
CUSTOMER

Java Persistence API Models as OData Services
Document Version: - 2013-06-07

JPA Models as OData Services

Table of Contents
1 Enabling JPA Models as OData Services. 3
1.1 OData JPA Processor Library Glossary. 4
1.2 OData JPA Processor Library Supported Features. 5
1.3 Creating Web Application Project for Transforming JPA Models into OData Services in Maven. 11
1.4 Redefining Metadata. 15
1.5 Adding Function Imports to OData Services. 18

2
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Table of Contents

1 Enabling JPA Models as OData Services
This section provides information on how to enable JPA models as OData Services and the related topics.

OData JPA Processor Library is a Java library for transforming Java Persistence API (JPA) models based on JPA
specification into OData services. It is an extension of OData Library (Java) to enable Java developers to convert
JPA models into OData services with minimal or no code.

OData JPA Processor Library has two main parts, Core and the API. API provides extension points using which
you are allowed to customize / redefine the metadata and the runtime. The graphic below gives a high level
overview of some of the important components involved in transforming JPA models into OData services.

Whenever a request is sent from the client, it passes through the OData Library (Java), where the request is
processed and deserialized before it is sent to the OData JPA Processor Library. The OData Entities / Java
Objects are processed and JPQL statements are sent to the JPA layer. JPA is defined in the javax.persistence
package. You are free to use any of the JPA Providers (like Eclipse, Hibernate, OpenJPA and so on).

In this Section

● JPA Glossary

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 3

● OData JPA Processor Library Supported Features
● Creating a New OData Project in Maven
● Redefining the Metadata
● Adding Function Imports as OData Services

1.1 OData JPA Processor Library Glossary

Terminology for enabling JPA Models as OData Services Topic

The following provides an overview of the main terms and their definition as used in enabling JPA Models as OData
services:

Table 1: Terms and Definitions
Terms Definitions

complex type (synonym: ComplexType) Structured types consisting of a list of properties but
with no key. Can only exist as a property of a containing
entity or as a temporary value.

entity data model (EDM) Set of concepts that describe the structure of data
regardless of its stored form.

function import (synonym: FunctionImport) Describes a service operation in an entity data model.

metadata document Complete XML representation of an Entity Data Model
(1:1 relation).

navigation property (synonym: NavigationProperty) Property of an entry that represents a link from this
entry to one or more related entries. A navigation
property is not a structural part of the entry to which it
belongs.

Open Data Protocol (OData) Standard Web protocol for querying and updating data.
It applies and builds upon Web technologies such as
HTTP, Atom Publising Protocol, and JSON to provide
access to information from a variety of applications.
For more information, see OData.

OData Library (Java) It is a Java library which enables business applications
to expose and consume data using OData protocol.

OData JPA Processor Library It is a Java library (built on top of OData Library (Java))
for transforming Java persistence models based on
JPA specifications into OData services with minimal
code.

OData service Develop OData services from JPA models using OData
JPA Processor Library.

service document Top-level XML representation of a consumption model
(1:1 relation). It contains a list of entity sets. A

4
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

http://www.odata.org/

Terms Definitions

document that describes the location and capabilities
of one or more entity sets.

Related Links
http://www.sapterm.com/
http://www.odata.org

1.2 OData JPA Processor Library Supported Features

OData JPA Processor Library supported features

This section contains the list of JPA features and the corresponding OData features that are supported when a
Java Persisitence Model is converted to an OData service using OData JPA Processor Library.

JPA Feature Description OData Feature Description Status

Persistence Unit
name

JPA Persistence Unit is
a logical grouping of
user defined
persistable classes
(entity classes,
embeddable classes
and mapped
superclasses) with
related settings.

Namespace Namespace is a name that is defined
on the schema and is subsequently
used to prefix identifiers to form the
namespace qualified name of a
structural type.

Naming Convention - The name of the
namespace is same as the
Persistence Unit Name.

Support
ed

Entity

Annotated with
@Entity

An entity class is a
user defined Java class
whose instances can
be stored in the
database.

EntityType An EnityType has an unique identity,
an independent existance and it forms
the operational unit of consistency.

Naming Convention - The name of an
OData entity is same as the JPA
Model Entity Class name.

Support
ed

Entity Key

Annotated with:

● @Id
● @EmbeddedId
● @IdClass

Every entity object
that is stored in the
database has a
primary key. Once
assigned, the primary
key cannot be
modified. It represents
the entity object as
long as it exists in the
database. A primary
key can be simple as
well as composite.

