible only if every field that overlaps it is also accessible.

Implementation Specific (Microsoft)
This note also applies to §4.28.

Field accessibility for overlapping built-in value type fields is defined differently in the current MS
release.

First, define explicit and implicit field overlap:

a) Explicit: overlap of (at lest two) fields defined on the same type like below (i and £ are
overlapping fields defined on the same type)

class Foo

{
[FieldOffset (0)]
int 1i;
[FieldOffset (0)]
float f;

}

b) Implicit: overlap of (at lest two) fields defined on different types like below (i and f are
overlapping fields defined on different types). Note that nesting of types can be arbitrary deep.

struct AValueType

{
[FieldOffset (0)]

Partition III

OO0 ANnhWwWw N~

—
=]

—
W N =

—_— —
AN D B~

—
|

! int 1i; |
: } i
! class ThisIsOk !
i { 5
: [FieldOffset (0)] :
; float f; :

[FieldOffset (0)]
i AValueType v; '
}

Then the rules for value types are:

1. Type T contains explicitly (fully or partially) overlapped fields of built-in value type with different
accessibility then accessing any field on type T is verifiable. Note: this means that type author is
free to make private field publicly visible through overloading it with public field.

2. Type T contains implicitly (fully or partially) overlapped fields of built-in value type with different
accessibility then accessing any field on type T is unverifiable. All other access to the type like
creating an instance, is verifiable.

Partition III 115

02 L AW

11
12
13

14
15
16

17
18

19

20

21
22

23
24
25
26

27

28
29

30

4.11

Idflda — load field address

Format Assembly Format | Description

7C<T> Idflda field Push the address of field of object obj on the stack.

116

Stack Transition:
..., ObJ > .., address

Description:

The Idflda instruction pushes the address of a field of 0bj. 0bj is either an object, type O, a managed pointer,
type &, or an unmanaged pointer, type native int. The use of an unmanaged pointer is not allowed in
verifiable code. The value returned by Idflda is a managed pointer (type &) unless obj is an unmanaged pointer,
in which case it is an unmanaged pointer (type native int).

field is a metadata token (a fieldref or fielddef; see Partition II) that shall refer to a field member. The

field can be either an instance field (in which case 0bj shall not be null) or a static field.
Exceptions:

System.FieldAccessException is thrown if field is not accessible.

System.InvalidOperationException is thrown if the obj is not within the application domain from
which it is being accessed. The address of a field that is not inside the accessing application domain cannot be
loaded.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

System.NullReferenceException is thrown if 0bj is null and the field isn’t static.

Correctness:

Correct CIL ensures that field is a valid fieldref token and that obj will always have a type compatible with
that required for the lookup being performed.

Verifiability:

For verifiable code, field cannot be init-only.

It is not verifiable to access an overlapped object reference field.

A field is accessible only if every field that overlaps it is also accessible.

Remark:

Using Idflda to compute the address of a static, init-only field and then using the resulting pointer to modify
that value outside the body of the class initializer might lead to unpredictable behavior.

Partition III

O 00 NN L b W

—_— = = =
W NN = O

—_——
(O, NN

4.12

Idlen — load the length of an array

Format Assembly Format | Description

8E Idlen Push the /length (of type native unsigned int) of array on the stack.

Stack Transition:
.., array 9 .., length

Description:

The Idlen instruction pushes the number of elements of array (a zero-based, one-dimensional array) on the
stack.

Arrays are objects and hence represented by a value of type O. The return value is anative unsigned
int.

Exceptions:
System.NullReferenceException is thrown if array is null.
Correctness:

Correct CIL ensures that array is indeed always null or a zero-based, one dimensional array.

Verifiability:

Partition III

117

O 03 L A WD

—_
(=}

—_ —
N —

—_— =
B~ W

—_ = = =
oo 3 O\ W

—_
O

[N}
[}

NN
N —

N
W

4.13

Idobj — copy a value from an address to the stack
Format Assembly Format Description
71 <T> Idobj typeTok Copy the value stored at address src to the stack.

118

Stack Transition:
.., Src 9 ., val

Description:

The 1dobj instruction copies a value to the evaluation stack. fypeTok is a metadata token (a typedef,
typeref, or typespec). srcisan unmanaged pointer (native int), or a managed pointer (&). If
typeTok is not a generic parameter and either a reference type or a built-in value class, then the Idind instruction
provides a shorthand for the Idobj instruction.

[Rationale: The Idobj instruction can be used to pass a value type as an argument. end rationale]

The operation of the ldobj instruction can be altered by an immediately preceding volatile. or
unaligned. prefix instruction.

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.

System. TypeLoadException is thrown if fypeTok cannot be found. This is typically detected when CIL
is converted to native code rather than at runtime.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

[Note: Unlike the Idind instruction a Idobj instruction can be used with a generic parameter type. end note]
Verifiability:

The static type of the source value on top of the stack shall be a managed pointer to some type srcType, and
srcType shall be a subtype of typeTok. The static type of the value remaining on the stack is typeTok.

