13-6-16 WPF Diagram Designer: Part 1 - CodeProject

09

' K For those who code

-

A

Articles » Platforms, Frameworks & Libraries » Windows Presentation Foundation » General

WPF Diagram Designer: Part 1

By sukram, 23 Aug 2008
4,97 (170 votes)

Download source - 629.79 KB
Download binaries - 611.23 KB

== WOF Diagram Designer SE=)

In this article, I will show you how to move, resize and rotate objects of any type on a canvas. For this, I will
provide two different solutions - the first one without and then one with WPF Adorners.

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 1711

13-6-16 WPF Diagram Designer: Part 1 - CodeProject
The attached Visual Studio Express 2008 solution consists of three projects:

]_a Solution 'DiagramDesignerPart1’ {3 projects)
#- (5 MoveResize

El-- @ MoveResizeRotate

®- (5 MoveResizeRotateWithAdorners

MoveResize: This version shows you how to move and resize objects without WPF Adorners.

MoveResizeRotate: In addition, this project provides rotation of objects, still without WPF Adorners.
Rotation has some minor side effects that need to be considered when moving or resizing objects. You can
easily track these side effects when you compare this project with the previous one.

MoveResizeRotateWithAdorners: The third project finally shows you how to move, resize and rotate
items with the help of WPF Adorners. It also gives you an example of how Adorners can be used to provide
visual feedback to indicate the actual size of an object during a resize operation.

LET

—_—

180 -

Preparations

We start with a simple diagram:

<Canvas>
<Ellipse Fill="Blue"
Width="100"
Height="100"
Canvas.Top="100"
Canvas.Left="100"/>
</Canvas>

You might not be impressed by this diagram, nevertheless it is a good starting point. It is easy to
understand and it has all a basic diagram needs to have: a drawing canvas with a shape. But you are right,
this diagram isn't really useful - it's just too static.

So let's start with some preparations by wrapping the ellipse into a ContentControl:

<Canvas>
<ContentControl Width="100"
Height="100"
Canvas.Top="100"
Canvas.lLeft="100">
<Ellipse Fill="Blue"/>
</ContentControl>
</Canvas>

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print

2111

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

Not much better you may say, we still can't move the ellipse, so what is it good for? Well, the
ContentControl serves as a container for the object that we want to place on the canvas and it is
actually this ContentControl that we are going to move, resize and rotate! And because the content of
a ContentControl can be of any type, we will be able to move, resize and rotate objects of any type on
our canvas!

Note: Because of its key role, this ContentControl is also referred to as DesignerItem.

We conclude our preparations by assigning a ControlTemplate to the DesignerItem. This introduces a
further level of abstraction, so that from now on we will just expand this template and leave the
DesignerItem and its content completely untouched.

<Canvas>
<Canvas.Resources>
<ControlTemplate x:Key="DesignerItemTemplate" TargetType="ContentControl”>
<ContentPresenter Content="{TemplateBinding ContentControl.Content}"/>
</ControlTemplate>
</Canvas.Resources>
<ContentControl Name="DesignerItem"
Width="100"
Height="100"
Canvas.Top="100"
Canvas.Left="100"
Template="{StaticResource DesignerItemTemplate}">
<Ellipse Fill="Blue"/>
</ContentControl>
</Canvas>

Now that we have finished our preparations, we are ready to bring some activity on the canvas.

There is a control in WPF about which the MSDN documentation says: " ...represents a control that lets the
user drag and resize controls.” That seems to be a perfect candidate for our job. It is the Thumb control
and here is how we are going to use it:

public class MoveThumb : Thumb

{
public MoveThumb()
{
DragDelta += new DragDeltaEventHandler(this.MoveThumb_DragDelta);
}
private void MoveThumb_DragDelta(object sender, DragDeltaEventArgs e)
{
Control item = this.DataContext as Control;
if (item != null)
{
double left = Canvas.GetLeft(item);
double top = Canvas.GetTop(item);
Canvas.SetLeft(item, left + e.HorizontalChange);
Canvas.SetTop(item, top + e.VerticalChange);
}
}
}

The MoveThumb is inherited from Thumb and it provides just an implementation of the DragDelta event

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 311

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

handler. Within the event handler, first the DataContext is cast to a ContentControl and then its
position is updated according to the horizontal and vertical drag change. You may have already guessed
that the control retrieved from the DataContext is our DesignerItem, but where does it come from?
You can find the answer if you look at the updated DesignerItem's template:

<ControlTemplate x:Key="DesignerItemControlTemplate" TargetType="ContentControl">
<Grid>
<s:DragThumb DataContext="{Binding RelativeSource={RelativeSource TemplatedParent}}"
Cursor="SizeAll"/>
<ContentPresenter Content="{TemplateBinding ContentControl.Content}"/>
</Grid>
</ControlTemplate>

Here you see that the MoveThumb's DataContext property is bound to the templated parent, which is of
course our DesignerItem. Note that we have added a Grid as the layout panel for the template, which

allows both the ContentPresenter and the MoveThumb to take in the complete DesignerItem's real

estate. Now we can compile and run the code.

