

VSLab Packages

Whitepaper

In this paper we discuss VSLab packages, their design and

implementation.

Author: Antonio Cisternino (cisterni@di.unipi.it), University of Pisa
Version: 1.0
Last update: 8/8/2008 7:22:00 PM

VSLab Packages 2

Introduction
After the first release of VSLab we have started developing modules containing functions and viewlets to

support interactive data analysis. F# interactive already provides support for dynamic loading of .NET

assemblies using the #I and #r directives, though users are required to remember paths to local filesystem

and names of DLLs. Since one of design goals of VSLab is to be accessible to non-programmers we felt

necessary to introduce a notion of package, built on top of .NET assemblies, that is easier to use from the

environment. If you are a .NET developer don’t worry, a package is just an assembly with very few

conventions, if you are a VSLab user don’t worry, the mechanism has been designed to be easy to manage.

At a first glance the global assembly cache may seem a natural solution for easily have a single location for

storing and looking for assemblies. Unfortunately the need for strong naming requires knowledge about

several software engineering and security notions not really required to users that simply want to

consolidate F# scripts into reusable modules. For this reason we have introduced in R. Daneel support for

VSLab packages and a simple UI to control their loading behavior as shown in figure.

The original Viewlets.dll assembly containing the demo viewlets has been dropped and the existing viewlets

have originated three packages that are shipped with the VSLab distribution. From outside packages are

simply listed in the interface and VSLab assumes two locations containing them, one global to all users of

the machine and located in <VSLab install dir>\packages, the other in the user application data under

VSLab\packages. The global flag in the packages dialog indicates the location of each package. Packages can

be automatically loaded at VSLab startup and you may ask for automatic opening of namespaces of the

package. This is not done by default to avoid name conflicts, but if you use a package frequently it is useful

VSLab Packages 3

to save the time required for opening a module or a namespace. Packages that are not currently loaded can

be manually loaded using the Load hyperlink. Through the dialog you can install a global or a local package.

Since F# requires information about assemblies in order to provide correct type inference and intellisense

package will provide more features in the future so that they will automatically support dependencies

additions to the active VSLab project.

Anatomy of a package
The easiest way to understand packages is to have a look at one of them, we start with the Shell package

since it is the smallest of the current distribution and the only viewlet contained in it has been discussed in

the whitepaper about viewlets.

The VSLab.Shell package contains two F# files named vslabperfmon.fs and package.fs. The former contains

the definition of the viewlet, and only the latter is relevant to describe VSLab packages and it has the

following content:

#light

module VSLab.Shell.Package

open VSLab.Packages

type VSLabShellPackage() =

 inherit Package()

 override x.OpenNames() =

 VSLab.Environment.OpenNS("VSLab.Shell")

[<assembly: PackageDescription(typeof<VSLabShellPackage>, Name="Shell package",

Description="Package defining the System Shell DSL")>]

do()

As we can see, a VSLab package is a standard .NET assembly defining a single type used by VSLab runtime to

interactively load packages. We define a new module containing just the package type, VSLabShellPackage

in this example, and an assembly level custom annotation to provide the package description used to

display in the VSLab package manager dialog.

The abstract class Package defined in VSLab.Packages defines two methods that can be overridden, Init and

OpenNames. The former is invoked when a package gets loaded by VSLab runtime (and whenever F#

interactive is restarted and the VSLab init command is sent through the VSLab toolbar). The OpenNames

method is meant to provide a semi-automatic mean to handle namespaces; instead of requiring the user to

open namespaces explicitly it is possible to ask a package to open those namespaces and modules

automatically. In this case the package opens the VSLab.Shell namespace. This feature is useful when a

large number of packages is loaded and name collisions arise, a typical problem of functional languages

where everything is top-most and there is no equivalent of the namespace introduced by classes in object

oriented languages.

In the future packages will also be used to provide a more seamless integration with the editor for

compilation and interactive execution; allowing users to obtain automatically from the package runtime the

VSLab Packages 4

information for compiling projects correctly. At the time of writing there is some preliminary design that

should be still validated and implemented.

Implementation
The implementation of packages is a good example of reflection usage for dynamic loading, and the core

file is package.fs in the VSLabFSICore module. The correct implementation of package support has required

a substantial refactoring of this module since part of the work has been to look for paths of package

directories. The runtime keeps track of loaded assemblies using the LoadedPackages dictionary, and it is

used just to keep track of them, packages are .NET assemblies and loaded by the CLR, and cannot be

unloaded. Another limit of the actual implementation of packages is that building the list for preparing the

configuration dialog causes the assembly containing the package to be loaded. It is strongly recommended

to perform any initialization in the Init method to ensure the execution at the appropriate time. This issue is

expected to be addressed in further releases of VSLab.

The implementation of package loading is just a matter of invoking the Load method of the Assembly class

to explicitly load the assembly, and after a little bit of reflection spelunking the creation of the instance of

the class defining the package. Part of the information of loading, however, it is unknown at compile time

and a bit of information is stored in the filesystem. Currently the information that the user can configure is

whether load a package at startup or not; and whether automatically open its namespaces or not.

Since the package loading mechanism has been designed to be easier as copying a dll into a folder we have

decided to not have a data structure describing all the packages installed in the system. The XML file

containing additional information about packages is used to complement the list of files retrieved from the

filesystem so that the system is always in a consistent state. This is a design choice and should be

maintained in further releases, though the XML file may be enriched with additional information about

packages.

An implementation detail that is worth mentioning is the use of a special command to obtain UAC elevation

on Windows Vista systems. Through this command (install-package.exe) we copy the package in the global

cache that is under Program Files and requires elevation to be written.

The configuration panel of packages (the interface has been designed to accommodate more configuration

tab panels) is based on a DataGridView component which is bound to a data structure generated to fill its

rows.

