[image: image6.png]sk

B Fields

& Propertes
S Directonyefid

B Specsiirecories
 Methods

Project WiXML for Release Management
[image: image7.png]Placeholder
RetumOniyDirectories

Project WiXML for Release Management

IBM Proposal No. TES 019

Windows Installer Creation System
WiX and MSBuild (WiXML)
Submitted by:
Brian Rogers
Version: 1.0
8/10/06
Table of Contents
11.0
Document Scope

12.0
The Challenge

1Simple Scenario

4Middle Level Complexity Scenario

6High Level Complexity Scenario

63.0
The Solution

6Overview

8Design and Use

8GenerateWiX

9MSBuild

9AddDirectories

10Processors

11Metadata

114.0
Wrapping Up

11Source Control

12Road Map

1.0 Document Scope
The combination of Windows Installer XML (WiX) and MSBuild has lead to a successful venture into automated package creation. The goal of the project was to use as many toolsets that are already available to the community in order to create robust Windows Installer packages inside the build environment. The project, now termed WiX Markup Language or WiXML, does exactly that. The foundation of the project is built on the Microsoft .NET 2.0 Framework for close integration to MSBuild and to use the rich new feature sets that are available.
The following document is to be a presentation of how the tools are used together and how the overall architecture is structured. The document will also describe some of the difficulties that were found when building the application. The document will not get into device driver installations, Windows Installer GUI creation using WiX or patching and upgrading packages.
2.0 The Challenge
Simple Scenario
On a small scale the WiX project is simple and easy to use. The overall concept of Windows Installer (MSI) is an application that is built around a database that holds configuration and deployment information about a product. WiX is an extension to that using XML. The WiX team has come up with a schema that represents the MSI database and has rich feature set to help in the creation of the database itself.
In a small project a package creator needs to define how a product can be installed. Using WiX, the creator will define the product, package, features and components that are to be used for the deployment. As an example, a deployment for a factious company called IDeploy would like to release a product of 10 files. None of these files will need to be registered as COM or COM+, there are no Websites or Virtual Directories to install and they have no services. Although XCOPY is an easy alternative for them they choose to have a reliable, repeatable process that other people can do.
Below is an example of how they might use WiX in order to build this deployment.
<?xml version="1.0" encoding="utf-8"?>

<Wix xmlns="http://schemas.microsoft.com/wix/2003/01/wi">

<Product

Name="IDeploy Files"

Id="39E87137-5792-47F7-8C4F-C5B37D534CDF"

UpgradeCode="????????-????-????-????-????????????"

Language="1003"

Codepage="1252"

Version="1.0.0.0"

Manufacturer="IDeploy">

<Package

Id="????????-????-????-????-????????????"

Keywords="Installer"

Description="The package installs files."

Comments="There are several possible command-line values to use durning installation."

Manufacturer="IDeploy"

InstallerVersion="200"

Languages="1033"

Compressed="yes"

SummaryCodepage="1252" />

<Media Id="1" Cabinet="Data1.cab" EmbedCab="yes" CompressionLevel="high" />

<Property Id="ARPURLINFOABOUT">http://www.ideploy.com/</Property>

<Property Id="ARPHELPLINK">http://www.ideploy.com/support/</Property>

<Property Id="INSTALLLEVEL">100</Property>

<Directory Id="WindowsFolder" Name="SourceDir"/>

<Directory Id="ProgramFilesFolder" Name="SourceDir"/>

<DirectoryRef Id="ProgramFilesFolder">

<Directory Id="Company" Name="IDeploy" FileSource="..\IDeploy\bin\Release\">

<Component Id="_6D57D3BC49E94447BE296DEF74BEF0C7_" DiskId="1" Guid="B49A67AC-1509-4F78-9F7F-2765890A0FDF">

<File Id="_FEC55F0B81DA4A87AFE7481B1CE85480_" KeyPath="yes" Vital="yes" Name="ideploy.exe" LongName="IDeployApp.exe"/>

