
VSLab implementation

Whitepaper

In this paper we discuss the basic structure of VSLab and the core

mechanisms used to allow fsi.exe to draw inside Visual Studio

toolwindows. The content of the paper assumes general knowledge

about Win32, the windows GUI messages and COM interop.

Author: Antonio Cisternino (cisterni@di.unipi.it), University of Pisa
Version: 1.0
Last update: 6/27/2008 2:14:00 AM

VSLab Implementation 2

Introduction
VSLab leverages on F# interactive and Microsoft Visual Studio extensibility to provide an interactive

programming environment providing an interface similar to MatLab, but at the same time it targets a

compiled programming architecture. There are many different views of this project, though the most

challenging aspect was to allow F# interactive, the top level of the F# programming language, to interact

with Visual Studio toolwindows while executing in a different process. At first sight it may seem just a

technical exercise, but it is more than just that, since developing an interactive environment capable of

efficient WinForms and DirectX graphics inside Visual Studio combined with the isolation provided by

operating system processes contributes to offer a robust interactive system in which code is safely held by

the editor and executed outside of it (no crashes of the execution system may corrupt the source code).

In the future we hope Visual Studio will provide core mechanisms to support this kind of interaction, but at

the present we had to resort to many COM and Win32 features to workaround limitations of the Visual

Studio extensibility model. This document discusses how the core mechanism of viewlets has been

implemented and how we provide a WinForms interface that is similar to standard UserControls while

providing cross-process drawing.

This paper is organized as follows: we first introduce the final interface; after this we briefly describe the

COM-based VS extensibility model and the cross-process WinForms drawing; we finally discuss the overall

architecture of the system. During the discussion we will try to motivate our design choices and why we

have reached the final designed that seems the only possible so far.

A simple viewlet
Most of the magic provided by VSLab can be observed by looking at the following screenshot:

VSLab Implementation 3

Although it may seem a deceptively simple interaction there are many things that are going on under the

hood to provide this apparently well integrated interface. The following F# code has been highlighted in the

editor window:

// how to write a simple viewlet..

type simpleViewlet() as x =

 inherit Viewlet() as base

 override x.OnPaint(e) =

 e.Graphics.DrawRectangle(Pens.Red, new Rectangle(10,10,50,50))

let simple = new simpleViewlet()

simple.Show()

An F# programmer can easily read the definition of a class inheriting from the Viewlet base class and the

overriding of the OnPaint event handler typical of Windows Forms graphics programming. We can safely

assume that the Viewlet class inherits from Control and that you can use the Graphics object to draw a red

rectangle in the window. The next statement creates an instance of this new class and invokes the Show

method which presumably shows the Visual Studio toolwindow that is visible in figure.

If you try this code snippet you will find that this is a true Visual Studio toolwindow which can be docked as

any other. It may seem a little advantage from writing a standard Windows Form inside F# interactive but

Visual Studio toolwindows use effectively the display by allowing a very flexible model of docking in which it

possible to combine multiple windows into graphical control panels.

Now let’s go even further and without restarting the F# interactive session let’s change our viewlet

definition and create another one:

// how to write a simple viewlet..

type simpleViewlet() as x =

 inherit Viewlet() as base

 let mutable draw = fun (g:Graphics) -> g.DrawRectangle(Pens.Red, new

Rectangle(10,10,50,50))

 member x.Draw

 with get () = draw

 and set (d) = draw <- d

 override x.OnPaint(e) =

 draw e.Graphics

let simple = new simpleViewlet()

simple.Show()

simple.Draw <- fun g -> g.DrawEllipse(Pens.Red, new Rectangle(10,10,50,50))

In this case we can evaluate interactively the code until the invocation of Show, and obtain a similar

toolwindow. But now we can even redefine the drawing function without having to define a new class, and

if we evaluate the assignment to the Draw property and refresh the toolwindow a red circle will magically

appear. We have redefined the simpleViewlet type and two different toolwindows coexist together, and

one of them with a parametric paint! The first time I saw it running I was amazed and impressed even if I

was expecting it!