Partition III

O 0N L AW

[
— O

—_——
w N

—_ = =
AN n b

—_—
[e RN

4.14

Idsfld — load static field of a class

Format

Assembly Format

Description

7B <I>

Idsfld field

Push the value of field on the stack.

Stack Transition:

Description:

value

The Idsfld instruction pushes the value of a static (shared among all instances of a class) field on the stack. field
is a metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. The

return type is that associated with field.

The Idsfld instruction can have a volatile. prefix.

Exceptions:

System.FieldAccessException is thrown if field is not accessible.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

Correctness:

Correct CIL ensures that field is a valid metadata token referring to a static field member.
Verifiability:
There are no additional verification requirements.

Partition III

119

0NN L AW

11
12
13
14
15

16

17
18

19
20
21

22
23

24

4.15 Idsflda — load static field address
Format Assembly Format Description
7F <I> Idsflda field Push the address of the static field, field, on the stack.

120

Stack Transition:
ey -> .., address

Description:

The ldsflda instruction pushes the address (a managed pointer, type &, if field refers to a type whose memory is
managed; otherwise an unmanaged pointer, type native int) of a static field on the stack. field is a
metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. (Note that
field can be a static global with assigned RVA, in which case its memory is unmanaged; where RVA stands for
Relative Virtual Address, the offset of the field from the base address at which its containing PE file is loaded
into memory)

Exceptions:

System.FieldAccessException is thrown if field is not accessible.
System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

Correctness:

Correct CIL ensures that field is a valid metadata token referring to a static field member if field refers to a type
whose memory is managed.

Verifiability:

For verifiable code, field cannot be init-only.

Remark:

Using ldsflda to compute the address of a static, init-only field and then using the resulting pointer to modify
that value outside the body of the class initializer can lead to unpredictable behavior.

Partition III

o NN L A W N

11
12
13
14
15
16

17

18
19

4.16

Idstr — load a literal string

Format Assembly Format Description

72 <> Idstr string Push a string object for the literal string.

Stack Transition:
vy -> .., string

Description:
The Idstr instruction pushes a new string object representing the literal stored in the metadata as string (which
is a string literal).

By default, the CLI guarantees that the result of two ldstr instructions referring to two metadata tokens that
have the same sequence of characters, return precisely the same string object (a process known as “string
interning”). This behavior can be controlled using the System.Runtime.CompilerServices.
CompilationRelaxationsAttribute andthe System.Runtime.CompilerServices.
CompilationRelaxations.NoStringInterning (see Partition IV).

Exceptions:

None.

Correctness:

Correct CIL requires that string is a valid string literal metadata token.

Verifiability:

There are no additional verification requirements.

Partition III

121

O eI e Y I VA \8)

[e S e]
wnm AW N = O

—_—
~N

4.17

Idtoken — load the runtime representation of a metadata token

Format Assembly Format | Description

DO <> Idtoken token Convert metadata foken to its runtime representation.

122

Stack Transition:
> .., RuntimeHandle
Description:
The Idtoken instruction pushes a RuntimeHandle for the specified metadata token. The token shall be one of:
A methoddef, methodref or methodspec: pushes a RuntimeMethodHandle
A typedef, typeref,or typespec :pushesa RuntimeTypeHandle
A fielddef or fieldref : pushes a RuntimeFieldHandle
The value pushed on the stack can be used in calls to reflection methods in the system class library
Exceptions:
None.
Correctness:
Correct CIL requires that foken describes a valid metadata token of the kinds listed above
Verifiability:

There are no additional verification requirements.

Partition III

I S T
AN WD —OOVOI L A W

—_—
[BN

[
S o

[\
—_

NN
W N

&)
=

NN
~N N W

4.18 Idvirtftn — load a virtual method pointer
Format Assembly Format | Description
FE 07 <T> ldvirtftn method Push address of virtual method method on the stack.

Stack Transition:
. object -> .., ftn

Description:

The Idvirtftn instruction pushes an unmanaged pointer (type native int) to the native code implementing
the virtual method associated with object and described by the method reference method (a metadata token, a
methoddef, methodref or methodspec; see Partition II) onto the stack. The CLI resolves the method
to be called according to the rules specified in 1.12.4.1.3 (Computed destinations). The value pushed can be
called using the calli instruction if it references a managed method (or a stub that transitions from managed to
unmanaged code).

The value returned points to native code using the calling convention specified by method. Thus a method
pointer can be passed to unmanaged native code (e.g., as a callback routine) if that routine expects the
corresponding calling convention. Note that the address computed by this instruction can be to a thunk
produced specially for this purpose (for example, to re-enter the CLI when a native version of the method isn’t
available)

Exceptions:
System.NullReferenceException is thrown if object is null.
System.MethodAccessException can be thrown when there is an invalid attempt to access a non-

public method.

Correctness:

Correct CIL ensures that method is a valid methoddef, methodref or methodspec token. Also that
method references a non-static method that is defined for object.

Verifiability:
Verification tracks the type of the value pushed in more detail than the native int type, remembering that

it is a method pointer. Such a method pointer can then be used in verified code with calli or to construct a
delegate.

