Implementing an NDA Signing iPad Application Using
SalesForce.com and the DocuSign API

Problem

Your visitors must sign an NDA at your front desk. You want to streamline this
process, make your visitor's first impression of your company memorable, and
capture information about your visitor in Salesforce.com.

Solution
Use the Docusign API, VisualForce pages, and a Salesforce Custom Object to have
your visitor sign in, and sign an NDA document using an iPad!

Before getting started, you need to get a free Salesforce.com developer account at
https://developer.force.com, and a free DocuSign developer account at
http://www.docusign.com/devcenter.

1. Start out by adding DocuSign web services to your authorized endpoints for your
Salesforce.com developer account. To do this, go to Setup->Security Controls-
>Remote Site Settings. Click on the New Remote Site button. Type in
"DocuSignDemo" for the Remote Site Name and "https://demo.docusign.net” for
the Remote Site URL and make sure the Active check box is checked. Click on
Save. This URL will be your endpoint for DocuSign web service calls.

2. Next, create a custom object. This object will be used to store your visitor's
information. Start by going to Setup->Create->0Objects. Click on the New Custom
Object button. Fill in the Label textbox with "NDA Signer", Plural Label: NDA
Signers, check Starts with vowel sound, Object Name: "NDA_Signer", Description:
"Contains data for an NDA Signer", Record Name: "NDA Signer Name", Data
Type: Text. Leave everything else at default and click Save. You'll see a detail of
the NDA_Signer custom object with the following at the top:

Custom Object Definition Detail Edit | Delete
Singular Label NDA Signer Description Contains data for an NDA Signer
Plural Label NDA Signers Enable Reports
Object Name NDA_Signer Track Activities
APIName NDA_Signer__c Track Field History

Deployment Status Deployed
Help Settings Standard salesforce.com Help Window

3. Now, you need to create the Custom Fields & Relationships.
a. Click on the New button.
Step 1: Select the "Text" radio button, then click Next.

Step 2: Type "here to see" for the Field Label. Type "128" for the Length
and make sure the Field Name is "Here_to_see". Leave rest at defaults
Click Next.

Step 3: All of the Visible checkboxes should be checked. Click Next.
Step 4: The Add Field checkbox should be checked. Click Save & New.

. Create another text field doing the steps above for the Field Label
"Selected name" with a Field Name of "Selected_name".

Create another text field doing the steps above for the Field Label
"Company" with a Field Name of "Company".

. Create a new email field.

Step 1: Email data type. Click Next.

Step 2: Field Label is "Email", Field Name is "Email"”, leave rest at default.
Click Next.

Step 3: accept defaults. Click Next.

Step 4: accept defaults. Click Save and New.
Create a Purpose of Visit picklist field.

Step: 1: Picklist data type. Click Next.

Step 2: Field Label is "Purpose of Visit", list of values is "Business”,

"Interview", "Personal”, Check Use first value as default value, Field Name

is "Purpose_of_Visit", leave rest at defaults. Click Next.

Step 3: Check Visible insuring all Field-Level Security items are checked.
Click Next.

Step 4: Check NDA_Signer Layout. Click Save and New.
Create a sign-in field
Step: 1: Date/Time data type. Click Next.

Step 2: Field Label is "sign in", Field Name is "sign_in", leave rest at
defaults. Click Next.

Step 3: Check Visible insuring all Field-Level Security items are checked.
Click Next.

Step 4: Check NDA_Signer Layout. Click Save and New.

Create another Date/Time file doing the steps above for the Field Label
"sign out" with a Field Name of "sign_out".

. Create signed in? field
Step: 1: Formula data type. Click Next.

Step 2: Field Label is "Signed In?", Field Name is "signed_in", Formula
Return Type is Text. Click Next.
Step 3: Paste the following formula into the formula edit box:

1'f(ar)1d(1'sb]ank(sign_out_c), not(isblank(sign_in__c))), "ves",
IINOII

Click Next.

Step4: Check Visible insuring all Field-Level Security items are checked.
Click Next.

Step 5: Check NDA_Signer Layout. Click Save and New.
i. Create a Validate Method field
Step 1: Picklist data type. Click Next.

Step 2: Field Label is "Validate method", list of values is "SHOWID",
"PHONE", "RSAID", check Use first value as default value, Field name is
"Validate_method". Click Next.