As a result, we get a blue ellipse on top of a gray MoveThumb. If you play around with it, you will notice
that you can actually grab and drag the object, but only where the gray MoveThumb is visible. That's
because the ellipse hinders the mouse events to make its way through to the MoveThumb. We can easily
change this behaviour by setting the IsHitTest property of the ellipse to false.

<Ellipse Fill="Blue" IsHitTestVisible="False"/>

The MoveThumb has inherited its style from the base Thumb class, which is not really appealing in our
case. For this, we create a new template consisting of a transparent rectangle only. A more general solution
would be to create a default style for the MoveThumb class, but for the moment a customized template will
do.

Now the DesignerItem's control template looks like this:

<ControlTemplate x:Key="MoveThumbTemplate" TargetType="{x:Type s:MoveThumb}">
<Rectangle Fill="Transparent"/>
</ControlTemplate>

<ControlTemplate x:Key="DesignerItemTemplate" TargetType="Control">
<Grid>
<s:MoveThumb Template="{StaticResource MoveThumbTemplate}"
DataContext="{Binding RelativeSource={RelativeSource TemplatedParent}}"
Cursor="SizeAll"/>
<ContentPresenter Content="{TemplateBinding ContentControl.Content}"/>
</Grid>
</ControlTemplate>

That's all we need to move items on a canvas, now I will show you how to resize objects.

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 4/11

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

You remember that the MSDN documentation promised that the Thumb control would let the user drag
and resize controls? So, we stick with the Thumb control and build a control template, named
ResizeDecoratorTeamplate:

<ControlTemplate x:Key="ResizeDecoratorTemplate" TargetType="Control">
<Grid>
<Thumb Height="3" Cursor="SizeNS" Margin="0 -4 @ 0"
VerticalAlignment="Top" HorizontalAlignment="Stretch"/>
<Thumb Width="3" Cursor="SizeWE" Margin="-4 0 @ 0"
VerticalAlignment="Stretch" HorizontalAlignment="Left"/>
<Thumb Width="3" Cursor="SizeWE" Margin="0 @ -4 0"
VerticalAlignment="Stretch" HorizontalAlignment="Right"/>
<Thumb Height="3" Cursor="SizeNS" Margin="0 @ @ -4"
VerticalAlignment="Bottom" HorizontalAlignment="Stretch"/>
<Thumb Width="7" Height="7" Cursor="SizeNWSE" Margin="-6 -6 @ 0"
VerticalAlignment="Top" HorizontalAlignment="Left"/>
<Thumb Width="7" Height="7" Cursor="SizeNESW" Margin="© -6 -6 0"
VerticalAlignment="Top" HorizontalAlignment="Right"/>
<Thumb Width="7" Height="7" Cursor="SizeNESW" Margin="-6 @ @ -6"
VerticalAlignment="Bottom" HorizontalAlignment="Left"/>
<Thumb Width="7" Height="7" Cursor="SizeNWSE" Margin="0 © -6 -6"
VerticalAlignment="Bottom" HorizontalAlignment="Right"/>
</Grid>
</ControlTemplate>

Here you see a control template that consists of a grid filled up with a bunch of 8 Thumb controls, which
should work as resize handles. By setting the Thumb properties like we did above, we achieved a layout
that results in something that looks like a real resize decorator:

- o

Amazing, isn't it. But so far it is only a fake, because there is no event handler that would handle the
DragDelta events of the Thumbs. For this, we replace the Thumb objects by ResizeThumbs:

public class ResizeThumb : Thumb

{
public ResizeThumb()

{
}

private void ResizeThumb_DragDelta(object sender, DragDeltaEventArgs e)

{

DragDelta += new DragDeltaEventHandler(this.ResizeThumb_DragDelta);

Control item = this.DataContext as Control;

if (item != null)

{ double deltaVertical, deltaHorizontal;
switch (VerticalAlignment)