<File Id="_91613F73F9FA4BE79283E8697E041980_" Vital="yes" Name="Common.dll"/>

<File Id="_36124FC0C3C0496CBB092C17BF6F0B08_" Vital="yes" Name="app.con" LongName="IDeployApp.exe.config"/>

<File Id="_64AA86167808407AA1D0265858FCA88F_" Vital="yes" Name="Objects.dll" />

</Component>

</Directory>

</DirectoryRef>

<Feature Id="_0A79F00D888B47F7A0355CA9A706EE0A_"

 Description="Installs the Files"

 Title="Components"

 Level="1"

 Display="expand">

<ComponentRef Id="_6D57D3BC49E94447BE296DEF74BEF0C7_"/>

</Feature>

</Product>

</Wix>
Example 1

At this point IDeploy has a MSI package that will deploy their product to [ProgramFilesFolder] location. As the product grows they decided to additional files for the deployment and now need to have a COM server registered. The addition to Example 1 could look like Example 2.
<Component Id="_DB1376FDBB7743928ED576DBBB812EC2_" DiskId="1" Guid="6D57D04D-F90D-4F58-8021-8F76E5A06FAF">

<File Id="_75A3285D3A3B4AC680FF0AC4FA4E4669_" KeyPath="yes" Vital="yes" Name="IAmCOM.dll" />

<Registry Id="_70E52D43EE12400A9DAC84E11603DEB3_" Root="HKCR" Key="CLSID\{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}" Value="RunMe Class" Type="string" />

<Registry Id="_C138E9EB73EE438EAFC806DEAB404364_" Root="HKCR" Key="CLSID\{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}\InprocServer32" Value="[#_75A3285D3A3B4AC680FF0AC4FA4E4669_]" Type="string" />

<Registry Id="_9FE9A15F24BD4CC5950BB0E3EC79DF94_" Root="HKCR" Key="CLSID\{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}\InprocServer32" Name="ThreadingModel" Value="Both" Type="string" />

<Registry Id="_B7EA34BD34F740C8847E7289CD234CEF_" Root="HKCR" Key="CLSID\{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}\ProgID" Value="IDeploy.RunMe.1" Type="string" />

<Registry Id="_0200904380354994A432B95CE2A81968_" Root="HKCR" Key="CLSID\{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}\Programmable" />

<Registry Id="_9B2B745CE5A84E7F9840B7BB92FC3CB1_" Root="HKCR" Key="CLSID\{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}\TypeLib" Value="{6081327F-2FE0-4EF0-A62D-B3C118BA0A2B}" Type="string" />

<Registry Id="_70D51DD3FC5345CEB24C130463503B80_" Root="HKCR" Key="CLSID\{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}\VersionIndependentProgID" Value="IDeploy.RunMe" Type="string" />

<Registry Id="_3209CA1884654FF1B392285AAEF415EA_" Root="HKCR" Key="Interface\{218FC894-0E4D-46FD-A7C6-A2F008096EE4}" Value="IFSE" Type="string" />

<Registry Id="_5DD02C27D0764AC98F10FF78902E35C6_" Root="HKCR" Key="Interface\{218FC894-0E4D-46FD-A7C6-A2F008096EE4}\ProxyStubClsid" Value="{00020424-0000-0000-C000-000000000046}" Type="string" />

<Registry Id="_856C70D1B9954CA29C5DA3FF9C9070D2_" Root="HKCR" Key="Interface\{218FC894-0E4D-46FD-A7C6-A2F008096EE4}\ProxyStubClsid32" Value="{00020424-0000-0000-C000-000000000046}" Type="string" />

<Registry Id="_356A4AE6E97642F0B6C6DC138EEC585D_" Root="HKCR" Key="Interface\{218FC894-0E4D-46FD-A7C6-A2F008096EE4}\TypeLib" Value="{6081327F-2FE0-4EF0-A62D-B3C118BA0A2B}" Type="string" />