Step 3: Check Visible. Click Next.
Step 4: Check NDA_Signer Layout. Click Save.
The Custom Fields and Relationships area of the NDA_Signer Custom Object

detail should look like:
Custom Fields & Relationships New | | Field Dependencies
Action Field Label APl Name Data Type
Edit | Del Company Company__ ¢ Text(140)
Edit | Del Email Email_c¢ Email
Edit | Del Here to see Here_to_see_ ¢ Text(255)
Edit| Del | Replace Purpose of visit Purpose_of visit ¢ Picklist
Edit | Del selected name selected_name__c Text Area(255)
Edit | Del signed in? signed_in__c Formula (Text)
Edit | Del signin sign_in__ ¢ Date/Time
Edit | Del sign out sign_out_¢ Date/Time
Edit| Del | Replace validate method validate_method__c Picklist

4. Now, we must create the proxy classes used to make DocuSign API calls. There
are three classes we must create, all from DocuSign WSDLs. Download the
following WSDLs and save them to your desktop:

https://demo.docusign.net/api/3.0/Schema/dsapi-send.wsdl
https://demo.docusign.net/api/3.0/Schema/dsapi-document.wsdl
https://demo.docusign.net/api/3.0/Schema/dsapi-account.wsdl

Now, go to Setup->Develop->Apex Classes and click on the Generate from WSDL
button. Browse for the dsapi-send.wsdl.xml file you saved to your desktop and
click the Parse WSDL button. Type "DocuSignAPI" for the Apex Class Name
instead of the default and click on the Generate Apex code button.

Do the same for dsapi-document.wsdl.xml calling it "DocuSignAPI_document".
Do the same for dsapi-account.wsdl.xml calling it "DocuSignAPI_account”.

. The rest of the code and resources we will be adding are located at DocuSign's
SDK site at https://github.com/docusign/DocuSign-eSignature-SDK. Download
our SDK by clicking on the Downloads button. Select your favorite compression
type, Save it somewhere, and uncompress it.

. You'll first need to upload the static resource file. Back to your Salesforce page,
go to Setup->Develop->Static Resources. Click the New button. Type "ndaStyles"
in the Name textbox. Browse for the following file:

<root_dir_of _sdk_download>/Salesforce/NDAKiosk/staticresource/ndaStyles.zip.
Select Public for the Cache Control and click Save.

NOTE: The other two files in the staticresources dir is a ndastyles.css file that is
the stylesheet that contains the branding styles, and an icon_ipad.png file that
tells the iPad Safari browser what icon to use when this application is
bookmarked to the iPad Home Page. You can change this, zip it to a new
ndaStyles.zip file, and upload it again to change the look of the NDAKiosk
application.

Now we will create the Apex controller class that is used by the application. Go
to Setup->Develop->Apex Classes and click on the New button. From your
DocuSign SDK download, open

<root_dir_of _sdk_download>/Salesforce/NDAKiosk/classes/NDAKioskController.cls

in a text editor. Copy all of the text and paste it to Apex Class Edit area. Click
Quick Save. You will receive an error that says: Error: Page ndadone does not
exist. Click the Create Page ndadone link. Click the Quick Save button again and
you will receive a new error for the ndapop page. Click the Create Page link
again. Repeat these two steps for the ndanameres, ndanotifyreception, ndaesign,
ndadonesignout, ndasignout, and ndawelcome pages. Clicking the Quick Save
button after creating the ndawelcome page should not result in any errors. Click
the Save button.

Now you'll add the code for these eight pages. The code is located in the
<root_dir_of_sdk_download>/Salesforce/NDAKiosk/pages directory in the
downloaded DocuSign SDK. In you Salesforce site, go to Setup->Develop->Pages.
Click the N link above the list to shorten it. You should see the six pages that
were created in step 7. Click the Edit link for each page, and completely replace
the code in the VisualForce Markup area with the code in the corresponding
.page file (e.g., replace all of the code for the VisualForce ndadone page with the
text in the ndadone.page file).

. We're almost there! You must upload a template to your DocuSign account and
get some information that will allow the NDAKioskController class to call your
account and create NDA documents from your template. Login to your DocuSign
dev account. Select the Templates folder on the left of the Console. Click the

Browse button next to the Upload Template textbox and upload the template file
at

<root_dir_of _sdk_download>/Salesforce/NDAKiosk/DocuSign_Visitor_NDA.xml.