Now that we have introduced the example let’s think about the interactions that take place under the hood

to really appreciate the complexity that is hidden behind this natural way of coding. The state of the

application, and therefore the state of the two instances of the two different definitions of simpleViewlet

VSLab Implementation 4

are running inside F# interactive. If the task managed is started, an fsi.exe process would be listed among

the processes, it is the process hosting the F# interactive session which interacts with the Visual Studio

toolwindow using a communication based on inter-process streams like pipes. Streams are enough to

transfer text and let output to be shown by the Visual Studio F# interactive toolwindow, but it is difficult to

stream graphics primitive in an efficient way! Many F# interactive examples before VSLab were showing

graphics based on Windows Forms simply by opening standalone forms, perhaps setting the AlwaysOnTop

property to ensure its visibility on top of the Visual Studio window. This behavior was restricted to the F#

interactive process, thus no communication with Visual Studio was necessary.

Let us assume that it is possible to cross the process barrier and communicate with Visual Studio to create

the toolwindow (as VSLab does), who is responsible for drawing in the toolwindow? The traditional

programming model would assume that Visual Studio would be in charge for drawing, but in the last

example we have shown that it is even possible to redefine the paint function of a viewlet. How is it

possible to marshal a function to Visual studio in an efficient way? How can we change the state of an

object in F# interactive and pretend that the drawing is updated correctly?

The only possible answer is: it must be the F# interactive process that draws in the toolwindow. Since you

are running VSLab you know it can be done, and it is an old Win32 magic that makes it possible: if you are

able to obtain the handle of a window you can obtain a device context for drawing in it, even if this window

does not belong to the process that performs the drawing. Now that I read it while I’m writing it looks so

natural and obvious, it wasn’t when we started the project and it took us more than a month to spot the

actual solution.

Once we’ve got the intuition we simply looked for creating an empty toolwindow in Visual Studio and

communicating to the F# counterpart the window handle so that it is the F# interactive that actually draws

inside the toolwindow. Drawing, however, is not a whole graphical component; we needed events to react

to paint messages, keystrokes and mouse interaction to obtain useful controls. We resorted to the

message-oriented architecture of Win32 GDI to efficiently proxy events from the Visual Studio toolwindow

back into the F# viewlet object.

Now that we have an intuition of what’s going on behind the scenes we can briefly discusses the various

areas we have used to create this interaction.

Visual Studio DTE
Most of the services of Visual Studio are delivered through the DTE which is a COM object model accessible

through traditional Microsoft mechanisms. DTE is also accessible using managed applications, though this

approach simply uses the interop abilities of CLR to invoke COM components. The managed API to Visual

Studio allows defining addins, which are classes implementing COM interfaces (namely

IDTExtensibility2 and IDTCommandTarget) used by VS to notify about relevant events (such as

loading/unloading and command invocation) to the addin class. In VSLab the VSLabAddin project defines

the Addin class responsible for implementing these COM interfaces.

Through DTE interfaces (we are using DTE2) we can create named commands and extend the context menu

with the SendTo option for code consolidation. Named commands can be associated with UI elements or

simply treated as macros. We bind few of them to special key bindings in order to support the Alt+Enter

and Alt+’ combinations for evaluating a selected text or a single line using F# interactive. We also create the

VSLab Implementation 5

menu entry for the context menu (to be shown only in the context of a VSLab project) and the toolbar with

VSLab-specific commands and toolwindow management.

Another task accomplished by the addin is to create F# interactive toolwindow mimicking the code made by

the standard F# toolwindow. We simply create the toolwindow specifying the type of the UserControl

implementing the F# interactive and the communications with the fsi.exe process. The code simply uses the

CreateToolWindow2 method of the Windows property of DTE2 object model:

 let loadVSLabFSI() =

 InitCtxtMenu()

 if not fsiLoaded then

 let mutable programmableObject:obj = null

 toolWnd <- (appObj.Windows :?> Windows2).CreateToolWindow2(

 addInInst, fetchFsBinDir() + @"\FSharp.VisualStudio.Session.dll",

 "Microsoft.FSharp.Compiler.VSFSITools.ToolWindow", "VSLab",

 "{AA8E793E-610F-4f8e-B51A-6B0A97507D3D}", &programmableObject)

 toolWnd.Visible <- true

 ml_send ("#light\n#use @\"" + (fetchVSLabDir()) + "vslabstartup.fsx\"")

 fsiLoaded <- true

Notice that we are specifying a GUID during the creation of the toolwindow: this will be the GUID

identifying the toolwindow in the Visual Studio object model. We can use the ml_send function to the F#

interactive session to send text as if it is coming from standard input by invoking the method on the

toolwindow object returned by the CreateToolWindow2 invocation. Using this function we send to fsi.exe

the initial set of commands responsible for initializing the VSLab environment during startup.

