
VSLab Visual Tutorial

Whitepaper

In this paper show how to use VSLab using screenshot. It is the

quickest way to make VSLab do something interesting.

Author: Antonio Cisternino (cisterni@di.unipi.it), University of Pisa
Version: 1.1
Last update: 7/16/2008 12:25:00 PM

VSLab Visual Tutorial 2

Introduction
The easiest way to look at VSLab is a powerful version of F# interactive that allows opening Visual studio

toolwindows and interactively drawing inside them. VSLab provides several facilities to create and manage

Viewlets, Visual studio toolwindow that are interactively updated by F# functions. I think that the

implementation is worth to study because fsi.exe run in a separate process and it isn't trivial at all to

convince VS to accept efficient drawing from an external process. In fact VSLab has been developed to be

an example of DTE use, the Visual Studio extensibility, and F# was the natural candidate for exploiting this

power because of its interactive abilities. More technical documents will follow, for the moment let me

introduce VSLab in the quickest way (assuming that you know a little bit of F#).

Installation
The current release of VSLab is codenamed R. Daneel and it is considered version 1.2.1. Installing VSLab is

easy and can be done free of charge. Installation requires:

- Visual Studio Shell integrated mode (or Visual Studio 2008)

- Managed Direct-X (only if you want to run the 3D function viewer viewlet)

- F# (and VS integration)

The installer checks for prerequisites and then you simply next enough times to get VSLab installed (if you

are interested in the options about vslabfsc and installed packages read the next section). When you start

Visual Studio you create a VSLab project (or an F# project) and you simply load the VSLab add-in by opening

Tools -> Add-in Manager and select VSLab. During the first load the add-in registers a number of Visual

Studio commands that let you start VSLab by simply hitting Alt+Enter to evaluate a selected code fragment.

VSLab Visual Tutorial 3

When VSLab addin is selected the VSLab version of F# interactive starts and the VSLab toolbar appears on

the Visual Studio window. Clicking on the configuration button (the latest one) you get the VSLab

configuration dialog that at the moment contains only the package configuration.

Using this dialog it is possible to load packages interactively (it is just a shortcut to #r directive). We suggest

to mark the basic packages as loaded at startup and then click save. You can now either restart Visual

Studio or re-open the configuration dialog and manually load the packages and you are ready to play with

VSLab!

Installation options: a quick overview
During installation you can choose if override fsc.exe or not with a wrapper for the F# compiler; this

wrapper is meant to ensure that .vslab files aren’t compiled in a VSLab project. It is a hack because VSLab

project files are in fact based on the F# project library which is not under our control.

Another option is to decide which packages to install among those available. In the current version there

are three packages:

- VSLabChartPackage: containing the graph viewlet, a plotter of values annotated with time

- VSLabChart3DPackage: containing the Function3DViewlet the plotter of 3D functions

- VSLabShellPackage: containing the PerfMonViewlet to monitor VS CPU and memory loads.

These packages are almost empty but they represent the beginning of the standard package distribution of

VSLab; it is recommended to install all of them.

VSLab Visual Tutorial 4

Getting started: a new VSLab project
We have defined a new F# project type called VSLab, it is an F# project and it is simply used to introduce
.vslab files which are files that are added to the project but not compiled with the fsc compiler is invoked.

The rationale for this is that .vslab files act as a sort of whiteboard where you can experiment with code
snippets without committing to use them in the final program. Recall that the overall goal of the project
that is to have MatLab-like interaction in Visual Studio, therefore VSLab has been designed with
experimentation in mind. However, we also support code consolidation that this a simple form of extrusion
to move snippets into .fs files to be compiled.

Viewlets
When you add a new file to your VSLab project you will notice a new category that allows you to choose

among VSLab templates, a sort of code snippets to quickly insert viewlets in your project. Currently there

are four templates:

- Viewer 3D: a modified version of the wonderful DX example developed by Don Syme

- Graph sampler: a highly configurable graph control that plots data annotated with timestamp

- Performance monitor: a sample written for a Whitepaper that shows CPU and memory load of VS

and F# interactive

- Tutorial: a set of useful VSLab code fragments showing features of the system

VSLab Visual Tutorial 5

I would suggest you to start from the 3D viewer, with VSLab interactive loaded select the code from the

beginning of the file until the line viewer1.Show() and evaluate it using Alt+Enter. Now add a Graph

sampler item to your project and evaluate until the invocation of the Show method.

VSLab Visual Tutorial 6

If you evaluate the ShowProperty() line you get the property grid associated with the viewlet and you can

dynamically configure your viewlet while it is running!

Viewlets can be instantiated multiple times, let's add another 3D viewer:

VSLab Visual Tutorial 7

When you click x on a toolwindow it gets hidden, and you can restore hidden viewlets using the VSLab

toolbar:

Using the same toolbar you can also show and hide the F# interactive toolwindow.

You can even dynamically define viewlets without any need for compilation:

VSLab Visual Tutorial 8

Editor

After experimentation you will feel the need for consolidation of code fragments. If you select text and use

right click you get the opportunity of sending code fragments to .fs files in the project that can be used to

compile the final application. VSLab files remain as a memory of the process that has generated the final

code.

Things you must know

VSLab does several hacks to make F# interactive interoperate with Visual Studio (for robustness they ran in

different processes). Many of the hacks are restricted to VSLab and does not affect your installation with

few exceptions:

- fsc.exe has been wrapped to ignore .vslab files when compiling from Visual Studio. The wrapper

invokes fsc.exe after pre-processing the command line. If you run fsc.exe you get the instructions to

disable this behavior (though I didn't find any issue so far). You can now decide wether to wrap or

not fsc.exe during installation.

- Alt+Enter key binding starts VSLab addin running F# interactive instead of the original addin that

ships with F#. It uses exactly the same objects thus it is not a problem.

When fsi.exe crashes or you quit getting a fresh instance you can use a button on the toolbar to invoke the

startup code that setup the VSLab environment.

Trust the installer; it has been carefully developed and removes all the additions made during uninstall.

Acknowledgments
I wish to thank all the people that have contributed to this project: my students Davide Morelli and Sara

Berardelli in the first place that have made possible the core mechanisms and the 3D viewlet respectively.

Cristina Nardini and Emanuele Arpini from Microsoft that supported the idea, and Don Syme that

developed such a beautiful piece of code (F #and the 3D viewer), and supported me during VSLab

development. I also thank all other people that are not mentioned here but that have contributed in many

ways.