Partition III

123

0NN L AW

11
12
13
14
15
16
17
18

19
20

21

4.19 mkrefany — push a typed reference on the stack

124

Format Assembly Format | Description

C6 <T> mkrefany class Push a typed reference to ptr of type class onto the stack.

Stack Transition:
.., ptr > .., typedRef

Description:

The mkrefany instruction supports the passing of dynamically typed references. p#r shall be a pointer (type &,
or native int) that holds the address of a piece of data. class is the class token (a typeref, typedef or
typespec; see Partition IT) describing the type of ptr. mkrefany pushes a typed reference on the stack, that
is an opaque descriptor of ptr and class. The only valid operation on a typed reference on the stack is to pass it
to a method that requires a typed reference as a parameter. The callee can then use the refanytype and
refanyval instructions to retrieve the type (class) and address (ptr) respectively.

Exceptions:

System. TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is
converted to native code rather than at runtime.

Correctness:

Correct CIL ensures that class is a valid typeref or typedef token describing some type and that ptris a
pointer to exactly that type.

Verifiability:
Verification additionally requires that ptr be a managed pointer. Verification will fail if it cannot deduce that
ptris a pointer to an instance of class.

Partition III

— O Vo0 3N L AW

—_— =
E>NNOS I)

N = = = e
S O 0 9 N W

NN
N —

4.20 newarr — create a zero-based, one-dimensional array
Format Assembly Format | Description
8D <> newarr etype Create a new array with elements of type etype.

Stack Transition:
.., nhumElems -> .., array

Description:

The newarr instruction pushes a reference to a new zero-based, one-dimensional array whose elements are of
type etype, a metadata token (a typeref, typedef or typespec; see Partition II). numElems (of type
native int or int32) specifies the number of elements in the array. Valid array indexes are 0 < index <
numElems. The elements of an array can be any type, including value types.

Zero-based, one-dimensional arrays of numbers are created using a metadata token referencing the appropriate
value type (System. Int32, etc.). Elements of the array are initialized to 0 of the appropriate type.

One-dimensional arrays that aren’t zero-based and multidimensional arrays are created using newobj rather
than newarr. More commonly, they are created using the methods of System.Array class in the Base
Framework.

Exceptions:

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.
System.OverflowException is thrown if numElems is < 0

Correctness:

Correct CIL ensures that etype is a valid typeref, typedef or typespec token.
Verifiability:

.numElems shall be of type native int or int32.

Partition III

125

O L A W

11
12
13

14
15

16
17

18
19
20
21

22
23

24
25

26
27
28
29
30
31
32
33
34
35

4.21 newobj — create a new object
Format Assembly Format | Description
73 <T> newobj ctor Allocate an uninitialized object or value type and call ctor.

126

Stack Transition:
.., argl, .. argN -> .., obj

Description:

The newobj instruction creates a new object or a new instance of a value type. cfor is a metadata token (a
methodref or methodef that shall be marked as a constructor; see Partition II) that indicates the name,
class, and signature of the constructor to call. If a constructor exactly matching the indicated name, class and
signature cannot be found, MissingMethodException is thrown.

The newobj instruction allocates a new instance of the class associated with ctor and initializes all the fields in
the new instance to 0 (of the proper type) or null as appropriate. It then calls the constructor with the given
arguments along with the newly created instance. After the constructor has been called, the now initialized
object reference is pushed on the stack.

From the constructor’s point of view, the uninitialized object is argument 0 and the other arguments passed to
newobj follow in order.

All zero-based, one-dimensional arrays are created using newarr, not newobj. On the other hand, all other
arrays (more than one dimension, or one-dimensional but not zero-based) are created using newobj.

Value types are not usually created using newobj. They are usually allocated either as arguments or local
variables, using newarr (for zero-based, one-dimensional arrays), or as fields of objects. Once allocated, they
are initialized using initobj. However, the newobj instruction can be used to create a new instance of a value
type on the stack, that can then be passed as an argument, stored in a local, etc.

Exceptions:

System.InvalidOperationException is thrown if cfor’s class is abstract.
System.MethodAccessException is thrown if cfor is inaccessible.
System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

System.MissingMethodException is thrown if a constructor method with the indicated name, class,
and signature could not be found. This is typically detected when CIL is converted to native code, rather than at
runtime.

Correctness:

Correct CIL ensures that cfor is a valid methodref or methoddef token, and that the arguments on the
stack are compatible with those expected by the constructor.

Verifiability:

Verification considers a delegate constructor as a special case, checking that the method pointer passed in as
the second argument, of type native int, does indeed refer to a method of the correct type.

Partition III

O o0 3 N b W

—_ —
— O

—_—
[SSIN)

4.22

refanytype — load the type out of a typed reference

Format

Assembly Format

Description

FE 1D

Refanytype

Push the type token stored in a typed reference.

Stack Transition:

.., TypedRef > .., type

Description:

Retrieves the type token embedded in TypedRef. See the mkrefany instruction.

Exceptions:

None.

