
How to write a Viewlet

Whitepaper

In this paper we introduce the core notion of Viewlet and we discuss

how to implement Viewlets for VSLab.

Author: Antonio Cisternino (cisterni@di.unipi.it), University of Pisa
Version: 1.0
Last update: 6/28/2008 8:40:00 PM

How to write a Viewlet 2

Introduction
In this *let epoch we couldn’t resist the temptation of calling the core elements of VSLab Viewlet. A Viewlet

is simply a Visual Studio toolwindow whose component is defined inside F# interactive. Although it may

seem a little difference from standard toolwindows it is a big one: the state of the Viewlet resides in the

fsi.exe process rather than in devenv.exe allowing quick access to the whole environment of F# interactive.

Thus we can easily exchange data (including functions, since F# is a functional programming language)

between scripts and viewlets, with the addition of a natural integration with the Visual Studio windowing

system.

Viewlets can be written in any .NET language as long as the assembly is made available to F# interactive

using the #r directive. You can also write viewlets on the fly by evaluate their definition and instantiate

them interactively as shown in the Visual tutorial.

Note. In this How To we assume you are familiar with F# and Windows Forms, there are several resources

available to learn F#, including “Expert F#” a book I co-authored from APress. F# is a wonderful language

and Somasegar has announced in November 2007 that it will be a first programming language from

Microsoft, thus it is a good investment if you learn it.

Anatomy of a Viewlet
We have worked really hard to make Viewlets as transparent as possible so that you can leverage on your

existing Windows Forms code and knowledge. A Viewlet is defined by a class that inherits from Viewlet and

it is a Windows Form user control with the additional constraint that you cannot have children controls.

Writing Viewlets is a good exercise of graphical controls writing.

Note. If you are interested in the implementation details have a look to the whitepaper dedicated to VSLab

implementation.

In this tutorial we discuss the implementation of VSMon a viewlet designed for monitoring Visual Studio

and F# CPU usage and F# interactive memory load.

How to write a Viewlet 3

Structure of the Viewlet
The basic structure of the viewlet is the following:

#light

open VSLabFSICore

open VSLabViewlets

type VSMon() as x =

 inherit Viewlet() as base

 override x.OnPaint(e) = (* … *)

As you can see we are defining a class that inherits from Viewlet and usually overrides the OnPaint method

which performs the drawing required by our Viewlet. Since we are interested in showing CPU and memory

consumption we used the System.Diagnostics.Process class abilities to retrieve this information:

 let mutable lastRead = DateTime.Now

 let mutable vscput = new TimeSpan()

 let mutable fsicput = new TimeSpan()

 let mutable vsCPU = 0

 let mutable fsCPU = 0

 let mutable wsSz = 0f

 let mutable msSz = 0f

 let t = new Timer()

 let CPUTime () =

 let vp = Process.GetProcessById(Viewlets.VSPID)

 let fp = Process.GetCurrentProcess()

 let now = DateTime.Now

 vsCPU <- Math.Min(int (100.0 * (vp.TotalProcessorTime -

vscput).TotalMilliseconds / (now - lastRead).TotalMilliseconds), 100)

 fsCPU <- Math.Min(int (100.0 * (fp.TotalProcessorTime -

fsicput).TotalMilliseconds / (now - lastRead).TotalMilliseconds), 100)

 lastRead <- now

 vscput <- vp.TotalProcessorTime

 fsicput <- fp.TotalProcessorTime

 msSz <- float32(fp.PrivateMemorySize64) / (1024f*1024f)

 wsSz <- float32(fp.WorkingSet64) / (1024f*1024f)

A call to CPUTime updates the values and we can update the displayed data. The data is updated by a timer

that is declared in the constructor, and we also set some property of the control:

 let mutable showMemory = true

 let Title = "VSLab perf mon"

 let t = new Timer()

 do

 x.BackColor <- Color.Navy

 x.Font <- new Font("Verdana", 6f)

 x.Name <- Title

 for v in Viewlets.Items do

 if v.Name = Title then

 failwith "Only one instance of Perf mon is allowed!"

 t.Interval <- 500

 t.Tick.Add(fun _ -> CPUTime(); x.Invalidate())

How to write a Viewlet 4

The showMemory flag will be used to decide whether memory information should be displayed or not. The

timer is set to an interval of 500 milliseconds and it simply update counters and invalidates the control.

Note that we do not start the timer since it will be started only when the viewlet becomes visible.

Note. Visual Studio and F# interactive are powerful tools, but it is important to use resource wisely, if you

use timers for visualzation remember to stop and start them upon visibility change of the viewlet.

The OnViewletVisibilityChanged event informs the viewlet about its visibility state, we rely on this

notification in order to start and stop the update timer:

 override x.OnViewletVisibilityChange v =

 if v then t.Start()

 else t.Stop()

Viewlets inherit the ShowProperty method which displays a dialog with a property grid to configure the

running viewlet.

