
VSLab and MatLab 

Whitepaper 

 

 

 

 

 

 

In this paper we briefly discuss in what sense VSLab can be compared 

to MatLab and similar environments, and what are the main 

differences with those environments. 

 
 
 
 
Author: Antonio Cisternino (cisterni@di.unipi.it), University of Pisa 
Version: 1.0 
Last update: 6/28/2008 7:11:00 PM 



VSLab and MatLab 2 

 

Introduction 
When people take a look to VSLab one of the first comments you get is “this is a sort of MatLab”, and it is 

true, but only in a sense. In this document we explore the relations between VSLab and systems like 

Mathematica or MatLab to clarify the possible role that VSLab may play in the scenario of scientific 

computing and laboratory oriented analysis. 

First of all it must be defined what VSLab is and the design principles that have driven its development with 

respect this potential use that of course was in the mind of the designers. VSLab is a complement to F# 

which is the true magic thing, in particular because of F# interactive that offers the opportunity of 

evaluating code fragments interactively. The primary purpose of VSLab is to provide the core mechanism 

for F# interactive to deliver graphics integrated with Visual Studio (and possibly also other features 

provided by DTE COM infrastructure), allowing toolwindow sharing the state inside a CLR based 

environment without having to communicate through COM wrappers. 

It is not a goal of VSLab to provide a comprehensive set of viewlets and libraries for doing math and data-

visualization; it is rather a platform that can be used to implement effectively domain specific languages 

inside Visual Studio. 

MatLab, Mathematica, and neighbors 
In scientific environments where data read by a plethora of sensors must be analyzed interactively by 

programs that require interactive evaluation, a number of environments have emerged to support 

engineers and scientists in their needs. The anatomy of these environments is essentially the same: a 

graphical environment featuring a scripting language for manipulating the primitives of the environment 

interactively and relatively at high level. This is the architecture of many environments also in other 

systems (think for instance of Microsoft Office and several other environments), but in the scientific 

environment the needs are mainly typing oriented for input and visualization driven by script statements. 

Performance, particularly important for data processing, is ensured by highly efficient code developed 

mostly in C/C++ that is made accessible to the scripting environment so that most of the work is done by 

compiled code coordinated by the scripting environment. 

Once people get used to a tool tend to use it in every occasion, and this has been done with MatLab-like 

environments, used to code general purpose programs, going beyond the original goals of the tool. In 

particular the functional nature of these scripting languages, more intuitive for people used to 

mathematics, has always been considered an important aspect with respect to programming languages 

used in the general purpose programming environments. The dimension of scripts, therefore, has grown 

significantly and the overhead of interpretation has become significant, but no-matter how many 

optimizations you can do the original design of these system has become their limit. 

Moreover at the end of the interaction process the user of the system is potentially interested in baking the 

program and reusing it in a non-interactive fashion. If in origin this baking process was mostly a C rewriting 

of the program in order to redistribute it, recently the dependency from sophisticated algorithms contained 

in the runtime of these system has made this approach prohibitively expensive and users of these systems 

have started to ask the system to those interested in their programs and solutions. Many companies, 

including hardware-makers have accepted this choice as a fact of life and sell product supporting these 

runtimes. Although in several scenarios this is a reasonable choice because of the added value provided by 



VSLab and MatLab 3 

 

the algorithms shipping with these systems, it often happens that people write simple programs in these 

environments and pretend to ship them assuming the complicated runtime without any real reason. 

VSLab and MatLab* 
VSLab has been designed with the idea of supporting the development lifecycle of applications like MatLab, 

where you have room for annotating ideas and write code fragments which can be tested interactively. 

Viewlets allow writing data-visualization components providing graphical views of input data, and fill the 

otherwise significant lack of data manipulation. F# is a functional language, and although it is statically 

typed, the type inference featured by the language is powerful enough in many cases not requiring 

mastering the complexity of type annotations for non-programmers. 

In VSLab you can: 

- Open a .vslab file to write your code fragments 

- Evaluate code interactively thanks to F# interactive 

- Project data into viewlets and experiment interactively 

- Consolidate program fragments into .fs files that can be used for compiling the final result into a 

standalone application 

Thus VSLab provides the infrastructure typical of tools like MatLab but there is no support for algorithms, 

and we have no plan to do it, there are plenty of mathematical libraries available and that can be easily 

used from F#. Moreover Viewlets development is easy enough to write your own visualization systems or 

use those provided by third parties. It can be expected better support for Viewlets in future releases of 

VSLab, however. 

We could have written VSLab using one the various dynamic languages available in the .NET space (for 

instance IronPython), but the unique mix of features that F# provides has been irresistible for us, since we 

can provide the same interactivity of dynamic languages, but at the same time the program can be 

consolidated into a fully compiled application. This is witnessed by the fact that VSLab too has been 

developed in F# though it has required a significant amount of interop code with system-level technologies 

such as Windowing and COM (see the whitepaper about VSLab internals). 

It not just MatLab 
Although shaped with the MatLab-like development process, VSLab is not just a Mat* application targeting 

only scientists and engineers. I’m starting using VSLab as a system shell or a network monitor, and in many 

other contexts, because the very large spectrum of class libraries available for the .NET framework. 

A nice example is described in the whitepaper about developing a viewlet, in which we show how define a 

viewlet to monitor CPU and memory load of a VS and F# interactive session. 

We have already spotted a number of interesting areas in which VSLab can be used to build interactive 

systems: natural language research; system shell and resource management; distributed computing just to 

mention few. 



VSLab and MatLab 4 

 

Conclusions 
VSLab provides the suitable infrastructure for supporting MatLab-like systems, though it is just a shell and 

you need also the algorithms in order to obtain a similar system. We expect, nevertheless, that using these 

core mechanisms people will develop environment tailored for various application as it has happened for 

packages developed on top of these systems. 

The ability to compile the consolidated program into .NET executables ensures performance and no 

limitation due to a specific runtime and the guarantee to run these programs everywhere without need 

even for VSLab installed. 

 