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print

511

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

case VerticalAlignment.Bottom:
deltaVertical = Math.Min(-e.VerticalChange,
item.ActualHeight - item.MinHeight);
item.Height -= deltaVertical;
break;
case VerticalAlignment.Top:
deltaVertical = Math.Min(e.VerticalChange,
item.ActualHeight - item.MinHeight);
Canvas.SetTop(item, Canvas.GetTop(item) + deltaVertical);
item.Height -= deltaVertical;
break;
default:
break;

}

switch (HorizontalAlignment)
{
case HorizontalAlignment.Left:
deltaHorizontal = Math.Min(e.HorizontalChange,
item.ActualWidth - item.MinWidth);
Canvas.SetLeft(item, Canvas.GetLeft(item) + deltaHorizontal);
item.Width -= deltaHorizontal;
break;
case HorizontalAlignment.Right:
deltaHorizontal = Math.Min(-e.HorizontalChange,
item.ActualWidth - item.MinWidth);
item.Width -= deltaHorizontal;
break;
default:
break;

}

e.Handled = true;

The ResizeThumbs just update the DesignerItem's width, height and/or position, depending on the
ResizeThumb's vertical and horizontal alignment. Now let's integrate the resize decorator into the
DesignerItem's control template by adding a Control object with the ResizeDecoratorTemplate.

<ControlTemplate x:Key="DesignerItemTemplate" TargetType="ContentControl">
<Grid DataContext="{Binding RelativeSource={RelativeSource TemplatedParent}}">
<s:MoveThumb Template="{StaticResource MoveThumbTemplate}" Cursor="SizeAll"/>
<Control Template="{StaticResource ResizeDecoratorTemplate}"/>
<ContentPresenter Content="{TemplateBinding ContentControl.Content}"/>
</Grid>
</ControlTemplate>

Perfect, now we can move and resize objects. Next comes rotation of objects.

To provide rotation of objects, we follow the same solution path as in the chapter before, but this time we
create a RotateThumb and arrange four instances of it in a control template named
RotateDecoratorTemplate. Together with the resize decorator, it looks like this:

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 6/11

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

The structure of the code for RotateThumb and the RotateDecoratorTemplate is very similar to what
we have seen in the chapter before, so I will not list the code here.

Note: My first approach to drag, resize and rotate items was to use WPF's TranslateTransform,
ScaleTransform and RotateTransform. But that turned out to be the wrong way, because Transforms
in WPF do not really change an object's properties like width or height, WPF Transforms are just a
rendering issue. So I didn't use TranslateTransform and ScaleTransform to drag and resize items,
but I had to use RotateTransform because of no alternative.

For convenience, we wrap the DesignerItem's control template into a style, where we also set various
properties like MinWidth, MinHeight and RenderTransformOrigin. A trigger allows us to make the
resize and rotate decorator visible only when the item is selected, which is indicated by the attached
property Selector.IsSelected.

Note: WPF comes with a class named Selector, which is a control that allows you to select items from
among its child elements. I do not make use of this control in this article, but I use the attached
Selector.IsSelected property to mimic selection.

<Style x:Key="DesignerItemStyle" TargetType="ContentControl”>
<Setter Property="MinHeight" Value="50"/>
<Setter Property="MinWidth" Value="50"/>
<Setter Property="RenderTransformOrigin" Value="0.5,0.5"/>
<Setter Property="Template">
<Setter.Value>
<ControlTemplate TargetType="ContentControl">
<Grid DataContext="{Binding RelativeSource={RelativeSource TemplatedParent}}">
<Control x:Name="RotateDecorator"”
Template="{StaticResource RotateDecoratorTemplate}"
Visibility="Collapsed"/>
<s:MoveThumb Template="{StaticResource MoveThumbTemplate}"
Cursor="SizeAll"/>
<Control x:Name="ResizeDecorator"
Template="{StaticResource ResizeDecoratorTemplate}"
Visibility="Collapsed"/>
<ContentPresenter Content="{TemplateBinding ContentControl.Content}"/>
</Grid>
<ControlTemplate.Triggers>
<Trigger Property="Selector.IsSelected" Value="True">
<Setter TargetName="ResizeDecorator"
Property="Visibility" Value="Visible"/>
<Setter TargetName="RotateDecorator"
Property="Visibility" Value="Visible"/>
</Trigger>
</ControlTemplate.Triggers>

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 7"

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

</ControlTemplate>
</Setter.Value>
</Setter>
</Style>

That's it. Now we can move, resize and rotate objects. One has to realize that a few lines of XAML code
together with three classes provide all we need to do that! Best of all, we don't need to touch the objects
themselves: all the behaviour is completely wrapped into a ControlTemplate.