<Registry Id="_3051F49204864370BD06D7AA38905A5E_" Root="HKCR" Key="Interface\{218FC894-0E4D-46FD-A7C6-A2F008096EE4}\TypeLib" Name="Version" Value="1.0" Type="string" />

<Registry Id="_1ED60370E74F466D851EE5B29A55CB2C_" Root="HKCR" Key="IDeploy.RunMe" Value="RunMe Class" Type="string" />

<Registry Id="_D5E922C1E31546BC978472A3AC7F859E_" Root="HKCR" Key="IDeploy.RunMe\CLSID" Value="{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}" Type="string" />

<Registry Id="_63D37DF6FFFD47398A6D3787B81B9AF9_" Root="HKCR" Key="IDeploy.RunMe\CurVer" Value="IDeploy.RunMe.1" Type="string" />

<Registry Id="_BE66BA2767C44E709D570C6C79F55845_" Root="HKCR" Key="IDeploy.RunMe.1" Value="FSE Class" Type="string" />

<Registry Id="_D19E45F885E34C93887F1F4047EF57E9_" Root="HKCR" Key="IDeploy.RunMe.1\CLSID" Value="{162BE443-4C38-4BC3-BFA5-8E02AA6AFDC5}" Type="string" />

<Registry Id="_C8B4E297BDD640A0B7624B679F9B93DA_" Root="HKCR" Key="TypeLib\{6081327F-2FE0-4EF0-A62D-B3C118BA0A2B}\1.0" Value="IDeploy.RunMe 1.0 Type Library" Type="string" />

<Registry Id="_0BF8CE3D12D14D8D84E85E0EAA2F556D_" Root="HKCR" Key="TypeLib\{6081327F-2FE0-4EF0-A62D-B3C118BA0A2B}\1.0\0\win32" Value="[#_75A3285D3A3B4AC680FF0AC4FA4E4669_]" Type="string" />

<Registry Id="_69E150763BED4FFDB70D92A9163AB39B_" Root="HKCR" Key="TypeLib\{6081327F-2FE0-4EF0-A62D-B3C118BA0A2B}\1.0\FLAGS" Value="0" Type="string" />

<Registry Id="_D0C604F7B68F44159BE86C9D81E609DB_" Root="HKCR" Key="TypeLib\{6081327F-2FE0-4EF0-A62D-B3C118BA0A2B}\1.0\HELPDIR" Value="[ProgramFilesFolder]" Type="string" />

</Component>
…
<Feature Id="_0A79F00D888B47F7A0355CA9A706EE0A_"

Description="Installs the Files"

Title="Components"

Level="1"

Display="expand">

<ComponentRef Id="_6D57D3BC49E94447BE296DEF74BEF0C7_"/>

<ComponentRef Id="_DB1376FDBB7743928ED576DBBB812EC2_"/>

</Feature>
Example 2

The above is still quite simplistic and can be created quickly. Even with the addition of 20 to 30 more files and one or two more COM servers the package is not difficult to create and maintain. However, as the application begins to grow past this size it becomes more difficult for one person to control all the changes that are happening in the application. The person needs to have information relayed to them about any changes to the registry entries for the COM server registration, what new files are being added or what old ones are being removed.
IDeploy decides that it is taking up to much time on the one development resource they have assigned to the project and now ask for developers creating these individual components to maintain WiX fragment files for each component. The below example includes all of Example 2 and one additional COM server. The format of the WiX file has been broken up and split into three different files. These files contain the content that is necessary to deploy the application; however the COM servers can now be independent of the main file and the COM server. This allows for more then one developer to manage the creation of the package.
Following this practice, each component or group of components could be created as a Merge Module (MSM) as well. This would all for the package designer to take the individual components or MSMs and create the full product installation without having to know everything that a component needs to have in place.

