Data Mining Project PT. 2 - K-Means and DBSCAN analysis and
implementation

Daniel Hanspeter, 6129 Daniel Graziotin, 4801 Thomas Schievenin, 5701
January 13, 2011

Abstract

This report is on the development and analysis of two Data Mining clustering algorithms, namely K-Means
clustering and DBSCAN, within an interactive graphical program written in Java programming language. This
report is dived in three parts. In the first part we will present a usage section, explaining how to interact with
the program. We will then introduce the architecture of the system, explaining our implementation in detail. In
the third part we will present our analysis of the algorithms

1 Getting Started

1.1 Introduction

The DWDM Project part II consists in implementing some Data Mining algorithms to get a deeper understanding
of their behavior, their strengths and their weaknesses. We choosed to implement the K-Means and the DBSCAN
algorithms performing the same task and then we compared their behaviours.

1.2 Contents of the archive
When un-compressed, the archive is organized in the following structure:

— dwdmproject

|

— dwdmproject . pdf

|

— application
dwdmproject. jar

|

— datasets

——— blood—transfusion. arff
census—income. arff

|

— javadoc
—— index . html
——— many other

— Src¢

dwdmproject.jar is the Java Archive of the program we implemented, the datasets sub-folder contains the two
datasets on which we tested the application. The javadoc subfolder contains the exported documentation of the
program. The src subfolder contains the sourcecode of the program.

1.3 Running the application for the first time

First, we launch the JAR file. This can be done either by double clicking on the JAR file or by executing the below
command in a console window:

|£] DWDHM Project PART IT

= [)

File Help

1 attribute X

I

Attribute Y

[

6 Output

2 Choose your Algorithm:
® K-Means) DBSCAN

3 Set Parameters

5

4 About your DataSet:

0Rows

0 Skipped Rows (missing value)

Figure 1.1: Quick overview

java —jar dwdmproject. jar

Our application is tested and supported for Windows XP and Windows 7. There are litte unexpected behaviors
when running it under Mac Os X but they are all related to the graphical implementation of the project: the
functionalities seem working fine anyway. There are bigger issues with Gnu/Linux, all related to the graphical
implementation: some functionalities will not run. It has been developed for Java 1.6.

1.4

As the application starts all features are disabled. This is because there is not a dataset loaded yet. The application

Quick overview

main window, represented in Figure 1.1, is composed by the following parts:

1.

1.5

The steps for running the K-Means algorithm are the following:

e First we need to load our dataset into the memory. This can be done by clicking on menu File > Open,
then select either “census-income.arff” or “blood-transfusion.arff” provided as attachment. Note, the loading
window allows to import only arff file, otherwise our parser is not able to parse its content.

Attribute X + Attribute Y: we get the possibility to select the attributes on which the algoritms will perform

their calculations;

Choose your algorithm: we select which algorithm to be run against the dataset

Set Parameters: in case of K-Means algorithm selected, the available parameters to be set are the number of
clusters, the number of iterations and whether to take care of noise. If the DBSCAN algorithm is selected,

we have to specify only the values for E-Neighbours and Min-Points;

because of missing values;

Execute: this bottom executes the selected algorithm;

Out: algorithms’ outcome.

How to run K-Means algorithm

. About your Dataset: it displays the number of rows loaded into memory and the number of skipped rows

|5 Apri

el

Cercain: ||j tom

0-0-
M=

Oy oensusinoome.aﬂ

[y transfusion.arft

Nome file: |census—inc0me.arﬁ

Tipo file: |hRFF Files

e Important: while importing the dataset, the application checks wheter missing values are present.

Figure 1.2: Open window

This

information will be diplayed later in the “DataSet information” section described before. In case of a dataset
with missing values in every row, the application informs the user that it has no data for running the algorithms.

Messaggio

X

@ All imported lines contain missing values!

Figure 1.3: No data popup

e Once the dataset has been loaded, we can decide on which attributes to perform the K-Means algorithm. We
selected as attributes “age” and “relationship”, 2 clusters and 2 iterations. We also wanted to take care of the

noise.

|4 DWDM Project PART IT

File Help

Atiribute X

Attribute ¥

relationship

leducation
leducation-num
marital status
loccupation
{relationship
race

sex

[Drf«

Cheose your Algorithm:
@ K-Means) DBSCAN

Set Parameters
Number of clusters: |2
Number of iterations: |2

Take care of noise:

E - Neighbors:
MinPoints:

About your DataSet:
30162 Rows

2399 Skipped Rows (missing value)

e We click the Execute button;

Figure 1.4: Selecting attributes

e In case of big dataset size, the execution of the K-Means algorithm takes a while. For this reason we imple-

mented a progress bar to inform the user how long the execution is going to take.