In this chapter, I present a solution that raises the resize and rotate decorators to the AdornerLayer so
that they are rendered on top of all other items.

The adorner based solution is best explained by showing you the resulting DesignerItem's control
template:

<ControlTemplate x:Key="DesignerItemTemplate" TargetType="ContentControl">

<Grid DataContext="{Binding RelativeSource={RelativeSource TemplatedParent}}">
<s:MoveThumb Template="{StaticResource MoveThumbTemplate}" Cursor="SizeAll"/>
<ContentPresenter Content="{TemplateBinding ContentControl.Content}"/>
<s:DesignerItemDecorator x:Name="decorator" ShowDecorator="true"/>

</Grid>

<ControlTemplate.Triggers>
<Trigger Property="Selector.IsSelected" Value="True">

<Setter TargetName="decorator" Property="ShowDecorator" Value="true"/>

</Trigger>

</ControlTemplate.Triggers>

</ControlTemplate>

This template is similar to what we had in the previous chapter, except that the resize and rotate
decorators are replaced by an instance of a new class named DesignerItemDecorator. This class is
derived from Control and has no own default style, instead the class provides an adorner that becomes
visible when the boolean ShowAdorner property gets true.

public class DesignerItemDecorator : Control

{

private Adorner adorner;

public bool ShowDecorator

{
get { return (bool)GetValue(ShowDecoratorProperty); }
set { SetValue(ShowDecoratorProperty, value); }

}

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 8/11

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

public static readonly DependencyProperty ShowDecoratorProperty =
DependencyProperty.Register
("ShowDecorator", typeof(bool), typeof(DesignerItemDecorator),
new FrameworkPropertyMetadata
(false, new PropertyChangedCallback(ShowDecoratorProperty_Changed)));

private void HideAdorner()
{
¥

private void ShowAdorner()

{
}

private static void ShowDecoratorProperty_Changed
(DependencyObject d, DependencyPropertyChangedEventArgs e)

{ DesignerItemDecorator decorator = (DesignerItemDecorator)d;
bool showDecorator = (bool)e.NewValue;
if (showDecorator)
{ decorator.ShowAdorner();
}
else
{
decorator.HideAdorner();
}
}

The adorner that becomes visible when the DesignerItem is selected is of type DesignerItemAdorner
and is derived from Adorner:

public class DesignerItemAdorner : Adorner

{

private VisualCollection visuals;
private DesignerItemAdornerChrome chrome;

protected override int VisualChildrenCount

{
get
{
return this.visuals.Count;
}
}
public DesignerItemAdorner(ContentControl designerItem)
base(designerItem)
{
this.chrome = new DesignerItemAdornerChrome();
this.chrome.DataContext = designerItem;
this.visuals = new VisualCollection(this);
}
protected override Size ArrangeOverride(Size arrangeBounds)
{
this.chrome.Arrange(new Rect(arrangeBounds));
return arrangeBounds;
}

protected override Visual GetVisualChild(int index)

{

return this.visuals[index];

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 911

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

You see that this adorner has a single visual child of type DesignerItemAdornerChrome, which is
actually the control that provides the drag handles to resize and rotate items. This chrome control has a
default style which arranges ResizeThumbs and RotateThumbs objects in a way that is similar to what we
have seen in the previous chapter, so I will not repeat that code here.

You can, of course, add your own customized adorners to a DesignerItem. As an example, I have added
an adorner that displays width and height while resizing an object. For more details, please see the
attached code. If you have questions, feel free to ask.

Lorem ipsum dolor sit amet,
consactetuer adipiscing elit.

I 190 {

10t January, 2008 -- Original version

18t January, 2008 -- Update: Introduced ContentControl as designer item
5t February, 2008 -- Update: Added rotation of items

22"d August, 2008 -- Update: Added adorner based solution

This article, along with any associated source code and files, is licensed under The Code Project Open
License (CPOL)

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 1011

13-6-16 WPF Diagram Designer: Part 1 - CodeProject

sukram

Austria =

Image
Unavailable

No Biography provided

Comments and Discussions

= 120 messages have been posted for this article Visit
http://www.codeproject.com/Articles/22952/WPF-Diagram-Designer-Part-1 to post and view
comments on this article, or click here to get a print view with messages.

Permalink | Advertise | Privacy | Mobile Article Copyright 2008 by sukram
Web02 | 2.6.130611.1 | Last Updated 24 Aug 2008 Everything else Copyright © CodeProject, 1999-2013
Terms of Use

www.codeproject.conVArticles/22952/WPF -Diagram-Desig ner-Part-1?display=Print 1111

