13-6-16 WPF Diagram Designer - Part 3 - CodeProject

00 NCODE

PROJECT

Articles » Platforms, Frameworks & Libraries » Windows Presentation Foundation » General

WPF Diagram Designer - Part 3

By sukram, 29 Feb 2008

Y % K F K 49519 votes)

Download demo project - 170.17 KB

= Ipeibals Dresignes

@ bk ladl (d
= @ - -
Ry O
g

1
i
O |
|
X

® Part 1 - Features: Drag, resize and rotate items on a canvas
® Part 2 - Features: Toolbox, drag & drop, rubberband selection

Introduction

There exist different techniques to connect items in a typical diagram designer. One approach is to provide
connection elements in a toolbox which the user can drop on the designer canvas and then drag the
endpoints to the source and sink items. Another approach is that the items themselves provide connection
points from which the user can drag a connection to other items. This second strategy is the one I will
explain in this article.

www.codeproject.conVArticles/23871/WPF-Diagram-Desig ner-Part-3?display=Print 17

13-6-16 WPF Diagram Designer - Part 3 - CodeProject

I'm sure you know how to connect items in a designer application, but still I will illustrate this in some
detail to make it easier to identify which class is involved in which activity.

If you move your mouse over a designer item four

visual elements of type Connector will appear at each O

side of the item. This default layout is defined in the
ConnectorDecoratorTemplate and is part of the o -
default DesignerItem template. Now move your
mouse over one of the connectors and the cursor
changes to a cross.

0

If you now click the left mouse button and start

dragging, the connector will create an adorner of type : .
ConnectorAdorner. This adorner is responsible for 1 \ -
drawing the path between the source connector and

the current mouse position. While dragging, the

adorner continuously does hit-testing against the S)
DesignerCanvas to check if the mouse is over a

potential sink connector.

If you release the mouse button over a Connector
element the ConnectorAdorner creates a new
Connection instance and adds it to the designer
canvas' children. If the mouse button is released
elsewhere no Connection instance is created.

Like the DesignerItem the Connection implements
the ISelectable interface. If a Connection instance

is selected you will see two rectangles at each end of
the connection path. They belong to an adorner of type = =

ConnectionAdorner which automatically shows up
when a Connection instance gets selected.

Note: A ConnectorAdorner belongs to a Connector
and a ConnectionAdorner belongs to a Connection.

Each of the two rectangles represents a Thumb control
and they are part of a ConnectionAdorner instance
which allows you to modify existing connections.

E.g. If you drag the sink thumb of the connection to
another connector and release it there, you can re-
connect the existing connection.

Note: The ConnectorAdorner and the
ConnectionAdorner are similar in what they do, but
they differ in how they make use of an Adorner class.

www.codeproject.conVArticles/23871/WPF -Diagram-Desig ner-Part-3?display=Print

13-6-16 WPF Diagram Designer - Part 3 - CodeProject

The default layout of the connectors is defined in the ConnectorDecoratorTemplate, which is part of
the DesignerItem's template:

<ControlTemplate x:Key="ConnectorDecoratorTemplate" TargetType="{x:Type Control}">
<Grid Margin="-5">
<s:Connector Orientation="Left" VerticalAlignment="Center"”
HorizontalAlignment="Left"/>
<s:Connector Orientation="Top" VerticalAlignment="Top"
HorizontalAlignment="Center"/>
<s:Connector Orientation="Right" VerticalAlignment="Center"
HorizontalAlignment="Right"/>
<s:Connector Orientation="Bottom" VerticalAlignment="Bottom"
HorizontalAlignment="Center"/>
</Grid>
</ControlTemplate>

A Connector class has a Position property which specifies the relative position of the connector's centre
point to the designer canvas. Because the Connector class implements the INotifyPropertyChanged
interface it can notify clients that a property value has changed. Now when a designer item changes its
position or its size the connector's LayoutUpdated event is automatically fired as part of the WPF layout
procedure. And this is when the Position property gets updated and itself fires an event to notify clients.

public class Connector : Control, INotifyPropertyChanged

{
private Point position;
public Point Position
{
get { return position; }
set
{
if (position != value)
{
position = value;
OnPropertyChanged("Position");
}
}
}
public Connector()
{
// fired when Layout changes
base.LayoutUpdated += new EventHandler(Connector_LayoutUpdated);
}
void Connector_LayoutUpdated(object sender, EventArgs e)
{
DesignerCanvas designer = GetDesignerCanvas(this);
if (designer != null)
{
//get center position of this Connector relative to the DesignerCanvas
this.Position = this.TransformToAncestor(designer).Transform
(new Point(this.Width / 2, this.Height / 2));
}
}
}

Now we switch over to the Connection class. The Connection class has a Source and a Sink property,

www.codeproject.conVArticles/23871/WPF -Diagram-Desig ner-Part-3?display=Print 37

13-6-16 WPF Diagram Designer - Part 3 - CodeProject

both of type Connector. When the source or sink connector is set we immediately register an event
handler that listens to the PropertyChanged event of the connector.

public class Connection : Control, ISelectable, INotifyPropertyChanged

{
private Connector source;
public Connector Source
{
get
{
return source;
}
set
{
if (source != value)
{
if (source != null)
{
source.PropertyChanged -=
new PropertyChangedEventHandler(OnConnectorPositionChanged);
source.Connections.Remove(this);
}
source = value;
if (source != null)
{
source.Connections.Add(this);
source.PropertyChanged +=
new PropertyChangedEventHandler(OnConnectorPositionChanged);
}
UpdatePathGeometry();
}
}
}
void OnConnectorPositionChanged(object sender, PropertyChangedEventArgs e)
{
if (e.PropertyName.Equals("Position"))
{
UpdatePathGeometry();
}
}
}

This snippet shows only the source connector, but the sink connector works analogous. The event handler
finally updates the connection path geometry, that's it.