It is handy to be able to send strings to be evaluated to fsi.exe since we can invoke core services of VSLab

that are running in the remote process responsible for retaining most of the VSLab state. The

CreateToolWindow2 method plays also a fundamental role in the creation of viewlets: the control loaded

inside the toolwindow allocated upon creation is responsible for communicating its own window handle to

a peer control running in the fsi.exe process space. In practice this toolwindow is filled by primitives issued

by the peer running in the F# interactive process, and it is responsible for forwarding all the relevant

windowing events to it.

Note. In the first release Kit of VSLab it is possible to have a single instance running VSLab because the F#

interactive peer of a toolwindow uses DTE and COM interop to communicate and COM selects the first

running instance of Visual Studio. In the Hal release this limitation will be removed since we explicitly go

through the COM Running Object Table (ROT) and get the DTE COM server associated with the PID of

devenv hosting the running VSLab add-in. In Kit the exchange of window handles is performed using a

socket connection that is temporarily established by the toolwindow and its peer, this will be likely

converted in windows messages exchange in the future.

Win32 messaging
There are moments in life when being a little bit older comes handy, and my background of Win16

programmer helped me in designing the communication process between a toolwindow and its peer

running the F# interactive process space.

As we have quickly discussed in the previous section the managed interface of the DTE allows creating

toolwindows by specifying the type of a WinForms user control contained within a managed assembly. It

seems to be natural to define Viewlets as special Windows Forms user controls capable of drawing on a

VSLab Implementation 6

remote window instead than the window automatically created by GDI+. This choice allows to piggy back

on the message dispatching code implemented in Windows Forms providing the illusion that the viewlet is

simply an in-process control.

The static class Viewlets is initialized during startup and creates an hidden form that will contain all the peer

controls associated with Visual Studio toolwindows, this is the Init method of this class:

 static member Init() =

 _viewletsProxy <- new Form(Text="Viewlet Proxy")

 Application.DoEvents()

 _viewletsProxy.ShowInTaskbar <- false

 _viewletsProxy.FormBorderStyle <- FormBorderStyle.FixedToolWindow

 _viewletsProxy.Show()

 Application.DoEvents()

 _viewletsProxy.Width <- 1

 _viewletsProxy.Height <- 1

 _viewletsProxy.Top <- -100

 Application.DoEvents()

The form is conveniently hidden since it is just an implementation artifact. The base class Viewlet for

viewlets automatically adds the control to the proxy form in order to force Windows Forms to create a

window handle associated with the control. When the Show method is invoked the toolwindow is created

and the handle of the hosted control (implemented in VSLabCore project) is exchanged with that of the

peer.

Now the magic is performed by an old windowing technique commonly known as subclassing, which

consist in changing the callback pointer of a GUI window (in the broader sense, not just a top level window

of the window manager) and filter incoming messages before dispatching them to the original callback

function. Subclassing can be done in Windows Forms using the NativeWindow class, though most of the

time is enough to override the WndProc method inherited from Control.

The ViewletToolWindow class is the user control created in the Visual Studio toolwindow and upon creation

it sends the handle to the viewlet peer running within the fsi.exe process. The responsibility of this control

is to inform the peer whenever a repaint is needed and send all the relevant events to the peer.

The SendMessage function is defined using PInvoke declarations along with the GetParent function and is

used to forward windowing messages:

[<DllImport("user32.dll")>]

extern int SendMessage(IntPtr hWnd, int Msg, IntPtr wParam, IntPtr lParam)

[<DllImport("user32.dll", ExactSpelling=true, CharSet=CharSet.Auto)>]

extern IntPtr GetParent(IntPtr hWnd)

The WndProc method overriding does the same trick for all the forwarded messages:

 override x.WndProc(m) =

 base.WndProc(&m)

 if target <> IntPtr.Zero then

 if Enum.IsDefined(typeof<Messages>, m.Msg) then

 match enum(int(m.Msg)) with

 | Messages.WM_PAINT ->

 let encode a b = (a <<< 16) ||| (b &&& 0xFFFF)

 let lt = encode clip.Left clip.Top

 let wh = encode clip.Width clip.Height

VSLab Implementation 7

 SendMessage(target, int(Messages.WM_APP_PAINT), new IntPtr(lt), new

IntPtr(wh)) |> ignore

 | Messages.WM_ERASEBKGND ->

 let encode a b = (a <<< 16) ||| (b &&& 0xFFFF)

 let lt = encode clip.Left clip.Top

 let wh = encode clip.Width clip.Height

 SendMessage(target, int(Messages.WM_APP_ERASEBKGND), new IntPtr(lt),

new IntPtr(wh)) |> ignore

 | _ ->

 SendMessage(target, m.Msg, m.WParam, m.LParam) |> ignore

Note that we simply forward all the messages defined by the Messages enumeration. Most of the messages

are simply forwarded verbatim, with the noticeable exception of messages involving a device context. For

