13-6-16 WPF Diagram Designer - Part 4 - CodeProject

09l CODE

PROJECT

Articles » Platforms, Frameworks & Libraries » Windows Presentation Foundation » General

WPF Diagram Designer - Part 4

By sukram, 26 Mar 2008

Y W W & K 495 (165 votes)

Download source - 72.27 KB

B i * On B 2 3 dhrowets ({oow dirowed - Badwerd
el 5 <4 Topy
Mew o Pt Pz X Delets Tosk il g vetical fumgrmip T ToFronk 4 To Back

COLEN
(OREE
@ ¢

® Part 1 - Drag, resize and rotate items on a canvas
® Part 2 - Toolbox, drag & drop, rubberband selection
® Part 3 - Connecting items

www.codeproject.conVArticles/24681/WPF-Diagram-Desig ner-Part-4?display=Print

15

13-6-16 WPF Diagram Designer - Part 4 - CodeProject

In this article, I have added the following commands:

Open, Save

Cut, Copy, Paste, Delete

Print

Group, Ungroup

Align (Left, Right, Top, Bottom, Centered horizontal, Centered vertical)
Distribute (horizontal, vertical)

Order (Bring forward, Bring to top, Send backward, Send to back)

Note: I will only support Visual Studio 8.0 on .NET 3.5 !

The way I use WPF commands is straight forward, as described in the WPF SDK documentation, no extra
infrastructure.

Grouping

My first approach to group items was to use a DesignerItem object that should work as a group
container. For this, I created a new instance of the DesignerItem class with a Canvas object as its
content. On this canvas, I planned to position the designer items to be grouped. But before I could put the
items on the group canvas, I had to remove them from the designer canvas because in WPF an element
cannot be a child of two elements. If you try, you will get an InvalidOperationException with the
following message:

"Specified element is already the logical child of another element.
Disconnect it first.”

So I removed the items from the designer canvas and put them on the group canvas. Now it is interesting
to understand what WPF did behind the scenes: as soon as I removed an item from the designer canvas,
its template was unloaded and when I added it to the group canvas, a new template was loaded. Now do
you remember the last article where I showed you how to connect designer items? There I connected items
via connectors, connectors that were part of the designer item's template, a template that is lost as soon
as I remove the item from the designer canvas. You see the problem? I have connected designer items via
their templates and so the designer item itself has absolutely no information about existing connections.
All connection related information is isolated in the designer item's template.

Imagine a database diagram where the designer item's content is a database table. The table would never

recognize any relation to other tables. One solution would be to tunnel the information from the template
to the designer item to the table. A better solution is to redesign the application and divide the whole bulk
into separate parts, e.g.

® Template (view)
® Designer item (view model)
® Database table (model)

I will not start redesigning this code in the midst of an article, instead I will ride this 'view-only-approach’
www.codeproject.conVArticles/24681/WPF-Diagram-Desig ner-Part-4?display=Print

13-6-16 WPF Diagram Designer - Part 4 - CodeProject

until the end of this article. The more painful this ride is, the more welcome a better solution will be. (I will
cover a model backed designer in a future article.)

So let's continue. An alternative approach to group designer items uses the following interface:

public interface IGroupable

{
Guid ID { get; }
Guid ParentID { get; set; }
bool IsGroup { get; set; }
}

The idea is that the DesignerItem class has to implement this interface to become part of the grouping
infrastructure, which works like this:

® Create a new DesignerItem object with a unique ID and with its IsGroup property set to true
® For each group member, set the ParentID to the ID of the group parent.

This is simple, but the real work happens when I modify items (Select, Move, Resize, Copy, ...); with each of
these operations I have to consider an item's group status. Sounds like a lot of work, but it's not as painful
as it would be without LINQ. For this, I have wrapped most of the work into the SelectionService class.

Note: The Connection class does not implement the IGroupable interface and so cannot directly be
part of a group, but indirectly - since a connection is always attached to an item. This gives me the
flexibility to re/connect items, no matter if they are members of a group or not.