Correctness:
Correct CIL ensures that TypedRefis a valid typed reference (created by a previous call to mkrefany).
Verifiability:

The refanytype instruction is always verifiable.

Partition III

127

— O O O N A W

—_ o —
[\S}

—_ = =
wm AW

—_ =
~N

4.23

refanyval — load the address out of a typed reference

Format

Assembly Format

Description

C2<T>

refanyval fpe

Push the address stored in a typed reference.

128

Stack Transition:

..., TypedRef -> .., address

Description:

Retrieves the address (of type &) embedded in TypedRef. The type of reference in TypedRef shall match the
type specified by #ype (a metadata token, either a t ypedef, typedef or typespec; see Partition II). See
the mkrefany instruction.

Exceptions:

System.InvalidCastException is thrown if fype is not identical to the type stored in the TypedRef (ie,
the class supplied to the mkrefany instruction that constructed that TypedRef)

System. TypeLoadException is thrown if fype cannot be found.

Correctness:

Correct CIL ensures that TypedRefis a valid typed reference (created by a previous call to mkrefany).

Verifiability:

The refanyval instruction is always verifiable.

Partition III

O 00 N L B~ W

—_
(=}

— ==
AW~

—_—
AN D

4.24

rethrow — rethrow the current exception

Format Assembly Format Description

FE 1A rethrow Rethrow the current exception.

Stack Transition:

Description:

The rethrow instruction is only permitted within the body of a catch handler (see Partition I). It throws the
same exception that was caught by this handler. A rethrow does not change the stack trace in the object.

Exceptions:
The original exception is thrown.
Correctness:

Correct CIL uses this instruction only within the body of a catch handler (not of any exception handlers
embedded within that catch handler). If a rethrow occurs elsewhere, an exception will be thrown, but
precisely which exception, is undefined

Verifiability:
There are no additional verification requirements.

Partition III

129

03 N L A~ W

11
12
13
14
15

16
17
18
19

20
21

4.25

sizeof — load the size, in bytes,of a type

Format Assembly Format | Description

FE 1C <T> sizeof typeTok Push the size, in bytes, of a type as an unsigned int32.

130

Stack Transition:
ey -> .., size (4 bytes, unsigned)
Description:
Returns the size, in bytes, of a type. #ypeTok can be a generic parameter, a reference type or a value type.

For a reference type, the size returned is the size of a reference value of the corresponding type, not the size of
the data stored in objects referred to by a reference value.

[Rationale: The definition of a value type can change between the time the CIL is generated and the time that it
is loaded for execution. Thus, the size of the type is not always known when the CIL is generated. The sizeof
instruction allows CIL code to determine the size at runtime without the need to call into the Framework class
library. The computation can occur entirely at runtime or at CIL-to-native-code compilation time. sizeof
returns the total size that would be occupied by each element in an array of this type — including any padding
the implementation chooses to add. Specifically, array elements lie sizeof bytes apart. end rationale]
Exceptions:

None.

Correctness:

typeTok shall be a typedef, typeref, or typespec metadata token.
Verifiability:

It is always verifiable.

Partition III

O 0N L b W

—_ e e e e
whn A W N = O

NN — = —m —
— O 0 03 O

4.26

stelem — store element to array

Format Assembly Format | Description

A4 <T> stelem typeTok Replace array element at index with the value on the stack

Stack Transition:
.., array, index, value, -> .

Description:

The stelem instruction replaces the value of the element with zero-based index index (of type native int
or int32) in the one-dimensional array array, with value. Arrays are objects and hence are represented by a
value of type O. The value has the type specified by the token #ypeTok in the instruction.

Exceptions:

System.NullReferenceException is thrown if array is null.
System.IndexOutOfRangeException is thrown if index is larger than the bound of array.
System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.
Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

array shall be null or a single dimensional array.

Verifiability:

The static type of array shall either be the special reference type Null or a proper zero-based, one-dimensional
array type elem|[], for some type elem. If the array type is Null, take elem to be the type represented by type

operand typeTok. The value index shall have type native int. The type of elem shall be a supertype of the
type operand typeTok. The type of value shall be assignment-compatible with #ypeTok.

Partition III

131

1

— OO 0N L AW

—_— —_ =
w N

—_ =
[V N

—_ =
N O

—_
o]

NN =
— O O

N
[\S}

[\ST (O \O I \S I 'S}
~N L kW

4.27

132

stelem.<type> — store an element of an array

Format Assembly Format | Description

9C stelem.i1 Replace array element at index with the int8 value on the stack.
9D stelem.i2 Replace array element at index with the int16 value on the stack.
9E stelem.i4 Replace array element at index with the int32 value on the stack.
oF stelem.i8 Replace array element at index with the int64 value on the stack.
AO stelem.r4 Replace array element at index with the float32 value on the stack.
A1 stelem.r8 Replace array element at index with the float64 value on the stack.
9B stelem.i Replace array element at index with the i value on the stack.

A2 stelem.ref Replace array element at index with the ref value on the stack.

Stack Transition:
.., array, index, value -> .y

Description:

The stelem instruction replaces the value of the element with zero-based index index (of type int32 or
native int) inthe one-dimensional array array with value. Arrays are objects and hence represented by a
value of type O.

