DDT Reference Documentation

w
- SENACOR

TECHNOLOGIES

January 20, 2008

Contents

at is Data Driven Testing?

(1.1 T'he Input Problem|
(1.2 Automating Input|.

(1.3 Help the Users Help You|
(1.4 Easy-to-use, collaborative data-driven testingl
2__DDT’s Architecturel
I Amafrixofvaluedo
2.2 ObjectMatrix and StringMatrixl
[2.3 Annotations for DelegatingObjectMap|
2.4 FEmbedded Annotations|.o
2.5 ObjectMap and BeanFiller{
[2.6 Beankiller row name syntaxl

[2.7 BeanAccessStrategy|

Uk W w W

© © W~ ot

g
DDT Reference Documentation SENACOR

TECHNOLOGIES

1 What is Data Driven Testing?

We all love seeing the green bar light up after a test run. It shows us that our code works as
we think it should, and we can confidently move on to the next step in our work. Of course,
nobody in their right mind will claim that every part of a program is equally well tested
for all possible scenarios. 100% test coverage is hardly possible, neither with line-by-line
coverage nor with all possible input values. 100% coverage is also unnecessary, if we choose
our tests carefully.

1.1 The Input Problem

It’s easy to write good tests if you are testing a small unit of functionality - perhaps one
method with one or two simple parameters, returning a simple value and possibly performing
some kind of side effect. But the more complex your application becomes, the more complex
your methods will inevitably become/[l]

Imagine, for example, you have a method that takes only a single parameter: The root of
a tree of objects, which represents a central part of your problem domain. Your method is
supposed to perform a simple operation with the data in this tree, and so you write a simple
test that calls the method and checks the result for correctness. You get a green bar and
move on.

But have you tested what happens if the data looks a little different? A value here or there
is (legitimately) null? Something in a list is not quite in the order which you expect?]
You come up with a slightly varied test setup and write another quick test to verify your
implementation.

In many cases, this is enough. But it does not scale. Rich, complex applications often
require equally rich and complex input. It is tedious at best, tiring and error-prone at worst
to manually write test cases for each interesting edge case or test setup you might need to
verify. Worse, you end up writing almost the same code for each test, because you are still
testing that one method, which you always call in the same way. The only things that change
between the test cases are the input data and the expected outcome that you are looking for.
People who are easily bored (many programmers are, I know I am) tend to become careless
with repetitive, tedious tasks. The result: You don’t test as much as you should or want to.
This is where data-driven testing comes in.

1.2 Automating Input

If the only thing that changes between test cases is setting up the input values and deter-
mining the expected outcome, the obvious solution is to just write the actual test code once,

LOf course, we all try to keep this complexity down, but most applications contain some inherently complex
business logic.

2This can easily happen with user-supplied data, for example, or if you read legacy data written by other
applications.

g
DDT Reference Documentation SENACOR

TECHNOLOGIES

and read the input and output data from some kind of data source. This can be something
as simple as opening a text file and reading a few lines with BufferedReader#readLine ().
So you whip up a quick file format, parse it into your test, and off you go to meet the green
bar.

Almost anybody’s first attempt at this will look somewhat like this: You open your data
source, you read line by line of data, slowly assembling the graph of objects you want to run
your test on:

myCbject.setFoo (file.read("foo")) ;
myCbject.setBar (file.read("bar")) ;
myObject.getFoo() .setBaz (file.read("baz")) ;

// and so on for 50 more lines...

That’s a whole lot of code, typing and fragile String literals to set up an object tree.
Wouldn’t it be great if you could just say fillBean(myObject)?

This is where DDT comes in.

1.3 Help the Users Help You

Your product is delivered, everybody is happy, until a few weeks later, you get a critical bug
report - something doesn’t quite work as the customer expected. You have a look at the bug
data and scratch your head: This input was never specified anywhere, no wonder it didn’t
work! But of course the customer insists that this is exactly what he meant when he wrote
the specifications.

How can you avoid this? In an ideal world, you’d get good example data from your customer
along with the specification. In the real world, you’ll be lucky if you even get moderately
coherent specs. You have to come up with your own test data, among other things. You
almost inevitably will miss something that the user expects to "just work”.

Why not make the customer give you usable test data? "Right”, you say, "as if those barely
literate MBAs could come up with exhaustive data sets, let alone in the format my test code
needs!”

You're right about that, of course. But they will still come and nag you with every single
bug, so it will quickly pay off to try and help them. Work together with them, helping them
not only with specifying what the application should do. Help them with giving you good
test data. Give them a tool they are familiar with and friendly descriptions of what you
need instead of The Matrix]

30f course your data files are perfectly logical and easy to understand. But you know that whenever you
point the customers at something as strange as a programmer’s text editor, their eyes glaze over and
they only see weird green falling letters, no matter what is actually on the screen.

o
DDT Reference Documentation SENACOR
TECHNOLOGIES
What tool do the users really know? Any suit worth his necktie knows how to type stuff
into Excel sheets. And to be honest, it is nice to quickly whip up some tables of data. Let’s
keep them happy inside their spreadsheets, and use this to our advantage.

This is also where DDT comes in.