Key An OData entity type must define an
entity key or derive from a base type.

Naming Convention -

● For JPA simple primary key, the
key name is derived based on the
name of the field which is
annotated with @Id and the first
character of the field name is
taken in upper case.

● For JPA complex primary key
@EmbeddedId, the field of the

Support
ed

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 5

http://www.sapterm.com/
http://www.odata.org

JPA Feature Description OData Feature Description Status

Simple primary key is
annotated with @Id. A
complex primary key
can be annotatted with
@EmbeddedId or
@IdClass

complex type in JPA is expanded
as simple EDM properties and
references to those properties
are created. The name of the key
is derived as explained for simple
primary key, above.

● For JPA complex primary key
@IdClass, there is a set of fields
defined in the entity class which
are annotated with @Id.
References to all the properties
are created as key properties. The
name of the key is derived as
explained for simple primary key,
above.

Property

Annotated with

● @Column
● @AttributeOver

rides
● @Embedded
● @EmbeddedId

Defines the attributes
of an entity. Properties
are of three types:

● Single valued
which includes
simple java data
types

● Multivalued which
includes Collection
types from
package java.util
(ArrayList, Vector,
Stack, LinkedList,
ArrayDeque,
PriorityQueue,
HashSet,
LinkedHashSet,
TreeSet , Map
types from
package java.util:
HashMap,
Hashtable,
WeakHashMap,
IdentityHashMap,
LinkedHashMap,
TreeMap and
Properties and
Arrays (including
multi dimensional
arrays)).

● Enum Types

Property An Entity type can have one or more
properties of scalar or complex type.

Naming convention - The name of the
EDM properties are derived based on
the name of the field in the JPA Entity
class. The first character of the field
name is taken in upper case.

● All single valued JPA attributes
are supported.

● Only multivalued properties
representing an association are
supported.

● Enums are not supported.

Partially
Support
ed

6
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

JPA Feature Description OData Feature Description Status

Navigation
Property

Annotated with

● @ManyToOne
● @OneToMany
● @ManyToMany
● @OneToOne

Defines the
association between
two JPA entites.

Navigation
Property

Navigation Property defines non-
structural properties on an entity that
allows navigation from one entity to
another via a relationship. Navigation
properties are created for each
association object in the JPA entity
class, provided the association is
consistent.

Naming convention - The name of the
navigation property is derived based
on the name of the target entity and
the details (in the form, <Name of
the target enitiy>+Details).
The ToRole and FromRole of the
navigation is the same as the role
names of the association. The
relationship name is the fully qualified
name of the related association, that
is ,
<namespace>.<association_name
>.

Support
ed

EmbeddedTypes

Annotated with

● @Embeddable
● @Embedded

Embeddable classes
are user defined
persistable classes
that function as value
types.

Complex Type A complex type provides a
mechanism to create declared
properties with a rich structured
payload.

Naming convention - The name of the
complex type is same as the JPA
Class name representing the
complex type.

Support
ed

Association

Annotated with

● @ManyToOne
● @OneToMany
● @ManyToMany
● @OneToOne

Entity relationship
define the relationship
between two entities.
Realtionships may be
unidirectional or
bidirectional.

Association An association is a named
independent relationship between two
EntityType definitions. It can support
different multiplicities at the two
ends.

Naming Convention - The name of the
association is derived based on the
names of one of the EDM entity type
and the second entity type (in this
form, <name of one of the edm
entity type>_<name of the
second entity type>).

Note

Partially
Support
ed

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 7

JPA Feature Description OData Feature Description Status

When a association has an
additional annotation
@JoinColumn and it does not have
the Column or
ReferencedColumnName
parameter, then the association is
not created.

Association
End

For a given association, the End
defines one side of the relationship. It
defines what type is partcipating in
the realtionship (multiplicity or the
cardinality) and if there is any
operation associations like Cascade
delete.

Naming convention - The association
end's name is derived from the fully
qualified name of the participating
entity type, that is,
<namespace>.<entity type
name>

Support
ed

Association
End Role

Naming convention - The name of the
association end role is derived from
the name of the corresponding entity
type.