Note that stelem.ref implicitly casts value to the element type of array before assigning the value to the array
element. This cast can fail, even for verified code. Thus the stelem.ref instruction can throw the
ArrayTypeMismatchException.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a
StoreElement method.
Exceptions:

System.NullReferenceException is thrown if array is null.
System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.
System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.

Correctness:

Correct CIL requires that array be a zero-based, one-dimensional array whose declared element type matches
exactly the type for this particular instruction suffix (e.g., stelem.r4 can only be applied to a zero-based, one
dimensional array of f1oat32s).

Verifiability:
The static type of array shall either be the special reference type Null or a proper zero-based, one-dimensional
array type elem[], for some type elem. Both the type of array and the type of value shall be consistent with the

instruction suffix. For the stelem.ref instruction, it is required only that the value and array element type are
both reference types.

Partition III

O 01 N b W

—_— = =
N o= O

—_—
W

Ju—
W

—_——
~

—_—
O o0

N
N = O

N DN
[T N N V)

NS T\
N

4.28 stfld — store into a field of an object

Format Assembly Format | Description

7D <T> stfld field Replace the value of field of the object obj with value.

Stack Transition:
.., obj, wvalue -> .y

Description:

The stfld instruction replaces the value of a field of an 0bj (an O) or via a pointer (type native int,or &)
with value. field is a metadata token (a fieldref or fielddef; see Partition II) that refers to a field
member reference. stfld pops the value and the object reference off the stack and updates the object.

The stfld instruction can have a prefix of either or both of unaligned. and volatile..
Exceptions:

System.FieldAccessException is thrown if field is not accessible.
System.NullReferenceException is thrown if obj is null and the field isn’t static.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

Correctness:

Correct CIL ensures that field is a valid token referring to a field, and that obj and value will always have types
appropriate for the assignment being performed, subject to implicit conversion as specified in §1.6.

Verifiability:
For verifiable code, obj shall not be an unmanaged pointer.

[Note: Using stfld to change the value of a static, init-only field outside the body of the class initializer can lead
to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not tested by
verification. end note]

It is not verifiable to access an overlapped object reference field.

A field is accessible only if every field that overlaps it is also accessible.

Partition III

133

01N LN B~ W

11
12

13
14

15
16

17

18

19
20
21
22
23
24

25

4.29 stobj — store a value at an address
Format Assembly Format Description
81 <> Stobj typeTok Store a value of type #ypeTok at an address.

134

Stack Transition:
.., dest, src -> vy

Description:

If ypeTok is a value type, the stobj instruction copies the value src to the address dest. If typeTok is not a
generic parameter and either a reference type or a built-in value class, then the stind instruction provides a
shorthand for the stobj instruction.

The operation of the stobj instruction can be altered by an immediately preceding volatile. or unaligned.
prefix instruction.

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.
System.TypeLoadException is thrown if fypeTok cannot be found. This is typically detected when CIL
is converted to native code rather than at runtime.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

[Note: Unlike the stind instruction a stobj instruction can be used with a generic parameter type. end note]
Verifiability:

Let the static type of the value on top of the stack be some type srcType. The value shall be initialized (when
srcType is a reference type). The static type of the destination address dest on the preceding stack slot shall be a
managed pointer (of type destType &) to some type destType. Finally, srcType shall be assignment-
compatible with typeTok, and typeTok shall be a subtype of destType. When typeTok is a non-reference type,

the definition of subtyping implies that srcType shall be assignment-compatible with destType (which, itself,
shall be equal to typeTok).

Partition III

O 0N L AW

[—
— O

—_——
w N

—_ = =
~N SN n A

DO =
S O 0

[\
—_

4.30

stsfld — store a static field of a class

Format Assembly Format Description

80 <T> stsfld field Replace the value of field with val.

Stack Transition:
.., val -> vy

Description:

The stsfld instruction replaces the value of a static field with a value from the stack. field is a metadata token (a
fieldref or fielddef; see Partition II) that shall refer to a static field member. stsfld pops the value off
the stack and updates the static field with that value.

The stsfld instruction can have a volatile. prefix.

Exceptions:

System.FieldAccessException is thrown if field is not accessible.
System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

Correctness:

Correct CIL ensures that field is a valid token referring to a static field, and that value will always have a type
appropriate for the assignment being performed, subject to implicit conversion as specified in §1.6.

Verifiability:
[Note: Using stsfld to change the value of a static, init-only field outside the body of the class initializer can

lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not
tested by verification. end note]

Partition III

135

O 0 NN L B W

_ = = = =
AW NN = O

—_—
AN D

4.31

throw — throw an exception

Format

Assembly Format

Description

7A

throw

Throw an exception.

136

Stack Transition:

.., object -> .y

Description:

The throw instruction throws the exception object (type O) on the stack and empties the stack. For details of the
exception mechanism, see Partition 1.

[Note: While the CLI permits any object to be thrown, the CLS describes a specific exception class that shall be

used for language interoperability. end note]

Exceptions:

System.NullReferenceException is thrown if 0bj is null.