You can control properties displayed by the grid by overriding the BrowsableCategories property:

 override x.BrowsableCategories () = [| "Perfmon Style" |]

Then you simply annotate using custom attributes the properties you want to expose, in our example the

background and whether the memory usage should be displayed or not:

 [<Category("Perfmon Style")>]

 member x.Background

 with get() = x.BackColor

 and set c = x.BackColor <- c

 [<Category("Perfmon Style")>]

 member x.ShowMemory

 with get() = showMemory

How to write a Viewlet 5

 and set m = showMemory <- m; x.Invalidate()

The OnPaint method simply draws two bars for CPU load and display strings for memory consumption. It is

a standard paint method of a WinForms user control:

 override x.OnPaint(e) =

 let g = e.Graphics

 let drawBar title v (p:PointF) =

 let r = new RectangleF(float32 p.X, float32 p.Y, 100.0f, 10.0f)

 use b = new LinearGradientBrush(new Point(int p.X, int (p.Y + (r.Height /

2.0f))), new Point(int (p.X + r.Width), int (p.Y + (r.Height / 2.0f))),

Color.Green, Color.Red)

 g.FillRectangle(Brushes.LightBlue, r)

 g.FillRectangle(b, r.Left, r.Top, ((float32 v)/100f) * r.Width, r.Height)

 g.DrawRectangle(Pens.Blue, r.Left, r.Top, r.Width, r.Height)

 g.DrawString(title, x.Font, Brushes.White, r)

 drawBar ("VS: "+vsCPU.ToString()+"%") vsCPU (new PointF(10.0f, 5.0f))

 drawBar ("FS: "+fsCPU.ToString()+"%") fsCPU (new PointF(10.0f, 17.0f))

 if showMemory then

 g.DrawString(string.Format("F# ws: {0:f3}Mb", wsSz), x.Font,

Brushes.White, new RectangleF(115f, 5f, 100f, 10f))

 g.DrawString(string.Format("F# mem: {0:f3}Mb", msSz), x.Font,

Brushes.White, new RectangleF(115f, 17f, 100f, 10f))

Resources allocated by a Viewlet must be disposed when it gets closed using the Close method (or upon

Visual Studio termination). You can simply implement the IDisposable interface:

 interface IDisposable with

 member x.Dispose () = t.Stop()

Conclusions
Writing Viewlets it is essentially equivalent to developing WinForms controls, though the actual

implementation is quite complex. In particular you must not rely on timings typical of Windows Forms since

the viewlet performs drawings and receives events from a peer control running inside Visual Studio. You

cannot also rely on all the events of a standard control, check the Messages enumeration to see what

events are routed to the Viewlet. A lightweight control library is being developed in order to support child

controls in Viewlets.

Appendix: the full source code of VSMon Viewlet
#light

open System

open System.ComponentModel

open System.Drawing

open System.Drawing.Drawing2D

open System.Windows.Forms

open System.Diagnostics

open VSLabFSICore

open VSLabViewlets

type VSMon() as x =

 inherit Viewlet() as base

How to write a Viewlet 6

 let mutable lastRead = DateTime.Now

 let mutable vscput = new TimeSpan()

 let mutable fsicput = new TimeSpan()

 let mutable vsCPU = 0

 let mutable fsCPU = 0

 let mutable wsSz = 0f

 let mutable msSz = 0f

 let mutable showMemory = true

 let Title = "VSLab perf mon"

 let t = new Timer()

 let CPUTime () =

 let vp = Process.GetProcessById(Viewlets.VSPID)

 let fp = Process.GetCurrentProcess()

 let now = DateTime.Now

 vsCPU <- Math.Min(int (100.0 * (vp.TotalProcessorTime -

vscput).TotalMilliseconds / (now - lastRead).TotalMilliseconds), 100)

 fsCPU <- Math.Min(int (100.0 * (fp.TotalProcessorTime -

fsicput).TotalMilliseconds / (now - lastRead).TotalMilliseconds), 100)

 lastRead <- now

 vscput <- vp.TotalProcessorTime

 fsicput <- fp.TotalProcessorTime

 msSz <- float32(fp.PrivateMemorySize64) / (1024f*1024f)

 wsSz <- float32(fp.WorkingSet64) / (1024f*1024f)

 do

 x.BackColor <- Color.Navy

 x.Font <- new Font("Verdana", 6f)

 x.Name <- Title

 for v in Viewlets.Items do

 if v.Name = Title then failwith "Only one instance of Perf mon is

allowed!"

 t.Interval <- 500

 t.Tick.Add(fun _ -> CPUTime(); x.Invalidate())

 [<Category("Perfmon Style")>]

 member x.Background

 with get() = x.BackColor

 and set c = x.BackColor <- c

 [<Category("Perfmon Style")>]

 member x.ShowMemory

 with get() = showMemory

 and set m = showMemory <- m; x.Invalidate()

 override x.OnPaint(e) =

 let g = e.Graphics

 let drawBar title v (p:PointF) =

 let r = new RectangleF(float32 p.X, float32 p.Y, 100.0f, 10.0f)

 use b = new LinearGradientBrush(new Point(int p.X, int (p.Y + (r.Height /

2.0f))), new Point(int (p.X + r.Width), int (p.Y + (r.Height / 2.0f))),

Color.Green, Color.Red)

 g.FillRectangle(Brushes.LightBlue, r)

 g.FillRectangle(b, r.Left, r.Top, ((float32 v)/100f) * r.Width, r.Height)

 g.DrawRectangle(Pens.Blue, r.Left, r.Top, r.Width, r.Height)

 g.DrawString(title, x.Font, Brushes.White, r)

 drawBar ("VS: "+vsCPU.ToString()+"%") vsCPU (new PointF(10.0f, 5.0f))

 drawBar ("FS: "+fsCPU.ToString()+"%") fsCPU (new PointF(10.0f, 17.0f))

How to write a Viewlet 7

 if showMemory then

 g.DrawString(string.Format("F# ws: {0:f3}Mb", wsSz), x.Font,

Brushes.White, new RectangleF(115f, 5f, 100f, 10f))

 g.DrawString(string.Format("F# mem: {0:f3}Mb", msSz), x.Font,

Brushes.White, new RectangleF(115f, 17f, 100f, 10f))

 override x.OnViewletVisibilityChange v =

 if v then t.Start()

 else t.Stop()

 override x.BrowsableCategories () = [| "Perfmon Style" |]

 interface IDisposable with

 member x.Dispose () = t.Stop()