Click on the DocuSign Visitor NDA template then click on the Open link above.
You will see something like the following at the top of the template:

Envelope Template

DocuSign Visitor NDA v110114(1)
Template ID: @EREITCA BI/EA-4207-0724-7 1AB /107 ane

Note the string after the Template ID. This will be need to be pasted into the
NDAKioskController class created in step 7. Click the red X in the upper right-
hand corner and click No when the Save Template? dialog comes up.

10. Now you will need your DocuSign credentials to paste into the
NDAKioskController class. These credentials are used to authenticate your calls
to the DocuSign web service. In the DocuSign member console go to Preferences-
>API. At the top of the page you'll see the GUID for an Integrators Key. If you
have not done so, click the Activate button next to the GUID in the Request a new
Integrator's Key area. You should now see the following:

API Information
API Access: Enabled

Integrator Keys Description Production Activation

Docusign Submit for Certification
S DocuSign Reception Submit for Certification

Request a new Integrator's Key: — . D - — - S — 1/Activate\‘

Key Description: DocuSign Reception

. . 4/ " \‘
Set Key from another DocuSign envircnment: Activate)

Key Description:

Integrator's Key allows you to create software that makes API requests to any account on the DocuSign system. Integrator Keys are required for all 2
to go through a certification session to get the key enabled. You can contact certifications@docusign.com to schedule this session when your software

API UserName: ¢c—.< S - - - - ———
API Password: <your current password>
API Account ID: - - e

API credentials allow you to make web service calls using unigue identifiers or readable e-mails. SOAP Headers are required for API version 3.0.

Note the Integrators Key GUID (be sure it's the circled one), the API
UserName (either the GUID or your email address will work for the userld
string in the NDAKioskController class), and the API Account ID GUID. Go to
your Salesforce dev site and select Setup->Develop->Apex Classes->Edit
NDAKioskController. Locate the strings starting with TODO in lines 17
through 22. Replace the accountID string with the API Account ID GUID noted
above. Replace the userID string with the API UserName above. Replace the
password string with the password you used to login to your DocuSign dev
member console. Replace the integratorsKey string with the Integrators Key
circled above. Replace the templatelD string with the Template ID GUID

noted in step 9. Replace the devHost string with the host part of the URL of
the page you're currently on (e.g., "https://na3.salesforce.com/", don't forget
the trailing "/"). Click Save. You're done!

11. The "Here to see:" input field on the welcome page looks at your Salesforce
Contacts to figure out whom to email for notification a visitor has arrived to see
them. You should add a few test contacts, and include email addresses you can
monitor. Without a valid email address, the "Here to see" feature will present a
message saying: "The person you are here to see doesn't seem to be listed.
Please notify the receptionist, then press continue".

12.You can now try the application. Type in the URL of the page by adding
"apex/ndawelcome" to the your host URL. You will be taken to your Welcome
page, and you can try out the application either on your desktop, or your iPad!

Control Flow
The application consists of six pages. The NDAKioskController class determines flow
from page to page. The following diagram illustrates the control flow.

ndaWelcome

Gather visitor
data and insert
custom object

Email for
Person to be

ndaNotifyRec... Visited?

Notify if person
to be visited
cannot be found

ndaNameRes More than

one Name
for Visitor
Email?

Let visitor pick
name if more
than one

ndaEsign

Present Continue

document to be
signed ndaPop

Callback URL to

ndaDone pop out of
iframe
7 sec Signing e
timeout Complete

After 7 seconds

return

Some Code Walkthrough

We will concentrate on the code that is unique to the DocuSign API and how it
works. The "SendNDANow" private NDAKioskController class created in step 7
implements most of this functionality. It is this method that builds an "Envelope”

from the data in an NDA_Signer custom object (created in step 2) and a template
(uploaded in step 9).

An Envelope is a transaction container that includes documents, recipient information,
workflow, and data.

The first thing this method does is to create a "Recipient".

A Recipient is a person who receives an Envelope. This recipient can have one of
several roles: signer, carbon copy recipient, editor, agent, or certified delivery.

By default, validation is "trusted" meaning the person who will sign the document is
known to be the correct one. There are other levels of validation that DocuSign
offers including voice identification by phone, and RSA identification. The following
code makes these choices based on what was selected on the welcome page:

if (signer.validate_method__c == 'RSAID') {
recipient.RequireIDLookup = true;

else if (signer.validate_method__c == 'PHONE') {
recipient.RequireIDLookup = true;
recipient.IDCheckConfigurationName = 'Phone Auth $';

DocuSignAPI.RecipientPhoneAuthentication phoneAuth = new
DocuSignAPI.RecipientPhoneAuthentication();
phoneAuth.RecipMayProvideNumber = true;
recipient.PhoneAuthentication = phoneAuth;

else {]
recipient.RequireIDLookup = false;

The following code informs the DocuSign web service that we wish to initiate an
Embedded signing experience.