WM_PAINT and WM_ERASEBKGND we need to send into application-defined messages (WM_APP_PAINT

and WM_APP_ERASEBKGND respectively) since the device context cannot be sent safely to another

process, it will responsibility of the peer to acquire a valid device context for drawing in the toolwindow

given its window handle. The clipping rectangle is sent with these messages because it can’t be obtained by

the peer otherwise.

We used subclassing to detect when toolwindows are hidden and resumed. The Windows Forms library is

supposed to inform with an event that the control visibility state is changing; unfortunately because of a

well-known bug in the implementation there is no way to know when the control gets hidden with the

toolwindow. We found two hacks to detect when the control is shown and hidden, we know it is fragile, but

there is no official API for this. The OnPaint method is triggered whenever paint occurs, thus we can send

an application-defined message to inform that the window is now visible:

 override x.OnPaint(g) =

 if not visible then

 visible <- true

 SendMessage(target, int(Messages.WM_APP_VISIBLECHANGED), new IntPtr(1),

IntPtr.Zero) |> ignore

 clip <- g.ClipRectangle

The opposite change is trickier to catch and we use subclassing as follows:

type internal ToolWindowSubclass() as x =

 inherit NativeWindow() as base

 let evt_fire, evt_listen = IEvent.create()

 member x.Activated = evt_listen

 override x.WndProc(m) =

 if (enum(m.Msg) = Messages.WM_SHOWWINDOW) then

 evt_fire(false)

 base.WndProc(&m)

This subclassing is meant to intercept the WM_SHOWWINDOW message of the toolwindow that contains

our proxy control. We perform the subclassing during handle creation:

 parent <- GetParent(x.Handle)

 subclass.AssignHandle(parent)

 subclass.Activated.Add(fun v ->

 visible <- false

 if target <> IntPtr.Zero then

VSLab Implementation 8

 SendMessage(target, (int Messages.WM_APP_VISIBLECHANGED), IntPtr.Zero,

IntPtr.Zero) |> ignore

)

The Viewlet class performs the complementary operations by overriding the WndProc method. This is how

the WM_APP_PAINT is handled:

 | Messages.WM_APP_PAINT ->

 use g = Graphics.FromHwnd(target)

 let decode a = ((a >>> 16) &&& 0xFFFF, a &&& 0xFFFF)

 let left, top = decode (m.WParam.ToInt32())

 let width, height = decode (m.LParam.ToInt32())

 let rect = new Rectangle(left, top, width, height)

 g.SetClip(new RectangleF(float32 left, float32 top, float32 width, float32

height))

 let pe = new PaintEventArgs(g, rect)

 x.OnPaint(pe)

The magic is performed by the FromHwnd method of the Graphics class, and then we simply dispatch the

method by calling the appropriate event handler.

It is important to understand that with this approach there are two limitations:

- Only a subset of Win32 messages are routed to the peer

- The viewlet cannot contain children controls

The first issue is not real; if a message is required it can be easily sent to the proxy. As for the second we are

working to a library of lightweight controls to be able to have children controls even in the toolwindows.

Visual Studio integration
VSLab integrates with Visual Studio by defining custom project and custom items. These extensions are

fairly simple to do; we simply modify the .vsz files that contain project and item definitions as discussed in

the VSIP documentation.

The C# custom actions project used by the installer contains all the information about the actions and it can

be easily extended and modified. There is a generic class that gets specialized for the VSLab installation

process.

Conclusions
VSLab core mechanisms are well hidden under the hood but are sophisticated and rely on many features of

Windows and Visual Studio. The approach taken has shown to be very efficient and it also supports

Direct3D graphics as witnessed by one of the example viewlets.

Although we are happy of being able to cross the barrier and fond of our solution we are not stickled to it.

We are hoping that upcoming versions of Visual Studio will provide native support for out-of-process

addins and toolwindows. The ultimate goal of VSLab was to show that one of the strength of F# is to lose

the separation between top-level, interpretation and compilation which make F# ideal for those

applications that benefit of interactive development and final consolidation possibly requiring execution

performances not guaranteed by dynamic languages.