Support
ed

Referential
Constraint

Annotated with

● @JoinColumn
(name =
foreign
property in the
dependent
side,
referencedColu
mnName =
primary key in
the principal
entity)

● @JoinColumns
● @JoinTable

● @JoinColumn: Is
used to specify a
mapped column
for joining an
entity association

● @JoinColumn:
Defines mapping
for the composite
foreign keys. This
annotation groups
JoinColumn
annotations for
the same
relationship.

● @JoinTable: It is
used in the
mapping of
associations. It is
specified on the

Referential
Constraint

Referential Constraint element can
exist between the key of one entity
type and the primitive property of
another associated entity type. The
two entity types are in a principal
dependent relation. The referential
constraint must specify which end is
the principal role and which end is the
dependent role. The principal role
name and the dependent role name is
the same as the role name in the
association. The property references
in the principal and dependent role
are the same as OData property
names.

● If there is no @JoinColumn
specified with an association, no
referential constraint is created.
This means the association is still

Partially
Support
ed

8
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

JPA Feature Description OData Feature Description Status

owning side of an
association .

created but without a referential
constraint.

● For @JoinColumn without the
name or referenced Column
name parameter, no referential
constraint is created. The
association is also not created.

● @JoinColums- not supported
● @JoinTable- not supported

EntityContaine
r

Entity Container is conceptually
similar to a database or data source. It
groups entityset, associationset and
function import child elements that
represent a data source.

Naming convention - The name of the
EntitiyContainer is derived based the
names of the persistence unit name
and the container (in this form
Persistence Unit Name
+Container).

Support
ed

EntitySet Entity Set is a named set that can
contain instances of a specified Entity
type element.

Naming convention - The name of the
entity set is derived based on the
names of the Association Entity Type
and Set (in this form, <Associated
Entity Type+s>). The entity type
name is the fully qualified name of the
entity type, that is,
<namespace>.<entity type
name>.

Support
ed

Association Set An association set contains
relationship instances of the specified
association. The association specifies
the entity type elements of the two
end points, where as the association
set specifies the entity set element
that corresponds to these enity types.

Naming convention - The name of an
association set is derived based on
the names of the association name
and set (in this form <Association

Support
ed

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 9

JPA Feature Description OData Feature Description Status

name>+Set). The end roles are the
same as that of the association and
the end entity set names are same as
the corresponding entity set name.
The association name is the fully
qualified nameof the association, that
is, <namespace>.<association
name>

Custom Operation Java Methods
annotated with
@FunctionImport,
@Parameter can be
transformed into
OData Function
Imports.

Function
Import

Naming Convention - By default the
Java method name is taken as the
Function Import name. However, this
can be overriden by the Java
annotation attribute "name" of
@FunctionImport.

For example:
@FunctionImport(name="Process")
int process(){ }

Support
ed

@Transient Fields in a JPA Entity
can be annotated with
@Transient. Such
fields in the JPA model
is not to be persisted
in the database. They
are used for internal
logic and processing.

Not
Support
ed

Entity Inheritence JPA Entity B extends
JPA Entity A.

Base Type Not
Support
ed

Runtime

The list of runtime features that are supported / not supported is given in the table.

OData Feature Status

$orderby Supported

$top Supported

$skip Supported

$filter Supported

$inlinecount Supported

$format Supported

$select Supported

$expand Supported

10
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

OData Feature Status

$count Supported

$value Not Supported

$links Not Supported

Custom Query Options Not Supported

1.3 Creating Web Application Project for Transforming JPA
Models into OData Services in Maven

Information on creating a web applicaion project for transforming JPA models into OData services in Maven using
OData JPA Processor Library.

Procedure on how to create a web applicationin in Maven for transofrming JPA Models into OData Services using
OData JPA Processor Library is provided in this section.

The table gives the list of Maven dependencies you need to include in the POM.xml of your application.

Note
The following dependencies are applicable for an application using ECLIPSELINK as the JPA Provider and
HSQLDB as the database. However, you are free to use any JPA provider (like Hibernate,OpenJPA and so on)
and database of your choice.

