
Dropwizard & Spring
 The perfect Java REST server stack

Jacek Furmankiewicz
Enterprise Architect
PROS, Houston, TX



What is it and why is it so 
exciting?

Dropwizard

2



3

 Created by Coda Hale @ Yammer

 http://dropwizard.codahale.com

Dropwizard 

http://dropwizard.codahale.com/


Best-of-breed Java libraries
4

 Embedded Jetty (no WAR, no deployment to 
external servlet container)

 JAX-RS (Jersey)
 JSON (Jackson)
 Logging (Logback / SLF4J)
 SLA Tracking (Metrics)
 Hibernate Validators
 Joda Time
 Google Guava
 etc.



Embedded Jetty
5

 Restart your code in seconds
 No WAR to recompile
 No WAR to redeploy
 Debug from your IDE (you have a main()), 
no need to attach to separate process

 No need to share heap and GC issues with 
other apps running in the same servlet 
container

 Total process isolation (one mis-behaving 
WAR cannot affect others as much)



Anatomy of a Dropwizard app
6

Jetty Jersey
YOUR CODE
(business logic, DAO, 
Spring, JPA, etc.)



Multiple apps on same box
7

Jetty Jersey APP 1

pid 1843

Jetty Jersey APP 2

pid 1407

Jetty Jersey APP 3

pid 1976

etc.

Own JVM
4 GB heap

Own JVM
4 GB heap

Own JVM
4 GB heap



Operations-friendly
8

 Opens 2 HTTP ports: one for public APIs (i.e. 
your REST services), one for admin APIs 
(e.g. run GC, refresh internal caches, etc)

 Admin port can be closed off on the firewall 
and inaccessible to outside world

 Health Check APIs to allow easy monitoring 
from external tools like Nagios

 @Timed annotation on any single REST API 
allows to track its SLA using Metrics library



Ease of deployment
9

 Dropwizard apps can be easily compiled into 
a single JAR with all dependencies (e.g. 
using One-Jar)

 Your entire app consists of two files: the 
YAML config + single JAR

 Trivial to run from command line:

java -server -jar myapp.jar server myapp.yml



Ease of deployment (part 2)
10

 Can be wrapped in an RPM or DEB to install 
on Linux clusters

 Can be registered as a Linux daemon, e.g.

sudo service myapp start
sudo service myapp stop



Adding dependency injection

Dropwizard and Spring

11



Spring DI
12

 Create Spring context first and wire all your 
components

 Query the Spring context and pull out all the 
parts Dropwizard cares about: JAX-RS 
resource classes, JAX-RS @Provider classes, 
Dropwizard HealthCheck and Task classes, 
etc.

 Register each of them with the Dropwizard 
runtime



Spring DI (part 2)
13

 Link the embedded Jetty with the Spring 
context, which makes it think it is running 
within a regular servlet container

environment.addServletListeners(new SpringContextLoaderListener(springContext)); 



Spring DI (part 3)
14

See the example application on github:
l

l https://github.com/jacek99/dropwizard-spring-di-security-onejar-example

l

https://github.com/jacek99/dropwizard-spring-di-security-onejar-example


Adding Spring Security

Dropwizard and Spring

15



Spring Security
16

 Add a Spring Security XML config file to your 
context @Configuration class, e.g.

@Configuration
@ImportResource("classpath:myapp-security.
xml")
@ComponentScan(basePackageClasses = 
MyAppSpringConfiguration.class)
public class MyAppSpringConfiguration {}



Spring Security (part 2)
17

 Activate the Spring Security filter

environment
.addFilter(DelegatingFilterProxy.class,"/*")
.setName("springSecurityFilterChain");



Spring Security (part 3)
18

 Unlike the rest of Spring, Spring Security 
does not support Java @Configuration yet, 
hence an XML file is required.

 This should be the ONLY XML file you should 
need to integrate Spring.

 Everything else in Spring can be done via 
pure Java @Configuration classes



Dropwizard & Spring
 Q&A

Jacek Furmankiewicz
Enterprise Architect
PROS, Houston, TX


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