An Embedded Signing Experience means that the document to be signed will appear
embedded in a web application. A Remote Signing Experience means that the
document will be emailed to a recipient for signing.

// make recipient captive for embedded experience]
recipient.CaptiveInfo = new DocuSignAPI.RecipientCaptiveInfo();
recipient.CaptiveInfo.ClientUserid = '1';

Next we want to use a template that is stored in your DocuSign member account (a
"server-side template” as the document to be signed:

// Create object for the NDA server-side template
DocuSignAPI.TemplateReference ndaTemplate = new
DocuSignAPI.TemplateReference();
ndaTemplate.Template = templateld;
ndaTemplate.TemplateLocation = 'Server';

We have some "tabs" on our template that need to be filled in from the information
we entered on the ndawelcome page. Each tab has a label and a value. The following
code fills these in:

// Add data for fields
DocuSignAPI.TemplateReferenceFieldDatabatavalue fdl = new
DocuSignAPI.TemplateReferenceFieldbatabatavalue();

fdl.TabLabel = '"Full Name 1';
fdl.value = recipient.UserName;

DocuSignAPI.TemplateReferenceFieldDatabatavalue fd2 = new
DocuSignAPI.TemplateReferenceFieldbatabatavalue();

fd2.TabLabel = 'Company 3';

fd2.value = signer.Company__c;

Now we make the call to CreateEnvelopeFromTemplates. If we had not created the
Captivelnfo object above, the document would have been sent to the Recipient's
email. Instead, the method returns an envelope id that can be used to get a unique
session limited URL, called a "token URL" that can be used in an iframe element for
an embedded signing. The code to get this URL is as follows:

DocuSignAPI.RequestRecipientTokenClientURLs clientURLs = new
DocuSignAPI.RequestRecipientTokenClientURLs();

clientURLs.OnAccessCodeFailed = getPopURL() + '?Id=' + signer.id +
'&event=0nAccessCodeFailed&envelopeid=' + envelopelD;
clientURLs.OnCancel = getPopURL() + '?Id=' + signer.id +
'&event=0nCancel&envelopeid=' + envelopelD;
clientURLs.OnDecline = getPopURL() + '?Id=' + signer.id +
'&event=0nDecline&envelopeid=" + envelopelD;
clientURLs.OnException = getPopURL() + '?Id=' + signer.id +
'&event=0nException&envelopeid="' + envelopelD;
clientURLs.OnFaxPending = getPopURL() + '?Id=' + signer.id +
'&event=0nFaxPending&envelopeid=" + envelopelD;
clientURLs.onIdCheckFailed = getPopURL() + '?Id=' + signer.id +
'&event=0nIdCheckFailed&envelopeid=' + envelopelD;
clientURLs.OnSessionTimeout = getPopURL() + '?Id=' + signer.id +
'&event=0nsSessionTimeout&envelopeid="' + envelopelD;
clientURLs.OnSigningComplete = getPopURL() + '?Id=' + signer.id +
'&event=0nSigningComplete&envelopeid=' + envelopelD;
clientURLs.ONTTLEXpired = getPopURL() + '?Id=' + signer.id +
'&event=0nTTLExpired&envelopeid="' + envelopelD;
clientURLs.OnViewingComplete = getPopURL() + '?Id=' + signer.id +
'&event=0nviewingComplete&envelopeid=' + envelopelD;

// assumes apiService = preconfigured api proxy
try {
token = dsApisend.RequestRecipientToken(envelopeld,
recipient.captiveinfo.ClientUserId, recipient.UserName,
recipient.Email, assert,clientURLS);
} catch (calloutException e) {

System.debug('Exception - ' + e);
errMsg = 'Exception - ' + e;
return ''; //TODO: send to error landing place

}

return token;

Note the series of RequestRecipientTokenClientURLs. These are callback URLs that
are called by the DocuSign web service depending on the event that ended the
document signing. Here we are calling the ndapop page we created to "pop" out of
the iframe and send us to the ndadone page.