Group ID Artifact ID Version (Tested)

com.sap.core.odata com.sap.core.odata.api 0.4.0

com.sap.core.odata com.sap.core.odata.core 0.4.0

javax.servlet servlet-api 2.5

org.apapche.cxf cxf-rt-frontend-jaxrs 2.7.0

org.slf4j slf4j-api 1.7.1

org.eclipse.persistence eclipselink 2.1.2

org.eclipse.persistence javax.persistence 2.0.3

org.hsqldb hsqldb 1.8.0.10

com.sap.core.odata com.sap.core.odata.processor.core 0.3.0

com.sap.core.odata com.sap.core.odata.processor.api 0.3.0

com.sap.core.odata com.sap.core.odata.api.annotation 0.3.0

1. Create a Dynamic Web Application project from scratch:
a) In the command prompt, enter the maven command given here (change the DgroupId and DartifactId as

per your requirement)

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 11

mvn archetype:generate -DgroupId=foo -DartifactId=salesorderprocessing.app -
DarchetypeArtifactId=maven-archetype-webapp

Maven generates the file system structure for a web application project including a basic POM.xml. This
step is completed by creating a Java source folder.

b) Create a folder by name 'Java' in the path 'src/man/'.
2. Tailor POM.xml - POM.xml should be modified for adding dependencies like OData Library (Java) and OData

JPA Processor Library and configuring the Eclipse plugin for the generation of project files.
Open POM.xml and replace the existing content with the following:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>x.x.x</modelVersion>
 <artifactId>salesorderprocessing.app</artifactId>
 <packaging>war</packaging>
 <url>http://maven.apache.org</url>
 <build>
 <finalName>salesorderprocessing.app</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-eclipse-plugin</artifactId>
 <version>x.x</version>
 <configuration>
 <wtpversion>x.x</wtpversion>
 <projectNameTemplate>[artifactId]-[version]</projectNameTemplate>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>x.x.x</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <!-- OData Library (Java) Support -->
 <dependency>
 <groupId>com.sap.core.odata</groupId>
 <artifactId>com.sap.core.odata.api</artifactId>
 <version>x.x.x</version>
 </dependency>
 <dependency>
 <groupId>com.sap.core.odata</groupId>
 <artifactId>com.sap.core.odata.core</artifactId>
 <version>x.x.x</version>
 </dependency>
 <!-- required because of auto detection of web facet 2.5 -->
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>x.x</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxrs</artifactId>
 <version>x.x.x</version>
 </dependency>

12
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

 <!-- JPA Support -->
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>eclipselink</artifactId>
 <version>x.x.xversion>
 </dependency>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>x.x.xversion>
 </dependency>
 <dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>x.x.x.xversion>
 </dependency>
 <dependency>
 <groupId>com.sap.core.odata</groupId>
 <artifactId>com.sap.core.odata.processor.core</artifactId>
 <version>x.x.x</version>
 </dependency>
 <dependency>
 <groupId>com.sap.core.odata</groupId>
 <artifactId>com.sap.core.odata.processor.api</artifactId>
 <version>x.x.x</version>
 </dependency>
 </dependencies>
 <name>OData Processors - JPA Reference Scenario</name>
 </project>

3. Generate Eclipse Project - This generates the files to open the maven project inside Eclipse. Execute the
following maven command in the command prompt:

Code Syntax
mvn eclipse:clean eclipse:eclipse

As a result, Maven generates a .project and a .classpath file which can be imported to Eclipse. It should
appear as a Dynamic Web Application project which is ready to use and deployable to any web application
server.

4. Import Project into Eclipse:

a) Open the project created in Eclipse: Go to File Import General Exsiting Project into Workspace .

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 13

b) Click Next. In the Select Root Directory field, click browse and select the maven project folder you created
above, click OK.

c) Select the folder from the project list and click Finish.
5. JPA Implementation - In the web project, create persistence entities in the folder src/main/java by

annotating them with JPA annotations. Configure persistence entities using persistence.xml. The
configuration file should be placed under the folder src/main/resources/META-INF/.

6. Implement an OData Service - The project is now ready to expose OData services. Service Factory provides a
means for initializing Entity Data Model (EDM) Provider and OData JPA Processors with OData JPA Contexts.
Following are the steps for implementing a Service Factory:

a) Choose the project folder, go to context menu New Class .
b) In the Java Class window, enter the package and a name for the Java class.
c) Browse for ODataJPAServiceFactory in the Super Class field.

14
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

d) Declare persistence unit name as class variable. For example, private static final String
PUNIT_NAME = "persistenceUnitName";

e) Implement the abstract method initializeJPAContext in the factory class. Here is the code snippet:

ODataJPAContext oDataJPAContext= this.getODataJPAContext();
EntityManagerFactory emf = Persistence.createEntityManagerFactory(PUNIT_NAME);
oDataJPAContext.setEntityManagerFactory(emf);
oDataJPAContext.setPersistenceUnitName(PUNIT_NAME);

7. Configure the web application:
a) Configure the web application as shown below by adding the following servlet configuration to web.xml.