Middle Level Complexity Scenario
As seen in the simple scenario WiX provides an easy way to maintain an application’s deployment needs. The question that arises next is the scalability of handling application installations of 100 – 600 files, multiple COM servers, services, configuration points and Websites. As the component complexity level grows the maintenance overhead of the components during the development cycle can be tasking. As a development team iterates the application it becomes difficult, as mentioned in the simple scenario, to manage the communication of configuration changes.
IDeploy has grown in size and has tripled its customer base. As their application feature set grows they find it more difficult to manage the requests and test their software. The development team decides to move their application components into a dedicated build environment. This movement has helped them to maintain and stabilize the application but has not addressed the problems with deploying the application. The application must move through their internal testing environments and must be easy to deploy at client sites or by the client themselves.
[image: image1.png]

Example 3
Each individual developer is in charge of managing updates to the installation code. As the developer changes the application configuration either with COM, COM+ or any other component they must update the WiX source. For simple components such as COM registration, registry entries or features supported directly by Windows Installer this is not a challenge. The concern at this point have should be components groups have the possibility of overriding other component configurations.
At this point the team has not been focusing on separating installation logic from the components themselves. Each component and its installation logic are contained inside of a fragment file that is unique to the component.
High Level Complexity Scenario
The middle level scenario has now covered the basic needs of an installation. Configurations, COM, COM+, services and Websites have been done by IDeploy development team. The testing and deployment of the application has also been monolithic. The team, being smaller and more nimble, has been able to fix bugs and add features to the next version of the product instead of having to do in-place bug fixes or service packs. The team has not had to focus on configurations overriding other configuration. In addition, the team in the middle level scenario did not focus on component dependencies or shared components.
As the application grows and becomes more complex so does the deployment. Configuration management becomes one of the more difficult pieces of the application. The school of thought as products grow is to break the application into smaller components. This helps the development team work on only one component at a time, it makes source control easier and it is supposed to help deployments. Although the principal is sound in logic it is not always the case. As small components start requiring additional configuration a lot of redundancies begin to creep into configuration files. Deployments will start having the same DLLs and files deployed to multiple locations on a single unique machine. As patching and configuration changes for an in-place installation become a need, this form of organization becomes difficult to manage.
At IDeploy, the same team has been working on the application since its inception. The team has also been thinking about software configuration management (SCM) since the beginning. The configuration and deployment of the application definitely reflects that mentality. The application has few points of configurations and is well organized and documented. Obviously, IDeploy is a perfect world scenario. Organized development and forethought is not always a luxury that teams have. This becomes especially true as when key architects leave large development teams along with senior developers. Although the application may still be meeting business needs a lot of supportability feature of the application are likely to be overlooked. Letting small things go one at a time for SCM can add up to large and complex problems as the application continues to grow and gain new business features.
3.0 The Solution

Overview

As with all forms of development there are many ways to achieve a given goal. The methodology presented in this document is bases around best practices of many companies who have given out their ideas. These practices, along with a couple projects of high complexity have driven this document. This document is a description of the fourth iteration of a release process. As more projects are delivered and SCM is thought about at the beginning of these projects the process will be honed although it may never be completed.
The concept of using MSBuild and WiX together to automate application packaging is new to the WiX community. This project appears to be one of the first to attempt the process. Several projects have been started in the Open Source community to write a GUI based application for WiX. The projects that have been reviewed have not made it to an alpha stage at the date of this writing. Although this is quite understandable when looking at the challenge they face. The WiX schema is quite robust and complex which adds complexity to creating a GUI to display all the possible schema types and their relation to each other.
The goal of WiXML was not to abstract the schema of WiX into another layer but rather to create a markup for components of WiX against a delivered directory structure. WiXML only processes components at the time of writing, it does not have the ability to group features, manage or create custom actions, include additional installation logic or design the GUI of the installer. The customization of the Windows Installer package is left to the developer, however, the components and extraction information for COM, COM+, services or registry files are handled by WiXML.
[image: image2.png]Windows Installer

Features.

Custom Actions

Comporens.