|£:| Execution process éj

31%

Completed 31% of KMeans

Figure 1.5: Progress bar

e Once the progress bar finishes, the user sees the outcome of the K-Means algorighm:

|£:/ DWDM Project PART 11 ==k
File Help
Choose your Algorithm:
® K-Means () DBSCAN
Attribute X
__ Set Parameters About your DataSet:
H Numberof clusters: 2| 30162 Rows
Attribute Y Number ofiterations: 2| 239 Skipped Rows (missing value)

Take care of noise: v

E - Neighbors:

MinPoints:
Output

— Cluster 1 —

<30.0,0.0><38.0,2.0><28.0,4.0><49.0,6.0><31.0,8.0><37.0,10.0><23.0,12.0><34.0,14.0><32.0,16.0><43.0,18.0><54.0,20.0

— Cluster2 —
<563.0,3.0><52.0,7.0><30.0,11.0><25.0,15.0><40.0,19.0><50.0,23.0><49.0,27.0><30.0,31.0><19.0,35.0><24.0,39.0><53.04

il

Figure 1.6: K-Means outcome

1.6 How to run DBSCAN algorigthm

The steps for executing the DBSCAN algorithm are basically the same of the K-Means algorithm. The only things
that change are the parameters to be set. In fact, we have to specify the number of E-Neighbors and the number

of MinPoints.

| £/ DWDM Project PART IT -
File Help
Choose your Algorithm:
(2 K-Means ® DBSCAN
Attribute X
Set Parameters About your DataSet:
w52 ows
Number of clusters:
Attribute ¥ Number of iterations: 2309 Skinped Rows (missing value)
= Take care of noise:
s o
S e—
B
Output

Figure 1.7: DBSCAN Algorithm

2 Architecture

For implementing the system we decided to follow a personalized Model-View-Controller design pattern, that we
name “MVA”, or Model-View-Algorithm, respectively mapped in the Java packages types, gui and algorithms.
This is for a better separation of concerns. Figure 2.1 illustrates with a very simple scheme our general view of
the architecture of the system. It is a personalized version of the MVC pattern because we further separated the

algorithms from the controller part, putting the non algorithm-related code in the gui package anyway. The user
interacts only with the gui component that, based on user input, calls the components of the algorithms package
that will do some computation on data defined in the types package and return the result.

ALGORITHMS

DBScan.java
KMeans.java
Utility. java

———————— = GUI

Jintfilter.java
OpenFileDialog.java
TaskManager.java
Main.java

ProgressGui.java (TYPES J

Centroid.java
DataSet java
Cluster.java
Instance.java
Row.java

User

Figure 2.1: General Architecture View of the System

The gui package contains the Main class that is responsible for accessing the program and constructing the
graphical user interface using Swing. The Jintfilter is a specialization of Swing’s Document object and is used for
filtering user input on algorithm parameters. The OpenFileDialog class is a personalized dialog for opening the
datasets, in ARFF format. The ProgressGui class is responsible for creating a window containing the status and
progress of the operations. The TaskManager class is a wrapper for creating threads that contain the algorithm
tasks.

The algorithms package, better illustrated in Figure 2.1, contains the pure, type independant implementations
of the clustering algorithms, K-Means and DBSCAN. They make use of generalized data types defined in the types
package, in order to have an abstraction of the data. The programs modular design allows an easy extension of the
recognizable formats, for instance CSV, XML or a Database. The Utility class actually contains the method for
loading the datasets and converting them in objects declared in types package.

(9 DBScan (9 KMeans (& utility

ns pointsList: List<Instances ns clusters: List<Clusters

[OS laad DataSerl)
o clusters: List<Cluster> llp numberiterations: int

& disalayl)
HP & int
d: EMeans(in k: int, in iter: int, in instances: Vector<Instance:=}

o minp: int

" E initializeCentraids{
d: DEScaniin Instances: List<Instances, in e int, in minp: int) H generateCentroidiin currentpos: int: Centroid
@ geClustersik: List<Cluster> o
o H refreshCentroids
-S geiDistancelin p: Instance, in q: Instance): double B rerdembssigni
B oewneighborslin p: Instance): List<Instances> @ getClustersil: List<Clusters
-S addNeighborsiin cluster: Cluster, in cluster2: Cluster): boolean

Figure 2.2: Algorithms Package

The types package, represented in Figure 2.3, contains pure Java representation of the data that can be loaded by
the algorithms. They are an abstract representation of an ARFF file but they are completely independent from their
structure. They act as wrappers for the algorithm and it would be a matter of changing the Utility.loadDataSet()
method for loading any kind of data format. The DataSet class represents a data format, e.g. a dataset, that is
composed by rows, defined in Row class. The other classes are related to the algorithm own data types, for example
Cluster and Centroid.