The default layout and the number of connectors may not always fit your needs. Take the following
example of a triangle shaped Path with a customized DragThumbTemplate (see the previous article on
how to customize the DragThumbTemplate).

<Path IsHitTestVisible="False"
Fill="Orange"
Stretch="Fill"
Data="M 0,10 5,0 10,10 Z2">

www.codeproject.conVArticles/23871/WPF -Diagram-Desig ner-Part-3?display=Print 4/7

13-6-16 WPF Diagram Designer - Part 3 - CodeProject

<s:DesignerItem.DragThumbTemplate>
<ControlTemplate>
<Path Fill="Transparent"” Stretch="Fill"
Data="M 0,10 5,0 10,10 Z2"/>
</ControlTemplate>
</s:DesignerItem.DragThumbTemplate>
</Path>

The problem here is that the connectors are only visible when the mouse is over the item. If you try to
reach the connector on the left or right side you may have some problems. But the solution comes in the
form of an attached property named DesignerItem.ConnectorDecoratorTemplate that lets you
define custom templates for the connector decorator. The usage is best explained with an example:

<Path IsHitTestVisible="False"
Fill="Orange"
Stretch="Fill"
Data="M 0,10 5,0 10,10 Z">
<l-- Custom DragThumb Template -->
<s:DesignerItem.DragThumbTemplate>
<ControlTemplate>
<Path Fill="Transparent"” Stretch="Fill"
Data="M 0,10 5,0 10,10 Z2"/>
</ControlTemplate>
<s:DesignerItem.DragThumbTemplate>
<!-- Custom ConnectorDecorator Template -->
<s:DesignerItem.ConnectorDecoratorTemplate>
<ControlTemplate>
<Grid Margin="0">
<s:Connector Orientation="Top" HorizontalAlignment="Center"
VerticalAlignment="Top" />
<s:Connector Orientation="Bottom" HorizontalAlignment="Center"
VerticalAlignment="Bottom" />
<UniformGrid Columns="2">
<s:Connector Grid.Column="0" Orientation="Left" />
<s:Connector Grid.Column="1" Orientation="Right"/>
</UniformGrid>
</Grid>
</ControlTemplate>
</s:DesignerItem.ConnectorDecoratorTemplate>
</Path>

www.codeproject.conVArticles/23871/WPF -Diagram-Desig ner-Part-3?display=Print 57

13-6-16 WPF Diagram Designer - Part 3 - CodeProject

This solution provides a better result but it still needs some tricky layout, which may not always be feasible.

For this I provide a RelativePositionPanel that allows you to position items relative to the bounds of
the panel. The following example positions three buttons on a RelativePositionPanel by setting the
RelativePosition property, which is an attached property.

<c:RelativePositionPanel>
<Button Content="TopLeft" c:RelativePositionPanel.RelativePosition="0,0"/>
<Button Content="Center" c:RelativePositionPanel.RelativePosition="0.5,0.5"/>
<Button Content="BottomRight" c:RelativePositionPanel.RelativePosition="1,1"/>
</ControlTemplate>

This panel can be quite handy when it comes to arrange connectors:

<Path IsHitTestVisible="False"

Fill="Orange"

Stretch="Fill"

Data="M 9,2 11,7 17,7 12,10 14,15 9,12 4,15 6,10 1,7 7,7 Z">
<l-- Custom DragThumb Template -->
<s:DesignerItem.DragThumbTemplate>

<ControlTemplate>
<Path Fill="Transparent" Stretch="Fill"
Data="M 9,2 11,7 17,7 12,10 14,15 9,12 4,15 6,10 1,7 7,7 Z"/>
</ControlTemplate>
</s:DesignerItem.DragThumbTemplate>
<!-- Custom ConnectorDecorator Template -->
<s:DesignerItem.ConnectorDecoratorTemplate>
<ControlTemplate>
<c:RelativePositionPanel Margin="-4">
<s:Connector Orientation="Top"
c:RelativePositionPanel.RelativePosition="0.5,0"/>
<s:Connector Orientation="Left"
c:RelativePositionPanel.RelativePosition="0,0.385"/>
<s:Connector Orientation="Right"
c:RelativePositionPanel.RelativePosition="1,0.385"/>
<s:Connector Orientation="Bottom"
c:RelativePositionPanel.RelativePosition="0.185,1"/>
<s:Connector Orientation="Bottom"
c:RelativePositionPanel.RelativePosition="0.815,1"/>
</c:RelativePositionPanel>
</ControlTemplate>
</s:DesignerItem.ConnectorDecoratorTemplate>
</Path>

In the next article I will concentrate on commands:

® (Cut, copy, paste
www.codeproject.conVArticles/23871/WPF -Diagram-Desig ner-Part-3?display=Print

6/7

13-6-16 WPF Diagram Designer - Part 3 - CodeProject
Grouping of items

Align items

Z-ordering (bring to front, send to back,...)

24 February, 2008 -- Original version submitted

This article, along with any associated source code and files, is licensed under The Code Project Open
License (CPOL)

sukram

Austria =

Image
Unavailable

No Biography provided

Comments and Discussions

124 messages have been posted for this article Visit
http://www.codeproject.com/Articles/23871/WPF-Diagram-Designer-Part-3 to post and view
comments on this article, or click here to get a print view with messages.

Permalink | Advertise | Privacy | Mobile Article Copyright 2008 by sukram
Web04 | 2.6.130611.1 | Last Updated 29 Feb 2008 Everything else Copyright © CodeProject, 1999-2013
Terms of Use

www.codeproject.conVArticles/23871/WPF -Diagram-Desig ner-Part-3?display=Print 77