Example 4

The above example is a description as to how the team viewed Windows Installer. Although this is an abstraction and missing a few things it represents the four basic necessities of a Windows Installer package. WiXML only focuses on the components piece by using MSBuild to attach metadata to files and directories, sending that data to the WiXML and then having WiXML processors generate the XML according to the WiX schema as shown in Example 5.

[image: image3.png]MSBuid File with Metadata
for Files and Directores

MSBUI Custom Task
Receives the Data

WIXML Prosessors and
Custom Procsssors
Generate XML According to
WiX Schema

WiX Fragment Files are
Generated

Example 5

Design and Use
GenerateWiX
As the overview showed the general workings of WiXML is basic as it should be. An MSBuild file is created that assigns metadata to files and directories as needed. Upon execution of the MSBuild file the markups are grouped into items that are passed to a custom MSBuild task. The task, ask shown in Example 6 requires a several other properties and items to be passed to it as well. Each call to the GenerateWiX task creates a unique WiX fragment file. Therefore properties such as DirectoryRefId, FragmentId, OutputFile and RootDirectory are key values. The Files, SearchScope and SpecialDirectories send the files and directories to the processors, insures that the files and directories that are being processed are the correct ones and defines special metadata for given directories if needed.
MSBuild

The MSBuild files can be simple or complex depending on the need of application. The more metadata that files and directories need to be process the more complex the MSBuild file will become. For simple installations, where the application has only static files or files that have no additional installation logic besides getting delivered to a given directory, the code is simple.
<ItemGroup>

<StaticFileItem Include="$(RootDirectory)\StaticFiles**">

<ComponentGroup>AllStaticFiles</ComponentGroup>

</StaticFileItem>

</ItemGroup>
<Target name=”build”>

<!--This must come before the Search Scope.-->

<AddDirectories ItemGroup="@(ProgEntitlementsItem) "

Placeholder="wixml.placeholder">

<Output TaskParameter="ItemGroup" ItemName="ProgAll"/>

</AddDirectories>

<!--Create Search Scope-->

<CreateItem Include="$(RootDirectory)\StaticFiles**">

<Output TaskParameter="Include" ItemName="SearchScopeItem"/>

</CreateItem>

<AddDirectories Directory="$(Prog)" Placeholder="wixml.placeholder

ItemGroup="@(SearchScopeItem)" DeletePlaceholders="true">

<Output TaskParameter="ItemGroup" ItemName="SearchScope"/>

</AddDirectories>

<GenerateWiX

DirectoryRefId="RootDirectory"

Files="@(StaticFileItem)"

FragmentId="ComponentsAllStaticFiles"

OutputFile="$(WxsOutputPath)\components.staticfiles.wxs"

RootDirectory="$(RootDirectory)"

SearchScope="@(SearchScope)" />

</Target>

Example 7

AddDirectories

A key piece to the success of WiXML was the addition of the AddDirectories MSBuild task. An ItemGroup does not, by default, create items for directories (See Appendix 1 for details). Using the task allows the user to get all the directories in a directory and to apply metadata to these directories for processing.
AddDirectories needs to be called twice in order for it to work correctly for most scenarios. The first call creates empty files or place holders. These place holders ensure that even empty directories are part of the ItemGroup. Secondly, the place holders hold the metadata for the directories themselves. After a CreateItem is called with the scope to be added to the ItemGroup a second call to AddDirectories must be called. This call then copies all the metadata on a place holder file to its parent directory and then deletes all the place holder files for the ItemGroup collection. The return value is then a clean ItemGroup collection of files and directories.