Correctness:

Correct CIL ensures that object is always either null or an object reference (i.e., of type O) .

Verifiability:
There are no additional verification requirements.

Partition III

(e 2] RN AN B W N

11
12
13

14
15
16

17
18
19
20

21

22
23
24

25
26

27
28

29

30
31
32

33
34

35

4.32 unbox — convert boxed value type to its raw form
Format Assembly Format | Description
79 <> unbox valuetype Extract a value-type from oby, its boxed representation.

Stack Transition:
.y 0ODbJ > .., valueTypePtr

Description:

A value type has two separate representations (see Partition I) within the CLI:
. A ‘raw’ form used when a value type is embedded within another object.

. A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object, so it can exist
as an independent entity.

The unbox instruction converts 0bj (of type O), the boxed representation of a value type, to valueTypePtr (a
controlled-mutability managed pointer (§1.8.1.2.2), type &), its unboxed form. valuetype is a metadata token (a
typeref, typedef or typespec). The type of value type contained within obj must be assignment
compatible with valuetype. [Note: This effects the behavior with enum types, see Partition I1.14.3. end note]

Unlike box, which is required to make a copy of a value type for use in the object, unbox is not required to
copy the value type from the object. Typically it simply computes the address of the value type that is already
present inside of the boxed object.

[Note: Typically, unbox simply computes the address of the value type that is already present inside of the
boxed object. This approach is not possible when unboxing nullable value types. Because Nullable<7> values
are converted to boxed Ts during the box operation, an implementation often must manufacture a new
Nullable<7> on the heap and compute the address to the newly allocated object. end note]

Exceptions:

System.InvalidCastException isthrown if 0bj is not a boxed value type, valuetype is a Nullable<7>
and obyj is not a boxed 7, or if the type of the value contained in obj is not assignment compatible with
valuetype.

System.NullReferenceException is thrown if obj is null and valuetype is a non-nullable value type
(Partition 1.8.2.4).

System. TypeLoadException is thrown if the class cannot be found. (This is typically detected when CIL
is converted to native code rather than at runtime.)

Correctness:

Correct CIL ensures that valueType is a typeref, typedef or typespec metadata token for some boxable
value type, and that obj is always an object reference (i.e., of type O). If valuetype is the type Nullable<7>, the
boxed instance shall be of type T.

Verifiability:

There are no additional verification requirements.

Partition III

137

O 03I U B W

—_
(=}

—_— = =
w N =

[—
(O N

N DN = = = =
— O O 0 9

[NS N\
W N

NS \S]
(UL N

4.33 unbox.any — convert boxed type to value
Format Assembly Format | Description
A5 <> unbox.any typeTok | Extract a value-type from obj, its boxed representation

138

Stack Transition:
.., obj -> .., value or obj

Description:

When applied to the boxed form of a value type, the unbox.any instruction extracts the value contained within
obj (of type 0). (It is equivalent to unbox followed by Idobj.) When applied to a reference type, the
unbox.any instruction has the same effect as castclass typeTok.

If typeTok is a GenericParam, the runtime behavior is determined by the actual instantiation of that parameter.

Exceptions:

System.InvalidCastException isthrown if 0bj is not a boxed value type or a reference type, typeTok
is Nullable<7> and o0bj is not a boxed 7, or if the type of the value contained in obj is not assignment
compatible with typeTok.

System.NullReferenceException is thrown if 0bj is null and #ypeTok is a non-nullable value type
(Partition 1.8.2.4).

Correctness:

obj shall be of reference type and #ypeTok shall be a boxable type.

Verifiability:

The type operand typeTok shall not be a byref-like type. The type of the value left on the stack is fypeTok.
Rationale:

There are two reasons for having both unbox.any and unbox instructions:

1. Unlike the unbox instruction, for value types, unbox.any leaves a value, not an address of a
value, on the stack.

2. The type operand to unbox has a restriction: it can only represent value types and instantiations
of generic value types.

Partition III

w N

O 0 9 N n B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

5 Index

ArithmeticException

AITAY COVATIANCEeuvvinvreerieneeeeieereereeneeseeseenseenseens
binary formatcccoeeieiienienieee e 1
controlled-mutability managed pointer..................... 21
ELEMENT TYPE BYREF.....ccocoviiiiniiciniee. 5
ELEMENT TYPE PTRcccooviiiniiiinccincceeeee 5
ENAIANESS....eveeveeeeiie ettt 6
evaluation Stackc..ccceceeererininineienccee 11
exception_continue_Search...........ccoeevereeeveeeiennnnn. 67
exception_execute _handler............cccoeeveeeenienienenn. 67
Execution Engine..........ccooceeivieieniiceeeecceeee 1
ExecutionEngineException..........ccccecveveereneiennnneen 1,23
IMAGE_COR_ILMETHODcccccecccervviinnirienenen 17
instruction descriptioncceeevevveeieierrieseeeeeeens

assembly language notation

binary formatccocevivrrrnnen.
EXCEPLION LiSt.c.uviiiieiiieiieiiee ettt 1
operand type table..........coocevieieiinieienee 1
stack transition diagram.............ccceeververiieniennnennen. 1
VATTANES ©.eevieeieeieeeeeeeeieneeteete et esee e eeeeeeneeeaeeneeneeneens 1
VETIfIabIlity ..oocveevieiieiieiieiiee e 1
instruction formatceeeeeiivinieiieeeeeee e 16
INSEIUCLION PIrEfiX...eruririiiiiieiiiieeie e 24
conStrained.coeevevverereenienennens See constrained.
T1O. 1ottt ettt ettt et See no.
1eadonly. ..ocovevieeieieiee e See readonly.