(© Ccentroid
& centraidy
@ calcCentraid() Calle
@ getClusterk] Call, Immart G Instance
tCluster Com TR
8 astee @, i=Classed: boolean
Py -
@, isKey: bool
| 0.1 |+ comsroid P eean (9 Dataset S Row
| \ € double g
| «Call, Imgart o e - attributes
4 0, v: double . name: String & rot
«lmpgrts o)
| i @, skippedamount: int 0.1
F : & rowd
| A & Instancety o)
X I 3 : e
I 0.1 | "= duster \ @ calcEuchideanDistancel) & Dasasery Caff Imdars, Insfaheidll. addRowAttribute()
+ cluster - instances nh — e
® Cluster @ ogetCurrentEuDt() @ geDatal) — 3 @ gesSizel
£
0.1 | @ primn @ incSkippedamaunt() @ gevalued
«Call. Imparts)
©p, name: String <—————————? & setkey @ printd @ printRowl
- = «Call. Imparts /| @ testfuclideanDistancen @ setAttributes()
d: Cluster{) —.— / "
~—— @ setDatal)
@ addail) =
@ addinstancel)
@ clearl
@ contains
@ getinstancel)
@ getinstances(
@ getMuminstances()
@ getNumDiMinAndMaxXYl
@ removelnstance(])

Figure 2.3: Types Package

All the code has been clearly documented using Javadoc documentation. For a deep understanding of the
functioning of each method, please see the javadoc folder, containing the HTML exported documentation.

Regarding the additional method we created in order to achieve the results, they are all documented in the
code and in the documentation, but we will mention here one of them. It is a method for removing noise from
the datasets. It begins at line 143 of it.unibz.algorithms.KMeans. It is inspired by [Barca, J.C. Rumantir, G.] A
Modified K-Means Algorithm for Noise Reduction in Optical Motion Capture Data.

In order to take care of noise, we don’t reduce it before executing the algorithm, but we added an additional
check during the execution. On every end of iteration, we try to find out how compact a cluster is. If instances

inside a cluster overcome the average compactness of the clusters in the dataset, this cluster is flagged as noise. In
modification to the classical K-Means algorithm, we try to add an automatic determination of the optimum number
of clusters we should have. A cluster is considered noise if it only has a few instances in it. The minimum number
of instances in a cluster, or the cluster size, are set such that it minimizes the degree of false positives (i.e. data
clusters incorrectly classified as noise) and false negatives (i.e. noise clusters incorrectly classified as data). The
following is a code snippet that handles the problem:

// Find corners of compactness based on instances with
// minimum and maximum X and Y values
compactness = clusters.get(j).getNumlInstances() / (clusters.get(j).getNumOfMinAndMaxXY ());
// Calculate cluster compactness, that is number of data points / compactness window size
if (compactness > instances.size() / clusters.size())

clusters.get(j).setlsnoise (true);
else

clusters.get(j).setIsnoise(false);

3 Analysis

3.1 Comparison of the algorithms

Two clustering algorithms - namely the K-Means and the DBSCAN - were examined and their clustering perfor-
mances were compared. First of all, in the DBSCAN algorithm the user does not have to specify the K value, which
drastically affects the outcome in the K-Means algorithm. The DBSCAN deals with noise data and outliers. On
the other hand, the K-Means algorithm is affected by noisy data. Additionally, in the DBSCAN the ordering of the
points in the database is not so important. We found that the DBSCAN algorithm has a superior performance as
the dataset size grows.

3.2 An algorithms analysis
3.2.1 K-Means Properties
e Pro: K-Means is relatively scalable and efficient in processing large data sets
e Pro: the computation complexity of the algorithm is O(objects*clusters*iterations)
e Con: it can be applied only when the mean of a cluster is defined
e Con: the user must specify a value for K parameter
e Con: it is not suitable for discovering clusters with nonconvex shapes or clusters of very different size

e Con: it is sensitive to noise and outlier data points (can influence the mean value).

3.2.2 DBSCAN Properties
e Pro: it does not force you to choose the number of clusters in the data a priori, as opposed to K-Means
e Pro: it can find arbitrarily shaped clusters. It finds clusters completely surrounded by a different cluster
e Pro: it considers noisy values
e Pro: it requires just two parameters for working
e Pro: it is mostly insensitive to the ordering of the points in the database

e Con: the distance measure in the function for finding neighbours is crucial. We used the euclidean distance
measure and especially for high-dimensional data

e Con: varying densities affects the outcome of this algorithm (hierarchical data sets)

3.3 Benchmarking the algorithms (AMD Phenom 9600 Quad Core 2.6Ghz)
| DataSet Type | K-Means (C=20, I=2) | K-Means (C=20, I=2, Noise removal) | DBScan (E=5, MinPoints=20) |

BT (748 Rows) 4.5 ms 5 ms 7 ms
BT*2 (1496 Rows) | 30 ms 33 ms 3 Sec 498 ms
CI/2 (15124 Rows) | 3 Min 40 sec 4 Min 14 sec 2 Min 04 sec

CI (27763 Rows) | 9 Min 19 sec 10 min 40 sec 4 Min 18 sec