The Service factory which was implemented is configured in the web.xml of the ODataApplication as one
of the init parameters.

b) Replace <'com.sap.core.odata.processor.ref.JPAReferenceServiceFactory'> in the
following XML with the class name you created in the previous step:

<servlet>
 <servlet-name>JPARefScenarioServlet</servlet-name>
 <servlet-class>org.apache.cxf.jaxrs.servlet.CXFNonSpringJaxrsServlet</
servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>com.sap.core.odata.core.rest.app.ODataApplication</param-
value>
 </init-param>
 <init-param>
 <param-name>com.sap.core.odata.service.factory</param-name>
 <param-value>foo.SalesOrderProcessingFactory</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>JPARefScenarioServlet</servlet-name>
 <url-pattern>/<ServiceName>.svc/*</url-pattern>
</servlet-mapping>

In the <url-pattern> tag, change the <ServiceName> with user specific service name in the pattern provided.
8. Save the settings.

1.4 Redefining Metadata

Steps to redefine the metadata of the OData service created from the JPA models.

The OData services created from JPA models using OData JPA Processor Library derives the names for its
elements from Java Persistence Entity elements. These derived (default) names can be redefined using JPA EDM
mapping models. JPA EDM Mapping model can be used to redefine:

1. Schema Namespace Name
2. Entity Type Names
3. Entity Set Names
4. Property Names
5. Navigation Property Names
6. Complex Type Names

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 15

The OData JPA Processor Library applies certain naming rules to derive the names for the above OData elements
by default. Here are the rules:

1. Schema Namespace Name is derived from Java Persistence Unit Name.
2. Entity Type Names are derived from Java Persistence Entity Type Names.
3. Entity Set Names are derived from EDM Entity Type Names suffixed with character "s".
4. Property Names are derived from Java Peristence Entity Attribute Names. The initial character in the

property name is converted to an uppercase character.
5. Navigation Property Names are derived from Java Perisistence attribute name representing relationships.

The navigation property name is suffixed with the word "Details".
6. Complex Type Names are derived from Java Persistence Embeddable type names.

Note
The names generated by applying the above rules can be overriden using JPA EDM Mapping models. JPA EDM
mapping model can be maintaned as an XML document according to the schema.

1. Create a JPA EDM Mapping model XML according to the schema given in the screenshot below. In the XML,
maintain the mapping only for those elements that needs to be redefined. For example, if JPA Entity Type A's
name has to be redefined, then maintain an EDM name for the same.

16
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

2. Store the JPA EDM Mapping model XML in webapp folder of Java web application. Make sure the file is placed
under the applications root folder (relative to class path ../../WEB-INF/classes) when the application is
deployed on web server.

3. Pass the XML name into ODataJPAContext. In the method initializeODataJPAContext, pass the name of
the XML document as shown below:

oDataJPAContext.setJPAEdmNameMappingModel(<name of xml file>);

4. Compile, deploy and run the web application in a web server.

Example
Sample JPA EDM Mapping Model

<?xml version="1.0" encoding="UTF-8"?>
<JPAEDMMappingModel
 xmlns="http://www.sap.com/core/odata/processor/api/jpa/model/mapping" >
 <PersistenceUnit name="salesorderprocessing">
 <EDMSchemaNamespace>SalesOrderProcessing</EDMSchemaNamespace>
 <JPAEntityTypes>
 <JPAEntityType name="SalesOrderHeader">