Processors
At the core of the application is the processors themselves. In the MSBuild XML a user can specify the processor type that should be used to process a given file. The processor type should be fully represented in the MSBuild file with the full namespace of the processor. The example below shows how a processor can be attached to a single file for understanding. However, using a CreateItem task you can attach a processor to many items and you can also add additional metadata such as which WiX ComponentGroup the file should belong to when it is generated.
<ItemGroup>

<AComItem Include=”..\Directory\COM.dll”>
<FileProcessor>WICS.Generator.Processors.ComProcessor</FileProcessor>

</AComItem>

</ItemGroup>

Example 9

[image: image4.png]© trcesor

Frocessor E)
jreeriy

o Fecs
= properies:
2 Diectong
= damentrene

= e
e
5 amespace
= vanods
3z
Ry ——
59 cerein
0 procesr
e

Comprocessor Servicesprocessor %)
&

Registyprocessor %
By

Complusprocessor @‘
e

Example 10
Each processor is its own class. As the ItemGroup passed to the GenerateWiX task is analyzed new objects of their respective processor types are put on the heap to be processed. Each processor exposes an Execute method that is called to generate the WiX output XML. The generated XML is wrapped inside a WiX Component element. Each component is assigned a unique GUID or can have a unique GUID assigned to it through the MSBuild file as necessary.
Metadata
A primary part of the file processing is the metadata associated with a file. This data contains directives for the processor itself. The naming convention for the data is currently the concatenation of the WiX element and the attribute, if there is one, using CamelCase. Custom metadata can be added to any of the files and retrieved at the processor. During the initial version of the product this holds true for most, but not all, metadata. The ComponentGroup, FileProcessor and others do not conform to the standard. The next iteration of the product will resolve these issues.
<ServiceAccount>[ServiceUserName]</ServiceAccount>

<ServiceDescription>The description.</ServiceDescription>

<ServiceDisplayName>The display name.</ServiceDisplayName>

<ServiceErrorControl>normal</ServiceErrorControl>

<ServiceInteractive>no</ServiceInteractive>

<ServiceName>SrvName</ServiceName>

<ServicePassword>[ServicePassword]</ServicePassword>

<ServiceStart>auto</ServiceStart>

<ServiceType>ownProcess</ServiceType>

<ServiceVital>yes</ServiceVital>
Example 11

4.0 Wrapping Up
Source Control
A focus of the project was to create data repositories for storage and check in to a Source Control Management system. The complete system planned was to look something like the example below in Example 12. This would allow for review of packages that have gone through the process. It would also ensure that all changes could be traced to back to a particular release in case of any error. With some additions to the project a file repository analysis tool or manifest could be created to gather the full application file and folder structure. Leveraging tools such as this would bring great value for deployment consistency and reliability. It would allow the possibility of automated differences of drops from development to flag or fail a package build.
[image: image5.png]Analyze File
Repository

Application
Version
Release

Save File
Inventory

Extrapol
Analyze rapolate Save
Application | Application | Extraplation »| Extrapolaton
Architecture Data J
¥
s msi . Create MSI o _se | o vt st
equirements '{ Struciure Structure ucture
Analysis e J
¥
Combine File
Inventory, Save
Extrapolation Deployment Ceplbmed
Data and MSI Precursor

Structure

Example 12

Road Map
Knowingly this is document explains an initial release of an automated package building application. Through use there has been comments made about flexibility and additional needs. Some of the feature requests include automated patch and upgrade creation. Using a file manifest and some additional coding effort it would be possible to run differences against a previous release and use that information to create patches. The addition of better error handling in the configuration of MSBuild files needs to be added. Logging has been an issue as well. The application itself does not use any of the logging features possible in MSBuild. The question has been raised about automatically parsing INI and XML files which would be a great feature. This would be enabling more automated configuration inside of the WiX fragment files and would help remove problems with communication from development groups about these changes.
The possibilities are nearly boundless when it comes to automating builds. As the Windows Installer team and the WiX team continue to add features to these rich tools WiXML must stay current. Currently the project is only automating a fraction of what can be done inside of an MSI package. As time progresses and with interest the project is expected to grow.
The tool has been proven for one production application. Currently it is able to process 10,000+ files handling 260 or more COM+ DLLs, 12 COM objects, a few services and many static files. During the prototyping of the project this greatly decreased the communication needs between development and the release management team. With the addition features of monitoring differences between application builds from development and other governance tools it would be possible for nearly hands-off packaging of an application.
Example 6

Example 8

PAGE
1