1.4 Easy-to-use, collaborative data-driven testing

DDT combines the solutions to these two problems. It defines a clean, easy to understand
test format (the ObjectMatrix) and allows you to choose from a number of filetypes you can
read, including the Excel spreadsheet files your users love so much. It fills complex object
trees with a simple method call. It makes it easy and clean to read the ugly binary blobs
that Microsoft calls a file format[] And it even runs your tests for you, ensuring that for
each test case your code gets exactly the data it needs.

To just get up and running quickly, go have a look at the Quick Start tutorial. The reference
documentation you are reading right now will take you through all important concepts and
explain how to use all parts of DDT and how they work.

2 DDT’s Architecture

This chapter will introduce you to the way DDT is built.

2.1 A matrix of values

The core abstraction DDT uses is a matrix of data cells, each accessible by column and row
names. If this sounds suspiciously like a spreadsheet: That’s where it comes from.

narf | zorg
foo | A B
bar | C D
baz | E F

Unlike the spreadsheet, though, DDT never uses integer indices (except internally in the
Excel file reader). So in the above example cell A is addressed by (narf, foo), and cell D
by (zorg, bar).

Each cell can contain one value of an arbitrary type. Additionally each cell can have an
arbitrary number of annotations, which are simple key-value string pairs.

4We use Andy Khan’s excellent JExcel library for the actual reading. DDT provides a comfortable abstrac-
tion for test data on top of that, and on top of other file formats like CSV or Properties.

g
DDT Reference Documentation SENACOR

TECHNOLOGIES

2.2 ObjectMatrix and StringMatrix

All this is defined by the ObjectMatrix interface. This interface offers a number of accessor
methods to get values of the common types - numbers, dates, strings, booleans - and the
accompanying annotations, which are represented as java.util.Properties.

How these values and annotations are read and parsed is implementation-dependent. You
could easily provide your own implementation of ObjectMatrix to read some kind of esoteric
file format, read from a database or any other kind of data source.

DDT provides one implementation of this interface called DelegatingObjectMatrix. This
class defines all of ObjectMatrix’ operations on top of a simpler object of type StringMa-
trix.

StringMatrix is essentially the same as an ObjectMatrix, but it only returns string values.
DelegatingObjectMatrix then uses Transformers (see later section) to coerce these strings
into the desired typed values. This approach has the advantage that only a very simple
StringMatrix has to be implemented in order to read from various sources such as Excel
files, CSV files or Properties files. All the interesting stuff is already done in DelegatingOb-
jectMatrix.

If the string returned by the underlying StringMatrix is null or blank (i.e. empty or
whitespace only) all of DelegatingObjectMatrix’ accessor methods will return null as the
value for this cell. For historical reasons, only getString() will return an empty string in
this case. If you need the string to be null, or want to make the nulling of another type more
explicit, use the null annotation (see below).

The default implementation of StringMatrix is called (surprise!) DefaultStringMatrix
and provides yet more common operations. The only thing left to do to read alternate data
sources is to implement the interface StringMatrixReader, which basically defines a method
to read a string at position (z,y).

Most data sources like Excel and CSV files only provide integer-based indices to the columns
and rows, but we want name-based indices. DefaultStringMatrix reads these names from
one column and one row, respectively. By default, it uses the topmost row for column names
and the leftmost column for row names, but you can set this via constructor parameters.

2.3 Annotations for DelegatingObjectMap

DelegatingObjectMap understands the following annotations:

e null

e ref=otherColumnName: This is deprecated and only included for historical reasons. It
acts as a reference to the value of a cell in the same row, in the given column. This
will be replaced by a more general reference construct in a future version.

g
DDT Reference Documentation SENACOR

TECHNOLOGIES

e default-value=someValue: Use this as a row- or column-level annotation to specify
a default value for all cells. If no value is found in a cell itself, this default value will
be used instead. Use the null annotation to explicitly set a value to null.

2.4 Embedded Annotations

DelegatingObjectMatrix does not define where the annotations come from. With a database
or other file formats these may come from any kind of external metadata, for example. Usu-
ally when using DefaultStringMatrix, though, you will have an EmbeddedAnnotationMa-
trixDecorator sitting between the DefaultStringMatrix and the DelegatingQObjectMa-
trix.

This allows you to specify annotations inline, along with the cell values. The string in a cell
can be either:

value

Which is just the value you want to see. Or it can one of the following:

value~annotationkey
value~annotationkey=
value~annotationkey=annotation—value
~~annotationkey=annotation-value

The tilde (7) separates the "normal” cell value from the annotation, and the equals (=)
separates the annotation key from its (optional) value. If there is no equals sign, the value
will be an empty string. If there is the equals sign but no value, the annotation is dynamic,
see below for more details. The final form without cell value but starting with a double
tilde (77) is a global annotation. Put this form into the naming row or column and this
annotation will be shared by all cells in the matrix.