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 17

 <EDMEntityType>SalesOrder</EDMEntityType>
 <EDMEntitySet>SalesOrders</EDMEntitySet>
 <JPAAttributes>
 <JPAAttribute name="soId">ID</JPAAttribute>
 <JPAAttribute name="netAmount">NetAmount</JPAAttribute>
 <JPAAttribute name="buyerAddress">BuyerAddressInfo</JPAAttribute>
 </JPAAttributes>
 <JPARelationships>
 <JPARelationship name="salesOrderItem">SalesOrderLineItemDetails</
JPARelationship>
 <JPARelationship name="notes">NotesDetails</JPARelationship>
 </JPARelationships>
 </JPAEntityType>
 <JPAEntityType name="SalesOrderItem">
 <EDMEntityType>SalesOrderLineItem</EDMEntityType>
 <EDMEntitySet>SalesOrderLineItems</EDMEntitySet>
 <JPAAttributes>
 <JPAAttribute name="liId">ID</JPAAttribute>
 <JPAAttribute name="soId">SalesOrderID</JPAAttribute>
 </JPAAttributes>
 <JPARelationships>
 <JPARelationship name="salesOrderHeader">SalesOrderHeaderDetails</
JPARelationship>
 <JPARelationship name="materials">MaterialDetails</JPARelationship>
 </JPARelationships>
 </JPAEntityType>
 </JPAEntityTypes>
 <JPAEmbeddableTypes>
 <JPAEmbeddableType name="Address">
 <EDMComplexType>AddressInfo</EDMComplexType>
 <JPAAttributes>
 <JPAAttribute name="houseNumber">Number</JPAAttribute>
 <JPAAttribute name="streetName">Street</JPAAttribute>
 </JPAAttributes>
 </JPAEmbeddableType>
 </JPAEmbeddableTypes>
 </PersistenceUnit>
</JPAEDMMappingModel>

1.5 Adding Function Imports to OData Services

Information on how to enable custom operations as function imports.

This section explains how to enable custom operations as function imports. Function imports are used to perform
custom operations on a JPA entity in addition to CRUD operations. For example, consider a scenario where you
would like to check the availability of an item to promise on the sales order line items. ATP check is a custom
operation that can be exposed as a function import in the schema of OData service.

1. Create a dependency to EDM Annotation Project. This is required to use the annotations that are defined in
the project.

<dependency>
 <groupId>com.sap.core.odata</groupId>
 <artifactId>com.sap.core.odata.api.annotation</artifactId>
 <version>x.x.x</version>
 <scope>provided</scope>
</dependency>

18
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

2. Create a Java class and annotate the Java methods implementing custom operations with Function Import
and Parameter Java annotations as shown below. Java methods can be created in JPA entity types and these
methods can be annotated with EDM annotations for function import.

package com.sap.core.odata.processor.ref;

import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.Persistence;
import javax.persistence.Query;

import com.sap.core.odata.api.annotation.edm.Facets;
import com.sap.core.odata.api.annotation.edm.FunctionImport;
import com.sap.core.odata.api.annotation.edm.FunctionImport.Multiplicity;
import com.sap.core.odata.api.annotation.edm.FunctionImport.ReturnType;
import com.sap.core.odata.api.annotation.edm.Parameter;
import com.sap.core.odata.api.annotation.edm.Parameter.Mode;
import com.sap.core.odata.api.annotation.edmx.HttpMethod;
import com.sap.core.odata.api.annotation.edmx.HttpMethod.Name;
import com.sap.core.odata.processor.ref.jpa.Address;
import com.sap.core.odata.processor.ref.jpa.SalesOrderHeader;
import com.sap.core.odata.processor.ref.jpa.SalesOrderItem;

public class SalesOrderHeaderProcessor {

 private EntityManager em;

 public SalesOrderHeaderProcessor() {
 em = Persistence.createEntityManagerFactory("salesorderprocessing")
 .createEntityManager();
 }

 @SuppressWarnings("unchecked")
 @FunctionImport(name = "FindAllSalesOrders", entitySet = "SalesOrders",
returnType = ReturnType.ENTITY_TYPE, multiplicity = Multiplicity.MANY)
 public List<SalesOrderHeader> findAllSalesOrders(
 @Parameter(name = "DeliveryStatusCode", facets = @Facets(maxLength =
2)) String status) {

 Query q = em
 .createQuery("SELECT E1 from SalesOrderHeader E1 WHERE
E1.deliveryStatus = '"
 + status + "'");
 List<SalesOrderHeader> soList = (List<SalesOrderHeader>) q
 .getResultList();
 return soList;
 }

 @FunctionImport(name = "CheckATP", returnType = ReturnType.SCALAR,
multiplicity = Multiplicity.ONE, httpMethod = @HttpMethod(name = Name.GET))
 public boolean checkATP(
 @Parameter(name = "SoID", facets = @Facets(nullable = false), mode =
Mode.IN) Long soID,
 @Parameter(name = "LiId", facets = @Facets(nullable = false), mode =
Mode.IN) Long lineItemID) {
 if (soID == 2L)
 return false;
 else
 return true;
 }