Save

To save a diagram, I have chosen to use a combination of XML and XAML. For the DesignerItem related
data I use XML, and the content is serialized to XAML. Here again, please note that serializing a designer
item's content to XAML only preserves the visual aspects and thus is used as a short term solution only. To
create the XML file, I use LINQ. Since this is the first time I experiment with LINQ, don't expect it to be
necessarily the "right" way to use it.

Here is an example of how I serialize designer items:

XElement serializedItems = new XElement("DesignerItems",

from item in designerItems

let contentXaml = XamlWriter.Save(((DesignerItem)item).Content)

select new XElement("DesignerItem",
new XElement("Left", Canvas.GetLeft(item)),
new XElement("Top", Canvas.GetTop(item)),
new XElement("Width", item.Width),
new XElement("Height", item.Height),
new XElement("ID", item.ID),
new XElement("zIndex", Canvas.GetZIndex(item)),
new XElement("IsGroup", item.IsGroup),
new XElement("ParentID", item.ParentID),
new XElement("Content", contentXaml)
)

)

The 1let keyword allows you to store the result of a sub-expression in a variable that can be used in a
subsequent expression. Here I use this feature to save the serialized content in the contentXaml variable,
which I use a few lines below. Finally, I use the Save method of the XElement class to store the element's
underlying XML tree:

www.codeproject.conVArticles/24681/WPF-Diagram-Desig ner-Part-4?display=Print 3/5

13-6-16 WPF Diagram Designer - Part 4 - CodeProject

XElement.Save(fileName)

Open

When loading a diagram from an XML file, we have to start with the designer items because we need their
connectors to create connections. We have learned that connectors are part of the item's template, so the
designer item has to load its template before we can continue. Fortunately the Control class provides the
ApplyTemplate() method which forces the WPF layout system to load the control template so that its
parts can be referenced.

In the previous article, I provided a mechanism to customize the ConnectorDecorator template, which
allows you to freely position connectors around a designer item. That solution did apply the customized
template after the designer item's Loaded event was fired and that event is not fired before the item
becomes visible on your screen. Now the screen cannot be redrawn before the command has ended. So
the only way is to set the customized ConnectorDecorator template explicitly within the Open
command, see the SetConnectorDecoratorTemplate(item) method.

Note: When defining customized connectors, you must set the x:Name property. A connection uses the
name to identify its source and sink connectors.

<s:Connector x:Name="Left" Orientation="Left"
VerticalAlignment="Center" HorizontalAlignment="Left"/>

Copy, Paste, Delete, Cut
The Copy and Paste commands work analogous to the Open and Save commands, except that they are
applied only to the selected items and that they read and write the serialized content to the Clipboard.

The Delete command simply removes all selected items from the designer canvas' Children collection,
and the Cut command finally is a combination of Copy and Delete command.

Align, Distribute
Not much to say about these commands, except that the reference item for alignment is the item that was

selected at first (also called primary selection). This works only when you select items with the
LeftMouseButton + Ctrl, or LeftMouseButton + Shift, but not if you use rubberband selection.

Order

The Panel class (from which Canvas is derived) provides an attached property named ZIndex that
defines the order on the z-plane in which the children appear, so we only have to change that property to
bring an item forward or backward.

e 25" March, 2008 -- Original version submitted

www.codeproject.conVArticles/24681/WPF-Diagram-Desig ner-Part-4?display=Print 4/5

13-6-16 WPF Diagram Designer - Part 4 - CodeProject

This article, along with any associated source code and files, is licensed under The Code Project Open
License (CPOL)

sukram

Austria =

Image
Unavailable

No Biography provided

Comments and Discussions

& 275 messages have been posted for this article Visit
http://www.codeproject.com/Articles/24681/WPF-Diagram-Designer-Part-4 to post and view
comments on this article, or click here to get a print view with messages.

Permalink | Advertise | Privacy | Mobile Article Copyright 2008 by sukram
Web03 | 2.6.130611.1 | Last Updated 26 Mar 2008 Everything else Copyright © CodeProject, 1999-2013
Terms of Use

www.codeproject.conVArticles/24681/WPF-Diagram-Desig ner-Part-4?display=Print 5/5

