README: An Embedded DocuSign Signing Experience

This readme provides a step-by-step example explaining how to set up a DocuSign
ApexCode sample in your Salesforce.com account to accomplish an embedded signing
experience with a single click of a button. When you are done with this walkthrough you
will be able to sign a Salesforce.com Contract object with just one button click.

Before getting started you need to get a free Salesforce.com developer account at
https://developer.force.com and a free DocuSign developer account at
www.docusign.com/devcenter.

This walkthrough assumes familiarity with creating VisualForce pages and Apex controller
classes. If Salesforce customization is new to you, starting with the walkthrough discussed
in the Readme.pdf file in the Salesforce/SendToDocusign directory can help your learning
curve.

1. Start out by adding DocuSign webservices to your authorized endpoints for your
Salesforce.com developer account. To do this, go to Setup > Security > Remote Sites and
add https://demo.docusign.net/api/3.0/dsapi.asmx.

2. Now we need to create three pages: RenderContract, for rendering a contract as a PDF,
EmbedDocusSign, which makes a web service call to DocuSign and hosts the resulting
document to be signed in an iFrame, and embedPop, for a return page when signing is
complete that pops us back to the original contract page. Go to Setup->Develop->Pages,
create the pages, and replace the default Visualforce Markup code with the code you'll
find in the corresponding .page files in the src directory.

3. In this step we are going to create a class to access the DocuSign API. For this
walkthrough we are just going to get the sending WSDL, which can be found at
https://demo.docusign.net/api/3.0/Schema/dsapi-send.wsdl. You should save the
WSDL file to your desktop. (Note: For complete set of WSDL files please refer to
documentation on DocuSign DevCenter.)

Next go to Setup->Develop-> Apex Classes and select “Generate from WSDL”. When the
class generator asks you to supply a class name, we suggest that you overwrite the class
name with DocuSignAPI.

4. Using the new API endpoint, you can create a controller that manages the web service
calls. Select "New" while on the Apex Classes pages. Copy the code from the
EmbedToDocuSignController.cls file in the src directory into the Apex Class Edit box.



5.

In order to use DocuSign API, you need to retrieve your DocuSign API credentials. Go to
https://demo.docusign.net/, sign into your demo account, and then go to Preferences >
API. There you will find these values that look something like this:

Integrator's Key: ZOR0-a81ec71a-cb17-4af0-b1aa-9513115cbf02
API UserName: Oe212ae6-1e12-40c1-8f5a-a57458ccaa63

API Password: <your current password>

API Account ID: 736e€7948-6861-4ef3-ae71-4c56603dc14f

Plug these values into lines 9-12 of the controller class.
The last step is creating a custom button on the contract object that calls the sending

page. Go to Setup > Customize > Contracts > Buttons and Links and create a New
button. Fill in the fields like this:

Custom Button or Link Edit Save | Quick Save | | Preview | Cancel

Label I Sign Here

Name I Sign_Here i

Description

Display Type () Detail Page Link View example
() Detail Page Button View example
() List Button View example

Behavior I Display in existing window without sidebar 4| View Behavior Options

Content Source I Visualforce Page |

Content | EmbedDocuSign [EmbedDocuSign] o

Save Quick Save Preview Cancel

7. Add the button to the page layout for the Contract object. This lets your users click on

the button to get their Contracts electronically signed! They don’t need to learn any
other systems or follow complicated steps. The logic behind the button does all the
work.