A cell can not only have its own annotation, but also inherit annotations from the containing
row or column:

Cl]|C2
R1 annotl=someValue | K | L (row 1)
R1 K | L (row 2)
R27annot2= X Y (row 3)
R2~annot3=value M | N (row 4)
R2annot4 C |D (row 5)
R3 annoth=value E |F (row 6)

The simplest case for this is for row "R3”: All cells in this row inherit the annotation
given in the naming column. So the cell (C1,R3) has the value "E” and the annotation
“annotb”—"value”.

o5
DDT Reference Documentation ~ SENACOR
TECHNOLOGIES
The row "R1” is more interesting: As you can see, there are actually three of them. In
this case, the rows are collapsed into one row, with all annotations being combined into one
Properties object, and only the values of the last column "winning”, unless there is one such
row without an annotation. Confusing? The example will make it all clear in a moment.

The other interesting thing is the dynamic annotation, marked by the trailing equals sign.
In this case, the value of the annotation will be taken from the cell in the column that we
will be looking at.

Alright, let’s look at the example.
The cell at (C1,R1):

e has the value "A”, because that is the value in row 2 - the only one without
annotations

e has the annotation "annot1”—”someValue”, because that annotation belongs to
the row "R1” as well, and is a fixed-value annotation. The value "K” in column
”C1” is discarded, because the rows are collapsed into row 2

e has the annotation "annot2”—"X"”, because annot2 is a dynamic annotation which
takes its value from the column we’re looking at, which is C1.

The cell at (C2,R1) is similar to (C1,R1), except:
e the value is "B”

e the annotation "annot2” now has the value 7Y”

The cell at (C1,R2)

7999 9999

e has the annotations "annot3”’—""” and "annot4”—

e has the value "C”. If no row is present without annotation markings, the last
matching row in the matrix wins. In this example, there are two rows (4 and 5)
with the name "R2”, so row 5 wins.

2.5 ObjectMap and BeanfFiller

ObjectMatrix can (and is) used for many different purposes, but most of the time it forms
the basis for DDT’s data-driven testing system. In this system, the dataset for one test is
one column in the matrix. This view is provided by ObjectMap, which is basically a one-
dimensional ObjectMatrix, locked to one row or one column. ObjectMatrix defines creator
methods for ObjectMaps.

The most interesting part of DDT (and the simplest to use, once you understand the matrix
and the annotations) is the BeanFiller, which sits on top of an ObjectMap and lets you fill
entire object graphs at will.

The central method is fillBean(beanName, bean), which takes your bean and fills it with
data from all rows (or columns) whose name starts with the given beanName.

o5
DDT Reference Documentation SENACOR
TECHNOLOGIES
The central method is fillBean(beanName, bean), which takes your bean and fills it with
data from all rows (or columns) whose name starts with the given beanName. There are a
few variations of this method, check out the Javadoc for more info.

2.6 BeanfFiller row name syntax

BeanFiller uses the row names it finds to build the object graph. The syntax is very similar
to the usual expression languages like PropertyUtils, JSF EL and JSP. Given the beanName
”fo0”, a tree could look like this:

foo.someField
foo.someOtherField
foo.aReference.yetAnotherField
foo.anArray[0] .someField
foo.anArray[0] .someOtherField
foo.anArray[1l] .someField
foo.anArray[1l] .someOtherField
foo.alist[0] .someField
foo.aSet[0] .someField
foo.aSet[0] .someOtherField
foo.aMap[bar] .someField

As you can see, the tree can be arbitrarily deep and contain collections, maps and arrays.
The default implementation can read and write both public and private fields and normal
JavaBean-style get/set-properties.

It might be surprising to see a Set reference with an index notation. This is a faked index -
of course a Set doesn’t have an index itself, but BeanFiller provides one so you can address
the same object in more than one row, as shown above.

The tree doesn’t have to be completely prepared in the bean you pass in - BeanFiller will
try and instantiate all objects it needs on its way along the graph. In the above example,
if foo.aReference is null, BeanFiller will try to determine the type of aReference via
reflection and then instantiate an object of the needed type. There are sane defaults for
well-known interfaces like List, Map and Set.

Sometimes you will want to specify a different type, or, for example in the case of collections,
BeanFiller can’t find the type via reflection. In this case you need to provide a type
annotation (see above on how to give annotations).

2.7 BeanAccessStrategy

The way BeanFiller works with your objects is pluggable. If you work with POJOs (aka
Java Beans) then you have to do nothing. The default JavaBeanAccessStrategy will try
hard to get into your objects, both via standard getters and setters, as well as trying direct
field access via reflection, even to protected and private fields. This default should work

g
DDT Reference Documentation SENACOR

TECHNOLOGIES

in almost all cases. But in case you have a really weird object model, have a look at the
BeanAccessStrategy interface and provide an implementation suitable to your setup.

10

	1 What is Data Driven Testing?
	1.1 The Input Problem
	1.2 Automating Input
	1.3 Help the Users Help You
	1.4 Easy-to-use, collaborative data-driven testing

	2 DDT's Architecture
	2.1 A matrix of values
	2.2 ObjectMatrix and StringMatrix
	2.3 Annotations for DelegatingObjectMap
	2.4 Embedded Annotations
	2.5 ObjectMap and BeanFiller
	2.6 BeanFiller row name syntax
	2.7 BeanAccessStrategy