See tail.

unaligned.cocceeeveeiieneeieeeeeen See unaligned.
VOLAtile. ..cveeieriiieeci e See volatile.
Instruction Variant Table..........ccccccovereinenenenienene. 6
integer
BoDYLC ittt 2
BBV e 3
NAIVE-SI1ZE ...ttt 3
SROTT . 2
UNSIZNEA. . ittt 3

Partition III

40
41
42
43
44
45
46
47
48
49

50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68

69
70
71
72
73
74
75

localsinit flagccoceeeveviveeieeece 19,77, 78, 81
MAXSEACK ..veviiiiiieicec e 17
metadata toKen.........ecoeeveiiiiciiiiic e 23
UL 1
OPCOAC. ..ttt ettt et 6

EXPErimentalccceevveeriieniieiieie e 6

Standard.........coevveviiinini e 6
OPETANA tYPE .eeveeeneieieeieeeeie et e 11
OutOfMemoryEXCeptionccuevvereeeeereeriesieeieeeenie. 1
POINLET ..eevieiieeiieeiie et eee ettt eeee e eseesaaeesaeense e 4

controlled-mutability managed........ See controlled-

mutability managed pointer

MANAZEA ... e ettt e 5

UNMANAZE.....eevieiieiieieeeiie ettt ereeae e e 4
PLOfILE oo 1
RuntimeArgumentHandle............c.ccccoeeveviieninnnnnen. 36
RuntimeFieldHandle...........cccoccoueciriniiinninincnnnn. 121
RuntimeHandle............ccoecveiiiinininiiiineicce 121
RuntimeMethodHandle............ccccooveniiivninnncnnnn. 121
RuntimeTypeHandle............cccocuveiiiiiiiieiieiieine 121
SecurityPermission.SkipVerification.................. 77,78

StaCK tranSitioN.........c..cevvveeeveeeiiieeeireeeree e eeneeens

StackOverflowException

StING INEEIMING ...t
System. ArgIteratorceevveeriieeeriiieriie et 36
SYStEMLATTAY ...eveeeiiiieiiee et iee e 106, 109
System.Math.IEEERemaindercc.coecvrvrrennne. 89
System.RuntimeArgumentHandle See
RuntimeArgumentHandle
ThUunK oo 74,122
type
B00lean.......ccooueiiiriici e
floating-point
TUINETIC vttt 2
POINLET ..t See pointer
TETETENCE ... 4
139

1 User String heap........ccoeeveerieeniieniieniieiieieeieeeeieens 23 2 verifiabilityccoooviiieeieiieeie e 1,17

140 Partition III

	Intro
	Table of Contents
	1 Introduction
	1.1 Data types
	1.1.1 Numeric data types
	1.1.2 Boolean data type
	1.1.3 Object references
	1.1.4 Runtime pointer types
	1.1.4.1 Unmanaged pointers
	1.1.4.2 Managed pointers (type &)

	1.2 Instruction variant table
	1.2.1 Opcode encodings

	1.3 Stack transition diagram
	1.4 English description
	1.5 Operand type table
	1.6 Implicit argument coercion
	1.7 Restrictions on CIL code sequences
	1.7.1 The instruction stream
	1.7.2 Valid branch targets
	1.7.3 Exception ranges
	1.7.4 Must provide maxstack
	1.7.5 Backward branch constraints
	1.7.6 Branch verification constraints

	1.8 Verifiability and correctnes
	1.8.1 Flow control restrictions for verifiable CIL
	1.8.1.1 Verification algorithm
	1.8.1.2 Verification type system
	1.8.1.2.1 Verification types
	1.8.1.2.2 Controlled-mutability managed pointers
	1.8.1.2.3 Verification type compatibility
	1.8.1.3 Merging stack states
	1.8.1.4 Class and object initialization rules
	1.8.1.5 Delegate constructors
	1.8.1.5.1 Delegating via virtual dispatch
	1.8.1.5.2 Delegating via instance dispatch

	1.9 Metadata tokens
	1.10 Exceptions thrown

	2 Prefixes to instructions
	2.1 constrained. – (prefix) invoke a member on a value of a variable type
	2.2 no. – (prefix) possibly skip a fault check
	2.3 readonly. (prefix) – following instruction returns a control led-mutability

managed pointer
	2.4 tail. (prefix) – call terminates current method
	2.5 unaligned. (prefix) – pointer instruction might be unaligned
	2.6 volatile. (prefix) – pointer reference is volatile