 @FunctionImport(returnType = ReturnType.ENTITY_TYPE, entitySet =
"SalesOrders")
 public SalesOrderHeader calculateNetAmount(
 @Parameter(name = "SoID", facets = @Facets(nullable = false)) Long
soID) {

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 19

 Query q = em
 .createQuery("SELECT E1 from SalesOrderHeader E1 WHERE E1.soId =
"
 + soID + "l");
 if (q.getResultList().isEmpty())
 return null;
 SalesOrderHeader so = (SalesOrderHeader) q.getResultList().get(0);
 double amount = 0;
 for (SalesOrderItem soi : so.getSalesOrderItem()) {
 amount = amount
 + (soi.getAmount() * soi.getDiscount() * soi.getQuantity());
 }
 so.setNetAmount(amount);
 return so;
 }

 @SuppressWarnings("unchecked")
 @FunctionImport(returnType = ReturnType.COMPLEX_TYPE)
 public Address getAddress(
 @Parameter(name = "SoID", facets = @Facets(nullable = false)) Long
soID) {
 Query q = em
 .createQuery("SELECT E1 from SalesOrderHeader E1 WHERE E1.soId =
"
 + soID + "l");
 List<SalesOrderHeader> soList = (List<SalesOrderHeader>) q
 .getResultList();
 if (!soList.isEmpty())
 return soList.get(0).getBuyerAddress();
 else
 return null;
 }

 /*
 * This method will not be transformed into Function Import Function Import
 * with return type as void is not supported yet.
 */
 @FunctionImport(returnType = ReturnType.NONE)
 public void process(
 @Parameter(name = "SoID", facets = @Facets(nullable = false)) Long
soID) {
 return;
 }

}

3. Create a Java class by implementing the interface
com.sap.core.odata.processor.api.jpa.model.JPAEdmExtension to register the annotated Java
methods.

public class SalesOrderProcessingExtension implements JPAEdmExtension {

 public void extend(JPAEdmSchemaView view){
 view.registerOperations(SalesOrderHeaderProcessor.class,null);
 }
}

Note
Use the method extend to register the list of classes and the methods within the class that needs to be
exposed as Function Imports. If the second parameter is passed null, then the OData JPA Processor
Library would consider all the annotated methods within the class for Function Import. However, you could

20
C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved.

JPA Models as OData Services
Enabling JPA Models as OData Services

also restrict the list of methods that needs to be transformed into function imports within a Java class by
passing an array of Java method names as the second parameter.

4. Register the class created in step 3 with ODataJPAContext as shown below. The registration can be done
during the initialization of ODataJPAContext in OData JPA Service Factory along with initializing persistence
unit name, entity manager factory instance and optional mapping model.

oDataJPAContext.setJPAEdmExtension((JPAEdmExtension) new
SalesOrderProcessingExtension());

Note
You must register the class because the OData JPA Processor Library should be informed about the list of
Java methods that it needs to process in a project. If we do not register, then OData JPA Processor Llibrary
have to scan all the classes and the methods in the Java project looking for EDM annotations. In order to
avoid such overload, it is mandatory to specificy the list of Java methods that shall be transformed into
function imports in a class.

JPA Models as OData Services
Enabling JPA Models as OData Services

C U S T O M E R
© 2013 SAP AG or an SAP affiliate company. All rights reserved. 21

www.sap.com/contactsap

© 2013 SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior
notice.
Some software products marketed by SAP AG and its distributors
contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated
companies ("SAP Group") for informational purposes only, without
representation or warranty of any kind, and SAP Group shall not be
liable for errors or omissions with respect to the materials. The only
warranties for SAP Group products and services are those that are
set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as
constituting an additional warranty.
SAP and other SAP products and services mentioned herein as well
as their respective logos are trademarks or registered trademarks
of SAP AG in Germany and other countries.
Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx for additional trademark information and notices.

http://www.sap.com/contactsap
http://www.sap.com/corporate-en/legal/copyright/index.epx
http://www.sap.com/corporate-en/legal/copyright/index.epx

	JPA Models as OData Services
	Table of Contents
	1 Enabling JPA Models as OData Services
	1.1 OData JPA Processor Library Glossary
	1.2 OData JPA Processor Library Supported Features
	1.3 Creating Web Application Project for Transforming JPA Models into OData Services in Maven
	1.4 Redefining Metadata
	1.5 Adding Function Imports to OData Services

	Copyright and Trademarks