	3 Base instructions
	3.1 add – add numeric values
	3.2 add.ovf.<signed> – add integer values with overflow check
	3.3 and – bitwise A%D
	3.4 arglist – get argument list
	3.5 beq.<length> – branch on equal
	3.6 bge.<length> – branch on greater than or equal to
	3.7 bge.un.<length> – branch on greater than or equal to, unsigned or

unordered
	3.8 bgt.<length> – branch on greater than
	3.9 bgt.un.<length> – branch on greater than, unsigned or unordered
	3.10 ble.<length> – branch on less than or equal to
	3.11 ble.un.<length> – branch on less than or equal to, unsigned or unordered
	3.12 blt.<length> – branch on less than
	3.13 blt.un.<length> – branch on less than, unsigned or unordered
	3.14 bne.un<length> – branch on not equal or unordered
	3.15 br.<length> – unconditional branch
	3.16 break – breakpoint instruction
	3.17 brfalse.<length> – branch on false, null, or zero
	3.18 brtrue.<length> – branch on non-false or non-null
	3.19 call – call a method
	3.20 calli – indirect method call
	3.21 ceq – compare equal
	3.22 cgt – compare greater than
	3.23 cgt.un – compare greater than, unsigned or unordered
	3.24 ckfinite – check for a finite real number
	3.25 clt – compare less than
	3.26 clt.un – compare less than, unsigned or unordered
	3.27 conv.<to type> – data conversion
	3.28 conv.ovf.<to type> – data conversion with overflow detection
	3.29 conv.ovf.<to type>.un – unsigned data conversion with overflow detection
	3.30 cpblk – copy data from memory to memory
	3.31 div – divide values
	3.32 div.un – divide integer values, unsigned
	3.33 dup – duplicate the top value of the stack
	3.34 endfilter – end exception handling filter clause
	3.35 endfinally – end the finally or fault clause of an exception block
	3.36 initblk – initialize a block of memory to a value
	3.37 jmp – jump to method
	3.38 ldarg.<length> – load argument onto the stack
	3.39 ldarga.<length> – load an argument address
	3.40 ldc.<type> – load numeric constant
	3.41 ldftn – load method pointer
	3.42 ldind.<type> – load value indirect onto the stack
	3.43 ldloc – load local variable onto the stack
	3.44 ldloca.<length> – load local variable address
	3.45 ldnull – load a null pointer
	3.46 leave.<length> – exit a protected region of code
	3.47 localloc – allocate space in the local dynamic memory pool
	3.48 mul – multiply values
	3.49 mul.ovf.<type> – multiply integer values with overflow check
	3.50 neg – negate
	3.51 nop – no operation
	3.52 not – bitwise complement
	3.53 or – bitwise OR
	3.54 pop – remove the top element of the stack
	3.55 rem – compute remainder
	3.56 rem.un – compute integer remainder, unsigned
	3.57 ret – return from method
	3.58 shl – shift integer left
	3.59 shr – shift integer right
	3.60 shr.un – shift integer right, unsigned
	3.61 starg.<length> – store a value in an argument slot
	3.62 stind.<type> – store value indirect from stack
	3.63 stloc – pop value from stack to local variable
	3.64 sub – subtract numeric values
	3.65 sub.ovf.<type> – subtract integer values, checking for overflow
	3.66 switch – table switch based on value
	3.67 xor – bitwise XOR

	4 Object model instructions
	4.1 box – convert a boxable value to its boxed form
	4.2 callvirt – call a method associated, at runtime, with an object
	4.3 castclass – cast an object to a class
	4.4 cpobj – copy a value from one address to another
	4.5 initobj – initialize the value at an address
	4.6 isinst – test if an object is an instance of a class or interface
	4.7 ldelem – load element from array
	4.8 ldelem.<type> – load an element of an array
	4.9 ldelema – load address of an element of an array
	4.10 ldfld – load field of an object
	4.11 ldflda – load field address
	4.12 ldlen – load the length of an array
	4.13 ldobj – copy a value from an address to the stack
	4.14 ldsfld – load static field of a class
	4.15 ldsflda – load static field address
	4.16 ldstr – load a literal string
	4.17 ldtoken – load the runtime representation of a metadata token
	4.18 ldvirtftn – load a virtual method pointer
	4.19 mkrefany – push a typed reference on the stack
	4.20 newarr – create a zero-based, one-dimensional array
	4.21 newobj – create a new object
	4.22 refanytype – load the type out of a typed reference
	4.23 refanyval – load the address out of a typed reference
	4.24 rethrow – rethrow the current exception
	4.25 sizeof – load the size, in bytes,of a type
	4.26 stelem – store element to array
	4.27 stelem.<type> – store an element of an array
	4.28 stfld – store into a field of an object
	4.29 stobj – store a value at an address
	4.30 stsfld – store a static field of a class
	4.31 throw – throw an exception
	4.32 unbox – convert boxed value type to its raw form
	4.33 unbox.any – convert boxed type to value

	5 Index
	EOF

